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ABSTRACT

Samuel, van Santen, and Johnston (1982,1983) reported a word length effect in
a word superiority paradigm. A word length effect was predicted in Grossberg
(1978a). This article describes the main concepts about the unitization process
that led to this prediction. The article also cliscusses recent data and models of
word and letter perception, controlled and :automatic information processing,
temporal order information in short term memory and in long term memory,
spreading activation, and limited capacity due to inhibitory interactions in
terms of the unitization process. It is shown that several popular models have
been based upon an inadequate definition of the functional units of cognitive
processing, and of the principles subserving the unitization process. The dichot-
omy between automatic processing and limited capacity processing is, for ex-
ample, based on a fundamental misunderstanding of the unitization process.
These problems have caused internal paradoxes and predictive limitations of
the models, which have prevented them from being unified into a single proces-
sing theory. A "self-organization critique" :is applied to some recent models to
illustrate their internal difficulties. It is a.lso shown how principles of self-
organization can be used to generate a theory wherein these data domains and
their empirical models can begin to be uniJ:ied.

THE WORD LENGTH EFFECT

The recent experiments of Samuel, van ~;anten, and Johnston (1982, 1983)
discovered a word length effect in word superiority studies. That is, a letter is
better recognized as it is embedded in longer words of lengths from 1 to 4. A
word length effect was predicted in Grossberg (1978a, p. 329; reprinted in
1982a, p. 595). This prediction arose from an analysis of how unitization of
new internal representations takes place iJt1 real-time. The same design princi-
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pIe is needed to unitize new internal repre~)entations in response to sound
streams, visual letter arrays, or sequences of motor commands. Thus al-
though the Samuel et 01. experiments seem to study a narrowly defined infor-
mation processing issue, my theory sugge~)ts that this type of experiment
probes a general principle governing the lea:rning of serial order in behavior,
and thus should be generally known.

UNITIZATION AND PSYCHOLIOGICAL PROGRESS

Samuel, van Santen, and Johnston also wrote that "lexical...theories...have
difficulty explaining the length effect in a principled manner" (Samuel, van
Santen, and Johnston, 1982, p. 104) and that "lexical theories had not previ-
ously included mechanisms that were explicitly length dependent" (Samuel,
van Santen, and Johnston, 1983, p. 322). These assertions are true of lexical
theories that are concerned entirely with inf~ormation processing issues, such
as letter and word recognition. By contrast, the lexical theory that led to the
word length prediction was derived from an analysis of how behaving indi-
viduals adapt in real-time to environments whose properties can
unpredictably change. Such an analysis leads to design principles and mecha-
nisms that cannot easily be inferred from processing data. Other lexical pro-
cessing theories did not predict the word length effect because they over-
looked fundamental constraints upon the clesign of behavioral mechanisms.

These design constraints concern the evolutionary process -variously
called chunking, unitization, automation" or coding -whereby behavioral
fragments are grouped into new control units that become the fragments of
still higher behavioral units in a continuin~: process of hierarchical organiza-
tion and command synthesis. It is perhaps surprising that lexical theories
have been so unconcerned with unitization, since pseudowords can acquire
many of the recognition properties of wo:rds after just five or six presenta-
tions (Salasoo, Shiffrin, and Feustel, 198L~).

In the remainder of this article, I will QuLtline the main concepts needed to
understand the word length prediction. I ~Nill also note some of the internal
problems that beset several types of popular information processing models
because they do not deal with the unitization issue. These models have arisen
independently from one another and contain no principles whereby they can
be unified. I will indicate how an analysis of unitization leads to a different
theory that is free from these internal problems and also unifies the main in-
sights of the disparate models.

THE TEMPORAL CHUNKING PROBLEM

The critical design problem that leads to the word length prediction is called
the temporal chunkingproblem. Suppose that an unfamiliar list of familiar
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items is sequentially presented; e.g., a nov~~l word composed of familiar let-
ters. In terms of frequency and familiarity, the most familiar units in the list
are the items themselves. In order to even know what the novel list is, all of its
individual items must first be presented. AJII of these items are more familiar
than the list itself. What prevents item familiarity from forcing the list to al-
ways be processed as a sequence of individual items, rather than eventually as
a list as a whole? How does a not-yet-established word representation over-
come the salience of well-established letter representations? How does
unitization of unfamiliar lists of familiar items ever get off the ground?

Another version of the temporal, chunking problem becomes evident by
noticing that every sublist of a list is a perfectly good list in its own right. Let-
ters and words are special sublists that have achieved a privileged status due
to experience. In order to understand how this privileged status emerges, we
need to analyse the processing substrate upon which all possible sublists
struggle to be represented even before learning occurs. The design of this pro-
cessing framework must also enable learning to unfold through time in a sta-
ble and self-consistent way. In particular, ~'hat design constraints prevent the
presentation of new list items from destabillizing the encoding of all past item
sublists? What design constraints enable the totality of represented sublists to
define a more global and predictive representation of the environment than
any individual list chunk could?

The subtlety of this unitization process :is reflected even by the trivial fact
that novel words composed of familiar lettl~rs can be learned. This fact shows
that not all sublists have equal prewired weights in the competitive struggle to
be represented. Such prewired weights incllLlde the number of coding sites in ~
sublist representation and the strength of the competitive signals that are
emitted from each sublist's representation. Somehow a wqrd as a whole can
use such prewired processing biases to overcome, or to mask, the learned po-
tency of its constituent items. This is the pJrimary reason in my theory for the
existence of a word length effect in word superiority studies.

