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Abstract 

 

A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral 

functions. The present article describes recent progress towards explaining how the visual cortex 

sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six 

main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered 

circuits help to realize processes of development, learning, perceptual grouping, attention, and 

3D vision through a combination of bottom-up, horizontal, and top-down interactions. A key 

theme is that the mechanisms which enable development and learning to occur in a stable way 

imply properties of adult behavior. These results thus begin to unify three fields: infant cortical 

development, adult cortical neurophysiology and anatomy, and adult visual perception. The 

identified cortical  mechanisms promise to generalize to explain how other perceptual and 

cognitive processes work. 
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Introduction 

 

The advent of behavioral and cognitive neuroscience underscores the growing interest in 

mechanistically linking brain mechanisms to behavioral functions, or in explaining how a brain 

gives rise to a mind. Said in yet another way: How can the classical Mind/Body Problem be 

solved? Although there has been enormous experimental and theoretical progress on 

understanding brain or mind in the fields of neuroscience and psychology, respectively, 

establishing a mechanistic link between them has been very difficult, if only because these two 

levels of description often seem to be so different. Yet establishing such a linkage between brain 

and mind is crucial in any mature theory of how a brain or mind works. Without such a link, the 

mechanisms of the brain have no functional significance, and the functions of behavior have no 

mechanistic explanation.  

  

In order to establish such a link with sufficient clarity for it to be scientifically predictive, 

rigorous models are needed. A rapidly growing number of models can now quantitatively 

simulate the neurophysiologically recorded dynamics of identified nerve cells in known 

anatomies and the behaviors that they control. Many predictions of these models have also been 

supported by subsequent experiments over the years. In this restricted sense, the Mind/Body 

Problem is at last starting to be understood. A particularly successful approach uses a theoretical 

method that has been systematically applied during the past thirty years (Grossberg, 1999c). In 

addition to leading to detailed models that quantitatively link brain and behavior, this method has 

led to the discovery of general computational principles and paradigms that represent a major 

shift away from earlier views of how the brain works. 

 

 
Complementary Computing and Laminar Computing 

 

Many scientists had earlier proposed that our brains possess independent modules, as in a digital 

computer. The brain’s organization into distinct anatomical areas and processing streams 

supports the idea that brain processing is specialized, but that, in itself, does not imply that these 

streams contain independent modules. Independent modules should be able to fully compute 
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their particular processes on their own. Much behavioral data argue, however, against the 

existence of independent modules. For example, during visual perception, strong interactions are 

known to occur between perceptual qualities (Egusa, 1983; Faubert and von Grunau, 1995; 

Kanizsa, 1974; Pessoa, Beck, and Mingolla, 1996; Smallman and McKee, 1995). In particular, 

form and motion can interact, as can brightness and depth, among other combinations of 

qualities.  

 

At least two new computational paradigms have gradually been identified from the cumulative 

experiences of modeling many aspects of brain and behavior over the past three decades: 

Complementary Computing and Laminar Computing (Grossberg, 1999a, 2000). Complementary 

Computing concerns the discovery that pairs of parallel cortical processing streams compute 

complementary properties in the brain. Each stream has complementary computational strengths 

and weaknesses, much as in physical principles like the Heisenberg Uncertainty Principle. Each 

cortical stream can also possess multiple processing stages. These stages realize a hierarchical 

resolution of uncertainty. “Uncertainty” here means that computing one set of properties at a 

given stage can suppress information about a complementary set of properties at that stage. The 

computational unit of brain processing that has behavioral significance is thus not a single 

processing stage, or any smaller entity such as the potential of a single cell or of a spike or burst 

of spikes. Instead, hierarchical interactions within a stream and parallel interactions between 

streams resolve their complementary deficiencies to compute complete information about a 

particular type of biological intelligence. These interactions have been used to clarify many of 

the data that do not support the hypothesis of independent modules.  To model how the brain 

controls behavior, one thus needs to know how these complementary streams are organized with 

respect to one another.  
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Figure 1. Some visual processes and their anatomical substates that are being modeled as part of a unified vision 

system.  LGN = Lateral Geniculate Nucleus; V1 = striate visual cortex; V2, V4, MT, MST = prestriate visual cortex; 

IT = inferotemporal cortex; PPC = posterior parietal cortex; PFC = prefrontal cortex. 
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Understanding how the brain sees is one of the areas where experimental and modeling work 

have advanced the furthest, and this progress illustrates several different types of complementary 

interactions. Figure 1 provides a schematic macrocircuit of the types of processes that are being 

assembled into a unified theory of how the brain sees, including processes of vision, recognition, 

navigation, and cognition. In particular, key matching and learning processes within the What 

and Where cortical streams have been proposed to be complementary: The What stream, through 

cortical areas V1-V2-V4-IT-PFC, learns to recognize what objects and events occur. The Where 

stream, through cortical areas V1-MT-MST-PPC-PFC, spatially localizes where they are, and 

acts upon them. Complementary processes also occur within each stream: What stream boundary 

grouping via the (V1 interblob)-(V2 pale stripe)-V4 stages, and surface formation via the (V1 

blob)-(V2 thin stripe)-V4 stages, have complementary properties. Where stream target tracking 

via MT-(MST ventral) and navigation via MT-(MST dorsal) have complementary properties. 

Such complementary processes are predicted to arise from symmetry-breaking operations during 

cortical development. 

 

Laminar Computing concerns the fact that cerebral cortex, the seat of higher intelligence in all 

modalities, is organized into layered circuits (usually six main layers) which undergo 

characteristic bottom-up, top-down, and horizontal interactions (Brodmann, 1909;  Martin, 

1989). Differences in the thickness of these layers and the sizes and shapes of neurons led the 

German anatomist Korbinian Brodmann to identify more than fifty divisions, or areas, of 

neocortex. This classification has been invaluable as a basis for classifying distinct functions of 

different parts of neocortex. The functional utility of such a laminar organization in the control of 

behavior has, however, remained a mystery until recently. Understanding the functional uses of 

laminar computing should have an enormous payoff in understanding biological intelligence 

because, if one can understand how laminar circuits work in one part of the brain, then different 

intelligent capabilities may be expected to be understood as variations on a shared architecture 

theme.  
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Laminar Computing by Visual Cortex:  

Development, Learning, Grouping, and Attention 

 

Recent progress has clarified key properties of laminar computing through modeling aspects of 

how the laminar circuits of visual cortex are organized for seeing. This article will summarize 

some of this recent progress, as well as a number of general insights about cerebral cortex that 

flow from it, and directions for further research. Among the questions that will be treated are: 

How does the laminar organization of cortical circuits contribute to biological intelligence? What 

sorts of neural computations on the level of individual cells support visual perception as we 

know it? What is the link between processes of development in the infant and processes of 

perception and learning in the adult? What are the functional units of perception that determine 

perception in the adult, and how do developmental processes give rise to these units? What 

general design principles underlie the organization of neocortical circuits and systems?  

 

A number of models have recently been proposed (Douglas et al., 1995; Li, 1998; Stemmler et 

al., 1995; Somers et al., 1998; Yen and Finkel, 1998) to simulate aspects of visual cortical 

dynamics, but these models have not articulated why cortex has a laminar architecture. A 

different line of modeling work (Grossberg, 1999a; Grossberg and Howe, 2003; Grossberg, 

Mingolla, and Ross, 1997; Grossberg and Raizada, 2000; Grossberg and Williamson, 2001; 

Raizada and Grossberg, 2003) has suggested that the laminar organization of visual cortex 

accomplishes at least three things: (1) the developmental and learning processes whereby the 

cortex shapes its circuits to match environmental constraints in a stable way through time; (2) the 

binding process whereby cortex groups distributed data into coherent object representations that 

remain sensitive to analog properties of the environment; and (3) the attentional process whereby 

cortex selectively processes important events.  

 

These results clarify that the visual cortex is not merely a bottom-up filtering device, as was 

proposed in the classical model of Hubel and Wiesel (1977). Instead, even early stages of visual 

cortex join together bottom-up filtering, horizontal grouping, and top-down attention. Perceptual 

grouping, the process that binds spatially distributed and incomplete information into 3D object 
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representations, starts at an early cortical stage; see Figure 2c. These grouping interactions are 

often cited as the basis of “non-classical” receptive fields that are sensitive to the context in 

which individual features are found (Bosking, Zhang, Schofield, and Fitzpatrick, 1997; Grosof, 

Shapley,  and Hawken, 1993; Kapadia, Ito, Gilbert, and Westheimer, 1995; Knierim and van 

Essen, 1992; Peterhans and von der Heydt, 1989; Polat, Mizobe, Pettet, Kasamatsu, and Norcia, 

1998; Sheth, Sharma, Rao, and Sur, 1996; von der Heydt, Peterhans, and Baumgartner, 1984; 

Sillito, Grieve, Jones, Cudeiro, and Davis, 1995). Likewise, even early visual processing is 

modulated by system goals via top-down expectations and attention (Motter, 1993; Roelfsema, 

Lamme, and Spekreijse, 1998; Sillito, Jones, Gerstein, and West, 1994; Somers, Dale, Seiffert, 

and Tootell, 1999; Watanabe, Sasaki, Nielsen, Takino, and Miyakawa, 1998). The laminar 

circuits provide an interface, called the preattentive-attentive interface, which exists between 

layers 6 and 4 (Figures 2b, 2c, and 2e) where data-driven bottom-up preattentive processing and 

task-directed top-down attentive processing are joined. Finally, mechanisms governing (1) in the 

infant lead to properties (2) and (3) in the adult, and properties (2) and (3) interact together 

intimately as a result. Thus, mechanisms that enable the cortex to develop and learn in a stable 

way define key properties of adult visual information processing, and there is no strict separation 

of attentive processes from pre-attentive processes such as perceptual grouping. A family of 

models that clarify these themes is called a LAMINART model (Figure 2) because it clarifies 

how mechanisms of Adaptive Resonance Theory, or ART, which have previously been predicted 

to occur in neocortex to help stabilize cortical development and learning (Grossberg, 1980, 

1999c), are realized in identified laminar visual cortical circuits (Grossberg, 1999a).  
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Figure 2. How known cortical connections join the layer 6  4 and layer 2/3 circuits to form an entire V1/V2 

laminar model. Inhibitory interneurons are shown filled-in black. (a) The LGN provides bottom-up activation to 

layer 4 via two routes. First, it makes a strong connection directly into layer 4. Second, LGN axons send collaterals 

into layer 6, and thereby also activate layer 4 via the 6  4 on-center off-surround path. The combined effect of the 

bottom-up LGN pathways is to stimulate layer 4 via an on-center off-surround, which provides divisive contrast 

normalization (Grossberg, 1973, 1980; Heeger, 1992) of layer 4 cell responses. (b) Folded feedback carries 

attentional signals from higher cortex into layer 4 of V1, via the modulatory 6  4 path. Corticocortical feedback 

axons tend preferentially to originate in layer 6 of the higher area and to terminate in layer 1 of the lower cortex 

(Salin and Bullier, 1995, p.110), where they can excite the apical dendrites of layer 5 pyramidal cells whose axons 

send collaterals into layer 6. The triangle in the figure represents such a layer 5 pyramidal cell. Several other routes 

through which feedback can pass into V1 layer 6 exist (see Raizada and Grossberg (2001) for a review). Having 

arrived in layer 6, the feedback is then “folded” back up into the feedforward stream by passing through the 6  4 

on-center off-surround path (Bullier et al., 1996). (c) Connecting the 6  4 on-center off-surround to the layer 2/3 

grouping circuit: like-oriented layer 4 simple cells with opposite contrast polarities compete (not shown) before 

generating half-wave rectified outputs that converge onto layer 2/3 complex cells in the column above them. Just 

like attentional signals from higher cortex, as shown in (b), groupings that form within layer 2/3 also send activation 

into the folded feedback path, to enhance their own positions in layer 4 beneath them via the 6  4 on-center, and to 

suppress input to other groupings via the 6  4 off-surround. There exist direct layer 2/3  6 connections in 

macaque V1, as well as indirect routes via layer 5. (d) Top-down corticogeniculate feedback from V1 layer 6 to 

