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How are our brains functionally organized to achieve adaptive behavior in a changing world?
This article presents one alternative to the computer metaphor suggesting that brains are
organized into independent modules. Evidence is reviewed that brains are organized into parallel
processing streams with complementary properties. Hierarchical interactions within each stream
and paralld interactions between streams create coherent behavioral representations that
overcome the complementary deficiencies of each stream and support unitary conscious
experiences. This perspective suggests how brain design reflects the organization of the physical
world with which brains interact. Examples from perception, learning, cognition, and action are
described, and theoretical concepts and mechanisms by which complementarity is accomplished
are presented.

In one smple view, our brains are proposed to possess independent modules, as in a digita
computer, and we see by processing perceptua qudities such as form, color, and motion using these
independent modules. The brain's organization into processing streams’ supports the idea that brain
processing is specidized, but it does nat, in itsdlf, imply that these streams contain independent modules.
Independent modules should be able to fully compute their particular processes on their own. Much
perceptud data argue againgt the existence of independent modules, however, because srong
interactions are known to occur between perceptua qualities”®. For example, changes in perceived
form or color can cause changes in perceived motion, and conversaly; and changes in perceived
brightness can cause changes in perceived depth, and conversdy. How and why do these qualities
interact? An answer to this question is needed to determine the functionad and computationd units that
govern behavior as we know it.

The present aticle reviews evidence that the bran's processng Streams compute
complementary properties. Each stream’s properties are related to those of a complementary stream
much as a lock fits its key, or two pieces of a puzzle fit together. It is dso suggested how the
mechanisms that enable each stream to compute one set of properties prevent it from computing a
complementary st of properties. As a result, each of these streams exhibits complementary strengths
and weaknesses. How, then, do these complementary properties get synthesized into a consstent
behaviora experience? It is proposed that interactions between these processng streams overcome
their complementary deficiencies and generate behaviord properties that redize the unity of conscious
experiences. In this sense, pairs of complementary streams are the functiona units because only through
their interactions can key behaviord properties be competently computed. As illustrated below, these
interactions may be used to explan many of the ways in which perceptud qudities are known to
influence each other. Thus, dthough andogies like a key fitting its lock, or puzzle pieces fitting together,
are suggestive, they do not fully capture the dynamism of what complementarity meansin the brain. | will
suggest below that the concept of pairs of complementary processes brings new precision to the
popular idea that both functiond specidization and functiond integration occur in the brain. Table 1
summaries some pairs of complementary processes that will be described herein.

Why does the brain often need severd processng stages to form each processing stream?
Accumulating evidence suggests that these stages redize a process of hierarchical resolution of
uncertainty. ‘Uncertainty’ here means that computing one set of properties a a given sage can
suppress information about a different set of properties at that stage. As | will illustrate below, these
uncertainties are proposed to be overcome by using more than one processing stage to form a stream.
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Overcoming informationa uncertainty utilizes both hierarchicd interactions within the stream and the
pardld interactions between dreams that overcome ther complementary deficiencies. The
computationa unit is thus not a sngle processing stage; it is, rather, proposed to be an ensemble of
processing stages that interact within and between complementary processing streams.

According to this view, the organization of the bran obeys principles of uncertainty and
complementarity, as does the physical world with which brains interact, and of which they form a part.
This article suggests that these principles reflect each brain’s role as a sdf-organizing messuring device
in the world, and of the world. Appropriate principles of uncertainty and complementarity may better
explan the bran's functiond organization than the smpler view of computationdly independent
modules. Experimental and theoretica evidence for complementary processes and processing streams
are described below.

SOME COMPLEMENTARY PAIRS OF BRAIN PROCESSES

Boundary Surface

Boundary Motion

‘What' learning and matching ‘Where' learning and matching

Attentive learning Orienting search

Object tracking Optic flow navigation

Color Luminance

Vergence Sphericd angle

Motor expectation Voalitiona speed

Sensory cortical representation Learned motivationd feedback

Working memory order Working memory rate
Tablel

In mogt of these cases, evidence for the exisence of processing streams and ther role in
behavior has been developed by many investigators. The fact that pars of these streams exhibit
complementary computationa properties, and that successive processing stages redlize a hierarchica
resolution of uncertainty, has only gradudly become clear through neurd modeling, primarily from our
group and colleagues. Through a large number of such modeling studies, it gradudly became clear that
different pairs of dreams redize different combinations of complementary properties, as illustrated
below. As of this writing, SO many dreams seem to follow this pattern that | now suggest that
complementarity may be agenerd principle of brain design.

Complementary boundaries and surfacesin visual form perception

Visud processing, from the retina through the inferotempora and parietal cortices, provides
excdlent examples of pardld processng streams (Figure 1). What evidence is there to suggest that
these streams compute complementary properties, and how is this done? A neurd theory, cdled
FACADE (Form-And-Color-And-DEpth) theory, proposes that perceptua surfaces are formed in the
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LGN-Blob-Thin Stripe-V4 stream while perceptua boundaries are formed in the LGN-Interblob-
Interstripe-V 4 stream’. Many experiments have supported this predictiorf ™.

FACADE theory suggests how and why perceptual boundaries and perceptua surfaces
compute complementary properties. Figure 2A illustrates three pairs of complementary properties using
the illusory contour percept of a Kanizsa square’. In response to both images of this figure, boundaries
form inwardly between cooperating pairs of incomplete disk (or pac man) inducers to form the sides of
the square. These boundaries are oriented to form in a collinear fashion between like-oriented inducers.
The square boundary in Figure 2A can be both seen and recognized because of the enhanced illusory
brightness of the Kanizsa square. In contrast, the square boundary in Figure 2B can be recognized even
though it is not visble; thet is, there is no brightness or color difference on ether sde of the boundary.
Figure 2B shows that some boundaries can be recognized even though they are invisble. FACADE
theory predicts that all boundaries are invisible within the boundary stream, which is proposed to occur
in the Interblob cortical processing stream (Figure 1). This prediction has not yet been directly tested
through a neurophysiologicd experiment, athough severd studies have shown the diginctness of a
perceptua grouping, such as an illusory contour, can be dissociated from the visble stimulus contrast
that is associated with it*"*?

nferotemporal Parictal Figure_ 1. Schemdic diagram_ of anatomical
Areas Areas connections and neurond sdectivities of early

visud areas in the macague monkey. LGN =
laterd geniculate nucleus (parvocdlular [parvo]
va MT and magnocdlular [magno] divisons. Divisions

00 £ A€ of visud areas V1 and VV2; blob = cytochrome
oxidase blob regions, interblob = cytochrome

V3 oxidase-poor regions surrounding the blobs, 4B

= lamina 4B, thin = thin (narrow) cytochrome

V2 Thin V2 Interstripe| V2 Thick Oxidase strip&a interstripe = CytOChrome
AE || 2 L= oxidase-poor regions between the thin and thick