This conclusion seems, however, to be self-contradictory upon further re-
flection. If prewired word biases can inhibit learned letter biases, then how is
perception of letters facilitated by a word (~ontext, which is the main result of
word superiority studies? This paradox caJ[1 also be resolved through an anal-

ysis of the unitization process.

ALL l_ETTERS ARI:: SUBLISTS

Some insight into this paradox can be gleaned by further considering what it
means to say that every sub list of a list is :also a list. In order for sublists of a
list to struggle for representational status, sets of individual items of the list
need first to be simultaneously representl~d in STM at some level of proces-
sing. For definiteness, call this level +i' where the index i does not equal! be-



266 GROSSBERG

cause, in the full theory, this level of processing is not the first one. The
theory shows how item representatiorls that are simultaneously active in STM
across +j can be grouped, or chunkedl, into representations of sublists at the
next level of processing +j+1' The sublist representations can then compete
with each other for STM activation within +.+ I .Once the two levels +. and +. I1 1 1+

are clearly distinguished, it becomes obvious that individual list items, being
sublists, can be represented at +j+ I as 'well as at +j' In the special case of letters
and words, this means that letters are represented at the item level, as well as
at the list level. Prewired word biase:; can inhibit learned letter biases at the
level +j + I' but not at the level +j' That is why I call level +j + 1 a masking field.

To clearly understand how the itelm representations at +j differ from the
sub list representations at +j+ I' one m1Jst study the theory's processes in some
detail. Even without such a study, one can conclude that "all letters are
sublists." Indeed, all events capable of being represented at +j + 1 exist on an
equal dynamical footing. In the fuIl1:heory, the implications of this conclu-
sion clarify how changes in the conte~:t of a verbal item can significantly alter
the processing of that item, and wh:'I the problem of identifying the func-
tional units of language has proved to be so perplexing (Darwin, 1976;
Studdert-Kennedy, 1980; Young, 1968). In +j+ I' no simple verbal description
of the functional unit, such as phone:me or syllable, has a privileged status.
Only the STM patterns that survive ;~ context-sensitive interaction between
associative and competitive rules hav'e a concrete existence.

The dictum that "all letters are ~iublists" helps to explain the data of
Wheeler (1970) that were a starting point for the Samuel et al. (1982, 1983) ex-
periments. One might intuitively believe that, since a word context can im-
prove the recognition of its constitueliLt letters, letters such as I and A that are
also words would be better recogni2:ed than other letters. Wheeler (1970)
showed that this is not the case. In my theory, this is due to the property that
all familiar letters have a unitized sublist representation at +j+ I' not only let-
ters that are also used as words. The Wheeler (1970) data thus demonstrate
how perilous it is to directly translate Ithe distinctions of lay language into the
definition of an underlying psycholog;ical process. The lay concept of a word
is a misleading guidepost for understanding the process whereby all familiar
sublists can achieve a unitized status. In fact, letters such as I and A may be
reported slightly worse than other letters. The same masking mechanism also
helps to explain why word superiority effects do not occur in Chastain's para-
digm (Chastain, 1982; Grossberg, 1984, Section 44), although the experimen-
tal manipulations that engage the mas:king mechanism differ in the two para-
digms. The masking mechanism thu~) explains how opposite effects can be
generated within closely related performance paradigms as an expression of
the unitization Drocess.
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EXPECTANCY LEARNIf'JG AND PRIMING

To avoid possible misunderstanding, I should promptly say what the dictum
"all letters are sub lists" does not imply. It is well-known that a human subject
can be differentially primed to preferentially respond to letters rather than
words, or to numbers rather than letters, and so on. Such a capability in-
volves the activation of learned top-down templates, or expectancies, that se-
lectively sensitize some internal representations more than others. Top-down
excitatory feedback, or priming, from +j+ 1 to +j is also used to explain how the
word length bias in +j+ 1 can differentially excite item representations in +j to
generate the word length effect. This is because the prewired biases of a
masking field enable the sublist representations of longer sublists to generate
larger top-down excitatory signals, other things being equal. The phrase "all
letters are sub lists" is thus a conclusion about the local procesding laws that
letters and words share, not about the global contextual effects that can flexi-
bly modulate the STM and L TM processes that these laws define.

The existence in my theory of learned top-down templates, or expectan-
cies, does not arise from a desire to fit data about word superiority, object su-
periority, attentional priming, phonemic restoration, and the like. The need
for such templates, and the laws that govern their properties, were derived
from an analysis of how the unitization process stabilizes itself against adven-
titious recoding by behaviorally irrelevant environmental events~ This analy-
sis led to many unexpected conclusions that have begun to unify a large data
base. In Grossberg (1980), for example, these templates were used to analyse
how STM is reset by unexpected events in a way that preserves the stability of
unitized representations. This analysis led to the prediction (p. 25) that a
hippocampal generator of the P300 evoked potential exists. A hippocampal
P300 generator has been experimentally reported by Halgren et ale (1980).
The validity of this prediction can be further tested by performing discrimi-
nation learning experiments that should be able to dissociate possible cortical
and hippocampal generators of the P300 (Grossberg, 1982b, Section 48).

THE McCLELLAND AND RUMELHART MODEL

Before continuing my theoretical discussion, I should note that the conclu-
sions which have already been drawn have major implications for popular
models of letter and word recognition, such as the McClelland and
Rumelhart model (McCelland and Rumelhart, 1981; Rumelhart and McClel-

land, 1982), for which I now sketch a self-organization critique.
By a "self-organization critique" I mean an internal analysis of a model

from the viewpoint of whether its information processing mechanisms could,
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in principle, develop or be learned. A model which cannot, in principle, self-
organize must be using certain mechanisms that are physically incorrect.
Both the nodal units and the internodal interactions that McClelland and
Rumelhart postulate are seriously challenged by a self-organization critique.