LGN also has an on-center off-surround anatomy, similar to the 6  4 path. The on-center feedback selectively 

enhances LGN cells that are consistent with the activation that they cause (Sillito et al., 1994), and the off-surround 

contributes to length-sensitive (endstopped) responses that facilitate grouping perpendicular to line ends. (e) The 

entire V1/V2 circuit: V2 repeats the laminar pattern of V1 circuitry, but at a larger spatial scale. In particular, the 

horizontal layer 2/3 connections have a longer range in V2, allowing above-threshold perceptual groupings between 

more widely spaced inducing stimuli to form (Amir, Harel, & Malach, 1993). V1 layer 2/3 projects up to V2 layers 

6 and 4, just as LGN projects to layers 6 an 4 of V1. Higher cortical areas send feedback into V2 which ultimately 

reaches layer 6, just as V2 feedback acts on layer 6 of V1 (Sandell & Schiller, 1982). Feedback paths from higher 

cortical areas straight into V1 (not shown) can complement and enhance feedback from V2 into V1. Top-down 

attention can also modulate layer  2/3 pyramidal cells directly by activating both the pyramidal cells and inhibitory 

interneurons in that layer. The inhibition tends to balance the excitation,  leading to a modulatory effect. These top-

down attentional pathways tend to synapse in layer 1, as shown in Figure 2b. Their synapses on apical dendrites in 

layer 1 are not shown, for simplicity. (Reprinted with permission from Raizada and Grossberg (2001).) 
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Stable Development, Balanced Connections, Intermittent Spikes, and Synchrony 

 

 A number of other themes have also come to the fore through these discoveries. For one, the 

LAMINART model clarifies how excitatory and inhibitory connections in the cortex can develop 

in a stable way by achieving and maintaining a balance between excitation and inhibition 

(Grossberg and Williamson, 2001). It is believed that long-range excitatory horizontal 

connections between pyramidal cells in layer 2/3 of visual cortical areas play an important role in 

perceptual grouping (Hirsch and Gilbert, 1991; McGuire et al., 1991). The LAMINART model 

proposes how development enables the strength of long-range excitatory horizontal signals to 

become balanced against that of short-range disynaptic inhibitory signals which input to the 

same target pyramidal cells (Figure 1c). These balanced connections are proposed to realize 

properties of perceptual grouping in the adult. In a similar way, it is proposed that development 

enables the strength of excitatory connections from layer 6-to-4 to be balanced against those of 

inhibitory interneuronal connections (Wittmer, Dalva, and Katz, 1997); see Figures 2a and 2c. 

Thus the net excitatory effect of layer 6 on layer 4 is proposed to be modulatory. These 

approximately balanced excitatory and inhibitory connections exist within the on-center of an 

on-center off-surround network from layer 6-to-4. This network plays at least three functional 

roles that are intimately linked: maintaining a contrast-normalized response to bottom-up inputs 

at layer 4 (Figure 2a); forming perceptual groupings in layer 2/3 that maintain their sensitivity to 

analog properties of the world (Figure 2c); and biasing groupings via top-down attention from 

higher cortical areas (Figure 2b; also see Figure 2d). 

 

Balanced excitatory and inhibitory connections have also been used to explain the observed 

variability in the number and temporal distribution of spikes emitted by cortical neurons. Several 

model studies have shown how balanced excitation and inhibition can produce the highly 

variable interspike intervals that are found in cortical data (Shadlen and Newsome, 1998; van 

Vreeswijk and Sompolinsky, 1998). The LAMINART model proposes that such variability may 

reflect mechanisms that are needed to ensure stable development and learning by cortical 

circuits. Given that “stability implies variability,”  the cortex is faced with the difficult problem 
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that variable spikes are quite inefficient in driving responses from cortical neurons. On the other 

hand, when one analyses how these balanced excitatory and inhibitory connections work 

together to generate perceptual groupings and attentionally focused responses, it becomes clear 

that these particular circuits have the property of overcoming the inefficiency of intermittent 

spiking by preferentially responding to synchronized inputs; indeed they can rapidly 

resynchronize desynchronized signals (Grossberg and Grunewald, 1997; Grossberg and Somers, 

1991). In fact, the article that introduced ART predicted a role for synchronous cortical 

processing, including synchronous oscillations, which were there called “order-preserving limit 

cycles”, as part of the process of establishing resonant states (Grossberg, 1976). There is now a 

considerable amount of neurophysiological data pointing to the importance of synchronous 

processing in visual cortex, starting with the reports of Eckhorn, Bauer, Jordan, Brosch, Kruse, 

Munk, and Reitboeck (1988) and Gray and Singer (1989). The LAMINART model puts these 

data within a larger conceptual framework by predicting the existence of a functional link 

between properties of stable development, adult perceptual learning, perceptual grouping and 

attention, and synchronous cortical processing.  

 

 

Attention, Competition, and Matching 

 

When using a word as familiar as “attention,” it is important to clarify what we mean and how it 

is proposed to work. LAMINART, and ART before it, predicted that an intimate link exists 

between processes of attention, competition, and bottom-up/top-down matching. LAMINART 

predicts, in particular, that top-town signals from higher cortical areas, such as area V2, can 

attentionally prime, or modulate, layer 4 cells in area V1 by activating the on-center off-surround 

network from layer 6-to-4 (Figures 2b and 2e). Because the excitatory and inhibitory signals in 

the on-center are balanced, attention can sensitize, or modulate, cells in the attentional on-center, 

without fully activating them, while also inhibiting cells in the off-surround.  
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Figure 3. The effect of attention on competition between visual stimuli. A target stimulus, presented on its own (a), 

elicits strong neural activity at the recorded cell. When a second, distractor stimulus is presented nearby (b), it 

competes against the target, and activity is reduced. Directing spatial attention to the location of the target stimulus 

(c), protects the target from this competition, and restores neural activity to the levels elicited by the target on its 

own. The stimuli shown here, based on those used in the neurophysiological experiments of Reynolds et al. (1999), 

were presented to the model neural network. Spatial attention (c), was implemented as a Gaussian of activity fed 

back into layer 6. (d) Neurophysiological data from macaque V2 that illustrate the recorded activity patterns 

described above: strong responses to an isolated target (dotted line), weaker responses when a competing distractor 

is placed nearby (dashed line) and restored levels of activity when the target is attended (solid line). (Adapted with 

permission from Reynolds et al. (1999, Fig. 5).) (See also Reynolds, J., Nicholas, J., Chelazzi, L. & Desimone, R. 

(1995). Spatial attention protects macaque V2 and V4 cells from the influence of non-attended stimuli. Society for 

Neuroscience Abstracts, 21, 693.1). (e) Model simulation of the Reynolds et al. data. The time-courses illustrated 

show the activity of a vertically oriented cell stimulated by the target bar. If only the horizontal distractor bar were 

presented on its own, this cell would respond very weakly. If both target and distractor were presented, but with the 

horizontal distractor attended, the cell would respond, but more weakly than the illustrated case where the distractor 

and target are presented together, with neither attended. (Reprinted with permission from Grossberg and Raizada 

(2000).) 
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The importance of the conclusion that top-down attention is often expressed through a top-down 

modulatory on-center off-surround network cannot be overstated. Because of this organization, 

top-down attention can typically provide only excitatory modulation to cells in the on-center, 

while it can strongly inhibit cells in the off-surround. As Hupé et al.  (1997, p. 1031) have noted: 

“feedback connections from area V2 modulate but do not create center-surround interactions in 

V1 neurons.” When the top-down on-center matches bottom-up signals, it can amplify and 

synchronize them, while still suppressing mismatched signals in the off-surround. This 

prediction was first made as part of ART in the 1970’s (Grossberg, 1976, 1978, 1980, 1999a, 

1999c); see below for further discussion. The prediction that top-down attention has an on-center 

off-surround characteristic has since received a considerable amount of psychological and 

neurobiological empirical confirmation in the visual system (Bullier, Hupé, James, and Girard, 

1996; Caputo and Guerra, 1998; Downing, 1988; Mounts, 2000; Reynolds, Chelazzi, and 

Desimone, 1999; Smith, Singh, and Greenlee, 2000; Somers, Dale, Seiffert, and Tootell, 1999; 

Sillito, Jones, Gerstein, and West, 1994; Steinman, Steinman, and Lehmkuhle, 1995; Vanduffell, 

Tootell, and Orban, 2000). Based on such data, this conclusion has recently been restated, albeit 

without a precise anatomical realization, in terms of the concept of “biased competition” 

(Desimone, 1998; Kastner and Ungerleider, 2001), in which attention biases the competitive 

influences within the network. Figure 3 summarizes data of Reynolds, Chelazzi, and Desimone 

(1999) and a simulation of these data from Grossberg and Raizada (2000) that illustrate the on-

center off-surround character of attention in macaque V2. 

 

 

Global Organization of Attention: Divided, Object/Spatial, Noun/Verb 

 

It was noted above that bottom-up inputs arriving in the off-surround of an active top-down 

attentional prime may be suppressed.  This property does not imply that inputs outside the off-

surround will be suppressed. This is already clear in some conditions of the Reynolds, Chelazzi, 

and Desimone (1999) experiment that is summarized in Figure 3. Rather, this description shows 

how a particular attentional prime may act if it is deployed, and if bottom-up inputs fall within its 

domain of influence. Further analysis is required to understand the global allocation of attention 

throughout the brain in a task-sensitive manner.  
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In particular, many studies have shown that attention may be simultaneously divided among 

several targets (Pylyshyn and Storm, 1988; Yantis, 1992), and that object and spatial attention 

may both influence visual perception (Duncan, 1984; Posner, 1980). The distinction between 

object and spatial attention reflects the organization of visual cortex into parallel What and 

Where processing streams (Figure 1). Many cognitive neuroscience experiments have supported 

the hypotheses of Ungerleider and Mishkin (1982; see also Mishkin, Ungerleider, and Macko 

(1983)) and of Goodale and Milner (1992) that inferotemporal cortex and its cortical projections 

learn to categorize and recognize what objects are in the world, whereas the parietal cortex and 

its cortical projections learn to determine where they are and how to deal with them by locating 

them in space, tracking them through time, and directing actions towards them. This design into 

parallel streams thus separates sensory and cognitive processing from spatial and motor 

processing. The existence of parallel streams does not, however, imply that these streams do not 

interact. The very fact that the What stream strives to generate object representations that are 

independent of their spatial coordinates, whereas the Where stream generates representations of 

object location and tracking, indicates that the streams must interact to act upon recognized 

objects. Indeed, both object and spatial attention are needed to search for visual targets amid 

distractors. In this regard, Grossberg, Mingolla, and Ross (1994) quantitatively fit a a large 

human psychophysical database about visual search with a model, called the Spatial Object 

Search (SOS) model, that proposes how 3D boundary groupings and surface representations 

interact with object attention and spatial attention to find targets amid distractors. By clarifying 

how attention can be selectively allocated to desired targets, the SOS model also indicates how 

actions can be deployed towards them. This analysis needed to be sensitive to how object and 

spatial attention may respond to perceptual groupings and to surface properties, such as all 

occurrences of a color on a prescribed depth plane (Egeth, Virzi, and, Garbart, 1984; Nakayama 

and Silverman, 1986; Wolfe and Freedman-Hill, 1992).  