! R ! stripes, thick = thick (wide) cytochrome oxidase
V1 Blob| [ V1 Interblob V1 4B stripes, V3 = Visud Area 3, V4 = Visud
A= oo [ Area(s) 4, aad MT = Middle Tempord area.

l: | - ' Areas V2, V3, V4, and MT have connections
"""""""""""""" to other areas not explicitly represented here.
LGN Parvo LGN Magno Area V3 may a0 receive projections from V2
interstripes or thin stripes. Heavy lines indicate
robus primary connections, and thin lines
Retina indicate weaker, more variable connections.
Dotted lines represent observed connections
that require additiond verification. Icons ranbow = tuned and/or opponent wavelength selectivity
(incidence at least 40%), angle symbol = orientation sdectivity (incidence at least 20%), pectacles =
binocular disparity sdectivity and/or strong binocular interactions (V2; incidence at least 20%), and
right-pointing arrow = direction of motion sdectivity (incidence a least 20%). Adapted with permisson
from Reference 1.
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This invishle boundary in Figure 2B can be traced to the fact that its vertica boundaries form
between black and white inducers that possess opposite contrast polarity with respect to the gray
background. The same is true of the boundary around the gray disk in Figure 2C. In thisfigure, the gray
disk lies in front of a textured background whose contrasts with respect to the disk reverse across
gpace. In order to build a boundary around the entire disk, despite these contrast reversds, the
boundary system pools signals from opposite contrast polarities a each postion. This pooling process
renders the boundary system output insensitive to contrast polarity. The boundary system hereby loses
its ahility to represent visble colors or brightnesses, since its output cannot sgnd the difference between
dark and light. It is in this sense that “dl boundaries are invisble’. These properties of boundary
completion are summarized in Figure 3. Figure 2D illustrates another invisble boundary that can be
conscioudy recognized.

If boundaries are invisible, then how do we see anything? FACADE theory predicts thet visble
properties of a scene are represented by the surface processing stream, which is predicted to occur
within the Blob cortical stream (Figure 1). A key step in representing avisble surfaceis cdled filling-in.
Why does a surface filling-in process occur? An early stage of surface processng compensates for
varigble illumination, or *discounts the illuminant' ***° in order to prevent illuminant variations, which can
change from moment to moment, from digtorting al percepts. Discounting the illuminant attenuates color
and brightness signals except near regions of sufficiently rgpid surface change, such as edges or texture
gradients, which are relaively uncontaminated by illuminant variations. Later stages of surface formation
fill in the attenuated regions with these relatively uncontaminated color and brightness signds, and do so
at the correct relative depths from the observer through aprocess called surface capture. This multi-
dtage process is an example of hierarchica resolution of uncertainty, because the later filling-in Sage
overcomes uncertainties about brightness and color that were caused by discounting the illuminant a an
earlier processing stage.

A E Figure 2. A Kanizsa square (A) and a reverse-

= . contrast Kanizsa square (B). The emergent Kanizsa

e , f 11 square can be seen and recognized because of the

' - enhanced illusory brightness  within  the illusory

square. The reverse-contrast Kanizsa square can be

‘ J recognized but not seen. (C) The boundary of the

__d gray disk can form around its entire circumference

even though the reative contrast between the disk

C D and the white and black background sguares

reverses periodically dong the circumference. (D)

The verticd illusory contour that forms at the ends of

the horizontd lines can be conscioudy recognized

even though it cannot be seen by virtue of any
contragt difference between it and the background.

How do the illuminant-discounted signasfill-
in an entire region? Filling-in behaves like a diffusion of brightness across space™™’. In response to the
display in Fgure 3, filling-in spreads outwardly from the individua blue inducers in dl directions. Its
goread is thus unoriented. How is this goread of activation contained? FACADE theory predicts that
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ggnds from the boundary stream to the surface sream define the regions within which filling-in is
restricted. This prediction has not yet been neurophysiologically tested. Without these boundary sgndls,
filling-in would disspate across space, and no surface percept could form. Invisible boundaries hereby
indirectly assure their own visihility through their interactions with the surface stream.

For example, in Figure 2A, the square boundary is induced by four black pac man disks that
are dl less luminant than the white background. In the surface stream, discounting the illuminant causes
these pac men to induce locd brightness contrasts within the boundary of the square. At a subsequent
processing stage, these brightness contrasts trigger surface filling-in within the square boundary. The
filled-in square is vigble as a brightness difference because the filled-in activity leve within the square
differs from the filled-in activity of the surrounding region. Flling-in can lead to visible percepts because
it is sensitiveto contrast polarity. These three properties of surface filling-in are summarized in Figure 3.
They are easily seen to be complementary to the corresponding properties of boundary completion.

In Figure 2B, the opposite polarities of the two pairs of pac men with respect to the gray
background lead to agpproximady equd filled-in activities indde and outside the square, 0 the
boundary can be recognized but not seen. In Figure 2D, the white background can fill-in uniformly on
both sides of the vertical boundary, so no visible contrast differenceis seen.

These remarks jugt begin the andysis of filling-in. Even in the seemingly smple case of the
Kanizsa square, one often perceives a square hovering in front of four partialy occluded circular disks,
which seem to be completed behind the square. FACADE theory predicts how surface filling-in is
organized to help such figure-ground percepts to occur, in response to both two-dimensiond pictures
and three-dimensional scenes’*®,

In summary, boundary and surface formation illustrate two key principles of brain organization:
hierarchicd resolution of uncertainty, and complementary interstream interactions. Figure 3 summarizes
three pairs of complementary properties of the boundary and surface streams. Hierarchica resolution of
uncertainty is illustrated by surface filling-in: Discounting the illuminant crestes uncertainty by suppressing
surface color and brightness signas except near surface discontinuities. Higher stages of filling-in
complete the surface representation using properties that are complementary to those whereby
boundaries are formed, guided by signals from these boundaries”*>*’.

Figure 3. In this example of
neon color spreading, the color
in the blue contours spreadsin dl
directions until it fills the square
illusory contour. An explanation
of this percept is given in
reference (7). Three
complementary  computational
properties of visud boundaries
and surfaces ae aso described.
Boundaries are predicted to be

BOUNDARY COMPLETION SURFACE FILLING-IN completed within a Boundary
Contour System (BCS) that

oriented unoriented
inward outward
insensitive to contrast polarity sensitive to  contrast polarity

6
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passes through the Interblobs of cortica area V1, whereas surfaces are filled-in within a Feature
Contour System (FCS) that passes through the Blobs of cortica area V1 (see Fig.1).