For example, McClelland and Rumelhart identify a stage of letter nodes
that precedes a stage of word nodes. They use these stages to discuss the pro-
cessing of letters in 4-letter words. The hypothesis of separate stages for letter
and word processing implies that letters are not also represented on the level
of words of length four.

In order to be of general applicability, these concepts should certainly be
generalizable to words of length less than four, notably to I-letter words such
as A and I. A consistent extension of the McClelland and Rumelhart stages
would require that those letters which are also words, such as A and I, are
represented on both the letter level and the word level, whereas those letters
which are not words, such as E and F, are represented only on the letter level.
How this distinction can be learned without using a homunculus is unclear.

This problem of processing units is symptomatic of a more general diffi-
culty. The letter and word levels contain only nodes that represent letters and
words. What did these nodes represent before their respective letters and
words were learned? Where will the nodes come from to represent the letters
and words that the model individual has not yet learned? Are these nodes to
be created de novo? Are they created de novo within the five or six trials that
enable a pseudoword to acquire many of the recognition characteristics of a
word (Salasso, Shiffrin, and Feustel, 1.984)?

These concerns clarify the need to define, once and for all, a processing
substrate that can represent the learned units of a subject's internal lexicon
before, during, or after they are learned. Such a substrate cannot be defined
in terms of letters and words without forcing the untenable conclusion that
all letters and words from all possible languages past, present, and future,
and only these units, have prelabelled nodes awaiting their use in every hu-
man brain. The assumption of separate letter and word levels also requires
special assumptions to deal with various data, such as the data of Wheeler
(1970) and Samuel, van Santen, and Johnston (1982, 1983) concerning word
superiority effects. If separate letter and word levels exist, then letters such as
A and I which are also words should, as words, be able to prime their letter
representations. By contrast, letters such as D and E which are not words
should receive no significant priming from the word level. One might there-
fore expect easier recognition of A and I than of D and E. This is not the case.

The assumption of separate letter and word levels could escape this contra-
diction by assuming that all letters can be recognized so much more quickly
than words of length at least two that no priming whatsoever can be received
from the word level before letter recognition is complete. This assumption
would, however, appear to be incompatible with the word length data of
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Samuel, van Santen, and Johnston (1982, 1983). These authors showed that
recognition improves if a letter is embedded in words of greater length. Thus
a letter that is presented alone for a fixed time before a mask appears is recog-
nized less well than a letter presented for the same amount of time in a word
of length 2,3, or 4. These data cast doubt on any explanation based on speed
of processing alone.

A related problem arises due to the manner in which McClelland and
Rumelhart have interconnected their letter level and their word level. "Each
letter node is assumed to activate all of those word nodes consistent with it
and inhibit all other word nodes. Each active word node competes with all
other word nodes..." (Rumelhart and McClelland, 1982, p. 61). Knowledge
of which letters and words are consistent can only be achieved by learning a
particular language. However, when learning mechanisms are superimposed
upon these hypotheses, it can be shown that either the learning process
whereby the letter-to-word connections are formed cannot get started, so
that no word representations are ever learned, or that after learning gets
started, a forced oscillation between learning and forgetting is triggered.
Thus the model is unstable in a learning mode. This instability problem is one
reason why all learned inter-level interactions within the lexical theory of
Grossberg (1978a) were chosen to be excitatory.

The instability of learning in the McClelland and Rumelhart (1981) model
can be understood by considering combinations of two possible cases: (a) Be-
fore learning occurs, strong inhibitory interactions exist from the letter level
to the word level. Excitatory connections are learned until net excitatory con-
nections exist from letters to compatible words. (b) Before learning occurs,
strong excitatory interactions exist from the letter level to the word level. In-
hibitory connections are learned until net inhibitory connections exist from
letters to incompatible words. In case (a), the excitatory connections can be
learned only if the word nodes to be conditioned can first be activated. They
can be activated only by their letter nodes. Since all the strong connections
from letter nodes to word nodes are initially inhibitory, the word nodes can-
not receive a net excitatory signal, hence conditioning can never get started.
In case (b), the inhibitory connections can be learned only if the word nodes
to be conditioned can first be activated, since strong excitatory connections
exist initially. Suppose, therefore, that conjoint activation of a letter node
and a word node strengthens the inhibitory connection from a letter node to a
word node. As the inhibitory connection becomes increasingly strong,
activating the letter node progressively inhibits its target word node. As the
connection strength tracks the size of this progressively decreasing word node
activation, it too becomes smaller. As the connection strength becomes
smaller, the word node activation can begin to recover. Then the connection
strength can also grow larger once more. A cycle of forced learning and
forgetting is hereby perpetuated.
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In response to these observations, one might say: why not make all the
learned inter-level connections excitatory, and let pre-wired intra-level con-
nections be both excitatory and inhibitory. The conditionable inter-level con-
nections can adjust themselves to the pre-wired intra-level connections to
achieve the designed consistency and inconsistency relationships as a func-
tion of experience. This is, in fact, what the Grossberg (1978a) theory

postulates.
Another conceptal difficulty of the McClelland and Rumelhart (1981)

