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Functional ond mechanistic comparisons are made between several network
models of cognitive processing: compaetitive learning, interactive activation,
adaptive resonance, and back propagation. The starting point of this comparison
is the article of Rumelhart and Zipser (1985) on feature discovery through compe-
titive learning. All the models which Rumelhart and Zipser (1985) hove described
were shown in Grossberg (1976b) 1o exhibit a type ot learning which is temporally
unstable. Competitive learning mechanisms can be stabilized in response 1o on
arbitrary input environment by being supplemented with mechanisms for learn-
ing top-down expectancles, or templates; for matching bottom-up input patterns
with the top-down expectancies; and for releasing orienting reactions in a mis-
match situation, thereby updating short-term memory and searching for another
internal representation. Network architectures which embody all of these mecha-
nisms were called adaptive resonance models by Grossberg (1976¢). Self-stabil-
izing learning models are candidates for use in real-world applications where
unpredictable changes con occur in complex input environmenis. Competitive
learning postulates are Inconsistent with the postulates of the interactive activa-
tion model of McClelland and Rumelhart (1981), and suggest different levels of
processing and interaction rules for the analysis of word recognition. Adaptive
resonance models use these alternative levels and interaction rules. The self-
organizing learning of an adoptive resonance model is compared and contrasted
with the teacher-directed learning of a back propagation model. A number of
criterio for evaluating real-time network modals of cognitive processing are

described and applied.

1. INTRODUCTION

Many cognitive scientists are now rapidly translating their intuitions about
human intelligence into real-time network models. As each research group
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injects a stream of new models into this sprawling literature, it becomes ever
more essential to penetrate behind the many ephemeral differences between
models to the deeper architectural level on which a formal model lives.
What are the key issues, principles, properties, mechanisms, and data that
may be used to distinguish one model from another? How may we decide
whether two seemingly different models are really formally equivalent, or
are probing profoundly different aspects of cognitive processing?

This article outlines a comparative analysis of network models within a
focused conceptual domain. Its starting point is the recent article by Rumel-
hart and Zipser (1985) on competitive learning models that was published in
this journal as part of a special issue on connectionist models. The discus-
sions raised by this article lead naturally to a comparison of several distinct
models, notably competitive learning, interactive activation, adaptive reso-
nance, and back propagation models. Before considering these models, I
briefly discuss why real-time network models are so important, and why
their very promise makes them difficult to understand.

2. EMERGENT PROPERTIES OF NETWORK INTERACTIONS:
FUNCTION YERSUS MECHANISM

A key issue leading to network models concerns how the behavior .of ind'ivid-
uals adapts successfully in real-time to constaints imposed by their environ-
ments. In order to analyse this issue, one needs to identify the functional
level on which an individual’s behavioral success is defined. Much theoretical
and experimental evidence suggests that this is the level of neural netv_vorks,
rather than the level of individual nerve cells. Key behavioral properties are
often emergent properties due to interactions among many cells in a neural
network. Thus, the study of real-time networks is important because behav-
jor can best be understood on the level of a network analysis.

Often a network’s emergent properties are much more complex than the
network components from which they arise. In a good network model, the
whole is far greater than the sum of its parts. In addition, the formal rela-
tionships among those emergent properties may be quite subtle, and may
reflect the delicate interplay of behavioral properties that are characteristic
of living organisms. Thus network models can excite our interest by s.how-
ing us how subtle and complex functional properties can emerge from inter-
actions among simple components.

The very fact, however, that simple network laws can generate complex
behaviors makes network models difficult to understand. In order to effec-
tively analyse a network model, one needs powerful analytic and computa-
tional methods to derive the complex emergent properties of the networ.k
from a description of its simple components. A network model cannot, in

pol
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principle, be understood merely as a list of processing rules or as a computer
program. In order to adequately describe the dynamism of such a network,
it is necessary 1o use a mathematical formalism that can naturally analyse
interactions which may occur in a nonlinear fashion across thousands or
even millions of components. The need for such a formal analysis is
especially great when the network can learn, since the same laws define the
network at all times, but its functional propertics may be radically different
before and after learning occurs.

The distinction between a network’s emergent functional properties and
its simple mechanistic laws also clarifies why the controversy surrounding
the relationship of an intelligent system’s abstract properties to its mechanis-
tic instantiation has been so enduring. Without a linkage to mechanism, a
network’s functional properties cannot be formally or physically explained.
On the other hand, how do we decide which mechanisms are crucial for gen-
erating desirable functional properties and which mechanisms are adventi-
tious? Two seemingly different models can be equivalent from a functional
viewpoint if they both generate similar sets of emergent properties. An anal-
ysis which proves such a functional equivalence between models does not,
however, minimize the importance of their mechanistic descriptions. Rather,
such an analysis identifies mechanistic variations which are not likely to be
differentiated by evolutionary pressures which select for these functional
properties on the basis of behavioral success.

Another side of such an evolutionary analysis concerns the identification
of the fundamental network modules which are specialized by the evolution-
ary process for use in a variety of behavioral tasks. How do evolutionary
variations of asingle network module, or blueprint, generate behavioral
properties which, on the level of raw experience, seem to be phenomenally
different and even functionally unrelated? Although each specialized net-
work may generate a characteristic bundle of emergent properties, para-
metric changes of these specialized networks within the framework of a
single network  may generate bundles of emergent properties that are qualita-
tively different. In order to identify the mechanistic unity behind this phenom-

‘enal diversity, appropriate analytic methods are once again indispensable.

In summary, the relationship between the emergent functional properties
that govern behavioral success and the mechanisms that generate these prop-
erties is far from obvious. A single network module may generate qualitatively
different functional properties when its parameters are changed. Conversely,
two mechanisms which are mechanistically different may generate formally
homologous functional properties. The intellectual difficulties caused by
these possibilities are only compounded by the fact that we are designed by
evolution to be serenely ignorant of our own mechanistic substrates. The
very cognitive and learning mechanisms which enable us to group, or chunk,
ever more complex information into phenomenally simple unitized represen-
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tations act to hide from us the myriad interactions that subserve these repre-
sentations during every moment of experience. Thus we ca'nno.t turn %o our
daily intuitions or to our lay language for secure guidance in .dnscovermg or
analysing network models. The simple lesson that the wl19le is greater than
the sum of its parts forces us to use an abstract matheme}tlcal language that
is capable of analysing interactive emergence and functional equivalence.

3. PROCESSING LEVELS AND INTERACTIONS:
MODELS OR METAPHORS?

A network model is usually easy to define using just a few ,equations. These
equations specify the dynamical laws governing the model’s nodes, or cells,
including the processing /evels in which these nodes are t':mbed.ded. '1_'he
equations also specify the interactions between thes; nodes, including which
nodes are connected by pathways and the types of signals or other processes
that go on in these pathways. Inputs to the networ_k,_ 9utputs from the net];
work, parameter choices within the network, and initial values of networ
variables often complete the model description. Such components are com-
mon to essentially all real-time network :lodels. Thus, to merely say that a
components is scientifically vacuous. .
mo:lf)lv:l.atsh::.ﬂéa: w: decide when a network model is wrong? Such a tas'k is
deceptively simple. If the model’s levels are incorrectly Fhosen, then it is
wrong. If its interactions are incorrectly chosen, then it is wrong. And so
on. The only escape from such a critique would be to demonstrate that a
different set of levels and interactions can be correctly chosen, and §ha:es
similar functional properties with the qriginal' model. The new choice of
levels and interactions would, however, constitute a new model. The old
model would still be wrong. Such an ane}lysis would show that the shaer
model properties are essentially model-mdep_endent,. yet that there exist
finer tests to distinguish between models. 1 will describe several such tests
below. _ o
In the absence of such a literal process of model selecuon‘ and. rejection,
it would soon become impossible to criticize a model at all, since its au.thors
could claim that they really did not intend their model to be literally inter-
preted. To avoid criticism or disconfirmation, the m(?del could be turned
into a metaphor of itself, or even into a vaguely outlined .framewc.Jr.l;' t.hat
could be broadly enough defined to incluz.ie all future.m.odehng possibilities,
including possibilities that flatly contradicted the orngnpaj mgc‘iel. )
McClelland (1985, p. 144) essentially advoca‘ted this position wh_en. e
wrote ‘‘we would not view the interactive acti\{atlon II.lOdCl as a fiescnptloln
of a mechanism at all. . .it allows us to stud)f lnteracuve.acuvatnon n'u:]de s
of a wide range of phenomena at a psychological or functional level without
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necessarily worrying about the plausibility of assuming that they provide an
adequate description of the actual implementation.” As noted above, dis-
sociation of a functional description from a mechanistic description is im-
possible in a network model. The possibility that a particular mechanistic
instantiation may be functionally equivalent to a different instantiation
does not in the least free us from committing ourselves to particular classes
of mechanisms. McClelland’s usage would become acceptable only if we
agreed to use the term “‘interactive activation’’ model to mean any real-time
network model. Such a usage would, however, make the term scientifically
vacuous. In addition, the interactive activation model is a relatively recent
member of the family of real-time network models in psychology. It has
added no new qualitative concepts to this class of models as a Jramework,
hence it needs to be analysed as a model in order to appreciate its contribu-
tion to the network modeling literature. All models discussed in this article
will be treated literally as models, rather than as metaphors or frameworks
of models.

4. FEATURE DISCOVERY BY COMPETITIVE LEARNING

I will use the Rumelhart and Zipser (1985) article to motivate my analysis of
a number of issues which promise to play a central role in evaluating the
strengths and weaknesses of various network models. Rumelhart and Zipser
(1985) analyse a type of learning model which is called a compelitive learn-
ing model. They acknowledge that competitive learning models have been
intensively studied for some time and thus conclude that *it seems reason-
able to put the whole issue into historical perspective”’ (p. 76). They also
note that **It is a common practice to handcraft networks fo carry oul par-
ticular tasks. Whenever one creates such a network that performs a task
rather successfully, the question arises as to how such a network might have
evolved. The word perception model developed in McClelland and Rumel-
hart (1981) and Rumelhart and McClelland (1982) is one such case in point.