Complementary form and mation interactions

A third pardld processng sream, passng through LGN-4B-Thick Stripe-MT, processes
motion information (Figure 1)**%'. Why does a separate motion stream exist? In what sense are form
and motion computations complementary? What do interactions between form and motion accomplish
from a functiond point of view? Modding work suggests how these sreams and their mutua
interactions compensate for complementary deficiencies of each stream towards generating percepts of
moving-formin-depth?*?%, Such motion percepts are caled ‘formotion’ percepts because they arise
from aform-mation interaction.

The form system uses orientationally tuned computations while the motion system uses
directionally tuned computations. In the formotion model, the processng of form by the boundary
sream uses orientationdly tuned cdlls?* to generate emergent object representations, such as the
Kanizsa square (Figure 2). Such emergent boundary and surface representations, rather than just the
energy impinging on our retinas, define the form percepts of which we are conscioudy aware. Precise
orientationaly tuned comparisons of |eft eye and right eye inputs are used to compute sharp estimates of
the reative depth of an object from its observer®?, and thereby to form three-dimensiona boundary
and surface representations of objects separated from their backgrounds’.

How is this orientation information used by the motion stream? An object can contain contours
of many different orientations which al move in the same direction as part of the object’s motion. Both
psychophyscd and neurophysiologicd experiments have shown that the motion dream pools
information from many orientations that are moving in the same direction to generate precise estimates of
amoving object’s direction and speed™®*" %, Lesions of the form system aso show that, on its own,
the motion system can make only coarse depth estimates™®!. Thus it seems reasoneble that the
orientationaly tuned form system generates emergent representations of forms with precise depth
esimates, wheress the directionaly tuned motion sysem — on its own — can generate only coarse
depth estimates. In this conception, orientation and direction are complementary properties, since
orientation is computed pardld to a contour, wheress, a least in the absence of contextud congraints,
direction is computed perpendicular to it*.

How do the emergent object boundaries that are computed with precise depth estimatesin the
form stream get injected into the motion stream and thereby enable the motion stream to track emergent
object representations in depth? How does the motion stream pool information across space from
multiple oriented contours to generate precise estimates of an object’s direction and speed? These are
large questions with complex answers on which many investigators are working. Classca computationa
models of mation detection involving Reichardt-like or motion-energy mechaniams have focused on the
recovery of locd motion directions®*. Cdls in motion processng aress like MT, however, are
sensitive to both the direction and the speed of moving patterns®®. Indeed, both direction and speed
estimates are needed to track moving objects. More recent models have proposed how motion sgnals
can be differentiated and pooled over multiple orientations and spatid locations to form globa estimates
of both object direction and speed®.

The present discussion of motion perception focuses on how the complementary uncertainties of
the form and motion streams may be overcome by their interaction. There is evidence for an interstream
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interaction from area V2 of the form stream to area M T of the motion stream (Figure 1). Thisinteraction
could enable form representations to be tracked by the motion stream at their correct depths as they
move through time. A modd of this formation interaction has successfully smulated many perceptud
and brain data about motion perception’*3*"% Thismodd predicts an important functiona role for
percepts of long-range apparent motion, whereby observers percelve continuous motion between
properly timed but spatidly dationary flashes of color or brightness. These continuous motion
interpolations can be used to track targets, such as prey and predators, that intermittently disappear as
they move at variable rates behind occluding cover, such as bushes and trees in a forest. The “flashes’
are the intermittent appearances of the prey or predator. This prediction has not yet been tested

neurophysiologicaly.

Figure 4. Images used to demondrate that apparent
moation of illusory figures arises through interactions of the
ddtic illusory figures, but not from the inducing dements
themsdves. Frame 1 (row 1) is followed by Frame 2 (row
2) in the same gpatid locations. With correctly chosen
image Szes, distances, and tempord displacements, an
illusory sguare is seen to move continuoudy from the
inducers in the left picture of Frame 1 to the inducers in the
right picture of Frame 2. Reprinted with permission from
Reference 39

Figure 4 illustrates an experimenta display that vividly illugtrates such a formation interaction. In
Framel, the pac men at the left Sde of the Figure define a Kanizsa square via the boundary completion
process that takes place within the form stream. In Frame 2, the pac men are replaced by closed disks,
and asquare region is cleared in the line array to the right. As aresult, an illusory square forms adjacent
to the line ends. The pac men and line arrays were designed so that none of their features could be
matched. Only the emergent squares have matching features. When Frame 2 is turned on right after
Frame 1 isturned off, the square appears to move continuoudy from the pac man array to the line array.
This percept is an example of gpparent motion, sSince nothing in the images actualy moves. The percept
isa“doubleilluson” because both the emergent forms and their motions are visud illusons. The theory
suggedts that the illusory square boundaries are generated in the form stream before being injected into
the motion stream, where they are the successve “flashes’ that generate a wave of gpparent motion.
Such displays, and their theoretica explanation, dso illustrate how the form system can help to creste
percepts of moving objects whose boundaries are not explicitly defined within individud frames of a

disolay.
Complementary expectation lear ning and matching during ‘what’ and ‘where’ processng

Complementary form and motion processing are proposed to be part of a larger design for
complementary processing whereby objects in the world are cognitively recognized, spatialy localized,
and acted upon. The form stream inputs to the inferotemporal cortex, whereas the motion stream inputs
to the parietd cortex (Figure 1). Many cognitive neuroscience experiments have supported the
hypotheses of Ungerleider and Mishkin®®*! and of Goodale and Milner*? that inferotemporal cortex and
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its cortical projections learn to categorize and recognize what objects are in the world, whereas the
parietal cortex and its cortica projections learn to determine wher e they are and how to ded with them
by locating them in space, tracking them through time, and directing actions towards them. This design
thus separates sensory and cognitive processing from spatiad and motor processing.

These hypotheses have not, however, noted that sensory and cognitive learning processes are
complementary to spatid and motor learning processes on a mechanigtic level. Neurd modding has
clarified how sensory and cognitive processes solve a key problem, cdled the ‘gability-pladticity
dilenma®*, and can thus rapidy and stably learn about the world throughout life without
catastrophicaly forgetting our previous experiences. In other words, we reman plastic and open to
new experiences without risking the stability of previoudy learned memories. This type of fast stable
learning enables us to become experts a deding with changing environmentd conditions Old
knowledge representations can be refined by changing contingencies, and new ones built up, without
destroying the old ones due to catastrophic forgetting.

On the other hand, catastrophic forgetting is a good property for spatial and motor learning. We
have no need to remember al the spatia and motor representations (notably motor maps and gains) that
we used when we were children. In fact, the parameters that controlled our smdl childhood limbs would
cause mgor problems if they continued to control our larger and stronger adult limbs. This forgetting
property of the motor system should not be confused with the more stable sensory and cognitive
representations with which they interact that, for example, help usto ride a bike after years of disuse.

