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Neural Facades: Visual Representations
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And-Depth )
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1. Introduction: The Inadequacy of Visual Modules

This article discusses some implications for understanding vision of recent
theoretical results concerning the neural architectures that subserve
visual perception in humans and other mammals (Cohen and Grossberg
1984; Grossberg 1984, 1987a, 1987b, 1988; Grossberg and Marshall 1989;
Grossberg and Mingolla 1985a, 1985b, 1987; Grossberg, Mingolla, and
Todorovic 1989; Grossberg and Rudd 1989; Grossberg and Todorovic 1988).
In addition, a new result is stated concerning differences between the
neural mechanisms for perception of static visual forms and moving visual
forms, indeed why both types of mechanisms exist.

These results contribute to the development of a neural theory of
preattentive vision, called FACADE Theory. FACADE Theory clarifies that,
whereas specialization of function surely exists during visual perception,
it is not the type of specialization that may adequately be described by
separate neural modules for the processing (say) of edges, textures,
shading, stereo, and color information. In particular, the present theory
provides an explanation of many data that do not support the modular
approach described by Marr (1982).

A basic conceptual problem faced by a modular approach may be described
as follows. Suppose that specialized modules capable of processing edges,
or textures, or shading, etc. are available. Typically each of these modules is
described using different mathematical rules that are not easily combined
into a unified theory. Correspondingly, the modules do not respond well to
visual data other than the type of data which they were designed to process.
In order to function well, either the visual world which such a module is
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allowed to process must be restricted, whence the module could not be used
to process realistic scenes; or a smart preprocessor is needed to sort scenes
into parts according to the type of data that each module can process well,
and to expose a module only to that part of a scene for which it was
designed. Such a smart preprocessor would, however, embody a more
powerful vision model than the modules themselves; hence would render
the modules obsolete. In either case, modular algorithms do not provide a
viable approach to the study of real-world vision.

The task of such a smart preprocessor is, in any case, more difficult
than one of sorting scenes into parts which contain only one type of visual
information. This is because each part of a visual scene often contains
locally ambiguous information about edges, textures, shading, stereo,
motion, and color, all overlaid together. Humans are capable of using
these multiple types of visual information cooperatively to generate
an unambiguous 3=dimensional representation of Form-And-Color-And-
DEpth; hence the term FACADE representation. The hyphens in ‘Form- -
And-Color-And-DEpth’ emphasize the well-known fact that changes in
perceived color can cause changes in perceived depth and form, changes
in perceived depth can cause changes in perceived brightness and form,
and so on. Every stage of visual processing multiplexes together several
key properties of the scenic representation. It is a central task of biological
vision theories to understand how the organization of visual information
processing regulates which properties are multiplexed together at each
processing stage, and how the stages interact to generate these properties.

2. Hierarchical Resolution of Uncertainty Using Interactions

Between Complementary Systems

FACADE Theory became possible through the discovery of several new
uncertainty principles; that is, principles which show what combinations of
visual properties cannot, in principle, be computed at a single processing
stage (Grossberg 1987a; Grossberg and Mingolla 1985b). The theory describes
how to design parallel and hierarchical interactions that can resolve these
uncertainties using several processing stages. These interactions occur
within and between two subsystems whose properties are computationally
complementary. These complementary subsystems are called the Boundary
Contour System (BCS) and the Feature Contour System (FCS).

Issues concerning uncertainty principles and complementarity lie at the
foundations of quantum mechanics. Mammalian vision systems are also
quantum systems in the sense that they can generate visual percepts in
response to just a few light quanta. How the types of uncertainty and
complementarity that are resolved by biological vision systems for purposes
of macroscopic perception may be related to concepts of uncertainty and
complementary in quantum mechanics is a theme of considerable
importance for future research.
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For present purposes, the themes of uncertainty and complementarity
- show the inadequacy of the modular approach from a deeper information
theoretic perspective. Although the BCS, FCS, and their individual
processing stages are computationally specialized, their interactions over-
come computational uncertainties and complementary deficiences to
generate useful visual representations, rather than properties that may be
computed by independent processing modules.

Such an interactive theory also precludes the sharp separation between
formal algorithm and mechanistic realization that Marr (1982) proposed.
How computational uncertainties can be overcome, how particular
combinations of multiplexed properties can be achieved, and how
complementary processing properties can be interactively synthesized, are
properties of particular classes of mechanistic realizations. Many workers
in the field of neural networks summarize this state of affairs by saying
that ‘the architecture is the algorithm’.

3. Generating Invariant Boundary Structures and Surface Colors

FACADE Theory clarifies how our visual systems are designed to detect
relatively invariant surface colors under variable illumination conditions,
to detect relatively invariant object boundary structures amid noise caused
by the eyes’ own optics or occluding objects, and to recognize familiar
objects or events in the environment. These three principle functions are
performed by the Feature Contour System (FCS), the Boundary Contour
System (BCS) and by an Object Recognition System (ORS), respectively,
as indicated in the macrocircuit of Figure 1.

The computational demands placed on a system that is designed to
detect invariant surface colors are, in many respects, complementary to
the demands placed on a system that is designed to detect invariant
boundary structures. That is why the FCS and BCS in Figure 1 process
the signals from each monocular preprocessing (MP) stage in parallel. The
FCS and BCS are not, however, independent modules. Figure 2 depicts
in greater detail how levels of the FCS and BCS interact through multiple
feedforward and feedback pathways to generate a FACADE representation
at the final level of the FCS. .

In addition to the complementary relationship between the FCS and the
BCS, there also exist informational uncertainties at processing levels within
each of these systems. In particular, the filtering computations within the
FCS which reduce uncertainty due to variable illumination conditions
create new uncertainties about surface brightnesses and colors that are
resolved at a higher FCS level by a process of featural filling-in. The
filtering computations within the BCS which reduce uncertainty about
boundary orientation create new uncertainties about boundary position
that are resolved at a higher BCS level by a process of boundary completion.

The division of labor between BCS and FCS is not simply a partitioning
for simplicity or convenience. Rather, BCS dynamics require oriented
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Figure 1 A macrocircuit of processing stages: Monocular preprocessed
signals (MP) are sent independently to both the Boundary Contour System
(BCS) and the Feature Contour System (FCS). The BCS preattentively
generates coherent boundary structures from these MP signals. These
structures send outputs to both the FCS and the Object Recognition
System (ORS). The ORS, in turn, rapidly sends top-down learned template
signals, or expectations, to the BCS. These template signals can modify
the preattentively completed boundary structures using learned, attentive
information. The BCS passes these modifications along to the FCS. The
signals from the BCS organize the FCS into perceptual regions wherein
filling-in of visible brightnesses and colors can occur. This filling-in process
is activated by signals from the MP stage. The completed FCS represen-
tation, in turn, also interacts with the ORS.

filtering operations followed by oriented cooperative-competitive feedback
interactions, because such an architecture can rapidly and in a context-
sensitive manner perform the requisite boundary segmentations that the
FCS itself needs in order to pool, or fill-in, its estimates of surface color
among regions belonging to the same perceived objects. That pooling is
. a type of unoriented spatial averaging performed by a diffusion process.
Were a diffusion of signals employed within the BCS itself, however, it
could blur the very boundaries that it seeks to sharpen and-thereby defeat
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Figure 2 Macrocircuit of monocular and binocular interactions within the
Boundary Contour System (BCS) and the Feature Contour System (FCS):
Left and right monocular preprocessing stages (MP, and MPg) send
parallel monocular inputs to the BCS (boxes with vertical lines) and the
FCS (boxes with three pairs of circles). The monocular BCS, and BCSg
interact via bottom-up pathways labelled 1 to generate a coherent
binocular boundary segmentation. This segmentation generates output
signals called filling-in generators (FIGs) and filling-in barriers (FIBs).
The FIGs input to the monocular filling-in domains, or syncytia, of the
FCS. The FIBs input to the binocular filling-in domains, or syncytia,
of the FCS. Inputs from the MP stages interact with FIGs at the
monocular syncytia where they select those monocular FC signals that
are binocularly consistent. The selected FC signals are carried by the
pathways labelled 2 to the binocular syncytia, where they interact with
FIB signals from the BCS to generate a multiple scale representation of
form-and-color-and-depth within the binocular syncytia. The present arti-
cle describes some monocular properties of the interactions from an MP
stage through the first few BCS and FCS stages, namely those symbolized
by the pathways labelled 1 and FIG.
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both the BCS and FCS system goals. Accordingly, as shown in Figure 1,
the BCS processes occur separately of, and in parallel with, FCS processes,
but send topographically matched signals to the FCS to organize the
spatial structuring of the FCS filling-in process.