That model offers rather detailed accounts of a variety of word perception

experiments, but it was crafted to do its Jjob. How could it have evolved

naturally? Could a competitive learning mechanism create such a network?’’

(p- 98). Thus, these authors ask how a competitive learning network can be

joined to an interactive activation network in order to endow the latter type

of network with a learning capability,

Their discussion does not, however, acknowledge that both the levels and
the interactions of a competitive learning model are incompatible with those
of an interactive activation model (Grossberg, 1984). The authors likewise
do not state that the particular competitive learning model which they have
primarily analysed is identical to the model introduced and analysed in
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Grossberg (1976a, 1976b), nor that this model was consistently embedded
into an adaptive resonance model in Grossberg (1976¢) and later developed
in Grossberg (1978) to articulate the key functional properties which McClel-
land and Rumelhart described when they introduced the interactive activa-
tion model in McClelland and Rumelhart (1981). In summary, the stated
goal of Rumelhart and Zipser (1985)—to join a competitive learning model
with a model capable of generating functional properties that are shared
with the interactive activation model—was carried out using an adaptive
resonance model in Grossberg (1978). In addition, the interactive activation
model as a model is incapable of participating in such a synthesis.

The Rumelhart and Zipser (1985) article thus raises a number of issues
which make real-time network models so difficult to understand and to dif-
ferentiate. How can an adaptive resonance model share functional proper-
ties with an interactive activation model, yet be mechanistically consistent
with a competitive learning model with which the interactive activation
model is mechanistically inconsistent? What design principles are realized
by an adaptive resonance model but not by an interactive activation model
which can be used to distinguish these models on a deep computational
level? The analysis of Rumelhart and Zipser (1985) provides no light into
these matters. Indeed, these authors also stated that “*our analyses differ
from many of these {former analyses] in that we focus on the development
of feature detectors rather than pattern classification’’ (p. 76). A glance at
such titles as Malsburg (1973) and Grossberg (1976a, l976b) shows that this

observation is also inaccurate.

5, THE PROBLEM OF TEMPORALLY UNSTABLE LEARNING

Analysis of the competitive learning model revealed a fundamental problem
which is shared by most other learning models that are now being developed
and which was overcome by the adaptive resonance theory. 1 will now illus-
trate this general problem using a competitive learning model, before indi-
cating that adaptive variants of the interactive activation model cannot
solve it.

The particular competitive learning models described in Grossberg (1976b)
and in Rumelhart and Zipser (1985) were used to show how a stream of in-
put patterns to a network level F, can adaptively tune the weights, or long
term memory (LTM) traces, in the pathways from F\ to a coding level F;.
Although these LTM traces may initially be randomly chosen, the presenta-
tion of inputs at F, can alter the LTM traces through learning in such a way
that F; eventually parses the input patterns into sets which activate distinct
recognition categories. Appendix 1 describes this competitive learning scheme
as well as the formal identity of the Grossberg (1976b) model with the model

studied by Rumelhart and Zipser (1985).
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In Grossberg (1976b), a theorem was proved which described input envi-
ronments to which the model responds by learning a temporally stable
recognition code. This theorem is described in Appendix 2. The theorem
proved that, if not too many input patterns are presented to F,, relative to
the number of coding nodes in £, or if the input patterns form not too
many clusters, then learning of the recognition code eventually stabilizes. In
addition, the learning process elicits the best distribution of LTM traces that
is consistent with the structure of the input environment. The computer sim-
ulations of Rumelhart and Zipser (1985) essentially confirm this theorem.

Despite the demonstration of input environments that can be stably coded,
it was also shown, through explicit counterexamples, that a competitive learn-
ing model cannot learn a temporally stable code in response (o arbitrary input
environments. Moreover, these counterexamples included i Input environments
that could easily occur in many important applications. In these counter-
examples, as a list of input patterns perturbed level F, through time, the
response of level F; to the same input pattern could be different on each suc-
cessive presentation of that input pattern. Moreover, the F; response to a
given input pattern might never settle down as learning proceeded.

Such unstable learning in response to a prescribed input is due to the learn-
ing that occurs in response to the other, intervening, inputs. In other words,
the network’s adaptability, or plasticity, enables prior learning to be washed
away by more recent learning in response to a wide variety of input environ-
ments. Carpenter and Grossberg (1987a, 1987b) have extended this instability
analysis by describing infinitely many input environments in which periodic
presentation of just four input patterns can cause temporally unstable learn-
ing. This instability problem is not, moreover, peculiar to competitive learning
models. As 1 shall indicate below, it is a _problem of almosl all leammg
models that are now being developed.

6. THE STABILITY-PLASTICITY DILEMMA:
SELF-STABILIZED LEARNING IN A COMPLEX
AND CHANGING ENVIRONMENT

This instability problem was too fundamental to be ignored. In addition to
showing that learning could become unstable in response to a complex input
environment, the analysis also showed that learning could all too easily
become unstable due to simple changes in an input environment. Changes in
the probabilities of inputs, or in the deterministic sequencing of inputs, could
readily wash away prior learning.

The seriousness of this problem can be dramatized by imagining that you
have grown up in Boston before moving to Los Angeles, but periodically
return to Boston to visit your parents. Although you may need to learn
many new things to enjoy life in Los Angeles, these new learning experiences
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do not prevent you from knowing how to find your parent’s house or other-
wise remembering Boston. A multitude of similar examples illustrate that
we are designed to successfully adapt to environments whose rules may
change—without necessarily forgetting our old skills. Moreover, we are de-
signed to successfully adapt to environments whose rules may change un-
predictably, and can do so even if no one tells us that the environment has
changed. We can adapt, in short, without a teacher, and through a direct
confrontation with our experiences. Such adaptation is called self-organiza-
tion in the network modeling literature.

The instability of the competitive learning model thus emphasized the
fundamental nature of the stability-plasticity dilemma (Grossberg, 1980,
1982a, 1982b): How can a learning system be designed to remain plastic in
response to significant new events, yet also remain stable in response to ir-
relevant events? How does the system know how to switch between its stable
and its plastic modes in order to prevent the relentless degradation of its
learned codes by the ‘‘blooming buzzing confusion’ of irrelevant experi-
ence? How can it do so without using a teacher? The problem addresses one
of the key capabilities that makes a human cognitive system so remarkable:
its ability to learn internal representations of awesome amounts of the
widest possible variety of environmental stimuli in real-time and without a
teacher. The stability-plasticity dilemma articulates one sense in which a
cognitive system is universal. Unlike the individual senses, which are
specialized to deal with particular classes of inputs, a cognitive system is
designed to integrate unanticipated combinations of events from all the
senses into coherent moments of resonant recognition.

Rumelhart and Zipser (1985) were able to ignore this fundamental issue

by considering simpie input environments whose probabilistic rules do not—-

change through time. Other modelers, for example, Kohonen (1984), have
stabilized learning in their applications of the competitive learning model by
externally shutting off plasticity before the learned code can be erased. This
approach creates the danger of shutting off plasticity too soon, in which
case important information is not learned, or too late, in which case impor-
tant learned information can be erased. The only way to overcome instability
using this approach in an unpredictable input environment is to assume that
the observer, or teacher, who shuts off plasticity is omniscient. If a model
of an omniscient teacher is available, however, then you will not also need a
model of a potentially unstable learning process.

Yet other modelers, such as Ackley, Hinton, and Sejnowski (1985), Hop-
field (1982), Knapp and Anderson (1984), McClelland and Rumelhart (1985),
Rumelhart, Hinton, and Williams (1986), and Sejnowski and Rosenberg
(1986), have stabilized their models by externally restricting the input envi-
ronment. They thereby recast the problem of model instability into one
about model capacity: What sorts of restricted input environments can
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these models handie before their learned codes are washed away by the flux
of input experience? None of these learning models has yet addressed the
general instability problem that was articulated a decade ago.

7. THE INCOMPATIBILITY OF THE COMPETITIVE LEARNING
AND INTERACTIVE ACTIVATION MODELS:

NEAMNIRN A RY Ay ARN A A VIARARNILY UVANTAFEURANT

LETTER AND WORD LEVELS DO NOT EXIST

Before outlining a solution of the stability-plasticity dilemma, I indicate the
nature of the inconsistency between the competitive learning model and the
interactive activation model. Both the levels and the interactions of the two
models are incompatible.

In a competitive learning model, all interactions between levels are excit-
atory. The only inhibitory interactions occur within each level. By contrast,
in the Rumelhart and McClelland (1982, p. 61) model ‘‘Each letter node is
assuined to activate all of those word nodes consistent with it and inhibit all
other word nodes.’’ Thus, the two models postulate different types of inter-
level interactions. The selective activations and inhibitions that are hypothe-
sized to exist between consistent and inconsistent letter nodes and word
nodes must obviously be learned. In Grossberg (1984), it was shown that
such connections cannot be learned using competitive learning mechanisms.
Thus the postulated connections from letter nodes to word nodes are incon-
sistent, in a fundamental way, with competitive learning mechanisms.

An equally serious issue concerns the fact that the letter level and the
word level which are postulated in the interactive activation model do not
exist either in a language learning model that is based upon competitive learn-
ing mechanisms or, I would claim, in vive. Instead, these levels code what 1.
have called iterns and lists, respectively (Cohen & Grossberg, 1986; Gross-
berg, 1978, 1982a, 1984; 1987b; Grossberg & Stone, 1986). This insight is
hinted at in the simulations which Rumelhart and Zipser (1985) have per-
formed on lists of letters. These simulations are inconsistent with the exis-
tence of a letter level and a word level because both letters and words can
have representations on both levels F, and F.