These diginct ‘what’ and ‘where memory properties are proposed to follow from
complementary mechanisms whereby these systems learn expectations about the world, and match
these expectations againgt world data. To see how we use a sensory or cognitive expectation, suppose
you were asked to “find the yelow bdl within one-haf second, and you will win a $10,000 prize’.
Activating an expectation of ‘yelow bals enables more rapid detection of a ydlow bal, and with a
more energetic neurd response, than if you were not looking for it. Neural correlates of such excitatory
priming and gain control have been reported by severa laboratories’™2. Sensory and cognitive top-
down expectations hereby lead to excitatory matching with confirmatory bottom-up data. On the
other hand, mismatch between top-down expectations and bottomrup data can suppress the
mismatched part of the bottom-up data, and thereby start to focus attention upon the matched, or
expected, part of the bottomrup data. This sort of excitatory matching and attentiond focusng of
bottom-up data with top-down expectations is proposed to generate resonant brain states that support
conscious experiences™*, Paradoxical data about conscious perceptua experiences from severd
modalities have been explained as emergent properties of such resonant states™.

In contrast, a motor expectation represents where we want to move, such as to the postion
where our hand can grasp a desired object. Such a motor expectation is matched against where the
hand is. After the hand moves to the desired position, no further movement is required, and movement
stops. Motor expectations hereby control inhibitory matching. Inhibitory matching does not leed to
brain resonance, so motor processing is not conscious. In summary, in the present theory, sensory and
cognitive matching is excitatory, whereas spatid and motor matching is inhibitory. These ae
complementary properties.
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L Figure 5 The LAMINART modd
& gynthess of bottom-up, top-down, and
Q j) 9/3  horizontal interactions in LGN, V1, and
V2. Cdls and connections with open

symbols denote predttentive excitatory
V2 mechanisms that are involved in perceptud

grouping. Solid black symbols denote

4 inhibitory mechanisms. Dashed symbols
denote top-down attentiona mechaniams.

Recent moddling work predicts some of

6 the cdlls and circuits that are proposed to

cary out these complementary types of

matching. For example, recent modeling

has suggested how top-down sensory

2/3 maching is controlled in visud cortex,

notably from cortical area V2 to V1, and

by extenson in other sensory and cognitive

4 neocorticl  circuits>**.  This top-down

circuit is pat of a larger modd of how

bottom-up, top-down, and horizontd

6 interactions ae organized within the

laminar circuits of visud cortex; see Figure

5. The circuit generates top-down outputs

LG N from cortica layer 6 of V2 that activate,

via a possibly polysynaptic pathway, layer

6 of V1. Cdlisin layer 6 of V1, in turn, activate an oncenter off-surround circuit to layer 4 of V1. (See

below for more discusson of atcenter off-surround circuits.) The oncenter is predicted to have a

modulatory effect on layer 4, due to the baancing of excitatory and inhibitory inputsto layer 4 within the

on-center. The inhibitory sgnds in the off-surround can suppress unattended visud features. This top-

down circuit redlizes atype of folded feedback, whereby feedback inputs from V2 are folded back into

the feedforward flow of information from layer 6-to-4 of V1. The modulatory nature of the layer 6-to-4

connections helps to explain a curious fact about bottom-up cortica design: despite the fact that the

LGN activates layer 6 of V1 in a bottom-up fashion, a separate, direct excitatory pathway exists from

LGN to layer 4 of V1. It is predicted that this direct pathway is needed to enable the LGN to drive

layer 4 cellsto suprathreshold activity levels, because the indirect LGN-6-4 pathway is modulatory. The

modding articles summarize neurophysologica, anatomica, and psychophysica experiments that are
consigtent with these predictions.

Recent modeling work aso predicts some of the cells and circuits that are proposed to carry

out top-down motor matching, notably in cortical aress 4 and 5°>°°. Inhibitory matching is predicted to

occur between a Target Podtion Vector (TPV) that represents where we want to move our arm, and a

V1

10
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Present Position Vector (PPV) that computes an outflow representation of where the am is now
(Figure 6). This comparison is proposed to occur at Difference Vector (DV) cdls in cortica area 5,
which compute how far, and in what direction, the arm is commanded to move. This Difference Vector
iS, in turn, predicted to be transmitted to corticd area 4, where is multiplicatively gated by a GO signd
that is under valitiond control. Turning on the GO sgnd determines whether the limb will move, and its
amplitude scales the speed of movement. The product of DV and GO hereby determined a Desired
Velocity Vector (DVV). Such a DV is predicted to be computed at area 5 phasic cdls, and its
corresponding DDV a area 4 phasc MT cdls. The modeling articles summarize neurophysiologica,
anatomical, and psychophysicd experiments that are congstent with these predictions. It should dso be
noted that various other cell types within cortica areas 4 and 5 do not do inhibitory matching, and may
even support resonant states.

rostral caudal

Figure 6. The VITE circuit modd.
Thick connections represent  the
kinematic feedback control aspect of
the modd, with thin connections
representing additional compensatory
circuitry. GO, scaleable gating Sgnd;
DVV, desired velocity vector; OPV,
outflow pogtion vector; OFPV,
outflow force + pogtion vector;
SFV, datic force vector; IFV, inetia
force vector; CBM, assumed
cerebelo-corticd input to the IFV
dage, PPV, perceved postion
vector; DV, difference vector; TPV,
target position vector; ¢f, dynamic gamma motoneuron; ¢°, static gamma motoneuron; a, dpha
motoneuron; la, type la afferent fiber; 11, type Il afferent fiber (position error feedback); c.s., centra
aulcus, i.p.s, intraparietd sulcus. The symbol + represents excitation, — represents inhibition, %
represents multiplicative gating, and + orepresents integration.

area 4
cs. aread

o

X l+ OPV +

/
GO ——>( )—--»(+J D,

DVV

OFPV SFV

TPV

The learning processes that accompany these complementary types of meatching are dso
proposed to exhibit complementary properties. Learning within the sensory and cognitive domain is
often match learning. Match learning occurs only if a good enough match occurs between active top-
down expectations and bottom-up information. When such an gpproximate match occurs, previoudy
gored knowledge can be refined. If nove information cannot form a good enough match with the
expectations that are read-out by previoudy learned recognition categories, then a memory search is
triggered that leads to sdection and learning of a rew recognition category, rather than catastrophic
forgetting of an old one®™*. In contrast, learning within spatial and motor processes is proposed to be
mismatch learning that continuously updates sensory-motor maps’’ or the gains of sensory-motor
commands™®*®. Thus both learning and matching within the ‘what’ and ‘wheré streams may have
complementary properties. As a result, we can stably learn what is happening in a changing world,
thereby solving the stability-pladticity dilemma®™“*, while adaptively updating our representations of

11
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where objects are and how to act upon them using bodies whose parameters change continuoudy
57-59

through time

Complementary attentive-learning and orienting-sear ch

Match learning has the great advantage that it leads to stable memoriesin response to changing
environmental conditions. It aso has a potentialy disastrous disadvantage, however: If you can only
learn when there is a good enough match between bottom-up data and learned top-down expectations,
then how do you ever learn anything that you do not dready know? Some popular learning models,
such as back propagation, try to escape this problem by assuming that the brain does only ‘ supervised
learning’. During supervised learning, an explicit correct answer, or teaching sgnd, is provided in
response to every input. This teaching signal forces learning to track the correct answer. Such a model
cannot learn if an explicit answer is not provided. It appears, however, that much human and anima
learning, especidly during the crucid early years of life, takes place in ardatively unsupervised fashion.