 

Another aspect of the global control of attention concerns how it is allocated to objects and 

actions. In particular, visual form processing is elaborated within the What stream, whereas 

motion processing is elaborated within the Where stream (Maunsell and Van Essen, 1983). Form 

processing subserves the identification of objects in the world, whereas motion processing is 
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needed to identify many actions in the world. Indeed, early language development of a child 

often takes the form of simple noun and verb phrases that are learned in concert with visual 

examples of objects and their actions by a supervising parent. How attention across the What and 

Where streams is allocated to objects and actions, and how these events become a key substrate 

of spoken language, also requires a further analysis of global attentional control.  

 

The present article focuses on the micro-architecture of attention but is consistent with, and 

illuminates, how attention may be globally organized by many brain regions acting together, as 

illustrated in Figure 1, particularly when keeping in mind how attention can leap between 

cortical areas via their layers 6, as illustrated in Figure 2e. 

 

 

The Preattentive-Attentive Interface and Object-Based Attention 

 

The manner in which top-down attention and pre-attentive perceptual grouping are interfaced 

within the cortical layers enables attention to focus on an entire object boundary, thereby not 

only influencing what objects are selectively attended, but also what groupings may be 

perceived. This is true, in particular, because the same layer 6-to-4 competition, or selection, 

circuit may be activated by pre-attentive grouping cells in layer 2/3, as well as by top-down 

attentional pathways (Figures 2b and 2c). Layer 4 cells can then, in turn, reactivate layer 2/3 cells 

(Figure 2c). This layer 6-to-4 circuit “folds” the feedback from top-down attention or a layer 2/3 

grouping back into the feedforward flow of bottom-up inputs to layer 4. It is thus said to embody 

a “folded feedback” process. When ambiguous and complex scenes are being processed, 

intracortical folded feedback enables stronger groupings that are starting to form in layer 2/3 to 

inhibit weaker groupings, whereas intercortical folded feedback enables higher-order processing 

constraints to bias which groupings will be selected. 

 

Figure 2e summarizes the hypothesis that top-down attentional signals to layer 1 may also 

directly modulate groupings via apical dendrites of both excitatory and inhibitory layer 2/3 cells 

in layer 1 (Lund and Wu, 1997; Rockland, and Virga, 1989). By activating both excitatory and 
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inhibitory cells in layer 2/3, the inhibitory cells may balance the excitatory cell activation, 

thereby creating a net modulatory response of grouping cells in layer 2/3.  
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Figure 4. Spread of visual attention along an object boundary grouping, from an experiment by Roelfsema et al. 

(1998). (a) The experimental paradigm. Macaque monkeys performed a curve-tracing task, during which 

physiological recordings were made in V1. A fixation spot was presented for 300 ms, followed by a target curve and 

a distractor curve presented simultaneously. The target was connected at one end to the fixation point. While 

maintaining fixation, the monkeys had to trace the target curve, then, after 600 ms, make a saccade to its endpoint. 

(b) Neurophysiological data showing attentional enhancement of the firing of a neuron when its receptive field (RF) 

lay on the target curve, as opposed to the distractor. Note that the enhancement occurs about 200 ms after the initial 

burst of activity. Further studies have indicated that the enhancement starts later in distal curve segments, far from 

the fixation point, than it does in proximal segments, closer to fixation (Pieter Roelfsema, personal communication). 

This suggests that attentional signals propagate along the length of the target curve. (Figures (a) and (b) adapted with 

permission from Roelfsema et al. (1998).) (c) Model simulation of the Roelfsema et al. data. (Reprinted with 

permission from Grossberg and Raizada (2000).) 

a 

b cNeurophysiological data Model simulation 
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Because the cortex uses the same circuits to select groupings and to prime attention, attention can 

flow along perceptual groupings that define a discrete object (Roelfsema, Lamme, and 

Spekreijse, 1998). In particular, when attention causes an excitatory modulatory bias at some 

cells in layer 4, groupings that form in layer 2/3 can be enhanced by this modulation via their 

positive feedback loops from 2/3-to-6-to-4-to-2/3. The direct modulation of layer 2/3 by 

attention can also enhance these groupings. As a result, both infants and adults can focus their 

attention selectively upon whole objects. Figure 4 summarizes a LAMINART simulation of data 

from Roelfsema et al. (1998) of the spread of visual attention along an object boundary grouping. 

LAMINART has also been used to simulate the flow of attention along an illusory contour 

(Raizada and Grossberg, 2001), consistent with experimental data of Moore, Yantis, and 

Vaughan (1998). The ability of attention to selectively light up entire object representations has 

an obviously important survival value in adults. It is thus of particular interest that the 

intracortical and intercortical feedback circuits that control this property have been shown in 

modeling studies to play a key role in stabilizing infant development and adult perceptual 

learning within multiple cortical areas, including cortical areas V1 and V2. 

 

 

Stable Development and Learning through Adaptive Resonance 

 

Adaptive Resonance Theory, or ART  (Engel, Fries, Singer, 2001; Grossberg, 1980, 1995, 

1999b; Pollen, 1999) is a cognitive and neural theory which addresses a general problem that 

faces all adaptive brain processes; namely, the stability-plasticity dilemma: how can brain 

circuits be plastic enough to be rapidly fine-tuned by new experiences, and yet simultaneously 

stable enough that they do not get catastrophically overwritten by the new stimuli with which 

they are continually bombarded? 

 

The solution that ART proposes to this problem is to allow neural representations to be modified 

only by those incoming stimuli with which they form a sufficiently close match. If the match is 

close enough, then learning occurs. Precisely because the match is sufficiently close, such 

learning fine-tunes the memories of existing representations. In this way, outliers cannot cause a 
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radical overwriting of an already learned representation. ART proposes how a learning 

individual can flexibly vary the criterion of how good a match is needed between bottom-up and 

top-down information in order for the presently active representation to be refined through 

learning. When coarse matches are allowed, the learned representations are capable of 

representing more general and abstract information. When only fine matches are allowed, the 

representations are more specific and concrete. If the active neural representation does not match 

with the incoming stimulus, then its neural activity is extinguished and hence unable to cause 

plastic changes. Suppression of an active representation enables a memory search to ensue 

whereby some other representation can become active instead through bottom-up signalling. This 

representation, in turn, reads out top-down signals that either gives rise to a match, thereby 

allowing learning, or a non-match, causing the search process to repeat until either a match is 

found or the incoming stimulus causes a totally new representation to be formed. 

 

The connection with the LAMINART model of top-down attention is as follows: A key 

mechanism that implements the matching process is top-down attentional feedback directed to 

behaviorally relevant sensory stimuli.  ART predicted that these top-down attentional matching 

signals are carried by a modulatory on-center off-surround network (e.g., Grossberg, 1980, 1982, 

1999b), whose role is to select and enhance behaviorally relevant bottom-up sensory inputs 

(match), and suppress those that are irrelevant (non-match).  Mutual excitation between the top-

down feedback and the bottom-up signals that they match can amplify, synchronize, and 

maintain existing neural activity long enough for synaptic changes to occur.  Thus, attentionally 

relevant stimuli are learned, while irrelevant stimuli are suppressed and hence prevented from 

destabilizing existing representations. See Grossberg (1999c) for a more detailed account.  

 

The folded feedback layer 6-to-4 modulatory on-center off-surround attentional pathway in the 

LAMINART model (Figure 2b) can be thought of as an implementation of ART matching in 

cortical laminar circuitry. The claim that bottom-up sensory activity is enhanced when matched 

by top-down signals is in accord with an extensive neurophysiological literature showing the 

facilitatory effect of attentional feedback (Luck et al., 1997; Roelfsema et al., 1998; Sillito et al., 

1994), but not with models in which matches with top-down feedback cause suppression 

(Mumford, 1992; Rao and Ballard, 1999). The ART proposal raises two key questions: First, 
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does top-down cortical feedback have the predicted modulatory on-center off-surround structure? 

Second, is there evidence that top-down feedback controls plasticity in the area to which it is 

directed? 

 

Experimental evidence was summarized above in support of the modulatory on-center off-

surround structure of top-down cortical attention in the visual system. ART predicts, in addition, 

that on-center off-surround attentional feedback should exist in all sensory and cognitive systems 

that are capable of stable on-line learning. Nobuo Suga and colleagues have shown that feedback 

from auditory cortex to the medial geniculate nucleus (MGN) and the inferior colliculus (IC) also 

has an on-center off-surround form (Zhang, Suga, and Yan, 1997) and Temereanca and Simons 

(2001) have produced evidence for a similar  feedback architecture in the rodent barrel system. 

 

 

The Link between Attention and Learning 

 

A more stringent test of the ART claim is that top-down feedback should control plasticity.  

Psychophysically, the role of attention in controlling adult plasticity and perceptual learning was 

demonstrated by Ahissar and Hochstein (1993). Gao and Suga (1998) reported physiological 

evidence that acoustic stimuli caused plastic changes in the inferior colliculus (IC) of bats only 

when the IC received top-down feedback from auditory cortex. These authors also reported that 

plasticity is enhanced when the auditory stimuli were made behaviorally relevant, consistent with 

the ART proposal that top-down feedback allows attended, and thus relevant, stimuli to be 

learned, while suppressing unattended irrelevant ones. Evidence that cortical feedback also 

controls thalamic plasticity in the somatosensory system has been found by Krupa, Ghazanfar, 

and Nicolelis (1999) and by Parker and Dostrovsky (1999). These findings are reviewed by Kaas 

(1999).  

 

Models of intracortical grouping-activated feedback and intercortical attention-activated 

feedback have shown that either type of feedback can rapidly synchronize the firing patterns of 

higher and lower cortical areas (Grossberg and Grunewald, 1997; Grossberg and Somers, 1991). 

ART puts this  result into perspective by suggesting that resonance may lead to synchronization, 
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which may, in turn, trigger cortical learning by enhancing the probability that “cells that fire 

together wire together.” An excellent recent discussion of top-down cortical feedback, 

synchrony, and their possible relations to the ART model is given by Engel, Fries, and Singer 

(2001). 

 

 

Learning without Attention: The Pre-Attentive Grouping is its Own Attentional Prime 

 

The hypothesis that attentional feedback exerts a controlling influence over plasticity in sensory 

cortex does not imply that unattended stimuli can never be learned. Indeed, it is clear that 

plasticity must be allowed to take place during early development, before top-down attention has 

even come into being. Grossberg (1999a) noted that, were this not possible, an infinite regress 

could be created, since a lower cortical level like V1 might then not be able to stably develop 

unless it received attentional feedback from V2, but V2 itself could not develop unless it had 

received reliable bottom-up signals from V1. How does the cortex avoid this infinite regress, so 

that during development, plastic changes in cortex may be driven by stimuli that occur with high 

statistical regularity in the environment (Grossberg and Williamson, 2001), without causing 

massive intability? How does this process continue to fine-tune sensory representations in 

adulthood even in cases where attention may not be explicitly allocated (Seitz and Watanabe, 

2003; Watanabe, Nanez, and Sasaki, 2001)?  

 

The subtlety of this issue is compounded by the fact that there is experimental and even 

mathematical support for the ART prediction that top-down attention plays a matching role 

which helps to control cortical plasticity, yet, in addition to the infinite regress problem 

mentioned above, it is also necessary to explain data about adult perception which, at the outset, 

seem to conflict with this prediction.  In particular, how can pre-attentive groupings, such as 

illusory contours, form over positions that receive no bottom-up inputs? Illusory contours seem 

to contradict the ART hypothesis that feedback effects should merely be modulatory. How, then, 

can the cells that represent the illusory contour fire without bottom-up inputs? One cannot avoid 

this problem by claiming that illusory contour formation does not involve a process that includes 

learning, since many data show that the formation of horizontal connections can be influenced by 
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visual experience throughout life (see Grossberg and Williamson (2001) for a review). How, 

then, can we see illusory contours without destabilizing cortical development and learning?  