The difference between levels built up from letters and words and levels
built up from items and lists can begin to be appreciated through the follow-
ing observations (Grossberg, 1984). McClelland and Rumelhart (1981) postu-
lated that a stage of letter nodes precedes a stage of word nodes. They used
these stages to discuss the processing of letters in 4-letter words. The hypothe-
sis of separate stages for letter and word processing implies that letters are
not also represented on the level of words of length four. In order to be of
general applicability, these concepts should certainly be generalizable to
words of length less than four, notably to 1-letter words such as 4 and /. A
consistent extension of the McClelland and Rumethart stages would require
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that those letters which are also words, such as 4 and I, are represented on
both-the letter level and the word level, whereas those letters which are not
words, such as £ and F, are represented only on the letter level. How this
distinction could be learned by an unsupervised learning model remains
unclear.

This problem of processing units is symptomatic of a more general diffi-
culty. The letter and word levels contain only nodes that represent letters
and words. What did these nodes represent before their respective letters
and words were learned? Where will the nodes come from to represent the
letters and words that the model individual has not yet learned? Are these
nodes to be created de novo? They certainly cannot be created de novo
within the five or six trials that enable a pseudoword to acquire many of the
recognition characteristics of a word (Salasso, Shiffrin, & Feustel, 1984)?
These concerns clarify the need to define a processing substrate that can
represent the learned units of a subject’s internal lexicon before, during,
or after they are learned.

The assumption of separate letter and word levels also requires special
assumptions to deal with various data, such as the data of Wheeler (1970)
and Samuel, van Santen, and Johnston (1982, 1983) concerning the word
superiority effect. If separate letter and word levels exist, then letters such
as 4 and 7 which are also words should, as words, be able to prime their let-
ter representations. In constrast, letters such as D and E which are not
words should receive no significant priming from the word level. One might
therefore expect easier recognition of A and 7 than of D and E. Wheeler
(1970) showed that this is not the case.

The assumptions of separate letter and word levels could escape this con-
tradiction by assuming that a/l letters can be recognized so much more quickly
than words of length at least two that no priming whatsoever can be received
from the word level before letter recognition is complete. This assumption
seems {0 be incompatible with the word length data of Samuel, van Saaten,
and Johnston (1982, 1983). These authors showed that recognition im-
proves if a letter is embedded in words of greater length. Thus a letter that is
presented alone for a fixed time before a mask appears is recognized less
well than a letter presented for the same amount of time in a word length 2,
3, or 4. These data cast doubt on any explanation based on speed of pro-
cessing alone, since they suggest that priming of letters due to multiletter
words is effective.

In contrast, within a model which uses a item level and a list level, all
familiar letters possess both item and list representation, not just letters
such as A and [ that are also words. Thus a model which uses an item level
and a list level can readily explain the Wheeler (1970) data. An analysis of
how item and list representations are built up led, in fact, to the prediction
of a word length effect for words of lengths 1, 2, 3, and 4 (Grossberg, 1978,
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Section 41; reprinted in Grossberg, 1982a). Cohen and Grossberg (1986a,
1987b) describe computer simulations of how item and list levels interact.

8. ADAPTIVE RESONANCE THEORY:
SELF-STABILIZATION OF CODE LEARNING IN AN
ARBITRARY INPUT ENVIRONMENT

A formal analysis of how to overcome the learning instability experienced by
a competitive learning model led to the introduction of an expanded theory,
called adaptive resonance theory (4RT), in Grossberg (1976¢). This formal
analysis showed that a certain type of top-down learned feedback and match-
ing mechanism could significantly overcome the instability problem. It was
also realized that top-down attentional mechanisms, which had earlier been
discovered through an analysis of interactions between cognitive and rein-
forcement mechanisms (Grossberg, 1975), had the same properties as these
code-stabilizing mechanisms. In other words, once it was recognized how to
formally solve the instability problem, it also became clear that one did not
need to invent any qualitatively new mechanisms to do so. One only needed
to remember to include previously discovered attentional mechanisms!
These additional mechanisms enable code learning to self-stabilize in re-
sponse to an essentially arbitrary input environment. For a recent mathe-
matical proof of this type of stability, see Carpenter and Grossberg (1987b).
The types of top-down effects, such as the *‘rich-get-richer’’ and **gang”’
effects, which McClelland and Rumelhart (1981) experimentally reported
were predicted formal properties of the ART theory as developed in Gross-
berg (1978). Such properties are shared by many networks which undergo
reciprocal bottom-up and top-down feedback exchanges. They arose in
ART as predictions about the emergent properties of network architectures
that were designed to guarantee sel{-stabilizing self-organization of cogni-
tive recognition codes—the very properties that are absent from the interac-
tive activation model. In addition to such properties, ART has by now been
used to analyse and predict data about speech perception, word recognition
and recall, visual perception, olfactory coding, classical and instrumental
conditioning, decision making under risk, event related potentials, neural
substrates of learning and menory, critical period termination, and amnesias
(Banquet & Grossberg, 1987; Carpenter & Grossberg, 1987a, 1987b, 1987c;
Cohen & Grossberg, ;1987a, 1987b; Grossberg, 1982b, 1984, 1987a, 1987b;
Grossberg & Gutowski, 1987; Grossberg & Levine, 1987; Grossberg & Stone,
1986a, 1986b). Thus ART has already demonstrated an explanatory and
predictive competence as an interdisciplinary physical theory. It is now
being developed both to expand its predictive range and to implement it in
real-time hardware. In Sections 9-15, some properties of ART are outlined
as a basis for comparisons with other learning models in the literature, such
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as the back propagation model. These comparisons delineate issues that
could just as easily be raised in the evaluation of any network learning model.

9. SOLVING THE STABILITY-PLASTICITY DILEMMA USING
INTERACTING ATTENTIONAL AND ORIENTING SYSTEMS

In addition to the bottom-up mechanisms of a competitive learning model,
an ART system includes processes for learning of top-down expectancies, or
templates; for matching bottom-up input patterns with top-down expectan-
cies; and for releasing orienting reactions in a mismatch situation, thereby
leading to rapid updating, or reset, of short termn memory as the network
carries out a hypothesis testing scheme that searches for and, if necessary,
leads to learning of a better representation of the input pattern (Figure 1).

Using these mechanisms, an ART system can generate recognition codes
adaptively, and without a teacher, in response to a series of environmental
inputs. As learning proceeds, interactions between the inputs and the system
generate new steady states, or equilibrium points. The steady states are
formed as the system discovers and learns critical feature patterns, or proto-
types, that represent invariants of the set of all experienced input patterns.
These learned codes are dynamically buffered, or stabilized, against relent-
less recoding by irrelevant inputs. The formation of steady states is inter-
nally controlled using mechanisms that suppress possible sources of system
instability. ’

An ART system can adaptively switch between its stable and plastic
modes. It is capable of plasticity in order to learn about significant new
events, yet it can also remain stable in response to irrelevant events. In order
to make this distinction, an ART system is sensitive to novelty. It is capable,
without a teacher, of distinguishing between familiar and unfamiliar events,
as well as between expected and unexpected events.

Multiple interacting memory systems are needed to monitor and adap-
tively react to the novelty of events without an external teacher. Within ART,
interactions between two functionally complementary subsystems are used
to process familiar and unfamiliar events. Familiar events are processed
within an attentional subsystem, which is built up from a competitive learn-
ing network. The attentional subsystem establishes ever more precise inter-
nal representations of and responses to familiar events. It also learns the
top-down expectations that help to stabilize the learned bottom-up codes of
familiar events. As described above, however, the attentional subsystem is
unable simultaneously to maintain stable representations of familiar cate-
gories and to create new categories for unfamiliar patterns in certain input
environments. An isolated attentional subsystem can become either too
rigid and incapable of creating new categories for unfamiliar patterns, or
too unstable and capable of ceaselessly recoding the categories of familiar
patterns as the statistics of the input environment change.
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Figure 1. Anatomy of the attentional-orienting system: Two successive stages, Fi and Fa, of
the attentional subsystem encode patterns of activation in short tearm memory (STM).
Bottom-up and top-down pathways between F, and F, contain adaptive long term memory
(LTM) traces which multiply the signals in these pathways. The remainder of the circuil
modulates these STM and LTM processes. Modulation by galn control enables F, to distin-
guish between bottom-up input patterns and top-down priming, or template, patterns, as
well as to match these bottom-up and top-down patterns. Gain control signals also enable
F1 1o react supraliminally to signals from F\ while an input pattern is on. The orienting sub-
system A generates a resel wave 1o F; when mismatches between bottom-up and top-down
patterns occur at Fi. This reset wave selactively and enduringly inhibits active F; cells until
the Input is shut off. (Reprinted with permission from Carpenter and Grossberg, 1987b).

The second subsystem is an orienting subsystem that resets the attentional
subsystem when an unfamiliar event occurs. Interactions between the atten-
tional subsystem and the orienting subsystem help to express whether a
novel pattern is familiar and well represented by an existing recognition
code, or unfamiliar and in need of a new recognition code (Figure 1).
Within an ART system, attentional mechanisms play a major role in self-
stabilizing the learning of an emergent recognition code. A mechanistic
analysis of the role of attention in learning has led Carpenter and Grossberg
(1987a, 1987b) to distinguish between fuur types of attentional mechanisms
attentional priming, attentional gain control, attentional vigilance, and in-
termodality competition (see Figure 4).
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10. SELF-SCALING COMPUTATIONAL UNITS,
SELF-ADJUSTING MEMORY SEARCH, DIRECT ACCESS,
AND ATTENTIONAL VIGILANCE

Four properties are basic to the workings of an ART network. Violating any
one of these properties prevents the network from learning well in certain
ccmmilalles all Athne laarning maoc {ale vinlata nAna ar

input environmenis. Essentially all other learning modeis viciale one of
more of these properties.