model is that it does not contain any principles suggesting how parameter
choices that vary with list length, prior learning, or serial order can influence
the coding of individual lists. Instead, the model assigns the same parameters
to all word nodes, and derives all processing differences between words,
pseudo-words, and non-words from differences in the number of activated
words in the network hierarchy. Such an approach also leads to unstable
learning, in addition to providing no ready explanations of data such as the
word length effect of Samuel, van Santen, and Johnston (1982, 1983). To see
why learning in such a network can become unstable, note that a word node
corresponding to a word of length 4 can learn a subword of length 2 as
quickly as a node corresponding to the subword itself, even in verbal contexts
where the entire word is not presented. This property can cause unselective
activation and coding of long word nodes by all of its subwords. The noise
level in such unselective codes rapidly becomes unmanageable as the com-
plexity of the word set that is to be encoded increases. All of these conceptual
problems are overcome in a masking field (Grossberg, 1978a, Sections 36-43;
1984, Sections 37-44).

THE SCHNEIDER AND SHIFFRIN MODEL

The seminal articles of Schneider and Shiffrin (1977) and Shiffrin and
Schneider (1977) have organized a large and complex data base in terms of
the dichotomy between automatic and controlled processing. Concepts of
unitization capable of explaining these data, as well as the word length effect,
are fundamentally different from those espoused by Schneider and Shiffrin
(Grossberg, 1978a). Experimental support for these concepts have accumu-
lated at an accelerating rate during the last few years (Francolini and Egeth,
1980; Hoffman, Nelson, and Houck, 1983; Kahneman and Chajczyk, 1983;
Kahneman and Treisman, 1983; Schneider and Fisk, 1984). Although the ex-
perimental models that have arisen from these data are also closer to the
unitization theory, they have not yet incorporated some of this theory's most
important insights.

Schneider and Shiffrin posited two complementary types of information
processing to explain a larger data base. Automatic processing is said to be a
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simultaneous parallel, relatively independent detection process. Controlled
processing is said to be a serial terminating search process. The authors
showed that the two types of processing can be experimentally probed using
different experimental manipulations. i\utomatic processing occurs when
the subject has practiced at giving a consistent detection response to memory
set items that are never distractors, as in detecting digits among letter
distractors. This is called a consistent mapping (CM) condition. Controlled
processing occurs when memory set items and distractors are mixed from
trial to trial, as in detecting digits among digit distractors. This is called a
varied mapping (VM) condition. CM peJ:formance is usually better than VM
performance. During CM performance, there is little e.ffect of varying the
number of distractors in a frame or of memory set size. By contrast, VM per-
formance is monotonically related to e:ach of these variables. Also during
CM performance, false alarms (detections when on target is present) increase
significantly at fast frame speeds, but this does not occur during VM

performance.
The distinction between controlled and automatic processing may be

viewed as a contribution to the unitization literature. Roughly speaking,
controlled processing is used before an i1:em or task is unitized, whereas auto-
matic processing is used after unitization has occurred. The use of distinct
VM and CM paradigms to experimentally probe these different situations
provided a static view of unitization by looking at "before" and "after"
unitization conditions, but not at the process of unitization itself.

When one considers Schneider and Shiffrin's conception of controlled vs.
automatic processing during the unitiz,ltion process, it is seen to be fraught
with difficulties. Consider, for example, the learning of any new list of famil-
iar items, as in the temporal chunking problem of Section 2. According to
Schneider and Shiffrin, each familiar item is assumed to be processed by a
parallel process, while each unfamiliar inter-item contingency is processed by
a serial process. Thus their theory claims that the brain rapidly alternates be-
tween parallel and serial processing in this situation. Moreover, as the whole
list becomes unitized, their theory suggests that this hybrid of serial and par-
allel processing somehow switches to exclusively parallel processing.

A similar conceptual difficulty occurs when one considers visual informa-
tion processing. When a subject views ,l picture whose left half contains a fa-
miliar face and whose right half contains a collection of unfamiliar features,
the Schneider and Shiffrin theory would claim that the visual process some-
how splits itself into a parallel half and a serial half. As unitization occurs,
the visual process then somehow reintc~grates itself into a parallel process as
the unfamiliar features are unitized.

The conceptually paradoxical nature of these conclusions is matched by
unexplained data. Why is it that the "t.ime for automatic search is at least as
long as that for an easy controlled seilfch" (Schneider and Shiffrin, 1976)?
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Do not such data violate the intuitive understanding of the concept

"automatic"?
I claim that these problems arise from associating a serial process to the se-

rial properties of controlled search, and a parallel process to the parallel
properties of automatic search. By contrast, the unitization theory in
Grossberg (1978a) suggests that both types of properties are generated by
parallel mechaniSms. As unitization proceeds, the distribution of learned
bottom-up codes and top-down templates changes in an experimentally de-
pendent fashion. The parallel mechaniisms of the unitization theory do not
change, but the learning that they con1:rol can make the difference between
controlled and automatic performance properties.

Below I quote from Grossberg (1978a, Secti<?n 61) as a point of departure
for further discussion of how concepts about controlled and automatic pro-
cessing can be modified and thereby integrated into this theory of
unitization. The most critical points in the quote occur at its beginning and
end. The middle section alludes to mechlanisms that have recently been incor-
porated into some empirical models. I have included bracketed terms to help
the reader make the bridge between cQlncepts of the unitization theory and
concepts that are being used to explain more recent information processing
experiments.