 

As was described above, the ART matching rule has three aspects: first, incoming sensory 

signals that receive matching top-down excitatory feedback should be enhanced; second, non-

matching inputs that do not receive excitatory feedback should be suppressed; and third, top-

down feedback on its own should be only modulatory; that is, unable to produce above-threshold 

activity in the lower area in the absence of incoming bottom-up signals. The conceptual 

challenge is this: If ART matching is needed to stabilize cortical development and learning, and 

if ART matching requires that suprathreshold activation can occur only where there are bottom-

up inputs, then does not the existence of illusory contours contradict the ART matching rule, 

since such groupings form over positions that receive no bottom-up inputs, and yet do not seem 

to destabilize cortical development or learning? If the brain had not solved this problem, anyone 

could roam through the streets of a city and destabilize pedestrians’ visual systems simply by 

showing them images of Kanizsa squares! The absurdity of this possibility indicates how 

fundamental the issue at hand really is. 

 

The LAMINART model proposes that the brain uses its laminar circuits to solve this problem in 

an ingenious, parsimonious, and simple way. Here is where the laminar cortical solution of the 

“preattentive-attentive interface” problem plays a key role: Both intercortical attentional 

feedback and intracortical grouping feedback share the same selection circuit from layer 6-to-4. 

In particular, when a horizontal grouping starts to form in layer 2/3, it also activates the 

intracortical feedback pathway from layer 2/3-to-6, which activates the modulatory on-center 

off-surround network from layer 6-to-4.  This feedback pathway helps to select which cells will 

remain active to participate in a winning grouping.  But this is the same network that ART 

requires attention to use when it stabilizes cortical development and learning through 

intercortical interactions.  In other words, the layer 6-to-4 selection circuit, which in the adult 

helps to choose winning groupings, also helps to assure in the developing brain that the ART 

matching rule holds at every position along a grouping. Because the matching rule holds, only 

the correct combinations of cells can “fire together and wire together,” and hence stability is 

achieved. Intracortical feedback via layers 2/3-to-6-to-4-to-2/3 can realize this selection process 
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even before intercortical attentional feedback can develop.  This property is sometimes 

summarized with the phrase: “The pre-attentive grouping is its own attentional prime” 

(Grossberg, 1999a).  

 

In summary, by joining together bottom-up (interlaminar) adaptive filtering, horizontal 

(intralaminar) grouping, top-down intracortical (but interlaminar) pre-attentive feedback, and 

top-down intercortical (and interlaminar) attentive feedback, the LAMINART model shows how 

some developmental and learning processes can occur without top-down attention, by using 

intracortical feedback processes that computationally realize the same stabilizing effects that top-

down intercortical attentional processes were earlier predicted to realize. Because of this intimate 

link between intracortical and intercortical feedback processes, attention can modulate how pre-

attentive grouping processes unfold, as in the case of the Roelfsema et al. (1998) data.  

 

 
A Balancing Act between Excitatory and Inhibitory Circuits 

 

It was noted above that, within key cortical circuits that realize these grouping and attentional 

processes, there seems to be a balance between excitatory and inhibitory interactions. The 

balance within layer 2/3 circuits is proposed to help achieve horizontal perceptual grouping. The 

balance between excitatory and inhibitory interactions within the on-center of the network from 

layer 6-to-4 helps to do several things, among them allow top-down attention to be modulatory. 

The schematic circuits in Figure 2 show only the above two types of balanced excitatory and 

inhibitory circuits. There are actually more types of interaction between excitation and inhibition 

in the cortex, but these are not displayed in Figure 2. One such interaction gives rise to 

monocular simple cell receptive fields in layer 4; see Liu, Gaska, Jacobson, and Pollen (1992), 

Palmer and Davis (1981), and Pollen and Ronner (1981) for relevant data and Olson and 

Grossberg (1998) for a modeling study. The next section proposes how another type of 

excitatory/inhibitory interaction within layer 3B gives rise to binocular simple cells that match 

monocular inputs from different eyes.  
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Figure 5. Contrast-dependent perceptual grouping in primary visual cortex. (a) Illustrative visual stimuli. A 

variable-contrast oriented Gabor patch stimulates the classical receptive field (CRF), with collinear flanking Gabors 

of fixed high-contrast outside of the CRF. The stimulus shown here, based on those used Polat et al. (1998), was 

presented to the model neural network. (b) Neural responses recorded from cat V1. The colinear flankers have a net 

facilitatory effect on weak targets which are close to the contrast-threshold of the cell, but they act to suppress 

responses to stronger, above-threshold targets. When the flankers are presented on their own, with no target present, 

the neural response stays at baseline levels. (Reproduced with permission from Polat et al. (1998).) (c) Model 

simulation of the Polat et al. data. (Reprinted with permission from Grossberg and Raizada (2000).) 

 

Even interactions between the circuits within layer 2/3 and from layer 6-to-4, as in Figure 2, 

allows us to analyse and explain quite a bit of additional data, notably data in which the balance 

between excitatory and inhibitory interactions is altered due to different combinations of sensory 

inputs. A striking example of such a change in balance is illustrated in Figure 5, which 

summarizes data of Polat, Mizobe, Pettet, Kasamatsu, and Norcia (1998) on contrast-dependent 

perceptual grouping in primary visual cortex, and a simulation of these data from Grossberg and 

Raizada (2000). Roughly speaking, the excitatory effects that enable co-linear flankers to 

facilitate activation in response to a low-contrast target are mediated by layer 2/3 interactions, 

and the inhibitory effects that cause co-linear flankers to depress activation in response to a high-

contrast target are mediated by the layer 6-to-4 off-surround. These two types of effects 

propagate throughout the network via layer 4-to-2/3 and layer 2/3-to-6 interactions, among 

a b cNeurophysiological data Model simulation 



 24

others. The fact that flanking stimuli alone yield no response could be due to either of two 

possibilities: Either the flanking stimuli occur outside the region where horizontal facilitation of 

the target V1 cell can reach, or the cell can only be modulated by horizontal interactions, but not 

fired by them, in the absence of bottom-up inputs. 

 

In cortical area V2 of monkeys, it is known through the classical experiments of von der Heydt, 

Peterhans, and Baumgartner (1984) and subsequent experiments from this laboratory (e.g., 

Peterhans and von der Heydt (1989)) that approximately co-linear horizontal interactions from 

approximately co-oriented cells are capable of firing a target cell that does not receive bottom-up 

inputs. This capability is believed to be the basis for the brain’s ability to form illusory contours 

in response to artificial stimuli such as the Kanizsa square, as well as in response to ecologically 

important scenic cues such as shading, texture, and depth cues. The von der Heydt et al. (1984) 

experiment confirmed a prediction of Grossberg and colleagues (Cohen and Grossberg, 1984; 

Grossberg, 1984; Grossberg and Mingolla, 1985a, 1985b) that perceptual grouping obeys a 

bipole property; namely, such a cell can fire if it gets approximately co-linear horizontal inputs 

from approximately co-oriented cells on both sides of its receptive field, even if it does not 

receive bottom-up input; or it can fire in response to bottom-up input alone, or bottom-up input 

plus any combination of horizontal signals. A receptive field structure for bipole cells was also 

predicted that was supported by later psychophysical experiments; e.g., Field, Hayes, and Hess 

(1993) and Kellman and Shipley (1991). The LAMINART model (Grossberg, 1999a; Grossberg, 

Mingolla, and Ross, 1997) extended this analysis by predicting how the bipole property may be 

realized by balanced excitatory and inhibitory interactions within layer 2/3, as summarized in 

Figure 6. Without these balanced inhibitory interactions, the growth of horizontal connections 

during development could proliferate uncontrollably if inhibition is too weak, or could be 

suppressed entirely if inhibition is too strong; see Grossberg and Williamson (2001) for model 

simulations. 

 

It may be, however, that such a “firing” bipole property does not exist in cortical area V1. It is 

well-known from several experiments that co-linear horizontal interactions from co-oriented 

cells can enhance, or modulate, the activation of a V1 cell that also receives bottom-up inputs 

(e.g., Crook, Engelmann, and Lowel, 2002; Polat et al., 1998), but there seem to be few direct 
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experimental tests of whether cells can fire in response to horizontal interactions when they 

receive no bottom-up inputs. From a modeling viewpoint, changing from a firing bipole property 

to a modulatory bipole property might involve no more than a change in the relative strength of 

horizontal excitatory and disynaptic inhibitory interactions. It is nonetheless conceptually 

important to ascertain whether true perceptual grouping can occur in V1, or whether modulatory 

interactions exist that, for example, can increase the signal-to-noise ratio of cells which lie on 

perceptually salient contours without actually completing illusory contours across regions that 

receive no bottom-up inputs. It should also be noted that, when modulatory bipole interactions 

occur, then both the layer 2/3 inhibitory interneurons and the layer 6-to-4 inhibitory interneurons 

may both have a net inhibitory effect on target cells that receive no direct bottom-up inputs. 

 

Data relevant to this issue have recently been collected by several labs. Ramsden, Hung, and Roe 

(2001) have done a study that compares V1 cortical responses to real contours and to illusory 

contours that are generated by offset gratings, using both optical imaging and single unit 

electrophysiology. They concluded that, in response to an offset grating illusory contour 

stimulus, cell responses are negatively signaled, or de-emphasized, in V1, whereas they are 

enhanced in V2, as previously reported. This result led these authors to propose that the 

differences in V1 and V2 responses to illusory and real contours might be a cue whereby the 

brain can tell the difference between a real and an illusory contour. 

 

There is a simpler explanation of these data if the V1 cells under study can merely modulate, 

rather than fire vigorously, in response to purely horizontal signals. In particular, at the ends of 

lines in the offset grating, there will be strong inhibition that is due to a combination of layer 2/3 

inhibitory interneurons and the inhibitory interneurons of the 6-to-4 off-surround, among other 

inhibitory circuitry. If there is no active boundary completion due to a  firing bipole property 

within V1, then such inhibitory effects may not be offset by excitatory boundary completion 

signals, so that inhibition can dominate cell responses at positions within the gaps in the offset 

grating.  
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Figure 6. Schematic of the boundary 

grouping circuit in layer 2/3.  Pyramidal 

cells with colinear, coaxial receptive 

fields (shown as ovals) excite each other 

via long-range horizontal axons (Bosking 

et al., 1997; Schmidt et al., 1997), which 

also give rise to short-range, disynaptic 

inhibition via pools of interneurons, 

shown filled-in black (McGuire et al., 

1991). This balance of excitation and 

inhibition helps to implement the bipole 

property. (a) Illustration of how 

horizontal input coming in from just one 

side is insufficient to cause above-

threshold excitation in a pyramidal cell 

(henceforth referred to as the target) 

whose receptive field does not itself 

receive any bottom-up input. The 

inducing stimulus (e.g. a Kanizsa 

‘pacman’) excites the oriented receptive 

fields of layer 2/3 cells, which send out 

long-range horizontal excitation onto the target pyramidal. This excitation brings with it a commensurate amount of 

disynaptic inhibition. This balance of “one-against-one” prevents the target pyramidal cell from being excited 

above-threshold. The boundary representation of the solitary pacman inducer produces only weak, sub-threshold 

colinear extensions (thin dashed lines). (b) When two colinearly aligned inducer stimuli are present, one on each 

side of the target pyramidal cell receptive field, a boundary grouping can form. Long-range excitatory inputs fall 

onto the cell from both sides, and summate. However, these inputs fall onto a shared pool of inhibitory interneurons, 

which, as well as inhibiting the target pyramidal, also inhibit each other (Tamas, Somogyi, & Buhl, 1998), thus 

normalizing the total amount of inhibition emanating from the interneuron pool, without any individual interneuron 

saturating. The combination of summating excitation and normalizing inhibition together create a case of “two-

against-one”, and the target pyramidal is excited above-threshold. This process occurs along the whole boundary 

grouping, which thereby becomes represented by a line of suprathreshold-activated layer 2/3 cells (thick dotted line). 