A. Self-Scaling Computational Units: Critical Feature Patterns

Properly defining signal and noise in a self-organizing system raises a num-
ber of subtle issues. Pattern context must enter the definition so that input
features which are treated as irrelevant noise when they are embedded in a
given input pattern may be treated as informative signals when they are em-
bedded in a different input pattern. The system’s unique learning history
must also enter the definition so that portions of an input pattern which are
treated as noise when they perturb a system at one stage of its self-organiza-
tion may be treated as signals when they perturb the same system at a differ-
ent stage of its self-organization. The present systems automatically self-scale
their computational units to embody context- and learning-dependent defi-
nitions of signal and noise.

One property of these self-scaling computational units is illustrated in
Figure 2. In Figure 2a, each of the two input patterns is composed of three
features. The patterns agree at two of the three features, but disagree at the
third feature. A mismatch of one out of three features may be designated as
informative by the system. When this occurs, these mismatched features are
treated as signals which can elicit learning of distinct recognition codes for
the two patterns. Moreover, the mismatched features, being informative,
are incorporated into these distinct recognition codes through the learning
process.

In Figure 2b, each of the two input patterns is composed of 31 features.
The patterns are constructed by adding identical subpatterns to the two pat-
terns in Figure 2a. Thus the input patterns in Figure 2b disagree at the same
features as the input patterns in Figure 2a. In the patterns of Figure 2b, how-
ever, this mismatch is less important, other things being equal, than in the
patterns of Figure 2a. Consequently, the system may treat the mismatched
features as noise. A single recognition code may be learned to represent
both of the input patterns in Figure 2b. The mismatched features would not
be learned as par of this recognition code because they are treated as noise.

The assertion that critical feature patterns are the computational units of
the code learning process summarizes this self-scaling property. The term
critical feature indicates that not all features are treated as signals by the
system. The learned units are patterns of critical features because the per-
ceptual context in which the features are embedded influences which
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Figure 2. Self-scaling property discovers critical features in a contexi-sensitive way: {a}
Two input patterns of 3 teatures mismatch at 1 teature. When this mismalich is suflicient to
generate distinct recognition codes for the two patterns, the mismatched features are en-
coded in LTM as part of the critical feature patterns of these recognition codes. {b) Identical
subpatterns are added to the two input patterns in (a). Although the new input patterns
mismatch at the same one feature, this mismaich may be treated aos noise due to the addi-
tional complexity of the two new patterns. Both patterns may thus learn to activate the
same recognition code. When this occurs, the mismatched feature is deleted from LTM in
the critical feature pattern of the code.

features will be processed as signals and which features will be processed as
noise. Thus a feature may be a critical feature in one pattern (Figure 2a) and
an irrelevant noise element in a different pattern (Figure 2b).

B. Self-Adjusting Memory Search

No pre-wired search algorithm, such as a search tree, can maintain its effi-
ciency as a knowledge structure evolves due to learning in a unique input en-
vironment. A search order that may be optimal in one knowledge domain
may become extremely inefficient as that knowledge domain becomes more
complex dueto learning. -

An ART system is capable of a parallel memory search that adaptively up-
dates its search order to maintain efficiency as its recognition code becomes
arbitrarily complex due to learning. This self-adjusting search mechanism is
part of the network design whereby the learning process self-stabilizes by
engaging the orienting subsystem.

None of these mechanisms is akin to the rules of a serial computer pro-
gram. Instead, the circuit architecture as a whole generates a self-adjusting
search order and self-stabilization as emergent properties that arise through
system interactions. Once the ART architecture is in place, a little random-
ness in the initial values of its memory traces, rather than a carefully wired
search tree, enables the search to carry on until the recognition code self-

stabilizes.

C. Direct Access to Learned Codes
A hallmark of human recognition performance is the remarkable rapidity
with which familiar objects can be recognized. The existence of many learned
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recognition codes for alternative experiences does not necessarily interfere
with rapid recognition of an unambiguous familiar event. This type of rapid
recognition is very difficult to understand using models wherein trees or
other serial algorithms need to be searched for longer and longer periods as
a learned recognition code becomes larger and larger.

In an ART model, as the learned code becomes globally self-consistent
and predictively accurate, the search mechanism is automatically disengaged.
Subsequently, no matter how large and complex the learned code may be-
come, familiar input patterns directly access, or activate, their learned code,
or category. Unfamiliar patterns can also directly access a learned category
if they share invariant properties with the critical feature pattern of the cate-
gory. In this sense, the critical feature pattern acts as a prototype for the
entire category. As in human pattern recognition experiments, a *‘prototype"’
input pattern that perfectly matches a learned critical feature pattern may
be better recognized than any of the ‘‘exemplar’’ input patterns that gave
rise to the critical feature pattern (Posner, 1973; Posner & Keele, 1968,
1970). Grossberg and Stone (1986a) have shown, moreover, that these direct
access properties can be used to explain RT and error data from lexical deci-
sion and word familiarity experiments.

Unfamiliar input patterns which cannot stably access a learned category
engage the self-adjusting search process in order to discover a network sub-
strate for a new recognition category. After this new code is learned, the
search process is automatically disengaged and direct access ensues.

We use the term critical feature pattern, rather than prototype, because
critical feature patterns are learned, matched, and regulate future learning
in a manner different from classical prototype models. Estes (1986) com-
pared several types of category learning models in the light of recent data
and showed that exemplar models, prototype models, and exemplar similarity
models all have their merits. An ART model can also be sensitive to exem-
plars, prototypes, or similarity between exemplars, depending upon the ex-
perimental conditions. One factor that mediates between these alternatives

is now summarized.

D. Environment as a Teacher: Modulation of Attentional Vigilance
Although an ART system self-organizes its recognition code, the environ-
ment can also modulate the learning process and thereby carry out a teaching
role. This teaching role allows a system with a fixed set of feature detectors
to function successfully in an environment which imposes variable perfor-
mance demands. Different environments may demand either coarse discrim-
inations or fine discriminations to be made among the same set of objects.
In an ART system, if an erroneous recognition is followed by an environ-
mental disconfirmation, such as a punishment, then the system becomes more
vigilant. This change in vigilance may be interpreted as a change in the sys-
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tem’s attentional state which increases its sensitivity to mismatches between
bottom-up input patterns and active top-down critical feature patterns. A
vigilance change alters the size of a single parameter in the network. The in-
teractions within the network respond to this parameter change by learning
recognition codes that make finer distinctions. In other words, if the net-
work erraneously groups together some input patterns, then negative rein-
forcement can heip the network to learn the desired distinction by making
the system more vigilant. The system then behaves as if it has a better set of
feature detectors. Thus at a level of very high vigilance, a category may
emerge that accepts only one exemplar. At lower levels of vigilance, similarity
relationships among the accepted exemplars help to mold the category’s
emergent critical feature pattern. Different vigilance levels may, moreover,
be imposed by environmental feedback in response to easy or difficult dis-
criminations during the course of a single experiment or experience.

The ability of a vigilance change to alter the course of pattern recognition
illustrates a theme that is common to a variety of neural processes: a one-
dimensional parameter change that modulates a simple nonspecific neural
process can have complex specific effects upon high-dimensional neural in-

formation processing.

11. BOTTOM-UP ADAPTIVE FILTERING AND
CONTRAST-ENHANCEMENT IN SHORT-TERM MEMORY

The typical network reactions to a single input pattern I within a temporal
stream of input patterns are now briefly summarized. Each input pattern
may be the output pattern of a preprocessing stage. Different preprocessing

is given, for example, to speech signals and to visual signals before the out-
come of such modality-specific preprocessing ever reaches the attentional
subsystem. The preprocessed input pattern is received at ihe stage £, of an
attentional subsystem. Pattern [ is transformed into a pattern X of activa-
tion across the nodes, or abstract *‘feature detectors’’, of F, (Figure 3). The
transformed pattern X is said to represent I in short term memory (STM).
In F, each node whose activity is sufficiently large generates excitatory
signals along pathways to target nodes at the next processing stage f3. A
pattern X of STM activities across F, hereby elicits a pattern S of output
signals from F,. When a signal from a node in £, is carried along a pathway
to Fi, the signal is multiplied, or gated, by the pathway’s long term memory
(LTM) trace. The LTM gated signal (i.e., signal times LTM trace), not the
signal alone, reaches the target node. Each target node sums up all of its
LTM gated signals. In this way, pattern S generates a pattern T of LTM-
gated and summed input signals to F; (Figure 4a). The transformation from
Sto Tis called an adaptive filter.
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Figure 3. Stages of bottom-up activation: The input pattern | generates a pattern of STM ac-
tivation X across F.. Sutticlently active Fi nodes emit bottom-up signals to F,. This signal pat-
tern $ is gated by long term memory (LTM) traces within the Fi —F; pathways. The LTM gated
signals are summed before activating their target nodes in F,. This LTM-gated and summed
signal pattern T generates a pattern of activation Y across Fi. The nodes in Fi ore denoted
by vi, vz,...,v#. Ths nodss In F; are denotad by vam+i, vm+2,...vin. The Input to nods vi s
denoted by /. The $TM activity of node v; is denoted by x;. The LTM trace of the pathway
from v, 1o v; is denoted by z). \

The input pattern T to F; is quickly transformed by interactions among
the nodes of F:. These interactions contrast-enhance the input pattern 7.
The resulting pattern of activation across F, is a new pattern Y. The

contrast-enhanced pattern Y, rather than the input pattern T, is stored in

STM by F;. These interactions also occur in a competitive learning model.