"Below it is argued that both types of processing utilize common parallel
operations, and that their apparent diffc~rences are due to shifts in the relative
balance of these operations that are caused by experimental conditions. In
particular, serial properties do not nece~isarily imply serial operations... Con-
sider CM [consistent mapping] search. ]~epeated use of the same memory set
gradually generates a higher-order auditory code [category] that can sample
the visual codes for all the items over su<:cessive trials. When the higher-order
code is activated, the visual codes of all Jillemory set items can be subliminally
activated. Matching with anyone of these codes generates a resonant burst
[recognition event]. The process therefore seems to be more parallel than VM
[varied mapping] search. I claim, howe'ver, that this is primarily because the
higher-order code must be established before the visual codes of all memory
set items can be sampled by a single internal representation...the...codes [fil-
ters] and templates [sets] that are activated in VM and CM conditions are dif-
ferent, but the two conditions otherwi~;e share common mechanisms... At-
tention enters the search process in se,'eral ways. The simplest attentional
reaction is amplification of network res-ponse to expected items [priming by
gain control]... The 'time for automatic search is at least as long as that for a
very easy controlled search'. This is par:adoxical if CM search is a more effi-
cient processing scheme. Is partial normalization [limited capacity] of the vis-
ual template one reason for this? If more cues are subliminally active
[subthreshold] during CM than during VM search, then each cue will have
less subliminal activity. The reaction time for supraliminal [superthreshold]
signals to be generated during a match will then be greater during CM than
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during VM. .~Also of interest are the data concerning performance accuracy
when a memory set item occurs 0, I, 2, or 3 frames away from an identical, or
different, memory set item.. .Matching one item does not require reset to
match a different item. However, if two identical items occur simultane-
ously, then the first match can interfere with the registration of the second
match...By explaining the Schneider aruj Shiffrin data in a unified way, we
avoid several serious problems of their theory. They claim, and I agree, that
automatic processing is used to rapidly code familiar behavioral units so that
controlled processing can then build these units into new unitized elements. I
disagree that the 'automatic attention response' in the CM condition is a
mechanism that is qualitatively different from mechanisms operating in the
VM condition. If the two types of conditions use serial vs. parallel opera-
tions, as Shiffrin and Schneider claim, then how does the brain tirelessly
alternate between serial and parallel mechanisms as it practices any new list
of unitized elements? How do the serial and parallel processes compete when
a visual scene contains both unitized and unfamiliar but relevant objects?
How does the switchover from serial to parallel processing take place as an
item is unitized? These problems evapoJrate in the present theoretical frame-
work."

Just as the McClelland and Rumelhart model assigns a letter level and a
word level to verbal items that are so labelled by lay language, the Schneider
and Shiffrin model assigns a serial process to ostensibly serial behavioral
properties and a parallel process to ostensibly parallel behavioral properties.
Consideration of how we unitize a novel list of familiar items reveals the par-
adoxical nature of these conclusions in both the McClelland and Rumelhart
model and the Schneider and Shiffrin model, and provides a way to unify the
two types of models.

Recent data have led several authors to reconsider the validity of the di-
chotomy between automatic and controlled processing. Some authors have
attempted to save the binary nature of this distinction in a weakened form by
introducing epicyclic concepts like strongly automatic and partly automatic
(Kahneman and Chajczyk, 1983). Such epicycles often precede the final
breakdown of a conceptual framewor~:.

PARALLEL PROCESSING AND UNLIMITED CAPACITY

Schneider and Shiffrin's dichotomy between controlled processing as a se-
rial process and automatic processing as a parallel process has led to other as-
sumptions that are challenged by a self-organization critique. For example,
Hoffman, Nelson, and Houck (1983, p. 380) write: "Stage 1 is characterized
as a large interconnected set of nodes or logogens... which are automatically
'activated' by presentation of their corresponding sensory inputs... Proces-
sing in this stage is assumed to be parallel and unlimited in capacity." The as-
.."'.,"-""'~
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sumption that "parallel processing" and "unlimited capacity processing" co-
exist has been broadly accepted in the literature, and is one reason why it
seems natural to identify controlled processing with a serial (that is, non-
parallel) mechanism. A self-organization critique seriously challenges
whether automatic activation and limited capacity processing form a credita-
ble processing dichotomy, in even an approximate sense. The fundamental
inadequacy of this dichotomy becomes clear using a microscopic analysis of
the unitization process. Such an analysis shows that the activation of a single
unitized representation seems to be automatic because of the action of a lim-
ited capacity competitive process. The process that is usually identified as the
antithesis of automatic activation is responsible for the consensual impres-
sion of automatic activation. I claim that on the level of microscopic proces-
sing, the dichotomy between automatic activation and limited capacity pro-
cessing is invalid.

To see why this is so, let us again consider the STM level +i+' that regulates
the L TM chunking of sublists. My analysis of this process suggests that
sub lists of a list competitively struggle for representational status within +j + ,.
When a familiar word is processed, the sublist representation corresponding
to the word rapidly wins the competition because the word is familiar. The as-
sociative L TM changes that subserve 'word familiarity have altered the bal-
ance of competitive processing in favor of the word representation, but they
have not elminated the existence of the competitive process that could have
chosen a different winning representation in response to different learning
conditions. The apparent automaticity of the word interpretation derives
from the network's ability to rapidly suppress these alternative sublist
parsings using a limited capacity competitive masking process.

This conclusion does not undermine the claim (Grossberg, 1978a, Section
61), that apparent capacity changes can be due to learning of new chunks (or
filters) and expectancies (or sets), as well as to several types of attentional
mechanisms. These processes enable the network to reorganize its reactions
to the same input patterns. A different learned top':down set can, for exam-
ple, match an input pattern that a previous set mismatched. A different
learned bottom-up filter can, for example, match a top-down set that a previ-
ous filter mismatched. Attentional gain control can, for example, focus net-
work sensitivity at a subfield where an approximate match occurs, or at a dif-
ferent subfield where a serious mismatch occurs.