A B Figure 7. Search for arecognition code
m F, Z F, within an ART leaning drcuit: (A) The

input pattern | is instated across the

s Al . Al feature detectors at level F; as a short

term memory (STM) activity pattern X.
Input | aso nongpecificdly activates the
orienting subsystem A. STM pattern X is
represented by the hatched pattern
across F,. Pattern X baoth inhibits A and
generates the output pattern S. Pattern S
is multiplied by long term memory (LTM)
traces, or learned adapative weights.

c D v . These LTM-gated sgnds are added at
A 1 m 2 F. nodes to form the input pattern T,
T T which activates the STM pattern 'Y

across the recognition categories coded
a levd F,. (B) Pattern Y generates the

F, top-down output pattern U which is
d‘ t I*j multiplied by top-down LTM traces and
X

added at F; nodes to form the prototype
pattern V that encodes the learned
expectation of the active F, nodes. If V
mismatches | at F;, then a new STM

activity pattern X* is generated at F;. X* is represented by the hatched pattern. It includes the festures
of | that are confirmed by V. Mismatched features are inhibited. The inactivated nodes corresponding to
unconfirmed features of X are unhatched. The reduction in totd STM activity which occurswhen X is
transformed into X* causes a decrease in the totd inhibition from F; to A. (C) If inhibition decreases
auffidently, A releases a nonspecific arousal wave to F,, which resets the STM pattern Y at F». (D)
After Y isinhibited, its top-down prototype Sgnd is diminaed, and X can be reingtated at F;. Enduring
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traces of the prior reset lead X to activate a different STM pattern Y at F». If the top-down prototype
due to Y dso mismatches | at F;, then the search for an gppropriate F, code continues until a more
appropriate F, representation is sdected. Then an attentive resonance develops and learning of the
attended dataiis initiated. [Reprinted with permission from reference [49] ]

Other models do alow ‘unsupervised learning’ to occur. Here, the key problem to be solved is,
that if ateacher is not available to force the selection and learning of a representation that can map onto
a correct answer, then the interna dynamics of the mode must do so on their own. In order to escape
the problem of not being able to learn something that one does not aready know, some of these modds
assume that we do dready know (or, more exactly, have internd representations for) everything that we
may ever wish to know, and that experience just sdects and amplifies these representations®. These
models depend upon the bottom-up filtering of inputs, and a very large number of internd
representations that respond to these filtered inputs, to provide enough memory to represent whatever
may happen. Having such alarge number of representations leads to a combinatorid explosion, with an
implausbly large memory. Thus, dthough using a very large number of representations can hep with the
problem of catastrophic forgetting, it creates other, equaly serious, problems instead. Other
unsupervised learning modds shut down learning as time goes on in order to avoid catastrophic
forgetting®.

| propose that these problems are averted in the brain through the use of another
complementary interaction, which was briefly mentioned above. This complementary interaction helpsto
balance between processing the familiar and the unfamiliar, the expected and the unexpected. It does so
using complementary processes of resonance and reset, which are predicted to subserve properties of
attention and memory search, respectively. This interaction enables the brain to discover and stably
learn new representations for novel events in an efficient way, without assuming that representations
dready exist for as yet unexperienced events. It hereby solves the combinatorid explosion while aso
solving the stability- plagticity dilemma

One of these complementary subsystems is just the ‘what’ stream that was described above,
with its top-down expectations that are matched against bottom-up inputs. When a recognition category
activates a top-down expectation that achieves a good enough match with bottom-up data, this match
process focuses attention upon those feature clusters in the bottom-up input that are expected (Figure
7). Experimental evidence for such matching and attentional processes has been found in
neurophysiological data about perception and recognitior®**%#% Many behaviord and neurd data
have been explained by assuming that such top-down feedback processes can lead to resonant brain
dtates that play a key role in dynamically stabilizing both developmental and learning processes'™*2°3 7
69

How does a sufficiently bad mismatch between an active top-down expectation and a botton
up input drive amemory search, say because the input represents an unfamiliar type of experience? This
mismatch within the attentiond system is proposed to activate a complementary orienting system,
which is sengtive to unexpected and unfamiliar events. Output Sgnds from the orienting sysem rgpidly
reset the recognition category that has been reading out the poorly matching top-down expectation
(Figure 7B and 7C). The cause of the mismatch is hereby removed, thereby freeing the sysem to
activate a different recognition category (Figure 7D). The reset event hereby triggers memory search, or
hypothes's testing, which automaticaly leads to the sdlection of a recognition category that can better
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match the input. If no such recognition category exists, say because the bottom-up input represents a
truly novel experience, then the search process can automaticaly activate an as yet uncommitted
population of cdls, with which to learn aout the nove information. This learning process works well
under both unsupervised and supervised conditions. Supervision can force a search for new categories
that may be culturaly determined, and are not based on feature smilarity one. For example, separating
the letters E and F into separate recognition categories is culturdly determined; they are quite Smilar
based on visud smilarity done. Taken together, the interacting processes of atentive-learning and
orienting-search redize a type of error correction through hypothesis testing that can build an ever-
growing, saf-refining internd modd of a changing world.

The complementary attentive-learning and orienting-search subsystems and how they interact
have been progressively developed since the 1970's within Adaptive Resonance Theory, or ART®*,
Neurobiologica data have esewhere been reviewed in support of the ART hypothess that the
dtentive-learning system includes such ‘what’ processng regions as inferotempora cortex and its
projections in prefrontal cortex, whereas the orienting-search sysem includes circuits of the
hippocampa system®™. Data about mismatch cdlls in the hippocampa system are particularly rdlevant to
this hypothesis™. ART predicts that these interactions between inferotempora cortex and the
hippocampa system during a mismaich event offset the inability of the ‘what’ processng stream to
search for and learn appropriate new recognition codes on its own. This deficiency of the ‘what’ stream
has been used to predict how hippocampa lesions can lead to symptoms of amnesic memory™.
Because of their ability to learn stably n red-time about large amounts of information in a rapidly
changing world, ART models have aso been used in pattern recognition applicationsin technology ™.