Boundary strength scales in a graded analog manner with the strength of the inducing signals. (Reprinted with 

permission from Grossberg and Raizada (2000).) 
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Tucker and Katz (2003a, 2003b) have provided additional evidence that is consistent with this 

interpretation by studying tangential slice preparations of layer 2/3 cells of ferret primary visual 

cortex. Their electrophysiological and imaging methods probed cell responses when two 

stimulating electrodes up to several hundred microns apart were activated either simultaneously 

or with prescribed temporal phases. Such a set-up has the potential for directly testing for a firing 

or modulatory bipole property, or other form of horizontal interaction. Their studies showed that 

strong suppression occurs as a result of simultaneous activation. In order to interpret this result, it 

is important to know if the electrodes activated sites that converge on co-linear and co-oriented 

cells. If they did not, then the two sources could cause net inhibition even if a firing bipole 

property existed, since sufficiently non-colinear orientations are proposed to compete, not 

cooperate, using their disynaptic inhibitory interactions.  

 

In fact, orientational competition was part of the earliest bipole model (Grossberg and Mingolla, 

1985b). If at least some of their penetrations did represent such co-linear and co-oriented cells, 

then the absence of net suprathreshold activation favors a modulatory bipole property. In fact, the 

authors proposed a model to explain their data that strikingly resembles Figure 6, in which 

horizontal excitatory connections and connections from disynaptic inhibitory interneurons 

converge on target cells. In particular, they proposed that different excitatory connections 

synapse on multiple inhibitory interneurons, and that this summation causes the extra inhibition 

that was observed during simultaneous activation. This predicted property differs from that of a 

firing bipole model in its ability to allow inhibition to grow substantially when both co-linear 

input sources are active. If these data are interpreted at face value, then they suggest that one of 

the parameters in these V1 cells that may differ from a firing bipole interaction is the following: 

When a firing bipole property obtains, recurrent inhibitory interactions between the inhibitory 

interneurons are predicted to approximately normalize their total activity when more than one 

input source is active, while excitation summates at target cells, thereby creating net activation of 

the target cell. If these recurrent inhibitory interactions are weak, then a modulatory excitatory 

effect can be realized at target cells as a manifestation of the balance between excitation and 

inhibition that has been proposed to help stabilize the development of horizontal cortical 

connections.  Due to the overlap in excitatory connections on inhibitory cells, inhibition can then 

easily increase more rapidly than excitation, as reported in the experiments.  
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What is a Visual Illusion? 

 

Independent of whether this interpretation holds up when additional tests of a firing vs. 

modulatory bipole property are made in V1, available neural models of vision have provided an 

alternative explanation to the Ramsden et al. (2001) proposal of how the brain “knows” the 

difference between a real and an illusory contour. As noted in the discussion of Complementary 

Computing, visual boundaries and surfaces are predicted to obey complementary properties; see 

Figure 1. One of these complementary properties is that visual boundaries are not perceptually 

visible, in the sense that they are predicted not to generate percepts of visible lightness or color 

within the (V1 interblob)-(V2 pale stripe)-V4 boundary-processing cortical stream. Visual 

surfaces are proposed to generate visible lightness and color percepts within the (V1 blob)-(V2 

thin stripe)-V4 cortical stream. A large body of perceptual and neural data are consistent with 

this prediction (see Grossberg (1994, 1997) for reviews), but it has not been directly tested. From 

the perspective of visual boundary and surface processing, a visual illusion is an unfamiliar 

combination of boundary and surface properties; e.g., in response to an offset grating, a boundary 

can be recognized without it being seen to separate regions of different visible surface lightness 

or color.  

 

More generally, the proposal that the brain distinguishes real from illusory contours within the 

boundary system does not fit in well with data suggesting that no such distinction is needed. For 

example, perceptual boundaries play a key role in enabling the brain to fill-in surface 

representations after discounting of the illuminant takes place, and in bridging across retinal 

imperfections like the blind spot and retinal veins; see Grossberg (1994) for a review. Many of 

the boundaries that we believe to be real are, from a mechanistic viewpoint, really illusory 

contours that just happen to be correlated with surface lightness and color properties that “look 

real” based on past experience. If most illusory contours are regularly mistaken for real contours, 

then the need to distinguish illusory from real contours within the boundary system vanishes. 
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How Does the Visual Cortex See the World in Depth? 

 

Our discussion so far has not considered how the brain sees the world in depth. The LAMINART 

model was recently combined with the FACADE model of 3D vision and figure-ground 

perception (Grossberg, 1994, 1997; Grossberg and McLoughlin, 1997; Kelly and Grossberg, 

2000; McLoughlin and Grossberg, 1998) to propose how the laminar circuits of cortical areas 

V1, V2, and V4 are organized for purposes of stereopsis and 3D planar surface perception 

(Grossberg and Howe, 2003). This generalization, which is called the 3D LAMINART model, 

predicts how cellular and network mechanisms of 3D vision are linked to mechanisms of 

development, learning, grouping, and attention. 

 

Despite some explanatory successes, many previous cortical models of 3D vision, for example 

the disparity energy model of Ohzawa, DeAngelis, and Freeman (1990), considered only 

stereopsis, by which image features from the two eyes are binocularly matched in cortical area 

V1. Stereopsis is important, but on its own is insufficient to explain the 3D surface percepts that 

form an integral part of our visual consciousness.  

 

The LAMINART extension to 3D vision, shown in Figures 7 and 8, goes beyond these previous 

analyses in several ways. First, it provides a refined model of stereopsis in V1 which clarifies the 

role of cells in cortical layers 4, 3B, and 2/3A. In particular, the model revises how the disparity 

energy model achieves stereopsis, in a manner that is more consistent with recent data. Second, 

the model proposes how monocular and binocular information are combined and selected in V2 

to form 3D boundary representations. Third, the model shows how these 3D boundaries give rise 

to visible 3D surface percepts in V4. Taken together, these model processes have been used to 

explain and simulate a much larger set of neurophysiological, anatomical, and psychophysical 

data about stereopsis and 3D surface perception than has previously been possible.  
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Figure 7. 3D Laminart model circuit diagram for simulating stereopsis and 3D planar surface percepts. See text for 

details. (Reprinted with permission from Grossberg and Howe (2003).)   

 

The model achieves these goals by embodying five basic psychophysical constraints in its neural 

circuitry: 

(1) Reconciles contrast-specific binocular fusion with contrast-invariant boundary perception. 

Only edges in the left and right retinal images that have the same contrast polarity—that is, their 
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luminance gradients have the same sign—can be binocularly fused to form a percept of depth 

(Howard and Rogers, 1995). Binocular fusion thus obeys the same-sign hypothesis; see Figure 

9a. However, fused boundaries must also be able to form around objects whose contrast polarity 

with respect to the background can reverse along their perimeters (Grossberg, 1994); see the 

ellipse in Figure 9b. In other words, binocular boundaries need to be represented in a contrast-

invariant way. How can the brain reconcile contrast-specific fusion with the need to form 

contrast-invariant object boundaries? The model proposes that both constraints are realized by 

interactions between cells in layers 4, 3B, and 2/3A of cortical area V1 interblobs; see Figure 7. 

 
 

Figure 8. 3D LAMINART model, including 3D boundary completion and attention, as well as the binocular and 

monocular interactions summarized in Figure 7. See text for details. (Reprinted from Grossberg and Howe (2003).) 
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(2) Implements the contrast constraint on binocular fusion. The brain somehow figures out 

which of the many potential same-sign edges in the two retinal images should be binocularly 

fused, since veridical stereoscopic depth perception will occur only if the two edges belong to the 

same object. The brain hereby solves the correspondence problem (Julesz, 1971; Howard and 

Rogers, 1995). An early step in solving the correspondence problem is to binocularly fuse only 

edges with approximately the same magnitude of contrast (McKee et al., 1994). This constraint 

naturally arises when the brain fuses edges that derive from the same objects in the world. The 

model satisfies this constraint through interactions between excitatory and inhibitory cells in 

layer 3B of V1 (see Figure 7) that endow the binocular cells there with an obligate property 

(Poggio, 1991), whereby they respond preferentially to left and right eye inputs of approximately 

equal size.  

 
 

Figure 9. (a) The same-sign hypothesis: only edges that have the same contrast polarity can be stereoscopically 

fused to produce a percept of depth. (b) As it is traversed, the boundary of the ellipse changes its contrast polarity 

relative to the background, thereby illustrating the need for object boundaries to be represented in a contrast-

invariant manner. See text for details. (Reprinted with permission from Grossberg and Howe (2003).) 
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(3) Solves the correspondence problem. Even if all binocular matches are of the same-sign and of 

similar contrast magnitude, there can still exist many false binocular matches between edges that 

do not correspond to the same objects. Some models have attempted to solve this problem by 

imposing a unique-matching rule, which states that any given feature in one retinal image is 

matched at most with one feature in the other retinal image (Marr and Poggio, 1976; Grimson, 

1981; for a review see Howard and Rogers, 1995, pp.42-43). This rule is not satisfied, however, 

in situations like Panum’s limiting case (Panum, 1858; Gillam et al., 1995; McKee et al., 1995) 

where a bar presented to one eye is simultaneously matched to two separate bars presented to the 

other eye. The present model does not enforce unique matches. Rather, the model encourages 

them by using a disparity filter that is proposed to occur in the pale stripes of cortical area V2, 

possibly in layer 3B; see Figures 7 and 10. This disparity filter uses two types of inhibitory 

interactions: line-of-sight inhibition and inhibition across depth but within cyclopean position, to 

encourage unique matches. 

 
Figure 10.  The V2 disparity 

filter.  The V1 binocular 

boundary network matches an 

edge in one retinal image with 

every other edge in the other 

retinal image whose relative 

disparity is not too great, that 

has the same contrast polarity, 

and whose magnitude of 

contrast is not too different.  In 

response to this image, the V1 

boundary network creates four 

matches, with the two not in the fixation plane being false matches between edges that do not correspond to the 

same object.  These false matches are suppressed by the disparity filter in V2, wherein each neuron is inhibited by 

every other neuron that shares either of its monocular inputs (i.e., shares a monocular line-of-sight represented by 

the solid lines) or is directly in front of or behind it (i.e., is connected to it by a dashed line). The solid lines that 

represent the monocular lines-of-sight also represent the positional shifts due to binocular matching: an edge in the 

left retinal image is shifted to the right for matches increasingly further away, whereas an edge in the right retinal 

image is shifted in the opposite direction. (Reprinted with permission from Grossberg and Howe (2003).) 
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(4) Combines monocular and binocular information to form depth percepts.  Although Panum’s 

limiting case may seem to be a laboratory curiosity, many naturally occurring situations also 

contain only one edge in one eye and two possible edges with which to match it in the other eye. 

For example, due to the lateral displacement of the eyes, an object’s edge that is seen by one eye 

may be occluded in the other eye, as occurs during da Vinci stereopsis (Nakayama and Shimojo, 

1990). Although it does not possess its  own binocular information about binocular disparity, the 

monocularly viewed region has a definite depth conferred to it by the binocularly viewed parts of 

the scene. The brain can thus utilize monocular information to build up seamless 3D percepts of 

the world. In fact, in experiments involving Panum’s limiting case, varying the relative contrast 

of the bars alters the perception of depth in a manner that reveals clear monocular-binocular 

interactions (Smallman and McKee, 1995). Dichoptic masking, where an object presented to one 

eye is obscured, or masked, by one presented to the other eye, illustrates a third way in which 

monocular and binocular information may interact (McKee et al., 1994).  