THE FUNCTIOf\IAL UNIT OF ICOGNITIVE PROCESSING:
NOT SPREADIN(3 ACTIVATION

The above example illustrates my claim that the traditional discussion of un-
limited capacity suffers from an inadequate choice of the functional unit of
cognitive processing. I suggest that the functional unit is not activation of a
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single node, or a "spreading activation" among individual nodes. The func-
tional unit is a spatial pattern of activity that is coherently processed across a
field of nodes. Once one accepts that the: functional unit of processing is a
spatially distributed activity pattern, rather than individual nodal activa-
tions, then "a large interconnected set of nodes" may simply transform one
spatial pattern into another spatial pattern. The popular processing meta-
phor that directly relates the number of nodes or pathways to processing ca-

pacity then collapses.
This processing metaphor has often been used to explain how unitized rep-

resentations can be automatically activated without capacity limitations.
One imagines an appealing picture in which content addressable nodes are
automatically activated by signals along labelled pathways. If many nodes
exist, then they can process their labelled ,signals with less interference, other
things being equal. Given this metaphor, the antithesis of automatic activa-
tion seems to be a limited capacity process in which many nodes compete for
a limited activation resource. An analysi,s of unitization undermines the in-
ternallogic behind this assumption. Along the way, it also variates the as-
sumption that the computer is a viable model of human information

processing.

CAPACITY vs. ~,1ATCHING

If the metaphor that many people use to discuss limited capacity is question-
able, then the notion of capacity itself needs reinvestigation. Various experi-
ments have demonstrated, for example, 1:hat recognition accuracy and reac-
tion time do not depend on processing load per se, but rather on factors like
the goodness of match between priminJ~ and test cues (Fisher and Craik,
1980; Myers and Lorch, 1980; Schvaneveldt and McDonald, 1981). An in-
creased reaction time is thus not due just to competition for a limited activa-
tion resource among many mutually inhi1bitory nodes. Mutual inhibition can
subserve a match (which can speed up reaction time) or a mismatch (which
can slow down reaction time) over the same set of activated nodes.

An analysis of the unitization process leads to mechanisms which also have
these properties (Grossberg, 1976b, 1980). These mechanisms describe com-
petitive and cooperative internodal interactions that occur at every level of
network processing. Such interactions enable each level to sensitively process
its patterned functional units without major contamination by internal noise
or saturation effects. The masking geometry of the sublist level +i+ 1 is, in fact,
a special case of these interactions. One can view the masking geometry as a

competitive-cooperative interaction scheme that developmentally equili-
brates to input patterns which vary in spatial scale and processing load

(Grossberg, 1984, Sections 42-43).
Satisfying the general need for sensitive registration of patterned func-

tional units at each network level automatically leads to properties that are
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compatible with the aforementioned reaction time data. This is true because
an approximate match between a pair of bottom-up and top-down input pat-
terns at a level can enhance its activation, thereby reducing its reaction time.
By contrast, a mismatch between a pair of bottom-up and top-down input
patterns at a level can suppress its activation, thereby increasing its reaction
time. In both the match and the mismatch situations, the same number of
nodes can receive inputs, the total input size can be the same, and thus the
same network capacity is utilized.

This relationship between matching, activity amplification, and reaction
time plays a fundamental role in the theory's explanation of how the stability-
plasticity dilemma is solved, and about how a mismatch can trigger a search
of associative memory (Grossberg, 1980). The relationship also shows that
certain types of matching are more appropriate as cognitive mechanisms than
others. In particular, it argues against the use of Euclidean matching algo-
rithms (Grossberg, 1983, Section 22).

These remarks illustrate how a seemingly elementary problem about real-
time processing, such as the noise-saturation problem, if carefully posed and
quantitatively solved, can have unsuspected implications that ramify into
and thereby help to unify a large and difficult experimental literature.

ADAPTIVE FILTER: THE: PROCESSING BRIDGE
BETWEEN SUBLIST MA:SKING AND TEMPORAL

ORDER INFORMATION OVER ITEM

REPRESEf-JT A TIONS

A still broader unification of data and models emerges when one considers
how signals are relayed from level +i to the next level +i+I' and conversely.
When a signal from a node in +i is carried along a pathway to +i+ I' the signal is
multiplied, or gated, by the pathway"s L TM trace. The L TM gated signal
then reaches the target node. Each target node sums up all of its L TM gated
signals. In this way, a pattern of output signals from +i generates a pattern of
input signals to +i+ I' This transformation is said to define an adaptive/ilter.

The input pattern to +i+ 1 is itself quickly transformed further by the
competitive-cooperative interactions within +i+ I' In the simplest example of
this process, these interactions choose the node which received the largest in-
put. The choice transformation executes a particularly severe type of contrast
enhancement. In a masking geometry such as +i+I' the contrast enhancing
transformation is considerably more subtle than a simple choice. The trans-
formed pattern, not the input pattern itself, is then stored in STM. Only
nodes which are active in STM across ~ti+ 1 can elicit new learning at their con-

tiguous L TM traces.
This type of interaction between associative L TM mechanisms and

competitive-cooperative STM mechanisms has many desirable properties. It
generalizes the Baysian tendency to minimize risk in a noisy environment. It
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spontaneously tends to form learned categories. Its categories are stable un-
der several types of perturbations. Its STM patterns are context-sensitive. Its
learning at each L TM trace is sensitive at each time to the entire STM pattern
that is active at that time, as well as to all prior learning that ever occurred at
all the L TM traces. The learning capabilities of the choice model are mathe-
ma,tically characterized in Grossberg (1976a). The properties of the masking
field model are described in Grossberg (1978a, 1984).