Complementary additive and subtractive intrastream processing

The two types of matching across the ‘what’ and ‘wher€ processing streams use different
combinations of excitatory and inhibitory neurd sgnas. Complementary processes can dso arise within
aprocessing stream. Thus, a processing stream may be broken into complementary substreams. Severd
examples will now be mentioned wherein pardld combinations of additive and subtractive neurd sgnds
can be computed within a single processing stream. A classicd examplein the ‘what’ processing stream
combines outputs from long-wave length (L) and medium wave-length (M) retind photoreceptors into
pardld [uminance (L + M) and color (L - M) channds™. The color channdls compute reflectances, or
ratios, by discounting the illuminant, while the luminance channd computes luminant energy. By using
both channds, the illuminant can be discounted without throwing away information about [uminant
energy.

Intrastream complementarity dso seems to occur within the ‘where stream. Here, corticd area
MT activates area MST (not shown in Figure 1) on the way to parietal cortex. In macague monkeys,
the ventrd part of MST hdpsto track moving visual objects, whereas dorsal MST helps to navigate in
the world using global properties of optic flow™ ™. These tasks are behavioraly complementary: the
former tracks an object moving in the world with respect to an observer, whereas the latter navigates a
moving observer with respect to the world. The tasks are dso neurophysiologicaly complementary:
Neurons in ventra MST compute the relative motion of an object with respect to its background by
subtracting background motion from object motion; whereas neurons in dorsad MST compute motions
of awide textured fidd by adding motion signals over alarge visua domain™. Corresponding to MST’s
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breakdown into additive and subtractive subregions, area M T of owl monkeys possesses distinct bands
and interbands™. Band cdlls have additive receptive fidds for visua navigation, whereas interband cells
have subtractive receptive fidds for computing object-reative motion. Modding studies have shown
how these complementary properties can be used, on the one hand, for visud navigation using optica
flow information and, on the other hand, for predictive tracking of moving targets usng smooth pursuit
eye movements’®”’. These studies make a number of neurophysiologica predictions, including how the
log polar mapping that is defined by the cortica magnification factor helps to achieve good navigationd
properties. A remarkable prediction is that the biologicaly observed spird tuning curves that were found
by Graziano et al.”® in corticd area MST maximize the amount of postion invariance of which the
postionaly-variant log polar map is capable.

Intrastream complementarity is aso predicted to occur during sensory-motor control, or *how’
processing. To see this, suppose that both eyes fixate an object that can be reached by the arms.
Psychophysica™ and neurophysiological data®®® suggest that the vergence of the two eyes, as they
fixate the object, is used to estimate the object’ sradia distance, while the spherica anglesthat the eyes
make relative to the observer's head edtimate the object’s angular position. Distance and angle are
mathematicaly independent properties of an object’s position with respect to an observer. How does
the brain compute the distance and angle to an object that the eyes are fixating? A neurd mode
proposes how addition and subtraction can again redize the necessary computations by exploiting the
bilateral symmetry of the body®’. In particular, eye movement control pathways give rise to paralld
branches, called corollary discharges, that inform other brain systems of the present position of the
eyes™. These outflow movement control pathway's have an opponent organization to control the body’s
agonist and antagonist muscles. Neurd modeling has mathematicaly proved thet, when both eyes fixate
an object, accurate spherica angle and vergence estimates of object position may be derived by adding
and subtracting, respectively, the ocular corollary discharges that control the two eyes, while preserving
their opponent relationships, at separate populations of cdls™.

These examplesiillugtrate how arich repertoire of complementary behaviora capabilities can be
derived by doing “brain arithmetic’, whereby outputs of a processing stage are segregated into additive
and subtractive parald computations at a subsequent processing stage. Such additive and subtractive
combinations can occur both between processing streams and within a single processing stream. These
sample computations generate very different behaviora properties when gpplied to different sensory
inputs or different stages of a processing sream. The next sections illusrate severd ways in which
complementary multiplication and division operations may enter the brain’s “arithmetic” repertoire.

Factorization of pattern and energy: ratio processng and synchrony

Multiplication and divison occur during processes that illudtrate the generd theme of how the
brain achieves factorization of pattern and energy®’. ‘Pattern’ here refers to the hypothesis that the
brain’s functiona units of short-term representation of information, and of long-term learning abouit this
information, are distributed patterns of activation and of syngptic weight, respectively, across a neurond
network. ‘Energy’ refers to the mechanisms whereby pattern processing is turned on and off by activity-
dependent modulatory processes.

Why do pattern and energy need to be processed separately? Why cannot a single process do
both? One reason is that cel activities can fluctuate within only a narrow dynamic range. Often input
amplitudes can vary over a much wider dynamic range. For example, if a large number of input
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pathways converge on a cell, then the number of active input pathways can vary greatly through time,
and with it, the tota sze of the cdl input. Owing to the smdl dynamic range of the cell, its activity could
eadly become saturated when a large number of inputs is active. If dl the cells got saturated, then their
activities could not sengitively represent the relative size, and thus importance, of their repective inputs.
One way to prevent this would be to require that each individua input be chosen very smdl o that the
sum of dl inputs would not saturate cdll activity. But such smdl individua inputs could eeslly be logt in
cdlular noise. The cdl’s smdl dynamic range could hereby make it insengtive to both smdl and large
inputs as a result of noise and saturation, respectively, a the lower and upper extremes of the cdl’s
dynamic range. This noise-saturation dilemma faces al biologicd cdls not merdy nerve cdls

Interactions across a network of cellsis needed to preserve information about the relative sizes of inputs
to the cells in the network, and thereby overcome noise and saturation. This kind of pattern processing
sacrifices information about the absolute amplitude of inputs in order to enable the cdlls to respond
sengdtively to ther relative Sze, over a wide dynamic range. Since te pattern processing network
discards information about absolute input Size, a separate channd is needed to track information about
thetotal amplitude, or ‘energy’, of the inputs.

Retaining sengtivity to the rdative sze of inputs can be accomplished by on-center off-surround
interactions between cdls that obey the membrane eguations of neurophysiology® ®®. In a
feedforward on-center, off-surround network, feedforward inputs excite their target cdls while inhibiting
more distant cdls. To store inputs temporarily in short-term (or working) memory, excitatory feedback
between nearby cdls and inhibitory feedback between more distant cells can solve the noise-saturation
dilemma Stated using more generd terms, these networks define mass-action interactions among short-
range cooperative and longer-range competitive inputs or activities. The mass action terms of membrane
equations introduce multiplication into brain arithmetic by multiplying cdll inputs with cdl voltages, or
activities. Membrane equations respond to on-center off-surround interactions by dividing each cdl’s
activity by aweighted sum of al the cdll inputs (in a feedforward interaction) or activities (in a fesdback
interaction) with which it interacts. This operation keeps cdll activities away from the saturation range by
normalizing them while preserving their sengtivity to input ratios.