 

Given that monocular information is important, the problem then arises about how to combine 

monocular and binocular boundaries. Because monocular boundaries do not have a definite 

depth associated with them, the brain needs to figure out to which depth they should be assigned. 

A proposed solution to this monocular-binocular interface problem was suggested in Grossberg 

(1994, 1997) in order to explain data about 3D figure-ground perception. This hypothesis is 

shown in the 3D LAMINART model to clarify many other data about 3D surface perception as 

well, In particular, the model assumes that the outputs of the monocular boundary cells are added 

to all depth planes in the pale stripes of cortical area V2 along their respective lines-of-sight, 

possibly in layer 4; see Figures 7 and 11a. The disparity filter, which helps to solve the 

correspondence problem, also solves the monocular-binocular interface problem by 

automatically eliminating most of the monocular boundaries that are not at the correct depths. 
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Figure 11. (a) A connected boundary is computed at Depth 1, but an open boundary is computed at Depth 2. (b) 

Filling-in of surface lightness is contained or not depending on the connectedness of the boundary. Monocular 

boundaries (i.e., two horizontal boundaries and the right vertical boundary) have been added to all depth planes 

whereas the binocular boundary (i.e., the left vertical boundary) is present only in the near depth plane, thereby 

creating a connected boundary, and thus containment of filling-in, only in the near depth plane. (Reprinted with 

permission from Grossberg and Howe (2003).) 

 

(5) Forms 3D surface percepts. The above considerations summarize only how the brain may 

construct a 3D boundary representation of an object. As noted above, there is considerable 

evidence that boundary representations on their own do not give rise to visible percepts, which 

rather are a property of surface representations (Grossberg, 1994). Surface representations are 

proposed to derive from a filling-in process whereby lightness and color mark the depths at 

which the surfaces occur. Filling-in is needed to recover lightness and color estimates in regions 

where they have been suppressed by the process of discounting the illuminant (Grossberg & 

Todorovic, 1988). The existence of a filling-in process has been supported by 

psychophysical (Paradiso and Nakayama, 1991; Pessoa and Neumann, 1998; Pessoa, Thompson, 

and Noë, 1998; Rogers-Ramachandran and Ramachandran, 1998) and neurophysiological 

experiments (Lee, Mumford, Romero, and Lamme, 1998; Rossi, Rittenhouse, and Paradiso, 

1996; Lamme, Rodriguez-Rodriguez, and Spekreijse, 1999; Rossi, Desimone, and Ungerleider, 

1998). Boundaries are predicted to control the depths at which particular lightnesses and colors 
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can fill-in, a process called 3D surface capture. The 3D LAMINART model considers only the 

filling-in of achromatic lightness. 

 

How does the brain ensure that lightness fills-in at only the correct depths? Grossberg (1994) 

proposed properties of this boundary-surface interaction that helped to explain many data about 

3D figure-ground perception. In the 3D LAMINART model, one of these properties proved 

essential to explain 3D surface percepts that arise in stereopsis research. Namely, visible surfaces 

arise in cortical area V4 only if they are enclosed by connected boundaries. For example, a 

rectangular connected boundary may be composed of one vertical binocular boundary, one 

vertical monocularly viewed boundary, and two horizontal boundaries that code no disparity 

information, as in Figure 11. This connected boundary can support a visible surface percept at 

the depth corresponding to the binocular boundary if all other constraints are satisfied, because 

such a boundary can contain the filling-in process. However, if the vertical binocular boundary is 

missing, as it would be at a different depth plane, then the total boundary is not connected, and a 

visible percept will not be evident at that depth because filling-in can dissipate out of the 

boundary gap. This example illustrates how the monocular-binocular interface problem (item (4) 

above), and thus the correspondence problem (item (3) above), influence visible percepts of 3D 

surfaces. 

 

Before the 3D LAMINART model was introduced, the FACADE model included a non-laminar 

model of stereopsis and 3D planar surface perception (Grossberg & McLoughlin, 1997; 

McLoughlin & Grossberg, 1998) that modified and generalized the disparity energy model of 

stereopsis (Ohzawa et al., 1990). This generalization incorporated rectification prior to binocular 

combination, absent from the original disparity energy model, which has recently received 

independent experimental support (Read et al., 2002; Cumming, 2002). It also proposed that 

positional shifts between left and right eye cortical inputs code disparities, rather than phase 

shifts, which has also received experimental support (Tsao & Livingstone, In Press). The 

FACADE model also incorporated a disparity filter to help solve the correspondence problem 

(Howard & Rogers, 1995), as well as mechanisms for filling-in 3D surface percepts from 3D 

boundary representations. In particular, the FACADE model explained the fact that stereoscopic 

fusion is generally impossible when the left and right eye stimuli differ too much in contrast 
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(Smallman & McKee, 1995). However, in the form developed by Grossberg and McLoughlin, 

the FACADE model could not explain why stereoscopic fusion is always possible in the special 

case where each eye sees only a single bar, regardless of the contrast difference of the two bars 

(McKee et al., 1994; Smallman & McKee, 1995). 

 

The 3D LAMINART model was able to overcome this limitation by using properties of 

identified cells in laminar cortical circuits, and resimulated all the data previously simulated by 

McLoughlin & Grossberg (1998), in particular data on contrast variations of the correspondence 

problem and dichoptic masking. In addition, the new model can simulate still more 

psychophysical data than its non-laminar predecessors, including: the Venetian blind illusion, 

four different examples of da Vinci stereopsis (Nakayama & Shimojo, 1990; Gillam et al., 1999), 

stereopsis with opposite-contrast stimuli, the effect of interocular contrast differences on 

stereoacuities, and various lightness illusions. Simulations of some of these data are shown in 

Figures 12 and 13.  

 

A Solution of the Correspondence Problem 

 

 Smallman and McKee (1995) initiated their extensive study of the correspondence problem 

by performing a control experiment in which each eye was presented with two bars, all four bars 

having the same high contrast.  Subjects reported seeing two identical bars, both in the far 

disparity plane.  Figure 12a shows the corresponding model simulation, which has the following 

explanation:   
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Figure 12. (a) Simulation of the control experiment Smallman and McKee (1995) used for subsequent studies of the 

correspondence problem. (b) Simulation of a more complicated version of the correspondence problem. See text for 

details. (Reprinted with permission from Grossberg and Howe (2003).) 
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Figure 12b summarizes the model simulation of a more complicated version of the 

correspondence problem that was experimentally studied by Smallman and McKee (1995). Once 

again the false matches are shown in the second plot of the second row and the correct matches 

in the fourth plot. Since there are more correct matches than false matches, the latter are again 

suppressed by the former via the line-of-sight inhibition of the V2 disparity filter. This 

simulation shows that the model can be applied to more general versions of the correspondence 

problem than that shown in Figure 12a. More generally, the model has also successfully 

simulated a still more complex version of the correspondence problem known as the Venetian 

blind illusion (Howard and Rogers, 1995, Figure 7.21), which consists of two gratings, a low 

frequency one that is presented to the left eye, and a high frequency one presented to the right 

eye. When fused, the frequencies of the gratings are such that every second bar of the left grating 

is in retinal correspondence with every third bar of the right grating. This stereogram produces a 

percept of short ramps, each containing three bars, sloping up from left to right interspaced with 

steep returns; viz., a Venetian blind. These simulations, along with those of various versions of 

da Vinci stereopsis, one of which is summarized below, clarify how the model can handle natural 

images by showing how it deals with different sorts of potentially confusing matches within the 

fusion range.  

 

DaVinci Stereopsis 

 

As noted above, DaVinci stereopsis images are of interest because, when viewing the 3D world, 

one eye sometimes can see parts of the world that the other eye cannot, due to 3D occlusions 

caused by the fact that each eye views the world from a slightly different position. In the 

experiments of Nakayama  and Shimojo (1990), a thick bar was presented to both eyes and a thin 

bar only to the right eye, as shown in the first row of plots of Figure 13a.  Subjects reported 

perceiving the thin bar behind the thick bar, at a depth that was consistent with the right edge of 

the thin bar of the right input being fused with the right edge of thick bar of the left input.The 

model explanation is as follows: 
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Figure 13. (a) Simulation of the depth percept invoked by the da Vinci stereopsis stimulus of Nakayama and 

Shimojo (1990). (b) Simulation of depth percept invoked by the da Vinci stereopsis stimulus of Gillam, Blackburn 

and Nakayama (1999). See text for details. (Reprinted from Grosssberg and Howe (2003).) 
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The vertical boundaries of the thick bar are fused binocularly in the near disparity plane in V1, as 

shown by the second plot of the second row. The right edge of the thin bar is matched with the 

right edge of the thick bar and is thus fused binocularly in the far disparity plane in V1, as shown 

by the fourth plot.  The left edge of the thin bar is registered only monocularly because it cannot 

be matched with either of the edges of the left input.  Monocular boundaries are added to all 

depth planes in the V2 disparity filter along their respective monocular lines-of-sight, as shown 

by plots in the third row.  The vertical binocular boundaries are also added to the disparity filter, 

overlapping with the vertical boundaries of the thick bar representation in the second plot and 

with the rightmost vertical boundary in the fourth plot.  These vertical boundaries, being 

stronger, eliminate all other vertical boundaries that share their lines-of-sight via the disparity 

filter’s line-of-sight inhibition.  However, they do not eliminate the vertical boundaries that 

originate from the left edge of the thin bar, because these do not share any of their lines-of-sight. 

The final V2 boundary representations are shown in the fourth row.  

 

As usual, V4 fills in surfaces in those regions that are completely enclosed by a connected 

boundary. This produces a percept of a thick bar in a near disparity plane, represented by the 

second plot of the top row, and a thin bar in a far disparity plane, represented by the fourth plot. 

The very small squares seen in the top row are artifacts of the implementation of the filling-in 

process with a relatively small number of pixels and have no physiological significance. They 

disappear when the simulations are carried out at a sufficiently high resolution, which takes 

much more time. The model therefore correctly predicts that the thin bar will appear behind the 

thick bar at a depth that is consistent with the right edge of the thin bar being stereoscopically 

fused with the right edge of the thick bar, as in the data of Nakayama & Shimojo (1990). 

 

The daVinci stereopsis stimulus of Gillam, Blackburn, and Nakayama (1999) illustrates a 

different point, that is simulated in Figure 13b. Here, the right eye sees two thin bars and the left 

eye a single thick bar. Subjects report seeing two thin bars, the left bar in the near disparity plane 

and other in the far disparity plane. Gillam et al. (1999) suggested that, because the right eye 

input contains a gap not present in the left eye input, this display demonstrates that stereopsis can 

be induced by monocular gaps. The display of Nakayama and Shimojo (1990) in Figure 13a 
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demonstrated the different point that depth perception could be determined by separation of a 

monocular bar from a binocular bar. The model explanation is as follows: 

 

The left edge of the thick bar fuses with the left edge of the left thin bar to appear in a near 

disparity plane in V1, represented by the second plot of the second row. The right edge of the 

thick bar fuses with the right edge of the right thin bar to appear in a far disparity plane in V1, 

represented by the fourth plot of this row. In both these cases, the corresponding edges have the 

same contrast polarity.  The two other vertical edges of the thin bars of the right input are 

registered only monocularly because they cannot be matched to either of the edges of the left 

input.  As usual, the V1 monocular boundary representations are added to all depth planes in the 

V2 disparity filter along their respective lines-of-sight. As a result, two thin bar representations 

and one thick bar representation are seen in all disparity planes of the third row, with the slight 

complication that the thick bar representation overlaps with at least one of the two thin bar 

representations.  The V1 binocular boundary representations are also added to the V2 disparity 

filter, overlapping with the leftmost vertical boundary in the second plot and the rightmost 

vertical boundary in the fourth plot. These vertical boundaries, being stronger, inhibit, via the 

recurrent line-of-sight inhibition of the disparity filter, all the other vertical boundaries that share 

any of their lines-of-sight.  In particular, they do not inhibit those vertical boundary 

representations originating from the two monocularly viewed edges of the right input because 

these vertical boundaries do not share any of their lines-of-sight.  The final V2 boundary 

representations are shown in the fourth row.  V4 fills-in surfaces in those regions that are 

completely enclosed by boundaries, resulting in the percept of a thin near bar and a thin far bar, 

as reported by human subjects in the Gillam et al. (1999) experiments. 