In the special case where the levels are the item level +. and the sublist level
I

+i+ I' the activity pattern across +i encodes temporal order informati6n (TOI)
in STM across the item representations of +i' and the L TM traces in the
pathways between +j and +i+ I encode temporal order information (TO I) in
L TM. The similarity between the patterns of L TM TOI in certain pathways
and the pattern of STM TOI that is stored at any moment across the item rep-
resentations of +j helps to determine which unitized sublist representations
will be activated across +i+ I by the bottom-up filter.

Unless a model explicitly defines how TOI in L TM is encoded, the model
cannot determine how to compute TOI in STM so that a reasonable compari-
son process between STM and L TM can take place. The reverse conclusion is
also true. If one does understand how TOI in L TM is computed, then one can
use this information to derive laws for the temporal unfolding of TOI in
STM. This was done in Grossberg (1978a, 1978b).

These STM laws have many implications for data and models about STM.
For example, these STM laws suggest an alternative to serial buffer models
such as the Atkinson and Shiffrin (1968, 1971) model of free recall by show-
ing how to encode TOI in STM withou.t using a serial buffer, and by ex-
plaining data that are at variance with the classical buffer model, such as data
of Lee and Estes (1977), Ratcliff (1981:), Reeves and Sperling (1984), and
Sperling and Reeves (1980). The model also provides a principled derivation
of mechanisms similar to those in the empirically derived Reeves and Sperling
(1984) Generalized Attention Gating Model (GAGM), and raises processing
issues that have not yet been addressed by experiments.- The fact of greatest
importance is that this approach shows how temporal order information of
items in STM, temporal order information of sublist chunks and templates in
L TM (filters and sets), and competitive masking of sublist chunks in STM are
designed together as parts of the unified processing module that regulates
unitization. The next sections indicate how this unified processing module is
designed, and discusses some related experimental issues.

THE LTM INVARIANCE PRINCIPLE: TEMPORAL
ORDER INFORIV1ATION WITHOUT A SERIAL BUFFER

I now summarize how the adaptive filter is used to constrain the law of STM
TOI. To do this, I again consider how we learn a novel list of familiar items.
Suppose that list items r I' r2, ..., rj have already been presented. Suppose that
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these items have generated a spatial pattern of STM activation across the
item representations of +j' This STM pattern represents "past" order informa-
tion. I assume that a new list item rj+1 can alter the total pattern of STM
across +i' but that this new STM pattern does not cause L TM recoding of that
part of the pattern which represents past order information. For example,
learning a novel word does not force unlearning of its constituent letters.
New events are permitted to weaken the influence of L TM codes representing
past order information on STM decision-making within +. I ' but not to deny.1+

the fact that the past events occurred. This hypothesis prevents the LTM re-
cord of past order information from being destroyed by every future event
that happens to occur.

To translate this intuitive discussion into a precise computation, let us
again recognize that every sublist of the list r I' r2, ..., rj is a perfectly good list
in its own right. Every such sublist can, in principle, be encoded by L TM pat-
terns in the adaptive filter from +j to +j + I' To prevent a future event r j + 1 from
destroying these past list encodings, I assume that the following principle
holds (Grossberg, 1978a, 1978b):

LTM INVARIANCE PRINCIPLE: The spatial patterns of STM TOI
across +j are generated by a sequentially presented list in such a way as to leave
the L TM codes of past events invariant.

The L TM Invariance Principle is instantiated by choosing STM activities
across +j so that the relative activities of all possible filterings of a past event
sequence r I' r 2' ..., r j are left invariant by a future event r j + I' It turns out that
this property is also generated by a suitably designed competitive-cooperative
interaction across +i' in keeping with general requirements that pattern pro-
cessing across +j be free from massive noise or saturation. Some of the most
important properties of the STM TOI patterns that can arise in +j are the fol-
lowing ones.

Primacy gradients, recency gradients, and bowed gradients in STM can oc-
cur. Primacy gradients can be generated by sufficiently short lists. Direct
read-out of TOI from STM can then be accomplished by the combination of
a reaction time rule that reads-out the largest activities first, and a self-
inhibitory reset rule that prevents read-out of a single item from
perseverating for all time. Several recent empirical models have used variants
of these rules (Reeves and Sperling, 1984; Rumelhart and Norman, 1982).
The STM gradients, and thus the TOI, that develop through time are sensi-
tive to the amount of attention that an item receives when it enters STM and
to the subsequent transformation of these STM activities by lateral inhibi-
tion. The GAGM model of Reeves and Sperling (1984) also makes this point.

The existence of a primacy gradient in STM raises an issue that has not yet
been addressed by experimentalists. Interference experiments (Rundus,
1971) suggest that a primacy gradient in STM does not exist in the free recall
paradigm. Such data have been used to support models of free recall in which
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the only pr~rnacy gradient in free recall is due to L TM (Atkinson and Shiffrin,
1968, 1971). The possibility of recalling a short list correctly out of STM sug-
gests, by contrast, that a primacy gradient in STM can sometimes exist dur-
ing free recall. Free recall data of Korsakoff amnesics (Baddeley and
Warrington, 1970) and of normals (Hogan and Hogan, 1975) also support
this conclusion. In Grossberg (1978b, Section 7), I showed how this apparent
contradiction can be theoretically explained. My explanation suggests that a
limited capacity competitive process prevents a primacy gradient in STM
from being measured in an interference experiment, even in cases where it ex-
ists. Moreover, this limited capacity process is a parallel process, not a serial
process. This explanation has not yet been experimentally tested. It illustrates
that, even though the words "limited capacity process" and "parallel process"
are freely used in the experimental literature, their implications are not
widely understood.