The ubiquitous nature of the noise-saturation dilemmain dl celular tissues clarifies why such on
center off-surround anatomies are found throughout the brain. For example, when ratio processng and
normalization occur during visua perception, they help to control brightness constancy and contrast™>®
as well as perceptua grouping and attentior™>>*#+%>, At higher levels of cognitive processing, these
mechanisms can provide aneura explanation of the ‘limited capacity’ of cognitive short-term memory®.

The cooperative-competitive interactions that preserve cdll sengtivity to relative input Sze dso
bind these cdl activities into functiond units. Indeed, relative activities need to be computed
synchronously, and early theorems about short-term memory and long-term memory processing®
predicted an important role for synchronous processing between the interacting cells. Subsequent
neurophysologicd experiments have emphasized the functiond importance of synchronous brain
states®™®’. More recent neura modeling has shown how such synchronized activity paiterns can, for
example, quantitatively explain psychophysicd data about tempora order judgments during perceptud
grouping within the visua cortex®.

Motor expectation and volition
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Factorization of pattern and energy shows itsdlf in many guises. For example, it helps to explain
how motor expectations (pattern) interact with volitiond speed sgnds (energy) to generate god-
directed arm movement$®*, as during the computation of the Desired Ve ocity Vector in the cortical
area 4 circuit of Figure 6. As noted in the discussion of ‘where and ‘how’ processing, a motor
expectation represents where we want to move, such as to the position where our hand can grasp a
desired object. Such a motor representation, or Target Position Vector (TPV), can prime a movement,
or get us ready to make a movement, but by itsdf, it cannot release the movement™#°, First the TPV
needs to be converted into a Difference Vector (DV), which triggers an overt action only when a
voliiond sgnd® that multiplicatively gates action read-out. The volitiond sgnd for controlling
movement speed is caled a GO sgnd, asin Figure 6. The sgnd for controlling size is cdled a GRO
sgna. Neura modds have predicted how such GO and GRO signas may, for example, dter the sze
and speed of handwritten script without dtering its forn™. As noted in Figure 6, some motor
expectations seem to be computed in the parietd and motor cortex. Volitiond sgnas seem to be
computed within the basdl ganglia™.

The Vector Integration to Endpoint, or VITE, neurd mode, summarized in Figure 6, of how
these arm-controlling pattern and energy factors combine within cortical areas 4 and 5 has been used to
predict the functiond roles of sx identified cortica cel types, and to quantitatively smulate their
temporal responses during a wide range of behaviord tasks™*°. These results support model
hypotheses about how variable-speed and variable-force arm movements can be carried out in the
presence of obstacles. The mode hereby provides a detailed example of how task-senstive volitiona
control of action redizes an overdl separation into pattern and energy variables.

Figure 8. Schematic conditioning
cdreuit:  Conditioned gimuli  (CS)
cs—P activate sensory categories  (Scsi),
which compete among themsdves for
limited capacity short-term memory
activation and dtorage. The activated
.\ Scs representations, i = 1, 2, dicit

tranable sgnds to drive

S
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LEARNING
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conditioned sensory plus internd drive inputs is sufficiently large. Sensory representations that win the
competition in response to the balance of externd inputs and interna motivationad sgnds can activae
motor command pathways

Cognitive-emotional interactions and attentional blocking

Cognitive-emotionad learning enables sensory and cognitive events to acquire emotiond and
motivationa Sgnificance. Both dassica and instrumental conditioning can be used for this purpose™®.
For example, during classical conditioning, an irrdlevant sensory cue, or conditioned stimulus (CS), is
pared with a reinforcing event, or unconditioned simulus (US). The CS hereby acquires some of the
reinforcing properties of the US; it becomes a “conditioned reinforcer” with its own motivationa
properties. The manner in which the thaamocortical representation of a conditioned reinforcer CS is
influenced by motivational signds represents, | suggest, another example of factorization of pattern and
energy. Here, the activities across the thalamocortica representations of recently presented sensory
events, including the CS, condtitute the “pattern”. This patternis normalized by the feedback on-center
off-surround interactions that are used to store the activities in short-term memory without saturation. If
one or more of these sensory events is a conditioned reinforcer, then it can amplify its own activity via
learned motivationa feedback signds, which play the role of “energy” in this example™®’. These
amplified representations can, in turn, atentionaly block®, or inhibit, the representations of irrelevant
sensory events via the off-surround of the feedback network. Attentiona blocking is one of the key
mechanisms whereby animds learn which consequences are causdly predicted by their antecedent
sensory cues and actions, and which consequences are merely accidental. A more detailed summary of
how blocking is proposed to happen is now given.

During cognitive-emotiond learning, a least three types of interna representations interact:
Sensory and cognitive representations (S), drive representations (D), and motor representations
(M)**"_ as depicted in Figure 8. The sensory representations S are thalamocortical representations of
externd events, like the ones described above within the ‘what’ processng stream. They include
representations of CSs. D representations include the hypothaamic and amygdda circuits a which
homeogtatic and reinforcing cues converge to generate emotiona reactions and motivational decisions™
% M representations include cortical and cerebdlar circuits for controlling discrete adaptive
responses™®®. As noted above, the S representations represent the pattern information in this example.
They interact with one another via an on-center off-surround feedback network that stores their
activities in short-term memory, while aso solving the noise-saturation dilemma. The D representations
supply modulatory energy owing to the action of the following types of learning processes.

(1) ‘Conditioned reinforcer learning’ occurs in the S [] D pathways, and enables a sensory
event, such as a conditioned stimulus CS, to become a conditioned reinforcer that can activate a drive
representation D. This may be accomplished by pairing the CS with an unconditioned stimulus US. The
CS activates its sensory representation S. The US activates its own sensory representation, which in
turn activates the drive representation D. Adaptive weightsin the S[] D pathway can grow in response
to this correlated activity. Future presentations of the CS can hereby lead to activation of D, which
controls various emotiona and motivationa responses.

(2) Due o this pairing of CS and US, ‘incentive motivationd learning' can aso occur in the
adaptive weights within the D [J S pathway. This type of learning dlows an activated drive
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representation D to prime, or modulate, the sensory representations S of al sensory events that have
conggently been activated with it in the past. Spesking intuitively, these sensory events are
moativationaly compatible with D.

(3) S [0 M ‘habit learning’, or motor learning, trains the sensorimotor maps and gains that
control appropriate and accurately calibrated responses to the CS. These processes include circuits
such as those summarized in Figure 6.