4. Preattentive Visual Processing by the Boundary Contour
System and Feature Contour System

The theory’s general-purpose capabilities depend upon its decomposition
into BCS, FCS, and ORS subsystems. Both the BCS and FCS operate pre-
attentively and automatically upon all images, whether or not these images
have been experienced before. The BCS is a general-purpose device in the
sense that it can generate an emergent 3-D boundary segmentation in
response to a wide variety of image properties. For example, it is capable of
detecting, sharpening, and completing image edges; of grouping textures;
of generating a boundary web of boundary compartments that conform to
the shape of smoothly shaded regions; and of carrying out a disparity-
sensitive and scale-sensitive binocular matching process that generates fused
binocular structures from disparate pairs of monocular images. The outcome
of this 3-D boundary segmentation process is perceptually invisible within
the BCS. Visible percepts are a property of the FCS.

A completed segmentation within the BCS elicits topographically
organized output signals to the FCS. These completed BC Signals regulate
the hierarchical processing of color and brightness signals by the FCS
(Figure 2). Notable among FCS processes are the automatic extraction from
many different types of images of color and brightness signals that are
relatively uncontaminated by changes in illumination conditions—again
a general-purpose property. These Feature Contour signals interact within
the FCS with the output signals from the BCS to control featural filling-
in processes. These filling-in processes lead to visible percepts of form-
and-color-and-depth at the final stage of the FCS, which is called the
Binocular Syncytium (Figure 2). ;

Such a theoretical decomposition of the vision process conforms to, and
has in fact predicted, properties of a similar decomposition that governs
the design of the mammalian visual cortex. For example, in the theory’s
analyses and predictions of neurobiological data, the Monocular Prepro-
cessor Stage (MP,, MP.) of Figures 1 and 2 is compared with opponent_
cells of the lateral geniculate nucleus, the first stage of the BCS is compared
with simple cells of the hypercolumns in area V1 of striate cortex, the first
stage of the FCS is compared with cells of the cytochrome oxydase staining
blobs of area V1 of striate cortex, the Binocular Syncytium is compared
with cells of area V4 of the prestriate cortex, and the intervening BCS and
FCS stages are compared with complex, hypercomplex, double opponent,
and related cell types in areas V1, V2, and V4 of striate and prestriate
cortex (Grossberg 1987a; Grossberg and Mingolla 1985a).
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The processes summarized in Figures 1 and 2 are preattentive and
automatic. These preattentive processes may, however, influence and
be influenced by attentive, learned object recognition processes. The
macrocircuit depicted in Figure 1 suggests, for example, that a preattentively
completed boundary segmentation within the BCS can directly activate
an Object Recognition System (ORS), whether or not this segmentation
--supports visible contrast differences within the FCS. In the Glass pattemn
of Figure 3, for example, the circular groupings can be recognized by the
ORS even though they do not support visible contrast differences within

the FCS.
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Figure 3 A Glass pattern: The emergent circular pattern is ‘recognized’,
although it is not ‘seen’, as a pattern of differing contrasts. The text

suggests how this happens.

The ORS can, in turn, read-out attentive learned priming, or expectation,
signals to the BCS. Why the ORS needs to read-out learned top-down
attentive feedback signals is clarified elsewhere by results from Adaptive
Resonance Theory, which has demonstrated that learned top-down
expectations help to stabilize the self-organization of object recognition
codes in response to complex and unpredictable input environments
(Carpenter and Grossberg 1987a, 1987b, 1988). Learned top-down expec-
tations seem to be a computational universal in all self-organizing cognitive
systems, including systems for speech and language processing (Cohen
and Grossberg 1986, 1987; Cohen, Grossberg, and Stork 1988; Dell 1986;
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Grossberg 1978; 1980, 1982, 1986, 1987c; Grossberg and Stone 1986;
McClelland and Rumelhart 1981; Ratcliff and McKoon 1988; Rumelhart
and McClelland 1982).

In response to familiar objects in a scene, the final 3-D boundary
segmentation within the BCS may thus be doubly completed, first by
automatic preattentive segmentation processes and then by attentive
learned expectation processes. This doubly completed segmentation
regulates the featural filling-in processes within the FCS that lead to a
percept of visible form. The FCS also interacts with the ORS in order to
generate recognitions of color and surface properties.

The feedback interactions between the preattentive BCS and FCS and
the attentive, adaptive ORS emphasize that these subsystems are not
independent modules, and clarify why the distinction between preattentive
and attentive visual processing has been so controversial and elusive in
the vision literature. Indeed, while seminal workers such as Jacob Beck
and Bela Julesz have probed the preattentive aspects of textural grouping,
other scientists have emphasized the attentive and cognitive aspects of
vision, as in the ‘unconscious inferences’ of Helmholtz and the ‘cognitive
contours’ of Richard Gregory. The possibility that emergent segmentations
within the BCS can be doubly completed, both by preattentive emergent
segmentations and attentive learned expectations, helps to unify these
parallel lines.of inquiry, and cautions against ignoring the influence of
attentive feedback upon the ‘preattentive’ BCS and FCS. The rules whereby
such parallel inputs from the BCS and the FCS are combined within the
ORS have recently been the subject of active experimental investigation,
especially due to the excitement surrounding the discovery of ‘illusory
conjunctions’ (Treisman and Schmidt 1982), whereby form and color
information may be improperly joined under suitable experimental
conditions.

The functional distinction between the attentive learned ORS and the
‘preattentive’ BCS and FCS also has a neural analog in the functional
architecture of mammalian neo-cortex. Whereas the BCS and FCS are
neurally interpreted in terms of data about areas V1, V2, and V4 of visual
cortex (Desimone, Schein, Moran, and Ungerleider” 1985; Zeki 1983a,
1983b), the ORS is interpreted in terms of data concerning inferotemporal
cortex and related brain regions (Mishkin 1982; Mishkin and Appenzeller
1987; Schwartz, Desimone, Albright, and Gross 1983).

The complementarity that exists between BCS and FCS computations is
illustrated by example in the next two sections.

6. Discounting the Illuminant and Filling-In
One form of uncertainty with which the nervous system deals is due to

the fact that the visual world is viewed under variable lighting conditions.
When™an object reflects light to an observer’s eyes, the amount of light
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energy within a given wavelength that reaches the eye from each object
" location is determined by a product of two factors. One factor is a fixed
ratio, or reflectance, which determines the fraction of incident light that
is reflected by that object location to the eye. The other factor is the
variable intensity of the light which illuminates the object location. Two
object locations with equal reflectances can reflect different amounts of
light to the eye if they are illuminated by different light intensities. Spatial
gradients of light across a scene are the rule, rather than the exception,
during perception, and wavelengths of light that illuminate a scene can
vary widely during a single day. If the nervous system directly coded into
percepts the light energies which it received, it would compute false
measures of object colors and brightnesses, as well as false measures of
object shapes.

Land (1977) and his colleagues have sharpened contemporary under-
standing of this issue by carrying out a series of remarkable experiments.
In these experiments, a picture constructed from overlapping patches of
colored paper, called a McCann Mondrian, is viewed under different
lighting conditions. If red, green, and blue lights simultaneously illuminate
the picture, then an observer perceives surprisingly little color change as
the intensities of illumination are chosen to vary within wide limits. The
stability of perceived colors obtains despite the fact that the intensity of
light at each wavelength that is reflected to the eye varies linearly with
the incident illumination intensity at that wavelength. This property of
color stability indicates that the nervous system ‘discounts the illuminant’,
or suppresses the ‘extra’ amount of light in each wavelength, in order to
extract a color percept that is invariant under many lighting conditions.

In another experiment, inhomogeneous lighting conditions were devised
such that spectrophotometric readings from positions within the interiors of
two color patches were the same, yet the two patches appeared to have
different colors.The perceived colors were, moreover, close to the colors that
would be perceived when viewed in a homogeneous source of white light.