12. TOP-DOWN TEMPLATE MATCHING AND
STABILIZATION OF CODE LEARNING

As soon as the bottom-up STM transformation X— Y takes place, the STM
activities Y in F; elicit a top-down excitatory signal pattern U back to F,
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Figure 4, Search for a correct F; code: {a) the input pattern | generates the specilic STM ac-
tivity pattern X at Fi as it nonspecifically activates A. Pattern X both inhibits A and gen-
erates the output signal pattern S. Signal pattern § is transformed into the input pattern T,
which activotes the STM paitern Y across Fa. (b) Paltern Y generates the top-down signal
pattern U which is transformed into the template paltern V. It V mismatches I at Fy, then o
new STM activity pattern X* is generated at Fi. The reduction in total STM activity which oc-
curs when X is transformed into X* causes a decrease in the total inhibition from Fi to A.
{c) Then the input-driven activation of A can release a nonspaecific arousal wave in Fs, which
resets the STM patlern Y at Fa. (d) Ahter Y is inhibited, its tap-down template is eliminated,
and X can be reinstated at F). Now X once again generates input pattern T to F,, but since Y
remains inhibited T can activate a different STM pattern Y* at Fa. Ii the top-down template
due to Y* also mismatches | at Fi, then the rapid search for an appropriote F1 code continues.
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(Figure 4b). Only sufficiently large STM activities in Y elicit signals in U
along the feedback pathways F—~ F,. As in the bottom-up adaptive filter,
the top-down signals U are also gated by LTM traces and the LTM-gated
signals are summed at F, nodes. The pattern U of output signals from F;
hereby generates a pattern V of LTM-gated and summed input signals to F,.
The transformation from Uto Vis thus also an adaptive filter. The pattern
V is called a top-down template, or learned expectation.
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Two sources of input now perturb F,: the bottom-up input pattern [/
which gave rise to the original activity pattern X, and the top-down tem-
plate pattern V that resulted from activating X. The activity pattern X*
across F, that is induced by I and V taken together is typically different
from the activity pattern X that was previously induced by [ alone. In par-
ticular, F: acts to match V against 1. The result of this matching process
determines the future course of learning and recognition by the network.

The entire activation sequence

I~ X—~S=T=Y=-U-V-X* ' (D

takes place very quickly relative to the rate with which the LTM tracgs in
either the bottom-up adaptive filter S— T or the top-down adaptive filter
U—V can change. Even though none of the LTM traces changes during
such a short time, their prior learning strongly influences the STM patterns
Y and X* that evolve within the network by determining the transforma-
tions S— Tand U— V. I now sketch how a match or mismatch of Jand V at
F, regulates the course of learning in response to the pattern /, and in par-
ticular solves the stability-plasticity dilemma.

13. INTERACTIONS BETWEEN ATTENTIONAL AND
ORIENTING SUBSYSTEMS: STM RESET AND SEARCH

In Figure 4a, as input pattern [ generates an STM activity pattern X across
F,. The input pattern I also excites the orienting subsystem A, t.)ut pattern X
at F, inhibits A before it can generate an output signal. Activity pz.uteran !
also elicits an output pattern S which, via the bottom-up adaptive filter, in-
states an STM activity pattern Y across F;. In Figure 4b, pattern Y reads a '
top-down template pattern V into F,. Template V mismatches input /, l
thereby significantly inhibiting STM activity across 'F.. Tht? amount‘ by
which hctivity in X is attenuated to generate X* depends upon how much of
the input pattern [ is encoded within the template pattern V. . !
When a mismatch attenuates STM activity across £, the total size of the -
inhibitory signal from F, to A is also attenuated. If the attenuation is suffi-
ciently great, inhibition from F, to 4 can no longer .prevent the arousal
source A from firing. Figure 4c depicts how disinhibition of A releases an
arousal burst to F; which equally, or nonspecifically, excites all the F; cells.
The cell populations of F; react to such an arousal signal in a sta.te-dependent
fashion. In the special case that F; chooses a single populatno'n for STM
storage, the arousal burst selectively inhibits, or resets, t.he actlv.e popula-
tion in F.. This inhibition is long-lasting. One physiological design for F,
processing which has these properties is a gafed dipole field .(Grossberg,
1982a, 1987a). A gated dipole field consists of opponent processing channels
which are gated by habituating chemical transmitters. A nonspecific arousal
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burst induces selective and enduring inhibition of active populations within
a gated dipole field. '

In Figure 4c, inhibition of Y leads to removal of the top-down template
V, and thereby terminates the mismatch between 7 and V. Input pattern /
can thus reinstate the original aclivity paltern X across F,, which again
generates the output pattern S from F, and the input pattern Tto F,. Due to
the enduring inhibition at F;, the input patiern T can no longer activate the
original pattern Y at F.. A new pattern Y* is thus gencrated at F, by /1
(Figure 4d),

The new activity pattern Y* reads-out a new top-down template pattern
V*. If a mismatch again occurs at F,, the orienting subsystem is again
engaged, thereby leading to another arousal-mediated reset of STM at F,.
In this way, a rapid series of STM matching and reset events may occur.
Such an STM matching and reset series controls the system's hypothesis
testing and search of LTM by sequentially engaging the novelty-sensitive
orienting subsystem. Although STM is reset sequentially in time via this
mismatch-mediated, self-terminating LTM scarch process, the mechanisms
which control the LTM search are all parallel network interactions, rather
than serial algorithms. Such a parallel search scheme continuously adjusts
itself to the systein’s evolving LTM codes. The LTM code depends upon
both the system’s initial configuration and its unique learning history, and
hence cannot be predicted a priori by a pre-wired search algorithm. Instead,
the mismatch-mediated engagement of the orienting subsystem realizes the
type of self-adjusting search that was described in Section 10B.

The mismatch-mediated search of LTM ends when an STM pattern
across F; reads-out a top-down template which matches 7, to the degree of
accuracy required by the level of attentional vigilance (Section 10D), or
which has not yet undergone any prior Iearning. In the latter case, a new
recognition category is then established as a bottom-up code and top-down
template are learncd.

14. ATTENTIONAL GAIN CONTROL AND
PATTERN MATCHING: THE 2/3 RULE

The STM reset and search process described in Section 13 makes a para-
doxical demand upon the processing dynamics of F,: the addition of new
excitatory top-down signals in the pattern V1o the bottom-up signals in the
pattern [ causes a decrease in overall F, activity (Figures 4a and 4b). Some
auxiliary mechanism must exist to distinguish between bottom-up and top-
down inputs. This auxiliary mechanism is called artentional gain control to
distinguish it from attentional priming by the top-down template V. While
F; is active, the attentional priming mechanism delivers excitatory specific
learned template patterns to F,. Top-down attentional gain control has an
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inhibitory nonspecific unlearned effect on the sensitivity with which F, re-
sponds to the template pattern, as well as to other patterns received by F.
The attentional gain control process enables F, to tell the difference between
bottom-up and top-down signals.

In Figure 4a, during bottom-up processing, a suprathreshold node in F,
is one which receives both a specific input from the input pattern / and a
nonspecific attentional gain control input. In Figure 4b, during the match-
ing of simultaneous bottom-up and top-down patterns, attentional gain
control signals to F, are inhibited by the top-down channel. Nodes of F,
must then receive sufficiently large inputs from both the bottom-up and the
top-down signal patterns to generate suprathreshold activities. Nodes which
receive a bottom-up input or a top-down input, but not both, cannot become
suprathreshold: mismatched inputs cannot generate suprathreshold activi-
ties. Attentional gain control thus leads to a matching process whereby the
addition of top-down excitatory inputs to 5, can lead to an overall decrease
in F,’s STM activity. Since, in each case, an F, node becomes active only if
it receives large signals from two of the three input sources, we call this
matching process the 2/3 Rule-(Figure 5).

15. STABLE CODE LEARNING IN AN ARBITRARY
INPUT ENVIRONMENT

If an ART system violates the 2/3 Rule, there are infinitely many input se-
quences, each containing only four distinct patterns, that cannot be stably
encoded (Carpenter & Grossberg, 1987b). It has also been mathematically
proved that, when the 2/3 Rule is reinstated, the ART architecture self-
organizes, self-stabilizes, and self-scales its learning of a recognition code in
response to an arbitrary ordering of arbitrarily many, arbitrarily chosen
binary input patierns {Carpenter & Grossberg, 1987b). Moreover, each of
the LTM traces oscillates at most once through time as learning proceeds in
response to any such environment. Thus, learning in an ART architecture is
remarkably stable. Figure 6 illustrates computer simulations of alphabet
learning by an ART circuit. At two difference values of the vigilance param-
eter p, different numbers of recognition categories are learned. In both
cases, code learning is complete and self-stabilizes in response to the 26 let-
ters after only 3 trials.

Computer simulations of code learning using a coding level F; which
carries out a multiple scale, distributed decomposition of its input patterns
have also been carried out (Cohen & Grossberg, 1986, 1987). Such a design
for F, and by extension for the higher coding levels F;, Fi,...fed by £,
is called a masking field. A masking field instantiates the list level that
was described in Section 7. Such a network can simultaneously detect multi-
ple groupings within its input patterns and assigns weights to the codes for
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Flgure 3. Matching by the 2/3 Rule: (a) A 1op-down template from F, inhibits the attentional
gain control source as it subliminally primes target F: cells. (b) Only F. cells that receive
bottom-up Inputs and gain control signals can become supraliminally octive. (c) When a
bottom-up Input pattern and a top-down template are simultaneously active, only those F,
cells that recelve Inputs from both sources can become supraliminally active. (d) Inter-
modality inhibition can shut off the F\ gain control source and thereby prevent a botiom-up
Input from supraliminally activating F.. Similarly, disinhibition of the F\ gain control source
may cause a top-down prime to become supraliminal.

these groupings which are predictive with respect to the contextual informa-
tion embedded within the patterns and the prior learning of the system. A
masking field automatically rescales its sensitivity as the overall size of an
input pattern changes, yet also remains sensitive to the microstructure
within each input pattern. In this way, such a network distinguishes between
codes for pattern wholes and for pattern parts, yet amplifies the code for a
pattern part when it becomes a pattern whole in a new input context. This
capability is useful in speech recognition, visual object recognition, and
cognitive information processing.