Conditioned reinforcer learning and incentive motivationd learning combine to control atentiona
blocking in the following way. As noted above, the sensory representations S are the pattern variables
that store sensory and cognitive representations in short-term memory using on-center off-surround
feedback networks. Due to the sdf-normalizing properties of these networks, the total activity that can
be stored in short-term memory across the entire network is limited. This is thus, once again, an
example of the noise-saturation dilemma. Due to activity normdization, sufficiently great activation of
one sensory representation implies that other sensory representations cannot be stored in short-term
memory. In the present example, conditioning of a CS to a US drengthens both its S[] D conditioned
reinforcer and D [] Sincentive motivationa pathways. Thus, when a conditioned reinforcer CS activates
its sensory representation S, learned S [] D [] S pogtive feedback quickly amplifies the activity of S.
ThisS[] D ] Sfeedback pathway supplies the motivationa energy that focuses attention upon salient
conditioned reinforcers. These amplified sensory representations inhibit the storage of other sensory
cues in short-term memory via the laterd inhibition that exists among the sensory representations S,
Blocking is hereby explained using incentive mativationd “energy” to amplify conditioned reinforcer CS
representations within the saf-normaized sensory “pattern” that is stored in short-term memory. ThisS
[] D [J Sfeedback causes a cognitive-emotiona resonance to occur. The modd prediction of how drive
representations D, such as those in the angydda, influence blocking by ddivering incentive motivationd
feedback to thalamocortical sensory representations has not yet been tested neurophysiologicaly.

Rate-invariant speech and language under standing

Factorization of pattern and energy aso seemsto play an important role in temporally organized
cognitive processes such as speech and language. Here sequences of events are transformed into
temporally evolving spatia petterns of activation thet are stored within working memories'®. The
‘pattern’ information that is stored in working memory represents both the event itsef—it's so-cdled
item information—and the tempord order in which the events occurred. The ‘energy’ information
encodes both the tempora rate and rhythm with which the events occur®. Factorization of information
about item and order from information about rate and rhythm helps us to understand speech thet is
spoken at variable rates: A rate-invariant representation of speech and language in working memory
avoids the need to define multiple representations of the same speech and language utterance a every
concelvable rate. This representation can, in turn, be used to learn speech and language codes, or
categories, that are themselves not too sengitive to peech rate. Because rate and rhythm information are
subgtantidly eiminated from the rate-invariant working memory representation, rate and rhythm need to
be computed by a separate process. This is a problem of factorization, rather than of independent
representation, because the speech rate and rhythm that are perceived depend upon the categorica
language units, such as syllables and words, that are familiar to the listener. What these language units
are, in turn, depends upon how the listener has learned to group together, and categorize, the tempordly
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distributed speech and language features that have previoudy been stored in the rate-invariant working
memory.

Rate-invariant working memories can be designed from specidized versons of the on-center
off-surround feedback networks that are used to solve the noise-saturation dilemma®”®®**, In other
words, the networks that are used to store spatially distributed feature patterns, without a loss of
sengtivity to their identity and relative size, can be specidized to store temporally distributed events,
without a loss of sengtivity to ther identity and tempora order. The normdization of these stored
activities is the bads for ther rae-invariant properties. Thus, this modd predicts that a process like
discounting the illuminant, in the spatid domain, uses a variant of the same mechaniams that are used to
process rate-invariant speech, in the tempora domain. A key problem concerns how the rate-invariant
working memory can mantain the same representation as the speech rate speeds up. The model
predicts that the ‘energy’ information that is computed from the speech rate and rhythm can be used to
automdticdly gain-control the processing rate of the working memory to maintan its rate-invariant
speech properties'®. In particular, the rate a which the working memory stores individua events needs
to keep up with the overall rate a which successive speech sounds are presented. A neura mode of
this process has been progressvely developed to quantitatively smulate psychophysica data concerning
the categorization of varigble-rate speech by human subjects®'%%% and to functiondly interpret
neurophysiological data that are consistent with model properties'®. In this model, the working memory
interacts with a categorization network via bottom-up and top-down pathways, and conscious speech is
aresonant wave that emerges through these interactions.

Beyond modularity

Much experimenta evidence has supported the idea that the brain is organized into processing
streams, but how these streams are determined and how they interact to generate behavior is still atopic
of active research. This article has summarized some of the rapidly growing empiricad and theoretica
evidence that our brains compute complementary operaions within parallel pairs of processng
greams. Table 1 summarizes some of the processes for which evidence of complementarity has been
collected from behavioral and neural data and models. The variety of these behavioral processes
provides some indication of the generdity of this organizationd principle in the brain. Interstream
interactions are proposed to overcome complementary processing deficiencies within each stream.
Hierarchicd interactions between the severd levels of each processng stream are proposed to
overcome informational uncertainties that occur at individua processng stages within that stream.
Hierarchical intrastream interactions and pardld interstream interactions work together to generate
behaviora properties that are free from these uncertainties and complementary insufficiencies. Such
complementary processing may occur on multiple scales of brain organization.

Many experimentdists have described properties of functional specidization and integration in
their neura data. Some neura modelers have attempted to characterize such properties using concepts
about how the brain may work to achieve information maximization. Information, as a technical concept,
is well defined for dationary information channds, or channels whose dtatistical properties tend to
perss through time. In contrast, brains salf-organize on ardaively fast time scae through devel opment
and life-long learning, and do so in response to nongtationary, or rapidly changing, statistica properties
of their environments. | propose that hierarchicd intrastream interactions and pardld interstream
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interactions between complementary systems are a manifestation of this capacity for self-controlled and
gtable sdlf-organization. This observation leads to my fina remarks.

How do complementary sets of properties arise, rather than some other combination of
properties? How is the organization of smaller-scade complementary properties organized within larger-
scae complementary properties? The smplest hypothes's, for which little direct experimenta evidence is
yet available, is that each pair of complementary processes represents two sides of a larger brain
sysem. Complementarity could arise if, during brain development, precursors of the larger system
bifurcated into complementary streams through a process of symmetry-breaking that operates on
multiple scaes of organization. In this view, complementary systems are an integrd part of the sdf-
organization process that enables the brain to adapt to a rapidly changing world. This view of brain
devdopment is not in conflict with prevailing views of specific developmental mechaniams'™. Rather, it
pointsto agloba organizationa principle that may be cgpable of coordinating them.

Thus, jugt as in the organization of the physica world with which it interacts, it is proposed that
the brain is organized to obey principles of complementarity, uncertainty, and symmetry-bresking. In
fact, it can be argued that known complementary properties exist because of the need b process
complementary types of information in the environment. The processes that form perceptua boundaries
and surfaces provide a particularly clear example of this hypothess. The ‘complementary bran’ may
thus perhaps best be understood through analyses of the cycles of perception, cognition, emotion, and
action whereby the brain isintimately linked to its physica environment through a continuoudy operating
feedback cycle. One useful goa of future research may be to study more directly how complementary
agpects of the physical world are trandated into complementary brain designs for coping with this world.
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