These results show that the signals from within the interiors of the colored
patches are significantly attenuated in order to discount the illuminant. This
property makes ecological sense, since even a gradual change in illuminaticn
level could cause a large cumulative distortion in perceived color or brightness
if it were allowed to influence the percept of a large scenic region. In contrast,
illuminant intensities typically do not vary much across a scenic edge. Thus
the ratio of light signals reflected from the two sides of a scenic edge can
provide an accurate local estimate of the relative reflectances of the scene at
the corresponding positions. We have called the color and brightness signals
which remain unattenuated near scenic edges FC signals.

The neural mechanisms which ‘discount the illuminant’ overcome a

. - o
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scenic edges, then why do not we see just a world of colored edges? How
are these local FC signals used by later processing stages to synthesize
global percepts of continuous color fields and of smoothly varying surfaces?

FC signals activate a process of lateral spreading, or filling-in, of color
and brightness signals within the FCS. This filling-in process is contained
by topographically organized output signals from the BCS to the FCS
(Figure 2).Where no BC signals obstruct the filling-in process, its strength
is attenuated with distance, since it is governed by a nonlinear diffusion
process.

Many examples of featural filling-in and its containment by BC signals
can be cited. A classical example of this phenomenon is described in
Figure 4. The image in Figure 4 was used by Yarbus (1967) in a stabilized
image experiment. Normally the eye jitters rapidly in its orbit, and thereby
is in continual relative motion with respect to a scene. In a stabilized
image experiment, prescribed regions in an image are kept stabilized, or
do not move with respect to the retina. Stabilization is accomplished by
the use of a contact lens or an electronic feedback circuit. Stabilizing an
image.with respect to the retina can cause the perception of the image to
fade. The adaptive utility of this property can be partially understood by
noting that, in humans, light passes through retinal veins before it reaches
the photosensitive retina. The veins form stabilized images with respect
to the retina, hence are fortunately not visible under ordinary viewing
conditions.

In the Yarbus display shown in Figure 4, the large circular edge and
the vertical edge are stabilized with respect to the retina. As these edge
percepts fade, the red color outside the large circle is perceived to flow
over and envelop the black and white hemi-discs until it reaches the small
red circles whose edges are not stabilized. This percept illustrates how FC
signals can spread across, or fill-in, a scenic percept until they hit
perceptually significant boundaries. Our neural network model of this
process explains how filling-in occurs within the black and white regions,
and why the left red disk appears lighter and the right red disk appears
darker than the surrounding red region that envelops the remainder of
the percept. The model has in addition been used to simulate a wide
range of classical and recent phenomena concerning brightness perception
which have not heretofore been explained by a single theory (Cohen and
Grossberg 1984; Grossberg and Todorovi¢ 1988).

The Yarbus percept illustrates three properties of the FCS that are
complementary to properties of the BCS (Figure 5); namely, filling-in is
an outward flowing process that is unoriented, and FCS computations are
sensitive to direction-of-contrast, or contrast polarity, since otherwise the
FCS could not represent different brightnesses or colors.

In sumrmary, the uncertainty of variable lighting conditions is resolved
by discounting the illuminant and extracting contour-sensitive FC signals.
The uncertainty created within the discounted regions is resolved at a
later processing stage via a featural filling-in process that is activated by
the FC signals and contained within boundaries defined by BC signals.
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Figure 4 A classical example of featural filling-in: When the edges of the

large circle and the vertical line are stabilized on the retina, the red color

(dots) outside the large circle envelopes the black and white hemidisks

except within the small red circles whose edges are not stabilized. The red

inside the left circle looks brighter and the red inside the right circle looks
darker than the enveloping red.

7. Oriented Boundary Filtering and Emergent Segmentation:
BCS/FCS Complementarity

The corresponding compleémentary properties of the BCS may be seen by
inspecting a reverse-contrast Kanizsa square in Figure 6. The photographic
reproduction process may have weakened the percept of this ‘illusory’
square. The critical percept is that of the square’s vertical boundaries. The
black-grey vertical edge of the top-left pac-man figure is a dark-light
vertical edge. The white-grey vertical edge of the bottom-left pac-man
figure is a light-dark vertical edge. These two vertical edges possess the
same orientation but opposite directions-of-contrast. The percept of the
vertical boundary that spans these opposite direction-of-contrast edges
shows that the BCS is sensitive to boundary orientation but is indifferent
to direction-of-contrast. Moreover, the horizontal boundaries of the square,
which connect edges of like direction-of-contrast, group together with the
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Figure 5 Computationally complementary properties of the BCS and FCS:
The outcome of a BCS interaction is independent of direction-of-contrast,
oriented and induced by pairs, or larger numbers, of oriented inducers.
The outcome of an FCS interaction is dependent upon direction-of-contrast,
unoriented, and generated by individual inducers.

vertical boundaries to generate a unitary percept of a square. Opposite
direction-of-contrast and same direction-of-contrast boundaries both input
to the same BCS in order to achieve broad-band boundary detection. In
contrast, the FCS maintains its sensitivity to direction-of-contrast and
elaborates it into a double-opponent color and brightness perception
-system.
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Figure 6 A reverse-contrast Kanizsa square: An illusory square is induced
by two black and two white pac-man figures on a grey background.
Hlusory contours can thus join edges with opposite directions-of-contrast.
(This effect may be weakened by the photographic reproduction process.)

The BCS and the FCS differ in their spatial interaction rules in addition
to their rules of contrast. Indeed, their spatial interaction rules exhibit
complementary properties. For example, in Figure 6, a vertical illusory
boundary forms between the Boundary Contours generated by a pair of
vertically-oriented and spatially aligned pac-man edges. Thus the process
of boundary completion is due to an inwardly directed and oriented
interaction whereby pairs of inducing BC signals can trigger the formation
of an intervening boundary of similar orientation. In contrast, in the
filling-in reactions of Figure 4, featural quality can flow from each FC
signal in all directions until it hits a Boundary Contour or is attenuated
by its own spatial spread. Thus featural filling-in is an outwardly directed
and unoriented interaction that is triggered by individual FC signals. These
complementary properties of the BCS and FCS interaction rules are
summarized in Figure 5.

8. Cognitive Impenetrability of Neural Computations

An analysis of how the BCS implements the types of properties summarized
in Figure 5 illustrates the cognitive impenetrability of neural computations.
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In other words, we are designed so that our neural mechanisms and the
organizational principles that govern their design are hidden from the
direct introspective evidence of daily experience. The behavioral level can
thus concern itself with percepts, feelings, ideas, and plans rather than
with neurons, ions, and chemical transmitters.

In particular, early stages of BCS design include a circuit that contains
formal analogs of cortical simple cells, complex cells, and hypercomplex
cells, but the computational constraints that are predicted to govern this
circuit’s neural design are not obvious on the behavioral level. This fact
may be highlighted by a personal anecdote. I did not notice the, now
obvious, neurophysiological interpretation of the model hypercomplex
cells until at least two years after the circuit was derived from perceptual
considerations. .

One of the hardest things to understand about neural modelling is ho
a modeller can discover a behavioral analysis from which neural
mechanisms can be derived, despite the fact that these neural mechanisms
are not obvious from our daily experiences, and the behavioral significance
of the neural mechanisms may not at first be clear from direct neural
measurements. In the present instance, at least two stumbling blocks to
understanding can be identified: (1) The activities of BCS cells do not
themselves become perceptually visible; they control properties of visibility
that develop within the FCS. (2) The output stage (the hypercomglex cells)
of the circuit in question is designed to overcome a computational
uncertainty that is created at the input stage (the simple cells). Thus the
circuit hides its perceptual function, except during perceptual anomalies,
such as visual illusions.

In particular, the model simple cells, complex cells, and hypercomplex
cells are predicted to be part of a circuit module that overcomes, through
its hierarchical intercellular interactions, a computational uncertainty in
processing image line ends and corners that is due to simple cells’ oriented
receptive fields. This compensatory process also generates properties of
hyperacuity, that have since been psychophysically reported (Badcock
and Westheimer 1985a, 1985b). Thus the perceptual analysis of the
computational limitations of oriented receptive fields predicts why simple
cells, complex cells, and hypercomplex cells exist and, as an additional
surprise, suggests a new understanding of hyperacuity. Some of these
considerations will next be discussed.