 

Nakayama and Shimojo (1990) have attempted to explain DaVinci stereopsis percepts in terms 

of an “ecological optics” hypothesis, which suggests that visual systems attempt to interpret 

unpaired image points in terms of occlusion.  For example, in Figure 13a, both eyes see a thick 

bar but only the right eye a thin bar.  According to the ecological optics hypothesis, the visual 

system interprets these stimuli by assuming that the thin bar is located behind the thick bar at the 

exact distance that would cause the thick bar to hide it from the left, but not from the right, eye. 

The 3D LAMINART model proposes, instead, that different organizational principles govern the 
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3D percepts that we see, including the five principles that have been used to explain data such as 

those summarized above. The 3D LAMINART model also simulates data that have no ecological 

optics interpretation with equal ease; see Grossberg and Howe (2003).  

 

 

Supportive Neurophysiological and Anatomical Data 

 

Given that the 3D LAMINART model can explain a great deal of challenging psychophysical 

data about stereopsis and 3D planar surface perception, it is important to ask if it forms a 

predictive link to known neurophysiological and anatomical data? In fact, all the relevant 

neurophysiological and anatomical data of that are known to us support the model. It should also 

be noted, however, that the model does not consider cortical areas V3, V3A and MT, even 

though there is evidence that these areas play a role in depth perception (e.g. Backus et al., 

2001). These areas were not needed to simulate the model’s targeted data. The function of area 

V3A appears to be particularly controversial with studies suggesting that it is variously 

concerned with relative disparity (Backus et al., 2001), saccades (Nakamura & Colby, 2000a, 

2000b) and prehensile hand movements (Nakamura et al, 2001). Further complicating the 

situation is  some evidence that the function of macaque V3A differs from that performed by 

human V3A (Tootell et al., 1997). The following sorts of data are functionally clarified by the 

model, as summarized in Figure 7:  

 

V1 binocular boundaries. Consistent with the model, the LGN contains circularly symmetric on-

center, off-surround receptive fields (Kandel, Schwartz, and Jessell, 2000, pp. 529). LGN lesion 

studies show that the parvocellular, but not the magnocellular, pathway is critical for fine 

stereopsis (Schiller, Logothetis, and Charles, 1990a, 1990b).  Layer 4 of cortical area V1 is the 

major recipient of this parvocellular input in vivo (Callaway, 1998) and it is also the input layer 

of model V1.  The model is also consistent with data showing that layer 4 outputs to layer 3B, 

but not to layer 2/3A, of V1 (Callaway, 1998), a large proportion of it is monocular (Hubel and 

Wiesel, 1968; Poggio, 1972), and many of its cells are simple (Hubel & Wiesel, 1968; Schiller, 

Finlay, and Volman, 1976). 
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The model assumes that polarity-specific binocular matching occurs in layer 3B.  This is 

consistent with data showing that a significant proportion of layer 3B comprises simple cells 

(Dow, 1974), that layer 3 contains a significant number of binocular cells (Hubel and Wiesel, 

1968; Poggio, 1972), and that projections to it can be independent of ocular dominance (Katz, 

Gilbert, and Wiesel, 1989). 

 

The model suggests that binocular layer 2/3A cells pool responses from layer 3B cells of both 

contrast polarities so that they can represent the boundaries of objects whose contrast polarity, 

with respect to the background, changes as the boundary is transversed.  In fact, layer 3B 

projects throughout layer 2/3A (Callaway, 1998), and layers 2 and 3 each contain significant 

numbers of binocular and complex cells (Poggio, 1972). 

 

The model further predicts that there is a group of cells in layer 2/3A and 3B that respond only to 

binocular, and not to monocular, stimulation.  Such “obligate cells” are known to exist in 

macaque V1 (Poggio and Fischer, 1977; Smith, Chino, Ni, and Cheng, 1997), with about 40% of 

tuned excitatory neurons being obligatory (Poggio and Talbot, 1981), including almost all “tuned 

zero” neurons (Poggio, 1991). Obligate cells do not appear to be as prevalent in cat (Anzai et al., 

1995). 

 

The model predicts that all these interactions occur in the V1 interblob regions, which is in 

keeping with observations that V1 interblobs are highly selective for orientation but relatively 

unselective for color (Merigan and Maunsell, 1993). 

 

V1 monocular boundaries. The model proposes that the V1 monocular boundaries are formed by 

a process that is a simplified version of the process which forms V1 binocular boundaries.  Much 

of the above data thus applies to the monocular boundaries network.  Additional support for this 

network comes from observations that layer 3 (Hubel & Wiesel, 1968; Poggio, 1972) and layer 2 

(Poggio, 1972) of V1 each comprise a large proportion of monocular cells. 
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V2 boundaries. The model is consistent with the older prediction of Grossberg and Mingolla  

(1985a, 1985b) that V2 boundaries are located in the V2 pale stripes.  This hypothesis is 

consistent with observations that the V2 pale stripes receive the major projection from the V1 

interblob regions, receive no significant projection from the V1 blob regions, are highly 

orientationally selective (Roe and Ts’o, 1997), and contain a complete map of visual space (Roe 

and Ts’o, 1995). The model is also supported by data showing that V2 is mainly binocular 

(Hubel and Livingstone, 1987; Roe and Ts’o, 1997), is mainly disparity-sensitive (Poggio and 

Fischer, 1977; von der Heydt, Zhou, and Friedman, 2000), contains many complex cells (Hubel 

and Livingstone, 1987), receives input into layer 4 (Rockland and Virga, 1990) and outputs to 

V4 (Xiao, Zych, and Felleman, 1999), which itself is highly selective for disparity (Merigan and  

Maunsell, 1993).  In addition, the V2 pale stripes are disparity-selective (Peterhans, 1997). 

 

The model predicts that one function of V2 is to suppress false matches by utilizing a disparity 

filter.  This is consistent with observations that many cells exhibit false matches in V1 

(Cumming and Parker, 2000), but not in V2 (Bakin et al., 2000). 

Surfaces. Surfaces in the model are built up through interactions between the V1 blobs, the V2 

thin stripes, and V4, consistent with the fact all these regions are linked by major projections 

(Livingstone and Hubel, 1984; Xiao et al., 1999), and that the V2 thin stripes are the least 

orientationally-selective area of V2 (Peterhans, 1997) and contain a complete map of visual 

space (Roe and Ts’o, 1995). 

 

A Prediction: How Do Obligate Cells Work? 

 

A key model prediction, that is worthy of experimental test, is that some binocular simple cells in 

layer 3B of V1 obey an obligate property whereby they can be activated only if they receive 

approximately equal inputs from both left and right eye monocular simple cells in layer 4. The 

obligate property at layer 3B binocular simple cells is predicted to be caused, as shown in Figure 

7, by a balance between excitatory inputs from layer 4 monocular simple cells and inhibitory 

inputs from layer 3B inhibitory interneurons. The interneurons are themselves activated by layer 

4 monocular simple cells and mutually inhibit each other, in addition to inhibiting the binocular 

simple cells. This balance in layer 3B between direct excitatory and indirect inhibitory 
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interneuronal inputs is reminiscent of the properties that were predicted for bipole cells in layer 

2/3. It remains to be seen whether these apparent similarities are reflections of a deeper shared 

design. 

 

A Synthesis of Stereo Vision, Attention, and Grouping 

 

The data that Grossberg and Howe (2003) simulated using the 3D LAMINART model in Figure 

7 did not include attentional manipulations or perceptual grouping by boundary completion. The 

LAMINART circuit in Figure 2 summarizes some of the key interactions that are proposed to 

govern perceptual grouping, and attention, without regard to its 3D representation. How, then, 

can perceptual grouping and attention be consistently joined to stereopsis and 3D planar surface 

perception processes to further develop the 3D LAMINART model? Figure 8 proposes how 3D 

boundaries can be completed and how attention can be selectively paid to objects in 3D. The 

following new features in Figure 8 are the basis for these properties:  

 

First, layer 4 no longer directly activates layer 2/3, as in Figure 2c. Instead, layer 4 simple cells 

first activate layer 3B simple cells, which in turn activate layer 2/3A complex cells, as shown in 

Figure 7. The layer 2/3A cells can then interact via horizontal interactions, like those 

summarized in Figures 2c and 2e, to enhance cell activations due to approximately co-oriented 

and co-linear inputs. Second, binocular cells in layer 2/3A can represent different disparities, and 

thus different relative depths from an observer. Interactions between layer 2/3A cells that 

represent the same relative depth from the observer can be used to enhance boundaries between 

object contours that lie at that depth.  

 

Because binocular fusion occurs in layer 3B, the binocular boundaries that are formed in layers 

3B and 2/3A may be positionally displaced, or shifted, relative to their monocular input signals 

from layers 6 and 4. Figure 2c illustrates that these layer 2/3 boundaries feed signals back to 

layer 6 in order to select the winning groupings that are formed in layer 2/3, but issues about 

binocular shifts did not need to be considered in data explanations of the original LAMINART 

model. How can the positionally displaced binocular boundaries in layer 2/3A of Figure 8 

contact the correct monocularly activated cells in layers 6 and 4, so that they can complete the 
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feedback loop between layers 2/3A-to-6-to-4-to-3B-to-2/3A that can select winning 3D 

groupings? Horizontal signals from the monocular layer 4 cells activate binocular obligate cells 

in layer 3B, which in turn activate layer 2/3A complex cells. This raises the question: How can 

such a layer 2/3A cell also use horizontal signals to activate its correct layer 6 monocular 

sources?   

 

The 3D LAMINART model proposes that horizontal connections which are known to occur in 

layers 5 and 6 (Callaway & Wiser, 1996) accomplish this. Feedback signals from layer 2/3A 

propagate vertically to layer 5, whose cells activate horizontal axons in this layer that contact the 

appropriate layer 6 cells. These layer 5-to-6 horizontal contacts are assumed to be selectively 

formed during development. Grossberg and Williamson (2001) and Grossberg and Seitz (2003) 

have simulated how layer 2/3 connections and layer 6-to-4 connections may be formed during 

development. The selective layer 5-to-6 contacts are proposed to form according to similar laws. 

In summary, inward horizontal layer 4-to-3B and 2/3A-to-2/3A connections are proposed to 

form binocular cells and their groupings, while outward layer 5-to-6 connections are proposed to 

close the feedback loops that help to select the correct 3D groupings.  