To achieve these properties, a masking field F; performs a new type of
multiple scale analysis in which unpredictive list codes are competitively
masked, or inhibited, and predictive codes are amplified in direct response
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Figure 6. Alphabet learning: Code learning in response to the first presentation of the first
20 letters of the alphabet is shown. Two different vigilance levels were used, o=.5 and
p=.8. Each row represents the total code that is learned after the letter at the left-hand
column of the row Is presented at Fi. Each column represents the critical feature pattern
that Is learned through time by the F node listed at the top of the column. The critical
feature patterns do not, In general, equal the pattern exemplars which change them through
learning. Instead, each critical feature pattern acls like a prototype for the entire set of
these axemplars, as well as for unfamitiar axemplars which share invariant properties with
famillar exemplars, The simulation lllustrates the “fast learning” case, in which the altered
LTM traces reach a new equilibrium in response to each new stimulus. Slow learning is
more gradual than this, (Reprinted with permission from Carpenter and Grossberg, 1987b).
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to trainable signals from an adaptive filter F,~ F; that is activated by an in-
put source F,. An adaptive sharpening property obtains whereby a familiar
input pattern causes a more focal spatial activation of its recognition code
than an unfamiliar input pattern. The recognition code also becomes less
distributed when an input pattern contains more information on which to
base an unambiguous prediction of which input pattern is being processed.

Thie a smaekine fiald e t H H H
Thus, a masking field suggests a solution of the credit assignment problem

by embodying a real-time code for the predictive evidence contained within
its input patterns. Such a network processing level can be used to build up
an ART system F,— Fy~ F,— ...with any number of processing levels.

16. THE BACK PROPAGATION AND NETtalk MODELS

The ART architecture may be usefully compared with the back propagation
(BP) model of Rumelhart, Hinton, and Williams (1986). The similarities
and differences of these models highlight many of the types of formal com-
parisons that can help to evaluate other network learning models.

The BP model is a steepest descent algorithm in which each LTM trace,
or weight, in the network is adjusted to minimize its contribution to the
total meari square error between the desired and actual system outputs. Al-
though steepest descent algorithms have a long history in technology and
the neural modelling literature, the BP model has attracted widespread in-
terest, partly because of the demonstration of Sejnowski and Rosenberg
(1986), in which the BP algorithm is part of a system that learns to convert
printed text into spoken language. Despite the appeal of this demonstration,
the BP model does not model a brain process, as will be shown below. This
shortcoming does not limit the model’s possible value in technological ap-
plications which can benefit from a steepest descent algorithm, but it under-
mines the model’s usefulness in explaining behavioral or neural data.

The BP model is usually described as a three level model, with levels i,
F,, F,, such that level F; is a level of ‘‘hidden units’’ between F,and F,. The
purpose of the model is to learn an associative map between the input level
F, and the output level F;. The map is designed to be sufficiently distributed
to allow alterations in the inputs at F, to generate appropriate alterations in
the outputs at F,. Such a possibility depends upon general projection prop-
erties of distributed associated maps (Kohonen, 1984), The key property
demonstrated by computer simulations of the BPmodel is that it can lcarn a
distributed associative map.

Some of the claims for the BP model have been based on comparisons
with the early Perceptron model (Rosenblatt, 1962). Sejnowski and Rosen-
feld (1986) have written that ‘‘until recently, learning in multilayered net-
works was an unsolved problem and considered by some impossible. ..In a
multilayered machine the internal, or hidden, units can be used as feature
detectors which perform a mapping between input units and output units,
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and the difficult problem is to discover proper features.”” Carpenter and
Grossberg (1986) note, in contrast, that learning an associative map using
hidden units is an old problem with definite solutions in the neural modell-
ing literature subsequent to the introduction of the Perceptron. Indeed,
ART was developed in part to develop a theory of how learning of an asso-
ciative map could proceed in a self-stabilizing fashion (Figure 7). A basic
difference does, however, exisi beiween models of associative map learning,
such as ART and the BP model. The former model is self-organizing,
whereas the BP model requires an external teacher.

The way in which this teacher works is what distinguishes the BP model
from other types of steepest descent learning algorithms, such as the
classical Adaline model (Widrow, 1962). The teaching algorithm is also
what makes the BP model impossible as a model of a brain process. In addi-
tion to the levels F,, Fi, and F; and the pathways F,~ F;— F;, the BP model
also requires levels Fi, F;, Fg, and F; as well as a complicated set of highly
specific interactions between these levels and the rest of the network (Figure
8). These levels and interactions will now be described.

F3
AP AL I EL
N
NG
Fa
BOTTO! r DOWN
COD CTANCY
LEAR? INING

Fy

Figure 7. Self-organization of an associative map can be accomplished using a network
with three levels Fi, F:, and Fs. Levels F and F. regulate learning within bottom-up path-
ways Fi—F, and top-down pathways F.—F.. This learning process discovers compressed
recognition codes with invariant properties for the set of input patterns processed at Fi. Ac-
tivation of these recognition codes at F: enables the activated sampling celis to learn output
patterns af Fi. The total transformation F1—F, defines the associative mapping.
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Figure 8. Circuit diagram of the back propagation model: In addition to the processing
levels Fi, Fa, Fa, there are also levels F., Fs, Fi, and F; to carry out the computations which
control the learning process. The transport of learned weights from the F;—F, pathways to
the F,—F, pathways shows that this algorithm connot represent a learning process in the
brain.

Inputs delivered to F, propagate forward through F; to F;, where they
generate the actual outputs of the network. The desired, or expected, out-
puts are independently delivered to level F, by an external teacher on every
learning trial. The actual outputs are subtracted from the expected outputs
at F, to generate error signals. These error signals propagate from Fi to the
F,— F, pathways, where they change the weights in the F;— F; pathways.

Back propagation proceeds as follows. The weights computed in the bot-
tom-up F,— F, pathways are transported to the top-down F,— F; pathways.
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Once in these pathways, the differences between expected and real outputs
at F, are multiplied by the transported weights within the F,- Fs pathways
to generate weighted error signals that determine the inputs to Fi. These in-
puts activate Fy, which in turn generates output signals to the F,~ F; path-
ways. These output signals act as error signals which change the weights in
the F,— F; pathways.

Such a physical transport of weights has no plausible physical interpreta-
tion. The weights in the F;— F, pathways must be computed within these
pathways in order to multiply signals from F; to Fi. These weights cannot
also exist within the pathways from F, to F; in order to muitiply signals
from F, to F; without being physically transported from (F;— F;) to (F.— F})
pathways, thereby violating basic properties of locality. Moreover, the
levels F, and F, cannot be lumped together, because F; must record actual
outputs, whereas F, must record differences between expected and actual
outputs. The BP model is thus not a'model of a brain process.

The computation of the error signal has an additional complexity. In ad-
dition to subtracting each actual output at F; from each expected output at
F., the derivative of each actual output is also computed. The difference
between each expected and actual output is multiplied by the corresponding
derivative in addition to being multiplied by the corresponding transported
weight. Thus, there exist additional levels F; and F; at each layer for con-
verting outputs into derivatives of outputs before signalling these deriva-
tives, with great positional specificity, to the correct transported weights
(Figure 8). This complex interaction scheme must be replicated at every stage
of hidden units that is used in a BP model.

17. COMPARING ADAPTIVE RESONANCEAND
BACK PROPAGATION MODELS

Some BP mechanisms are evocative of ART mechanisms. The BP mecha-
nisms do not, however, possess the key properties which endow an ART

model with its computational power.

A. Stability '
The learned code of the BP model is unstable in a complex environment. It

keeps tracking whatever expected outputs are imposed from outside. An
omniscient teacher would be needed to decide if the model had learned
enough in response to an unpredictable input environment. The learned
code of an ART model is self-stabilizing in an arbitrary input environment.

B. Expectations as Exemplars or as Prototypes

Within a BP model, an expected or template pattern is imposed on every
trial by an external teacher. Errors are computed by comparing each com-
ponent of the expected output pattern with the corresponding component of
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the actual output pattern. There is no self-scaling property to alter the im-
portance of each expected component when it is embedded in expected out-
puts of variable complexity. There is no concept of a critical feature pattern,
or prototype. Instead, the expected pattern in a BP model is a particular ex-
emplar at every stage of learning, rather than a prototype that gradually
discovers invariant properties of all the exemplars that are ever experienced.

In contrast, an ART model learns its own expectations without a teacher.
Because an ART model is self-scaling, it can learn critical feature patterns,
or expected prototypes, by evaluating the predictive importance of particular
features in input patterns of variable complexity at each stage of learning.

C. Weight Transport or Top-Down Template Learning

In both a BP model and an ART model, both bottom-up and top-down
LTM traces exist. In a BP model (Figure 8), the top-down LTM traces in
F,— F pathways are formal transports of the learned F,— F, LTM traces. In
an ART model (Figure 1), the top-down LTM traces in F,— F, pathways are
directly learned by a real-time associative process. These top-down LTM
weights are not transports of the learned LTM traces in the F, — F, pathways,
and they need not equal these bottom-up LTM traces. Thus, an ART model
is designed so that both bottom-up learning and top-down learning are part
of a single information processing hierarchy, which can be realized by a
locally computable real-time process.

D. Matching to Alter Information Processing and/or

to Regulate Learning
In both the BP model and an ART model, there exists a concept of match-
ing. Within an ART model, matching both alters information processing
and regulates the learning process. In particular, the 2/3 Rule (Section 14)
enables a top-down expectation to subliminally sensitize the network in
preparation for any exemplar of an expected class of input patterns, and to
coherently deform such an examplar, when it occurs, towards the prototype
of the class. This STM transformation, also helps to regulate any learning
that may be necessary to generate a globally self-consistent recognition
code.