9. Oriented Receptive Fields Imply Positional Uncertainty at Line
Ends and Corners

In order to effectively build up boundaries, the BCS must be able to
determine the orienfation of a boundary at every position. To accomplish
this, the cells at the first stage of the BCS possess orientationally tuned
receptive fields, or oriented masks. Such a cell, or cell population, is
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selectlvely responsive to orientations that activate a prescribed small
region of the retina, and whose orientations lie within a prescribed band
of orientations with respect to the retina. A collection of such orientationally
tuned cells is assumed to exist at every network position, such that each
cell type is sensitive to a different band of oriented contrasts within its
prescribed small region of the scene, as in the hypercolumn model, which
was developed to explain the responses of simple cells in area V1 of the
striate cortex (Hubel and Wiesel 1977).

These oriented receptive fields are oriented local contrast detectors, rather
than edge detectors. This property enables them to fire in response to a
wide variety of spatially nonuniform image contrasts including edges,
spatially nonuniform densities of unoriented textural elements, and
spatially nonuniform densities of surface gradients. Thus by sacrificing a
certain amount of spatial resolution in order to detect oriented local
contrasts, these masks achieve a general-detection characteristic which can
respond to edges, textures, and surfaces.

The fact that the receptive fields of the BCS are oriented greatly reduces
the number of possible groupings into which their target cells can enter.
On the other hand, in order to detect oriented local contrasts, the receptive
fields must be elongated along their preferred axis of symmetry. Then the
cells can preferentially detect differences of average contrast across this
axis of symmetry, yet can remain silent in response to differences of
average contrast that are perpendicular to the axis of symmetry. Such
receptive field elongation creates greater positional uncertainty about the
exact locations within the receptive field of the image contrasts which fire
the cell. This positional uncertainty becomes acute during the processing
of image line ends and corners.

Oriented receptive fields cannot easily detect the ends of thin scenic
lines (Grossberg and Mingolla 1985b) whose widths fall within a certain
range: wider than lines which generate a continuous band of vertically
oriented receptive field responses, and narrower than lines which generate
a band of horizontally oriented receptive field responses throughout their
lowest extremity. Such a choice of lines always exists if the receptive field
is elongated by a sufficient amount in a preferred orientation. This property
illustrates a basic uncertainty principle which says: Orientational ‘certainty’
implies positional ‘uncertainty’ at the ends of scenic lines whose widths
are neither too small nor too large with respect to the dimensions of the
oriented receptive field. If no BC signals are elicited at the ends of lines,
however, then in the absence of further processing within the BCS,
Boundary Contours will not be synthesized to prevent featural quality
from flowing out of line ends within the FCS. Many percepts would
hereby become badly degraded by featural flow.

Thus basic constraints upon visual processing seem to be at odds. with
each other. The need to discount the illuminant leads to the need for
featural filling-in. The need for featural filling-in leads to the need to
synthesize boundaries capable of restricting featural filling-in to
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appropriate perceptual domains. The need to synthesize boundaries leads
to the need for orientation-sensitive receptive fields. Such receptive fields
are, however, unable to restrict featural filling-in at scenic line ends or
sharp comers. Thus, orientational certainty implies a type of positional
uncertainty, which is unacceptable from the perspective of featural filling-
in requirements.

Later processing stages are needed to recover both the positional and
orientational information that are lost in this way. We have called the
process which completes the boundary at a line end an end cut. End cuts
actively reconstruct the line end at a processing stage higher than the
oriented receptive field much as they do to form an Ehrenstein figure
(Figure 7). In order to emphasize the paradoxical nature of this process,
we say that all line ends are illusory.

%

Figure 7 An Ehrenstein figure: A bright circular disk is perceived even
though all white areas are equally luminant. The text suggests how this
happens.

10. The OC Filter: Simple, Complex, and Hypercomplex Cells

The processing stages that are hypothesized to generate end cuts are
summarized in Figure 8. First, oriented simple cell receptive fields of like
position and orientation, but opposite direction-of-contrast, generate
rectified output sjgnals. These output signals summate at the next
processing stage to activate complex cells whose receptive fields are
sensitive to the same position and orientation as themselves, but are
insensitive to direction-of-contrast. These complex cells are sensitive to
amount of oriented contrast, but not to the direction of this oriented
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contrast, as in our explanation of Figure 6. They pool inputs from receptive
" fields with opposite directions-of-contrast in order to generate boundary
detectors which can detect the broadest possible range of luminance or
chromatic contrasts (De Valois, Albrecht, and Thorell 1982; Spitzer and
Hochstein 1985).

The rectified output from the complex cells activates a second filter
which is composed of two successive stages of spatially short-range
competitive interaction whose net effect is to generate end cuts (Figure
8). First, a cell of prescribed orientation excites like-oriented cells
corresponding to its location and inhibits like-oriented cells coiresponding
to nearby locations at the next processing stage. In other words, an on-
center off-surround organization of like-oriented cell interactions exists
around each perceptual location. This mechanism is analogous to the
neurophysiological process of end stopping, whereby hypercomplex cell
receptive fields are fashioned from interactions of complex cell output
signals (Hubel and Wiesel 1965; Orban, Kato, and Bishop 1979). The
outputs from this competitive mechanism interact with the second
competitive mechanism. Here, cells compete that represent different
orientations, notably perpendicular orientations, at the same perceptual
location. This competition defines a push-pull opponent process. If a given
orientation is excited, then its perpendicular orientation is inhibited. If a
given orientation is inhibited, then its perpendicular orientation is excited
via disinhibition.

The combined effect of these two competitive interactions generates end
cuts as follows. The strong vertical activations along the edges of a scenic
line inhibit the weak vertical activations near the line end. These inhibited
vertical activations, in turn, disinhibit horizontal activations near the line
end. Thus the positional uncertainty generated by orientational certainty
is eliminated at a subsequent processing level by the interaction of two
spatially short-range competitive mechanisms which convert complex cells
into two distinct populations of hypercomplex cells.

The properties of these competitive mechanisms have successfully
predicted and helped to explain a variety of neural and perceptual data.
For example, the prediction of the theory summarized in Figure 8
anticipated the report by von der Heydt, Baumgartner, and Peterhans
(1984) that cells in prestriate visual cortex respond to perpendicular line
ends, whereas cells in striate visual cortex do not. These cells properties
also help to explain why color is sometimes perceived to spread across a
scene, as in the phenomenon of neon color spreading (Grossberg 1987a;
Grossberg and Mingolla 1985a; Redies and Spillmann 1981) by showing
how some BC signals are inhibited by Boundary Contour processes. The
end cut process also exhibits properties of hyperacuity which have been
used (Grossberg 1987a) to explain psychophysical data about spatial
localization and hyperacuity (Badcock and Westheimer 1985a, 1985b; Watt
and Campbell 1985). A version of the double filter in Figure 8 was also
derived from data about texture segregation (Graham and Beck 1988) in a
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Figure 8 Early stages of Boundary Contour processing: At each position
exist cells with elongated receptive fields (simple cells) of various sizes
which are sensitive to orientation, amount-of-contrast, and direction-of-
contrast. Pairs of such cells sensitive to like orientation but opposite
directions-of-contrast (lower dashed box) input to cells (complex cells) that
are sensitive to orientation and amount-of-contrast but not to direction-
of-contrast (white ellipses). These cells, in turn, excite like-oriented cells
(hypercomplex cells) corresponding to the same position and inhibit like-
oriented cells corresponding to nearby positions at the first competitive
stage. At the second competitive stage, cells corresponding to the same
position but different orientations (higher-order hypercomplex cells) inhibit
each other via a push-pull competitive interaction.
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way that supports the texture analyses of Grossberg and Mingolla
(1985b). These analyses also utilize the cooperative-competitive feedback
interactions, indicated in Figure 9, to generate emergent boundary
segmentations, such as the circular groupings generated in response to
the Glass pattern in Figure 3 and the Kanizsa square generated in response
to the four pac-man figures in Figure 6. These feedback interactions
between bipole cells and hypercomplex cells have properties akin to those
discovered experimentally in visual cortex by von der Heydt, Peterhans,
and Baumgartner (1984) and Peterhans and von der Heydt (1989) during
the formation of illusory contours, and by Eckhorn et al. (1988) and Gray,”
Kénig, Engel, and Singer (1989) during long-range cooperative linking
operations among assemblies of similarly coded visual features. The
process of emergent boundary segmentation will not be further discussed
herein. Instead, I will indicate how further analysis of this hierarchical
network leads to explanations of data about motion perception.