Another important issue is raised by this STM TOl model. The model is ca-
pable of generating STM TOl without the use of a serial buffer. The TOl
evolves through time as it does across item representations due to the net-
work's competitive rules. The GAGM model of Reeves and Sperling (1984)
also works without a serial buffer using mechanisms similar to those intro-
duced in my theory. Classical serial buffers, by contrast, such as those of
Atkinson and Shiffrin (1968, 1971) and Raaijmakers and Shiffrin (1981), do
not fare well when they are analysed from the viewpoint of the unitization
process (Grossberg, 1978b). The interplay of factors relating to attention,
competition, serial buffers, and primacy gradients in STM require much

more experimental study.
A related set of remarks can be made about ideas concerning TOl in L TM,

notably the LTM TOl that evolves within the top-down conditionable
pathways from +j+ 1 to +j during serial verbal learning and paired associate
learning. The bowed and skewed serial position effect and related verbal
learning data were analysed using such a buffer-free interaction between
STM and LTM in Grossberg (1969) a:t1d Grossberg-and Pepe (1970, 1971).
These LTM TOl rules turned out to have the right properties to build up a
theory of how goal-oriented cognitive plans are self-organized (Grossberg,
1978a). A number of predictions concerning how the bowed serial position
curve should change with state variables like arousal were made in 1970-71,
but still have not been experimentally tested, despite their importance for un-
derstanding verbal learning, cognitive planning, and the transition to abnor-
mal overaroused-attentive states such as those found in schizophrenia
(Maher, 1977). A nontechnical review of these serial learning concepts is
found in Grossberg (1982c). Murdock (1979) has been using related ideas
about cross-correlation to analyse verbal learning data, but his model's com-
putations have not yet enabled him to explain the bowed and skewed serial

position curve.
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SPATIAL FREQUENCY Af\IAL YSIS OF TEM PORAL
ORDER IN FORMATION

The discussion of STM TOI at +j and of sublist masking at +j+ 1 shows that
both levels +j and +j+ 1 are designed as competitive networks, even though they
accomplish different functional tasks. The fact that both +. and +. 1Possess aI 1+

"limited capacity" provides little insight into how they work, or how they
work so differently; notably how +i+ I' but not +i' is capable of computing a
"magic number seven" (Miller, 1957). One of the important tasks of cognitive
science is, I believe, to classify specialized competitive networks according to
the functional transformations that these networks can compute. A great
deal is now known about these transformations (Grossberg, 1982a).

To end this discussion, I will now indicate how an analysis of unitization
leads to the conclusion that the competitive masking process in +j+ 1 does a
type of spatial frequency analysis of the L TM-filtered STM TOI that it re-
ceives from +.. This observation shows that mechanisms which are more fa-

1

miliar in visual, or more generally spatial, processing are also important in
language or, more generally temporal, processing. The interactions between
experimentalists in these two areas should thus be stronger than they are at
present.

The last section indicated how the L TM Invariance Principle can be used to
generate STM TOI across item representations in +j' A spatial pattern of STM
activity over a set of item representations encodes this information. As more
items are presented, new spatial patterns are registered that include larger re-
gions of the item field, up to some maximal list length. Thus the temporal
processing of items is converted into a succession of expanding spatial
patterns.

Given this insight, the temporal chunking problem can be rephrased as fol-
lows. How do sublist chunks in +i+1 that encode broader regions of the item
field mask suqlist chunks that e~code- narrower regions of the item field?
When I asked this question about language processing in 1974, I already
knew the answer due to work on visual masking that my colleague Dan
Levine and I were just finishing (Grossberg and Levine, 1975; Levine and
Grossberg, 1976). We had shown how to define competitive networks that
are composed of masking subfields. Each masking sub field was character-
ized by a different choice of numerical parameters. At the risk of
oversimplifying the analysis, we found that sub fields whose cell populations
have broader spatial frequencies and more coding sites can mask STM activa-
tion of sub fields with narrower spatial frequencies and fewer coding sites.
The temporal chunking problem then suggested how to put together results
about STM TOI and competitive masking by suggesting the following design
principle, whose relevance to the word length effect of Samuel et al. (1982,
1983) should now be obvious.
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SEQUENCE.MASKING PRINCIPLE: Broader regions of the item field
+j are filtered in such a way that they selectively excite nodes in +i+ 1 with larger

masking parameters.
The sequence masking principle is capable of organizing a series of simple

design rules for the integrated construction of the network module consisting
of +i' +i+l' and their mutual interactions. Many predictions about cognitive
processing, neural development, neuroanatomy, and neurophysiology are
consequences of this construction. See Grossberg (1984) for a recent descrip-
tion of these and related properties.

CONCLUSION

This article has avoided most of the technical considerations that are needed
to precisely characterize the dynamics of unitization. Instead it has focused
on a few of the intuitive ideas that motivate a larger theory. These ideas illu-
strate how models can be strengthened and unified by analysing their internal'structure 

from the viewpoint of the unitization process, and indicate that this
process of unification is already well underway.
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