In contrast, matching within the BP model only changes LTM weights. It
does not have any effects on the fast information processing that occurs
within each input trial.

E. Learning an Associative Mapping

BPand ART provide different descriptions of how associative maps between
seen language and spoken language are learned. Figure 9 describes a macro-
circuit that schematizes our conception of this process (Cohen & Grossberg,
1986; Grossberg, 1978, 1986, 1987b; Grossberg & Stone, 1986a). The associ-
ative map V*—{A., A} in Figure 9 joins seen language to spoken language.
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Unlike a BP model, all the learning of recognition codes that is triggered by
auditory, visual, or motor patterns in Figure 9 is regulated by self-organizing
mechanisms in reciprocal bottom-up and top-down adaptive filters. Once
these codes self-stabilize their invariant recognition properties, the learning
of associative maps between these code invariants can also proceed in a self-

organizing fashion.
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Figure 9. A macrocircult governing seli-organization of recognition and recall processes:
Auditorily mediated languoge processes {the Aj), visual recognition processes (V*), and
motor control processes (the M) Interact Internally via conditionable pathways (black lines)
and exJernally via environmental feedback (dotted lines) to self-organize the varlous pro-

casses which occur at the different network stages.
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F. Speech Invariants, Colierence, and Perception

The NETtalk application of the back propagation algorithm (Sejnowski-&
Rosenberg, 1986) uses a familiar associative learning device: the number of
nodes in F, and F; is chosen to be large enough to separate features of the in-
puts and outputs, thereby avoiding too much cross-taik in the associative
map, but small enough to enable some generalization to occur among the

.......... vl atimaha lattar eonne

disiributed F,— F, projections. in particular, the time between letter scans is
represented in NETtalk by leaving some coding slots in £, empty. This mech-
anism does not generalize to a model capable of computing the temporal in-
variances of reading or speech perception.

The NETtalk model also makes the strong assumption$ that exactly seven
letter slots in F, correspond to a single, isolated phoneme slot in F, and that
this isolated phoneme slot corresponds to the entry in the middle letter slot.
These assumptions prevent the model from attempting to solve the funda-
mental problem of how speech sounds are coherently grouped in real-time.
Furthermore, it is not clear how a phoneme-by-phoneme match between ac-
tual output and expected output could be realized during a learning episode
in vivo.

In addition to assuming the automatic isolation, scaling, and centering of
information, NETtalk also postulates that each phoneme slot in F; contains
23 separate nodes. These nodes provide enough spatial dimensions to repre-
sent a large number of articulatory features, such as point of articulation,
voicing, vowel height, etc. Extra nodes are introduced to encode stress and
syllable boundaries. The model builds in the transformations from visual in-
put to F, nodal representation and from F; nodal representation to phoneme
sound. Because the model automates all of its 7, and F, representations, all
questions about visual and speech perception, as such, lie outside its scope.

The ART speech model in Figure 9 was derived from postulates concern-
ing real-time constraints on speech learning and perception. In particular,

the model inciudes mechanisins capable of learning some speech invariants
(Grossberg, 1986, 1987b), and the top-down expectancies between its pro-
cessing levels have coherent grouping properties. One of the primary func-
tion of such templates is to define and complete resonant contexts of
features, no less than to generate error signals for self-regulating changes in
associative weights.

In summary, the BP model suggests a new way to use steepest descent to
learn associative maps between input and output environments which are
statistically stationary and not too complex. Desirable propertics of associa-
tive map learning are, however, shared by many associative learning models.
Real-time network models must do more than learn an associative map or to
store distributed codes for carefully controlled environments. Moreover, the
use of an unphysical process such as weight transport in a model casts an un-

answerable doubt over all empirical applications of the model.
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18. CONCLUDING REMARKS

I conclude this essay with two general observations. The architectures of
many popular learning and information processing models are often inade-
quate because they have not been constrained by the use of design principles
whereby they could stably self-organize. Many models are actually incom-
patible with such constrainis and some models utilize physically unrealiz-
able formal mechanisms. Learning models which cannot adaptively cope
with unpredictable changes in a complex environment have an unpromising
future as models of mind and brain, and provide little hope of solving the
outstanding cognitive problems which are not already well-handled by tra-
ditional methods of artificial intelligence and engineering.

Models which do embody self-organization constraints in a fundamental
way have frequently been shown to have a broader explanatory and predic-
tive range than models which do not. Thus an analysis of learning, in partic-
ular of the mechanisms capable of self-stabilizing competitive learning, can
lead psychology from metaphorical models to integrative theories which
functionally and mechanistically express both a psychological and a neural

reality.

APPENDIX 1

Competitive Learning Models -
Rumelhart and Zipser (1985, pp. 86-87) summarize competitive learning

models as follows.

1. The units in a given layer are broken into a set of nonoverlapping clus-
ters. Each unit within a cluster inhibits every other unit within a
cluster. The clusters are winner-take-all, such that the unit receiving
the largest input achieves its maximum value while all other units in
the cluster are pushed to the minimum value. We have arbitrarily set
the maximum value to 1 and the minimum value to 0.

2.  Every element in every cluster receives inputs from the same lines.

3. A unit learns if and only if it wins the competition with other units in
its cluster.

4. A stimulus pattern S, consists of a binary pattern in which each ele-
ment of the pattern is either active or inactive. An active element is
assigned the value 1 and an inactive element is assigned the value 0.

5. Each unit has a fixed amount of weight (all weights are positive) which
is distributed among its input lines. The weight on the line connecting
unit i on the lower (or input) layer of unit j on the upper layer, is
designated wy. The fixed total amount of weight for unit j is designated
Lwy = 1. A unit learns by shifting weight from its inactive to its active
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input lines. If a unit does not respond to a particular pattern no learn-
ing takes place in that unit. If a unit wins the competition, then each ol
fls input lines gives up some proportion g of its weight and that weight
is then distributed equally among the active input lines. More formally
the learning rule we have studied is: ‘

Awy = { 0 if unit  loses on stimulus k (Al

Cix . - .
87, — 8wy il unit j wins on stimulus k

.whcrc cu is equal to 1 if in stimulus pattern S, unit / on the lower layer
is active and zero otherwise, and », is the number of active units in
pattern S, (thus

m =L cu)." (A2)

Rumelhart and Zipser (1985, p. 87) go on to say that ‘*This learning rule
was proposed by Von der Malsburg (1973). As Grossberg (1976) points out,
renormalization of the weights is not necessary.’” Actually, this learning
rule was proposed by Grossberg (1976a, 1976b), and is not the one used in
the important article of Malsburg (1973), as 1 will show below.

A simple change of notation shows that the Rumelhart and Zipser (1985)
model is identical with the Grossberg (1976a, 1976b) model. Equation (6) in
Grossberg (1976b) is the learning equation :

d

‘T’Zu =('zu +01)Xy,

l:or the: long l.cr'm memory (LTM) trace z,,. In (A3), xy, is the activity of the
Jth unit. Activity x3, =1 if unit j wins the competition and xy, =0 if unit j
loses the competition, as in equation (Al). In (A3), e —

r

04 =2m1ll (A4)

where ], is the ith element of the input pattern. Function 0, in (A4) is the
same as function c,n,” in (Al) and (A2). Function 8, is just the normalized
input weight. The LTM trace z,, in (A3) is identical with the weight w,, in
(Al). The factor g in (Al) just rescales the time variable, and thus adds no
generality to the model.

By contrast, the learning rule used by Malsburg (1973) is (in my notation)

d
E;Zu b lell

subject to the constraint

Lz., =constant,
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Thus Malsburg (1973) normalized the LTM traces Z,, which abut each unit
Jj, not the input weights. The normalization constraint (A6) is, in fact, in-

consistent with (A5) unless

LI, =0. (AT)

alelasens?s 1072 lan in

Thus a rigorous application of Malsburg’s 1973 learning ru
choice of both positive and negative inputs, unlike the Grossberg (1976b)
model that was used by Rumelhart and Zipser (1985). In his computer simu-
lations, Malsburg implemented equations (A5) and (A6) in alternating time
slices. The implication shown in (A7) is then not forced because neiticr (A5)

nor (A6) is true at all times.
Malsburg (1973) needed condition (A6) because he simplified the learn-

ing law

ule forces the

d
Ez" = —Azy+Ixy (A8)

which was used in the competitive learning model of Grossberg (1972). In
fact, the equations used by Malsburg (1973) are identical to the equations
used by Grossberg (1972) with this one exception. As Malsburg (1973, p. 88)
noted: *“To answer these questions we have to write down the equations
which govern the evolution of the system. They are summarized in Table 1
(compare Grossberg, 1972)."" Term —Agz, in (AB) describes the decay of
LTM. Malsburg's equation (AS) eliminates LTM decay. Since term /,x,, is
non-negative in these applications, the LTM trace in Malsburg’s equation
(AS5) can only increase. Without additional constraints, all LTM traces
could therefore explode to infinity. Malsburg (1973) partially overcame this

problem with his constraint (A6). The solution in equation (A3) was to pre-
serve LTM decay (term —Az,) while normalizing the inputs /, to be learned.
Then non-negative inputs /, could freely be used, instead of inputs con-
strained by (A7).

Rumelhart and Zipser (1985) also mentioned and studied two related
models. Equivalent models were introduced in Grossberg (1976b). These
alternative models were designed to show that both of them also exhibit
temporally unstable learning. Analysis of these variations of the simplest
coding model confirmed that its unstable behavior was not an artifact of its
simplicity.