11. Why is a Motion Boundary Contour System Needed?

It is well known that some regions of visual cortex are specialized for
motion processing, notably region MT (Albright, Desimone, and Gross
1984; Maunsell and van Essen 1983; Newsome, Gizzi, and Movshon 1983;
Zeki 1974a, 1974b). On the other hand, even the earliest stages of visual
cortex processing, such as the simple cells in V1 (Figure 8), require stimuli
that change through time for their maximal activation and are direction-
sensitive (De Valois, Albrecht, and Thorell 1982;. Heggelund 1981; Hubel
and Wiesel 1962, 1968, 1977; Tanaka, Lee, and Creutzfeldt 1983). Why has
evolution gone to the trouble to generate regions such as MT, when even
V1 is change-sensitive and direction-sensitive? What computational
properties are achieved by MT that are not already available in V1?

As indicated above, the monocular BCS theory of Grossberg and
Mingolla (1985a, 1985b), schematized in Figure 9, and its binocular
generalization (Grossberg 1987b; Grossberg and Marshall 1989), has
successfully modelled many boundary segmentation properties of V1 and
its prestriate projections. This BCS model has thusfar been used to analyse
data generated in response to static visual images. Henceforth we therefore
call such a BCS a static BCS model. The cells of the static BCS model can
easily be gated by cells sensitive to image transients, such as Y cells
(Enroth-Cugell and Robson 1966; Hoffmann 1973; Sekuler 1975; Stone
1972; Stone and Dreher 1973; Tolhurst 1973), to generate receptive fields
sensitive to image transients. How does a motion BCS differ from a static
BCS whose cells are sensitive to image transients? The answer to this
question that is suggested by Grossberg and Rudd (1989) illustrates once
again the importance of BCS/FCS complementary in understanding
preattentive vision, and the inadequacy of a modelling approach based
on independent processing modules.
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Figure 9 The static Boundary Contour circuit described by Grossberg and
Mingolla (1985b). The circuit is divided into an oriented contrast-sensitive
filter (OC Filter) followed by a cooperative-competitive feedback network
(CC Loop). Multiple copies of this circuit are used, one corresponding to
each receptive field size of the OC Filter. The depicted circuit has been
used fo analyse data about monocular vision. A binocular generalization
of the circuit has also been described (Grossberg 1987b; Grossberg and
Marshall 1989).
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12. Joining Sensitivity to Direction-of-Motion with Insensitivity to
Direction-of-Contrast .

As shown in Figure 8, although the simple cells of the BCS are sensitive
to direction-of-contrast, or contrast polarity, the complex cells of the BCS
are rendered insensitive to direction-of-contrast by receiving inputs from
pairs of simple cells with opposite direction-of-contrast. Such a property
is also true of the simple cells and complex cells in area V1 (De Valois,
Albrecht, and Thorell 1982; Poggio, Motter, Squatrito, and Trotter 1985;
Thorell, De Valois, and Albrecht 1984). .

This property is useful for extracting boundaries along contrast reversals
in the image. As a result, however, the output of the OC Filter is unable
to differentiate direction-of-motion. For example, the complex cell in
Figure 8 can respond to a vertical light-dark contrast moving to the right,
and to a vertical dark-light contrast moving to the left. Because the complex
cell can respond to image contrasts that move in opposite directions, it is
insensitive to direction-of-motion. A key property of the motion BCS
model of Grossberg and Rudd (1989) is that it possesses a modified OC
Filter that multiplexes the property of insensitivity to direction-of-contrast,
which is equally useful for the processing of static and moving forms,
with sensitivity to direction-of-motion. The properties of this Motion OC
Filter, or MOC Filter, mirror many properties of motion perception,
including percepts of apparent motion. When the MOC Filter is connected
to a CC Loop, as in Figure 9, a much larger body of data, including
coherent global motion percepts such as induced motion and motion
capture, can also be analysed. |

This model suggests that a fundamental computational property achieved
by a motion segmentation system, such as MT, is to generate output signals
that maintain insensitivity to direction-of-contrast without sacrificing
sensitivity to direction-of-motion. The fact that such a modest change of
the static OC Filter enables us to define a motion BCS that is useful to
analyse a large body of data concerning motion segmentation provides
additional support for both the static BCS model and the motion BCS
model by showing that both models may be considered ti
single neural architectural theme. L IRSEEEESE

The property of insensitivity to direction-of-contrast in"the static BCS
reflects one of the fundamental new insights of the FACADE theory of
preattentive vision. Insensitivity to direction-of-contrast is possible within
the BCS because all boundary segmentations within :th CS ‘are
perceptually invisible. Visibility is a property of the complementary FCS,
whose computations are sensitive to direction-of-contrast. Thu
theory built up from independent processing modules could not.
the heuristics of the motion BCS because it could not under_S_gf}.
complementarity. el

Once the MOC filter was defined, its properties clarified a ney [
issues that also argue against the existence of independent modules. One
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issue concerns why parallel systems exist for the processing of static visual
forms and moving visual forms. Why is not a motion system sufficient,
given that objects typically move with respect to an observer’s eye
movements in a natural environment? We link the existence of these
parallel systems to a symmetry principle that is predicted to govern the
development of visual cortex (Section 15), with the static and motion
systems as two interdependent parts of its overall design. A second issue
concerns how orientational tuning in the static form system is replaced
by directional tuning in the motion form system (Section 17), with the
same direction-of-motion being computed from more than one orientation
of a moving figure. As we will see in the next section, both short-range
and long-range spatial interactions are needed to define a MOC Filter
whose output signals are insensitive to direction-of-contrast but sensitive
to direction-of-motion. The extra degree of freedom provided by the long-
range interaction permits merging of many static orientations in the
service of a single direction-of-motion.

13. Design of a MOC Filter

A MOC Filter is mathematically defined in Grossberg and Rudd (1989).
Its five processing stages are qualitatively summarized in Figure 10 and
described below.

Level 1: Preprocess Input Pattern

The image .is preprocessed before activating the filter. For example, it is
passed through a shunting on-center off-surround net to compensate for
variable illumination, or to ‘discount the illuminant’ (Grossberg and
Todorovié 1988).

Level 2: Sustained Cell Short-Range Filter

Four operations occur here:

(1) Space-Average: Inputs are processed by individual oriented
receptive fields, or simple cells.

(2) Rectify: The output signal from _a simple cell grows with its
activity above a signal threshold.

(3) Short-Range Spatial Filter: A spatially aligned array of sxmple

cells with like direction-of-contrast pool their output signals to

activate the next cell level. This spatial pooling plays the role of

the short-range motion limit D,,,, (Braddick 1974). The breadth

of spatial pooling scales with the size of the simple cell receptive

fields. Thus ‘D,.,.’ is not independent of the spatial frequency

content of the image (Anderson and Burr 1987; Burr, Ross, and
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Figure 10 The motion OC Filter: Level 1 registers the input pattern.
Level 2 consists of sustained response cells with oriented receptive fields
that are sensitive to direction-of-contrast. Level 3 consists of transient
response cells with unoriented receptive fields that are sensitive to direc-
tion-of-change in the total cell input. Level 4 cells combine sustained cell
and transient cell signals to become sensitive to direction-of-motion and
sensitive™to direction-of-contrast. Level 5 cells combine Level 4 cells to
become sensitive to direction-of-motion and insensitive to direction-of-
contrast. ~
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Morrone 1986; Nakayama and Silverman 1984, 1985), and is not a
universal constant. .

The direction of spatial pooling may not be perpendicular to
the oriented axis of the simple cell receptive field (Grossberg and
Mingolla 1990). The target cells are thus sensitive to a movement
direction that may not be perpendicular to the simple cell’s
preferred orientation.

(4) Time-Average: The target cell time-averages the directionally-
sensitive inputs that it receives from the short-range spatial filter.
This operation has properties akin to the ‘visual inertia’ during
apparent motion that was reported by Anstis and Ramachandran
(1987).

Level 3: Transient Cell Filter

In parallel with the sustained cell filter, a transient cell filter reacts to input
increments (_on—cells) and decrements (off-cells) with positive outputs. This
filter uses four operations too: '

(1) Space-Average: This is accomplished by a receptive field that
sums inputs over its entire range.

(2) Time-Average: This sum is time-averaged to generate a gradual
growth and decay of total activation.

(3) Transient Detector: The on-cells are activated when the time-
average increases. The off-cells are activated when the time-
average decreases. This may be accomplished using a combination
of feedforward inhibitory interneurons (Grossberg 1970) and a
gated dipole opponent organization of on-cells and off-cells
(Grossberg 1976).

Level 4: Sustained-Transient Gating Yields Direction-of-Motion
Sensitivity and Direction-of-Contrast Sensitivity

Maximal activation of a Level 2 sustained cell filter is caused by
image contrasts moving in either of two directions that differ by 180°.
Multiplicative gating of each Level 2 sustained cell output with a Level 3
transient cell on-cell or off-cell removes this ambiguity. For example,
consider a sustained cell output from vertically oriented light-dark simple
cell receptive fields that are joined together in the horizontal direction by
the short-range spatial filter. Such a sustained cell output is maximized
by a light-dark image contrast moving to the right or to the left. Multiplying
this Level 2 output with a Level 3 transient on-cell output generates a
Level 4 cell that responds maximally to motion to the right. Multiplying
it with a Level 3 off-cell output generates a Level 4 cell that responds
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maximally to motion to the left. Multiplying a sustained cell with a
transient cell is the main operation of the Marr and Ullman (1981) motion
detector. Despite this point of similarity, Grossberg and Rudd (1989)
described six basic differences between the MOC Filter and the Marr-
Ullman model. For example, none of the operations such as short-range
spatial filtering, time-averaging and rectification occurs in the Marr-Ullman
model. In addition, the rationale of the MOC Filter—to design a filter that
is sensitive to direction-of-motion and insensitive to direction-of-contrast—
is not part of the Marr-Ullman model. This difference is fundamental. The
Marr-Ullman model is a product of the ‘independent modules’ perspective.
The MOC Filter’s insensitivity to direction-of-contrast can only be
formulated within the framework of BCS/FCS complementarity: One
cannot understand why a boundary filter’s output needs to be insensitive
to direction-of-contrast unless there exists a complementary ‘seeing’ system
that is sensitive to direction-of-contrast.

The cell outputs from Level 4 are sensitive to direction-of-contrast. Level
5 consists of cells that pool outputs from Level 4 cells which are sensitive
to the same direction-of-motion but to opposite directions-of-contrast.

Level 5: Long-Range Spatial Filter and Competition

Outputs from Level 4 cells sensitive to the same direction-of-motion but
opposite directions-of-contrast activate individual Level 5 cells via a long-
range spatial filter that is Gaussianly distributed across space. In particular,
this long-range filter groups together Level 4 cell outputs from Level 3
short-range filters with the same directional preference but different simple
cell orientations. Thus the long-range filter provides the extra degree of
freedom that enables Level 5 cells to function as ‘direction’ cells, rather
than ‘orientation’ cells.

The long-range spatial filter broadcasts each Level 4 signal over a wide
spatial range in Level 5. Competitive, or lateral inhibitory, interactions
within Level 5 contrast-enhance this input pattern to generate spatially
sharp Level 5 responses. A winner-take-all competitive network (Grossberg
1973, 1982) can transform even a very broad input pattern into a focal
activation at the position that receives the maximal input. A contrast-
enhancing competitive interaction has also-been modelled at the complex
cell level of the SOC Filter (Grossberg 1987b; Grossberg and Marshall
1989). The Level 5 cells of the MOC Filter are, in other respects too,
computationally homologous to the SOC Filter complex cells. The winner-
take-all assumption is a limiting case of how competition can restore
positional localization. More generally, we suggest that this competitive
process partially contrast-enhances its input patttern to generate a motion
signal whose breadth across space increases with the-breadth of its
inducing pattern.
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14. Continuous Motion Paths from Spatially Stationary Flashes: -
An Emergent Property

MOC Filter properties suggest an answer to long-standing questions in
the vision literature concerning why individual flashes do not produce a
percept of long-range motion, yet long-range interaction between spatially
discrete pairs of flashes can produce a spatially sharp percept of continuous
motion. Such apparent motion phenomena are a particularly useful probe
of motion mechanisms because they describe controllable experimental
situations in which nothing moves, yet a compelling percept of motion is
generated. They also provide a simple example of a perceptual emergent
property; namely, a property that is generated by system interactions
operating in real-time, and thus that cannot be explained as a consequence
of independently computed quantities, or a list of algorithmic statements.

For example, two brief flashes of light, separated in both time and space,
create an illusion of movement from the location of the first flash to that
of the second when the spatiotemporal parameters of the display are within
the correct range (Figure 11a). Variants of apparent motion include phi
motion, or the phi phenomenon, whereby a ‘figureless’ or ‘objectless’ motion
signal propagates from one flash to the other, analogous to the rapid
motion of an object so quickly that its form cannot be clearly identified;
beta motion, whereby a well-defined form seems to move smoothly and
continuously from one flash to the other; and gamma motion, the apparent
expansion at onset and contraction at offset of a single flash of light (Bartley
1941; Kolers 1972).

Outstanding theoretical issues concerning apparent motion include the
resolution of a trade-off that exists between the long-range spatial interac-
tion that is needed to generate the motion percept, and the localization of
the perceived motion signal that smoothly interpolates the inducing
flashes. If a long-range interaction between the flashes must exist in order
to generate the motion percept, then why is it not perceived when only a
single light is flashed? Why are not outward waves of motion-carrying
signals induced by a single flash? What kind of long-range influence is
generated by each flash, yet only triggers a perceived motion signal when
at least two flashes are activated? What kind of long-range influence from
individual flashes can generate a smooth motion signal between flashes
placed at variable distances from one another? How does the motion signal
speed up to smoothly interpolate flashes that occur at larger distances but
" the same time lag (Kolers 1972)? How does the motion signal speed up to
smoothly interpolate flashes when they occur at the same distance but
shorter time lags (Kolers 1972)?

A well-known apparent motion display, originally due to Ternus
(1926/1950), illustrates the fact that not only the existence of a motion
percept, but also its figural identity, may depend on subtle aspects of the
display, such as the interstimulus interval, or ISI, between the offset of
the first flash and the onset of the second flash (Figure 11b). In the Ternus
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Frame 1 .
Frame 2 '
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Intermediate ISI: Motion
Large ISI: Motion

(a)
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Figure 11 Two types of apparent motion displays in which the two frames
outline the same region in space into which the dots are flashed at
successive times: In (a) , a single dot is flashed, followed by an interstimu-
lus interval (ISI), followed by a second_dot. At small ISls, the two dots
appear to flicker in place. At longer ISls, motion from the position of the
first dot to that of the second is perceived. (b) In the Ternus display, three
dots are presented in each frame such that two of the dots in each frame
occupy the same positions. At short 1SIs, all the dots appear to be
~ stationary. At longer ISIs the dots at the shared positions appear to be
stationary, while apparent motion occurs from the left dot in Frame 1 to
the right dot in Frame 2. At still longer ISIs, the three dots appear to
move from Frame 1 to Frame 2 as a group.
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display, a cyclic alternation of two stimulus frames gives rise to competing
visual movement percepts. In Frame 1, three black elements are arranged
in a horizontal row on a white background. (The contrast may be reversed
without consequence to the discussion which follows.) In Frame 2, the
elements are shifted to the right in such a way that the positions of the
two leftwardmost elements in Frame 2 are identical to those of the two
rightwardmost elements in Frame 1. Depending on the stimulus con-
ditions, the observer will see either of two bistable motion percepts. Either
the elements will appear to move to the right as a group between Frames
1 and 2 and then back again during the second half of a cycle of the display
or, alternatively, the leftwardmost element in Frame 1 will appear to move
to the location of the rightwardmost element in Frame 2, jumping across
two intermediate elements which appear to remain stationary. We will
refer to the first percept as ‘group’ motion; and the second percept as
‘element’ motion. At short ISIs there is a tendency to observe element
motion. At longer ISIs, there is a tendency to observe group motion.

Formal analogs of these phenomena occur at Level 5 of the MOC Filter
in response to sequences of flashes presented to Level 1. Intuitively, a
signal for motion will arise when a spatially continuous flow of activation
crosses the network through time. Each activation represents the peak, or
maximal activity, of a broad spatial pattern of activation across the network.