Rumelhart and Zipser (1985) attributed one of these modified models to
Bienenstock, Cooper, and Munro (1982). They noted that in such a model

a unit modulates its own sensitivity so that when it is not receiving enough in-
puts, it becomes increasingly sensitive. When it is receiving too many inputs, it
decreases sensitivity. This mechanism can be implemented in the present con-
text by assuming that thereis a threshold and that the relevant activation is the

degree to which the unit exceeds its threshold. If, whenever a unit fails to win it
. [ t vie = 31 Adear win it increacec its threshold,
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then t.his method will also make all of the units eventually respond, thereby
engaging the mechanism of competitive learning (Rumelhart and Zipser, 1985
p. 100). ,

In equatior.ls (23)-(24) of Grossberg (1976b), such a variable-threshold
model was introduced without changing the basic learning equation

d
"'ﬁzu =(=zy+0)xy, (A3)

The sensitivity of xy, to its inputs was modified as follows:

_J GO if SOG(O)>max{S(NG(®) : k+j}
x(1) {0 if S(NGAN<max{SUNG.(D) : k#j)} (4
where

G =g(1- f K-, (410

S,(9) is the total input to unit j, g(w) is an increasing function such that
2(0)=0 and g(1)=1, and K(w) is a decreasing function such that K(0)=1
and K(o)=0; for example, K(w)=e™.

The history-dependent threshold is the term

f K (= v)dv (All)

in equation (A10). If unit j wins the competition then, by (A9), its activity
Xy, becomes positive. Consequently, its threshold (A11) increases. If unit j

“loses the competition then, by (A9Y), its activity x;, equals zero. Consequently,

its threshold (A11) decreases. Thus, ‘‘a unit modulates its own sensitivity so
that when it is not receiving enough inputs, it becomes increasingly sensi-
tive.” By (A9) and (A10), when a unit wins the competition, its activalion
level G/(t) *‘is the degree to which the unit exceeds its threshold.’” Moreover,
by (A3), the learning rate covaries with the activation G,(?) of unit j. Thus if
unit J is active for a long time, then its threshold (A11) becomes large, so its
learning rate (A10) becomes small. The converse is also true: inactivity in-
creases sensitivity and learning rate.

In the limiting case where the threshold in (A11) equals zero for all time
because K'=0, this learning model reduces to the simplest competitive learn-
ing model. This can be seen as follows. If the threshold is set equal to zero

then G,(f)=1 in (A10). Hence, by (A9), :

_ J1 ifS)>max{S, : k+j}
w0 {0 if S,(0<max{S, : k#j} ' (A12)

In other words x,,{f) = 1 if unit j wins the competition, and x3,(¢) =0 if unit j
loses the competition, as in equation (Al). - -
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Thus the model summarized by equations (A3), (A9), and (A10) has all
the properties described by Rumelhart and Zipser (1985) for a variable-
threshold model and includes the simplest competitive learning model as a
special case. In Grossberg (1976b, p. 132), it was noted that *‘Such a mech-
anism is inadequate if the training schedule allows vy [unit j] to recover its
maximal strength.” [ illustrated this inadequacy by displaying ‘‘an ordering
of patterns that permits recoding of essentially all populations.”’

Bienenstock, Cooper, and Munro (1982) studied a formally analogous
model with a history-dependent threshold. However, they restricted their
analysis to coding by a single unit j. Grossberg (1982c, p. 332), assumed the
viewpoint of competitive learning and considered how that model behaves
—in their coding application—when more than one coding unit j exists and
the units compete with each other for activation. It was shown that persis-
tent presentation of even a single unit pattern could cause temporally un-
stable coding in this competitive learning situation. This crippling form of
instability seems to rule out the use of history-dependent thresholds as a
viable learning rule, at least if the thresholds can recover from unit inactiv-
ity, which is the main property cited in their favor by Rumelhart and Zipser
(1985, p. 100).

Rumelhart and Zipser (1985) call the third model variant that they study
the leaky learning model. This model is a special case of the partial contrast
model that was introduced in Grossberg (1976b, p. 132), where it was pointed
out that, using such a model, *‘There can...be a shift in the locus of maxi-
‘mal responsiveness even to a single pattern—that is, recoding.’”’ Rumelhart
and Zipser (1985, p. 100) consider this a good property, rather than a bad
one: ‘“This change has the property that it slowly moves the losing units into
the region where the actual stimuli lie, at which point they begin to capture
some units and the ordinary dynamics of competitive learning take over.”
These authors are willing to accept this instability property in order to avoid
the even worse problem that ‘‘one of the units would have most of its weight
on input lines that were never active, whereas another unit may have had
most of its weight on lines common to all of the stimulus patterns. Since a
unit never learns unless it wins, it is possible that one of the units will never
win, and therefore never learn. This, of course, takes the competition out of
competitive learning”’ (pp. 98-99).

This scheme cannot, however, be fully effective without having catas-
trophic results on code stability. If the recoding is minor, then many nodes

may remain unused and too many input patterns may be lumped together.
In this case, the scheme cannot solve the problem for which it was intro-
duced. Alternatively, major recoding may be allowed, but this property is
just another way to describe a temporally unstable code.

The formal relationship between the leaky learning model and the partial
contrast model is now summarized. In the leaky learning model, equation
(A 1Y ie ranlared hy
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G A .
Aw. = & n-f—g..uu il j loses on stimulus &
v G PP .
8. ﬁf—g..w.-/ if / wins on stimulus &
where
& <<§.. (Al14)

In other words, slower learning occurs at losing units than at winning units.
The leaky learning model is a variant of the partial contrast model. The par-
tial contrast model continues to use the basic learning equation

d
d_l‘ ZU=(_ZU+ol)xlh (AJ)

However, x,, is now defined by a partial contrast rule

J(S)

Xy = §s..>-f(s..) if S>e (A15)

if §;<e

where f(w) is an increasing function of the total input S, to unit /, and ¢ is a
non-negative threshold. By (A15), the learning rate is fastest at the node x,,
which receives the largest input S, and is slower at other nodes, as in the
leaky learning model. In summary, all of the types of models described by
Rumelhart and Zipser (1985) were shown in Grossberg (1976b) to exhibit a
basic problem of learning instability.

APPENDIX 2
—— - . Stable Code Learning for Sparse Input Patterns

To simplify notation, the simplest competitive learning model is defined
again below: Let the input patterns /,(¢) across nodes v, in F, be immediately
and perfectly normalized; that is, input [(f) =0,/(t) generates activily x,(1) =
6, at v,. The signals from a node v; in F, to nodes v, in F; is chosen to be a
linear function of the activity x,. For simplicity, let the signal emitted by v,
equal 0,. The competition across nodes v, in F, normalizes the total activity
to the value 1 for definiteness and rapidly chooses that node v, for STM
storage which receives the largest input; e.g., design F, as a cooperative-
competitive feedback nelwork with faster-than-linear or (properly chosen)
sigmoid signal functions. These properties can be approximated by the sim-
ple rule that

_J i if T>max{e, T, : k#j}
’"{o il T,<max{e, T, : k+j} (A16)

where the total input 7, to v, is the inner product

T; = 3.:’052”. (A 1 7)
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The LTM traces in the Fi— F, pathays sample the pattern 8 = (0, 0,. ,0.)
of input signals only when their sampling cell is active. Thus.

d .
prel =ex,(— 2y +0.). (A18)

literature in Grossberg (1969).

If a single pattern @ is practiced, it maximizes the input 7; to its coding
cell v,. Input Tj increases as the classifying vector z,=(z, : ie/) become paral-
lel to 8 and the length ||z/|| of z, become normalized. Grossberg (1976b) also
described circumstances under which a list of input patterns to F, could
generate temporally stable learning capable of parsing these patterns into
distinct recognition categories at F;. It was proved that, if not too many in-
put patterns are presented, relative to the number of coding nodes in F3, or if
the input patterns are grouped into not too many clusters, then the recogni-
tion code stabilizes and the classifying vectors approach the convex hull of
the patterns which they code. The latter property shows that the classifying
nodes ultimately receive maximal inputs consistent with the fact that the
classifying vectors z, can fluctuate in response to all the input patterns that
they code.

To state this theorem, the following notation is convenient. A partition
® .,P, of a finite set Pisa subdivision of P into nonoverlapping and exhaus-
tive subsets P,. The convex hull H(P) of Pis the set of all convex combina-
tions of elements of P. Given a set QCP, let R = P— Q denote the elements
of P that are not in Q. The distance between a vector p and a set of vectors
O, denoted by ||p—Qll, is defined by ||p—Ql| =inf(||p— Qll: g€Q).

~ Suppose that, at time ¢, the classifying vector 2,(f) =(z,{f) i) codes the
set of patterns P,(f); that is, node v, in F; would be chosen if any pattern in
P,(1) were presented at that time. Define P* () =P, (1) Uz(?) and P*() =

J\sF =R %

Ujar P21

Theorem (Stable Code Learning of Sparse Patterns)
Let the network practice any finite set p=@":l=1,2,...,L)of input pat-
terns. Suppose that at some time (= T, the partition @ j.,P(T) of P has the

property that

min (uv:u€ P(T), vE PXT))> max(u v:u€ P(T), v€E P*T) - PrH(D)) (A19)
for all j=1, 2,...,J. Then the network partitions the patterns P into the
stable categories P,(7'); that is,

P(=P(D (A20)
forallj=1,2,...,Jandallf=T7. In addition, learning maximizes the input
to the classifying nodes; that is, the functions

LA reemenay il (Azn
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are monotone decreasing for all j=1, 2,...,J and t= T, If, moreover, the
patterns P,(T) are practiced in time intervals [Ux, Val, k=1,2,...,suchthat

©o ~

.2-:. (Vph=Up)=oo, (A22)
then

.li_T Dy(n=0. (A23)

Thus the theorem describes circumstances under which practice of input
patterns in P can cause the classifying vectors z, which may have any initial
distribution z,(0), to be separated well enough, as in (A19), to enable their
later tuning to proceed, as in (A23), without disrupting the emergent parti-
tion @, P(T) of the patterns P into recognition categories.
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