The broad activation pattern (Figure 12b) is generated by the long-range
" spatial filter in response to a spatially localized flash to Level 1 (Figure 12a).
The sharply localized response function, denoted by x{®’ in Figure 12c, is
due to the contrast-enhancing action of the competitive network within
Level 5. A stationary localized x{*’ response will be generated in response
to a single flashing input every time it occurs.

Apparent motion can emerge when two input flashes occur with the
following spatial and temporal separations. Let the positions of the flashes
be i =1 and i = N. Let the activity ry(t) caused by the first flash start to
decay as the activity ry(t) caused by the second flash starts to grow. Suppose,
moreover, that the flashes are close enough that the spatial patterns r,G;; and
rnGni overlap that are caused by broadcasting r, through the long-range filter
Gy; and ry through G,; to all Level 5 positions i. Then the total input

R, = 1,Gy; + 1nGni

to the ith cell in Level 5 can change in such a way that the maximum value
of the spatial pattern R,(t) through time, namely x{®(#), first occurs at i = 1,
then { =2, then i =3, and so on until i = N. A percept of continuous
motion from the position of the first flash to that of the second will result.
In other words, two properly positioned and timed flashes can cause a
travelling wave of activation across Level 5.

This basic property of the MOC Filter is illustrated by the computer
simulations from Grossberg and Rudd (1989) that are schematized in
Figures 13-15. Figure 13 depicts the temporal response to a single flash at
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Figure 12 Spatial response of the Motion OC Filter to a point input.
(a) Sustained activity of a Level 2 cell. (b) Total input pattern to Level 5.
(c) Contrast-enhanced response at Level 5.

position 1 of Level 1. The sustained cell response at position 1 of Level 2
undergoes a gradual growth and decay of activation (Figure 13b), although
the position of maximal activation in the input to Level 5 does not change
through time (Figure 13c).

Figure 14 illustrates an important implication of the fact that the Level
2 cell activations persist after their Level 1 inputs shut off. If a flash at
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Figure 13 Temporal respcnse of sustained response cells to a point input:
(a) The input is presented for a brief duration at location 1. (b) The activity
of the sustained response cell gradually builds up after input onset, then
decays after input offset. (c) Growth of the input pattern to Level 5
through time with transient cell activity held constant. The activity pattern
retains a Gaussian shape centered at the location of the input.
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Figure 14 Temporal response of the sustained response cells at Level 2 to

two successive point inputs. One input is presented briefly at location 1,

followed by a second input at location N. For an appropriately timed

display, the decaying response at position 1 overlaps the rising response
at position N.
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position 1 is followed, after an approptiate delay, by a flash at position N,
then the sustained response to the first flash [e.g. x,x(t)] can decay while
the response to the second flash [e.g. xng(t)] grows.

Assume for the moment that the transient signals computed at Level 3
are held constant and consider how the waxing and waning of sustained
cell responses from Level 2 control the motion percept. Then the total input
pattern R; to Level 5 can change through time in the manner depicted in
Figure 15. Each row of Figure 15a illustrates the total input to Level 5
caused, at a prescribed time ¢, by x,k(t) alone, by xyx(t) alone, and by both
flashes together. Successive rows plot these functions at equally spaced
later times. Note that as x,x(t) decays and xyg(t) grows, the maximum
value of R{t) moves continuously to the right. Figure 15b depicts the
position x{®(t) of the maximum value at the corresponding times.

In summary, the time-averaged and space-averaged responses to indi-
vidual flashes do not change their position of maximal activation through
time (Figure 13c). In this case, ‘nothing moves’. On the other hand, properly
phased multiple flashes can generate a temporally and spatially averaged
total response whose maximum moves continuously between the positions
of the flashes through time (Figure 15). In addition, by gating sustained
cell responses by transient cell responses, the changeover occurs from
element motion to group motion in response to the Ternus display as ISI
is increased (Figure 11b). Grossberg and Rudd (1989) have analysed a
wide variety of data about short-range and long-range motion using such
properties of the MOC Filter.

15. Why are Both Static and Motion Boundary Contour Systems
Needed?

As illustrated above, the motion BCS has begun to provide explanations
of a large body of psychophysical and neurobiological data about the
perception of moving form. Once the MOC Filter was defined, however,
a new puzzle emerged. If Nature could design a MOC filter that is sensitive
to direction-of-motion and insensitive to direction-of-contrast, then why
did the SOC Filter evolve, in which insensitivity to direction-of-contrast
comes only at the cost of a loss of sensitivity to direction-of-motion? This
question is perplexinggiven the facts that animals’ eyes are usually in
relative motion with respect to their visual environment, and that simple
cells in V1 are already sensitive to direction-of-motion.

I suggest an answer to this puzzle in which the static form and motion
form systems are part of a larger design. In particular, the computation of
static and motion properties are not realized by independent modules.
This answer is suggested by reanalysing the SOC Filter in terms of how
transient cells interact with the sustained cells depicted in Figures 8 and 9.
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Figure 15 Motion OC Filter simulation in response to a two flash display.
Successive rows correspond to increasing times: (a) The two lower curves
in each row depict the total input to Level 5 caused by each of the two
flashes. The input due to the left flash decreases while the input due to
the right flash increases. The total input due to both flashes is a fravelling
wave whose maximum value moves from the location of the first flash to
that of the second flash. (b) Position of the contrast-enhanced response at
Level 5.
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Figure 16 (a) A complex/orientation/on cell: Pairs of rectified sustained

cells with opposite direction-of-contrast are gated by rectified transient

on-cells before the gated responses are added. (b) A complex/orientation/off

cell: Pairs of rectified sustained cells with opposite direction-of-contrast

are gated by rectified transient off-cells before the gated responses are
added.

16. The Symmetric Unfolding of Opponent Processes

Inspection of the CC Loop in Figure 9 provides an important clue. There,
the hypercomplex cells are organized into opponent on-cells and off-cells,
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. yet the SOC Filter explicitly depicts only pathways to the hypercomplex
on-cells from the simple on-cells via complex on-cells. Moreover, all of
these cells are of sustained cell type. Interactions with transient cells are
not described. When interactions with transient cells are added, a role for
parallel SOC Filter and MOC Filter designs is suggested.

Let simple on-cells be defined by gating each pair of like-oriented
sustained cells in Figure 8 with a transient on-cell. Such a gated pair of
on-cells is depicted in Figure 16a, where it gives rise to a complex on-cell.
Likewise, a pair of simple off-cells can be defined by gating the pair of
like-oriented sustained cells in Figure 3 with a transient off-cell. Such a
gated pair of simple off-cells is depicted in Figure 16b, where it gives rise
to a complex off-cell.

Let the complex on-cell in Figure 16a input to hypercomplex on-cells as
in Figure 9. In a similar fashion, let the complex off-cell in Figure 16b
input to hypercomplex off-cells in Figure 9. The process of gating sustained
cells by transient cells in the static BCS thus makes the overall design of
this architecture more symmetric by showing how simple and complex
on-cells and off-cells fit into the scheme.

Symmetry considerations also clarify why a static BCS and a motion BCS
both exist. This symmetry principle controls the simultaneous satisfaction
of three constraints; namely,

(1) Sustained-Transient Gating: multiplicative interaction, or gating,
of all combinations of sustained cell and transient cell output
signals to form four sustained-transient cell types;

(2) Opponent Pairs: symmetric organization of these sustained-transi-
ent cell types into two pairs of opponent processes, such that

(3) Independence of D.O.C.: output signals from the opponent pro-
cesses are independent of direction-of-contrast.

As shown above, multiplicative gating of sustained cells and transient
cells generates receptive field properties of oriented on-cells and off-cells
within the static BCS, and direction-sensitive cells within the motion BCS.
Opponent processing is a fundamental organizational principle whose role
in stabilizing the self-organization of cortical circuits has been analysed
within Adaptive Resonance Theory (Grossberg 1980, 1982). The constraint
that output signals be independent of direction-of-contrast enables both
the static BCS and the motion BCS to generate emergent boundary segmen-
tations along image contrast reversals.

Thus, the MOC Filter and SOC Filter realize all possible ways of sym-
metrically gating opponent pairs of sustained cells with transient cells to
generate two opponent pairs of output signals that are insensitive to
direction-of-contrast. One opponent pair of outcomes contains cell pairs
that are insensitive to direction-of-motion, but sensitive to either the onset
or the offset of an oriented contrast difference. These cells may be called
complex/orientation/on cells (Figure 16a) and complex/orientation/off cells
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(Figure 16b), respectively. They belong to the SOC Filter. The other
opponent pair of outcomes contains the MOC Filter cell pairs that are
sensitive to opposite directions-of-motion. These cells may be called (for
example) complex/direction/left cells (Figure 17a) and complex/direction/
right cells (Figure 17b). When both sets of pairs are combined into a single
symmetric diagram, the result is shown in Figure 18, which summarizes
how parallel, but interdependent, streams of static form and motion form
processing are predicted to be organized in visual cortex.

©
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Figure 17 (a) A complex/direction/left cell: Pairs of rectified sustained cells
with opposite direction-of-contrast are gated by pairs of rectified transient
on-cells and off-cells, before the gated responses are added. (b) A com-

plex/direction/right cell: Same as in (a) , except sustained cells are gated
: by the opposite transient cell.

(2)

17. 90% Orientations and 180% Directions: From V1 to V2 and
from V1 to MT

An important consequence of the abstract symmetries described in Figures
16 and 17 is the familiar fact from daily life that opposite orientations are
90% apart, whereas opposite directions are 180% apart. In particular, the
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Figure 18 Symmetric unfolding of pairs of opponent orientation cells and

opponent direction cells whose outputs are insensitive to direction-of-

contrast: The gating combinations from Figures 16 and 17 are combined
to emphasize their underlying symmetry. '

opposite orientation of ‘vertical’ is ‘horizontal’, and the opposite direction
of ‘up’ is ‘down’. The symmetry implied by the former distinction is a
90% symmetry, whereas that implied by the latter distinction is 180%
symmetry. How does this difference arise?

The 90% symmetry of opposite orientations is implied by the mechan-
isms for generating perpendicular end cuts at the hypercomplex cells of
the static BCS, as sketched in Section 10 and analysed in Grossberg and
Mingolla (1985b). This perpendicularity property is possible because the
opponent feature of a complex/orientation/on cell is a complex/orien-
tation/off cell (Figure 16). To illustrate this property, suppose that a vertical
line end excites a complex/vertical/on cell in Figure 8. Suppose that the end
stopped competition inhibits hypercomplex/vertical/on cells at positions
beyond the line end. Hypercomplex/horizontal/on cells at these positions
are thereby activated, and generate an end cut. As a result, a net excitatory
input is generated from the horizontally oriented hypercomplex cells to
the horizontally oriented bipole cells of the CC Loop at that position
(Figure 9). These excitatory end cut inputs cooperate across positions to
generate a horizontal emergent segmentation, that is perpendicular to the
vertical line, along the entire line end.

In contrast, the opposite feature of a complex/direction cell is another
complex/direction cell whose direction preference differs from it by 180°
(Figure 17). When this latter property is organized into a network topogra-
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phy, one finds the type of direction hypercolumns that were described in
MT by Albright, Desimone, and Gross (1984). A pictorial indication of
how direction hypercolumns in MT may be generated from the orientation
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Figure 19 Orientation and direction hypercolumns: A single hypercolumn

of orientation cells (say in V1) can give rise to a double hypercolumn of

opponent direction cells (say MT) through gating with opponent pairs of
transient cells.

hypercolumns of V1 is shown in Figure 19. This figure acknowledges that
the pathways from V1 to MT combine signals from sustained cells and
transient cells (Figure 17) in a different way than the pathways from V1
to V2 (Figure 16).

18. Opponent Rebounds: Rapid Reset Limits Smearing of
Resonating Segmentations

A further example of perceptual complementarity may be understood by
assuming that the opponent cell pairs shown in Figures 16 and 17 are
capable of antagonistic rebound; that is, offset of one cell in the pair after
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.its sustained activation can trigger an antagonistic rebound that transiently
activates the opponent cell in the pair (Figure 20). A neural model of such
an opponent process is called a gated dipole (Grossberg 1972, 1982, 1988).
Such an antagonistic rebound can rapidly reset a resonating boundary in
response to rapid changes in the stimulus.

For example, consider a time interval when the horizontally oriented
hypercomplex cells in Figure 9 are cooperating with horizontally oriented
bipole cells to generate a horizontal boundary segmentation in the CC
Loop. Suppose that the input pattern is then suddenly shut off. In the
absence of opponent processing, the positive feedback signals between the
active hypercomplex on-cells and bipole cells could maintain the boundary
segmentation for a long time after input offset, thereby causing serious
smearing of the visual percept in response to rapidly changing scenes.
Due to opponent processing, however, offset of the horizontal complex
on-cells can trigger an antagonistic rebound that activates the horizontal
complex off-cells (Figure 20a). The horizontal hypercomplex off-cells are
hereby activated, and they generate inhibitory.signals to the horizontal
bipole cells, as in Figure 9. These inhibitory signals shut off the resonating
segmentation. Thus antagonistic rebound by off-cells which directly
inhibit bipole cells in area V2 is predicted to be one of the inhibitory
processes that control the amount of smear caused by a moving image in
the experiments of Hogben and Di Lollo (1985).

19. Relating Rapid Reset to Spatial Impenetrability

This explanation of rapid reset of a resonating segmentation uses the fact
that on-cells and off-cells of a given orientation generate excitatory inputs
and inhibitory inputs, respectively, to bipole cells of like orientation
(Figure 9). Grossberg and Mingolla (1985b) have shown that such a circuit
design also generates the property of spatial 'impenetrability, whereby
emergent segmentations are prevented from penetrating figures whose
boundaries are built up from non-colinear orientations. In particular, in a
cartoon drawing of a person standing in a grassy field, the horizontal
contours where the ground touches the sky do not generate horizontal
emergent boundaries that cut the person’s vertical body in half.-The present
discussion predicts that sudden offset of a previously sustained figure that
contains many vertically oriented lines may facilitate, rather than block,
the propagation -of horizontal emergent boundary segmentations between
the horizontally oriented lines that surround the location of the figure on
both sides.

20. MacKay Afterimages, the Waterfall Effect, and Long-Range
MAE

The previous sections argued that some positive aftereffects may be partly
due to a lingering resonance, and some negative aftereffects may be partly
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a)

I 1 ®

Figure 20 Opponent rebounds: When opponent cells are organized into

gated dipole opponent circuits, as in (a) , offset of orientation on-cell can

transiently activate like-oriented off-cells, as well as perpendicular on-

cells (seé text). Likewise, as in (b), offset of a direction cell can transiently
activate cells tuned to the opposite direction.

due to an antagonistic rebound, in a CC Loop. Within the static BCS,
negative aftereffects tend to activate perpendicular segmentations via the
same 90° symmetry of the SOC Filter that generates perpendicular end
cuts. Due to this symmetry, sustained inspection of a radial image can
induce a circular aftereffect if a blank screen is subsequently attended
(MacKay 1957). In a similar fashion, it follows from the 180° symmetry of
the MOC Filter that sustained inspection of a waterfall can induce an
upward-moving motion aftereffect (MAE) if a blank screen is subsequently
attended (Sekuler 1975).

The assumption that a level of gated dipoles occurs subsequent to Level
5 of the MOC Filter also provides an explanation of how a long-range MAE
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_ can occur between the locations of two flashes that previously generated
apparent motion between themselves (von Griinau 1986).

Such data properties, and the coexistence of parallel systems for the
analysis of static form and moving form, may now be traced to a develop-
mental process within the visual cortex that is predicted to realize a
symmetry principle: generate all possible sustained-transient BCS output
signals that are independent of direction-of-contrast and organized into
opponent dipoles.

21. The Visual Process as a Self-Organizing Quantum Sensitive
System

In the preceding discussion, I have touched upon some of the design
principles that seem to govern the neural architecture that subserves visual
perception. These include principles of complementarity (Section 6), uncer-
tainty (Sections 6 and 9), symmetry (Section 16), and resonance (Section
18). When asked what other theory is based upon these four types of
principles, most of us would answer: quantum mechanics.

The visual system is also a quantum sensitive system. Our brains are
tuned to be able to see even a few light quanta. FACADE Theory seems
to be uncovering some of the neural designs whereby our minds achieve
their competence to function perceptually in the quantized world of light.
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