 

Once this role in 3D grouping for layer 6 horizontal connections is before us, the preattentive-

attentive interface problem forces a proposal for how attention fits into the 3D circuit: namely, 

top-down attentional outputs from layer 6 of a higher cortical level like V2 activates the same 

layer 5 cells that contact monocular input sources in layer 6 via horizontal connections. Then the 

layer 6-to-4 modulatory on-center off-surround network controls attentional priming and 

matching, just like in  Figure 2b. This proposal raises the question of how the top-down 

pathways from layer 6 of a higher cortical level know how to converge on the same layer 5 cells 

to which the layer 2/3 cells project at the lower cortical level?  Since firing of the layer 2/3 cells 

activates the layer 5 cells as well as the layer 6 cells of the higher cortical level, as in Figures 7 

and 8, this could occur due to associative learning. 
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3D Representations of Slanted and Curved Surfaces and their 2D Images  

  

The model in Figure 8 can handle only the representation of 3D planar surfaces. However, most 

of the objects in the world are slanted or curved and span multiple depths with respect to an 

observer. Both binocular cues, such as disparity, and monocular cues, such as perspective, 

shading, and junctions, provide information about slant and tilt of an object. Slant is defined as 

deviation around the vertical axis and tilt is defined as deviation around the horizontal axis. 

These considerations raise the question: Can the 3D LAMINART model be consistently 

generalized to explain perceptual and neurobiological data about how we see slanted and curved 

surfaces in 3D? Moreover, can such a model also explain how we generate 3D representations of 

the projections of such surfaces into a 2D picture?  Initial work in this direction by Grossberg 

and Swaminathan  (2003) proposes how such an extension can be made.  
 

Figure 14a clarifies one of the main difficulties that must be faced when trying to understand 

how this happens. Here, two different objects are made up of the same set of surfaces. 

Depending on how the individual surfaces are combined, two different 3D objects can be 

perceived. The same parallelogram can signal a near-to-far or a far-to-near slanted surface, 

depending upon the context. Contextual cues thus play a key role in disambiguating ambiguous 

local cues. In response to some 2D images, such as Necker cube images, the percept changes 

over time and depends on various factors such as attention and internal receptive field 

biases (Kawabata, 1986). The 3D LAMINART model clarifies how the different percepts in 

Figure 14a are generated, and also how Necker cube percepts can oscillate in a bistable fashion 

through time. 

 

Information about binocular disparity can be used to determine the slant of an object. A slanted 

object is registered at multiple disparities and these representations need to be grouped across 

depth for it to be perceived as a single object. Information about tilt and curvature of an object 

can also be gleaned from disparity cues. Both neurophysiological and psychophysical studies 

have provided clues about the sorts of processes that provide the contextual disambiguation that 

is needed to unambiguously represent slanted and curved 3D surfaces. 
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Figure 14.  (a) The same 2D angles and shapes, when combined in different ways, can elicit percepts of different 

surface slants: The left bold figure has a positive slant (near to far) while the right bold figure has a negative slant 

(far to near).  (b) Even though the sides of the cube are colinear in 2D, they are not colinear in their 3D interpretation 

(Tse, 1999). (Reprinted with permission from Tse (1999).) 

 

 

Neurophysiological and Psychophysical Data about Disparity-Sensitive Cells 

Neurophysiological studies have found cells in extrastriate cortex that are tuned to features 

important in 3D perception. In Macaque cortical area V2, cells are tuned to relative disparity  

(Thomas et al., 2002), disparity edges (von der Heydt et al., 2000), angles (Pasupathy and 

b

a
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Connor, 1999), border ownership (Zhou et al., 2000) and figure-ground relations (Bakin et al., 

2000). There is evidence for cells tuned to slanted 3D boundaries in V4 (Hinkle and Connor, 

2001). Curvature tuning is found in V4 (Pasupathy and Connor, 2001), inferotemporal 

cortex (Janssen et al., 2000), and parietal cortex (Taira et al., 2000).  

Psychophysical studies have shown the importance of relative disparity, or disparity gradients, in 

human visual perception. Targets specified by a different stereoscopic slant than the distractors 

in an image or scene are detected pre-attentively (Holliday and Braddick, 1991), as are targets 

presented on a surface of different slant than that of the distractors (Nakayama and Silverman, 

1986; He and Nakayama, 1995). Multi-element tracking results do not differ if the elements are 

on a planar or a slanted surface (Viswanathan and Mingolla, 1999). Ryan and Gillam (1993) 

provided evidence that three-dimensional aftereffects can result from disparity gradient 

adaptation by showing that the size of the aftereffect varied with the disparity gradient of the 

adapting lines. Lee (1999) showed that the size of aftereffects are also dependent on the 

difference in disparity between the adapting and test surfaces. Illusory surface 

experiments (Nakayama and Shimojo, 1992) illustrate that depth needs to be taken into account 

during grouping. Many studies show that, although 2D bipole grouping principles work well on 

the 2D projection of 3D images, in other cases, 2D grouping principles gives rise to a different 

result than the 3D percept. For example, in Figure 14b, even though two lines across the cubes 

are colinear in the 2D plane, they are not colinear in the 3D interpretation (Tse, 1999) and hence 

are not grouped.  

 

3D Grouping using Context-Sensitive Angle and Disparity-Gradient Cells 

 

The generalization of the 3D LAMINART model to the case of 3D slanted and curved surfaces 

proposes that object fragments at multiple depth planes can be grouped together by using 

context-sensitive interactions between angle cells and disparity-gradient cells that are sensitive to 

an object’s slant and tilt. In particular, monocular cues in an image, notably combinations of 

angles, can bias the activation of some disparity-gradient cells more than others to form a 3D 

percept in response to 2D images, such as Necker cube images. These contextual interactions 

give the correct combinations of cells an advantage in the competitive processes that select the 
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final boundary groupings. Interactions between these cell types can also form illusory contours in 

response to curved 3D neon color displays. Figure 15a provides a schematic of the model, and 

Figure 15b shows some of the crucial interactions among several known cell types within the 

boundary system that are proposed to form 3D slanted and curved boundaries. Laminar 

interactions that are not crucial to this process are omitted in Figure 15, but they are included for 

completeness in Figure 16.  

 

   

 
 
 
Figure 15. Block diagram of the 3D Laminart model of Grossberg and Swaminathan (2003) for representing 

slanted and curved 3D surfaces: The input image undergoes on-center, off-surround processing in the LGN.  In 

layer 2/3A of V1, angle cells and colinear bipole cells get activated by angles and line segments in the images, 

respectively. Angle cells and colinear bipole cells interact with each other via long-range horizontal connections in 

layer 2/3A of V1.  Colinear bipole cells activate disparity-gradient cells, while V1 angle cells activate V2 angle 

cells.  V2 angle cells and disparity-gradient cells interact via long-range horizontal connections in layer 2/3A of 

V2 to disambiguate the types of ambiguity illustrated in Figure 14.  Disparity-gradient cells group across position 

and disparity to form closed boundary segments, which are used as a barrier for filling-in of surfaces in V4 that 

receive filling-in signals from lower processing levels, such as the LGN. (b)  Laminar circuit for 3D boundary 

grouping: V1 angle cells and colinear bipole cells are in layer 2/3A of V1. Layer 2/3A cells in V1 activate layer 

2/3A cells in V2. Layer 2/3A of V2 contains V2 angle cells and disparity-gradient cells. Layer 2/3A of V2 feeds 

back to layer 2/3A of V1. Disparity-gradient cells group across disparity-gradient and disparities. D1, D2, and D3 

represents various depths. Open (black) circles (triangles) represent excitatory (inhibitory) cells (connections). 
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A key insight of the 3D LAMINART model is that angle cells, disparity-gradient cells, and the 

more familiar within-depth colinear bipole cells can all develop from the same underlying long-

range horizontal excitatory connections and disynaptic inhibitory interneurons, in response to 

image statistics.  Thus these several cell types seem all to be variations of a single cortical 

design.  Grossberg and Swaminathan (2003) have also proposed how these cell types may be 

organized within cortical maps.   
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Figure 16. 3D LAMINART MODEL: The 3D LAMINART model in Figure 8 is extended to include the new types 

of cells in Figure 15 that are needed to form 3D representations of slanted and curved surfaces, and of 2D images. 

Open (black) circles (triangles) show excitatory (inhibitory) neurons (connections). See text for details. 
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Habituation, Development, Reset, and Bistability 

Activity-dependent habituative mechanisms are needed for successful development of these cell 

types to occur. This sort of habituation has also proved to be essential in other studies of cortical 

development (Grunewald and Grossberg, 1998; Olson and Grossberg, 1998; Grossberg and 

Seitz, 2003); see Grossberg (2003) for a review. The habituative mechanisms prevent the 

developmental process from “getting stuck” with using the cells that initially win the competition 

for activation over and over again. Such perseveration would prevent multiple feature 

combinations from getting represented in a distributed fashion throughout the network. 

Habituative interactions help to solve this problem because habituation is activity-dependent: 

only those cells or connections habituate that are in active use. Thus, when habituation acts, it 

selectively weakens the competitive advantage of the initial winners, so that other cells can 

become activated to represent different input features.  

Remarkably, these habituative mechanisms, which seem to play such an important role in 

cortical development, are also proposed to play several important roles in adult vision. One 

particularly striking property is that they can lead to multi-stable percepts when two or more 3D 

interpretations of a 2D image are approximately equally salient, as in Necker cube percepts. 

Grossberg and Swaminathan (2003) have used the same habituative and competitive mechanisms 

that they used to develop disparity-gradient receptive fields to also simulate how a 2D Necker 

cube image can generate two different 3D boundary and surface representations, which oscillate 

bistably from one to the other through time.  

 

Surely the ecological value of habituative mechanisms in adult vision is not just to produce 

perceptual curiosities like bistable percepts of a Necker cube! In fact, these habituative 

mechanisms seem to play a crucially important role in adult vision; namely, to efficiently reset 

previously active visual representations when the scenes or images that induced them change or 

disappear. Without such an active reset process, visual representations could easily persist for a 

long time due to the hysteresis that could otherwise occur in circuits with as many feedback 

loops as those in Figures 2, 8, and 16. In many examples of this reset process, offset of a 

previously active input leads to an antagonistic rebound of activation in previously inactive cells, 
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and  these newly activated cells help to inhibit the previously active cells, including grouping 

cells in layer 2/3. This reset process is not perfect, however, and there are large perceptual data 

bases concerning residual effects of previously active representations. In fact, such a reset 

process has elsewhere been used to explain psychophysical data about visual aftereffects (Francis 

and Grossberg, 1996a; Grunewald and Lankheet, 1996), visual persistence (Francis et al., 1994), 

and binocular rivalry (Arrington, 1993, 1995, 1996; Grossberg, 1987; Liang and Chow, 2002), 

among other data that are all proposed to be manifestations of the reset process. Ringach et al. 

(1999) have reported direct neurophysiological evidence for rebound phenomena using reverse 

correlation techniques to analyze orientational tuning in neurons of cortical area V1. Abbott et al. 

(1997) have provided direct experimental evidence in visual cortex of the habituative 

mechanisms that were predicted to cause the reset (Grossberg, 1968, 1969, 1980).  Grossberg 

(1980, 1999b) also predicted that such reset processes play a role in driving the reset and 

memory search processes that help the adult brain to rapidly discover and learn new 

representations of the world, as part of Adaptive Resonance Theory. In summary, there is a 

predicted link, mediated by habituative transmitter mechanisms, between processes of cortical 

development in the infant, and processes of perceptual and cognitive reset, learning, and 

bistability in the adult. This link is worthy of a lot more experimental study than it has received 

to date. 

 

How Does Surface Filling-in Span Multiple Depths? 

As noted above, it has been proposed that the grouping of boundaries and the filling-in of 

surfaces are distinct, indeed complementary (Grossberg, 2000), processes. Whereas boundaries 

complete inwardly in an oriented fashion, surfaces fill-in outwardly in an unoriented fashion 

until a boundary is reached. The outward filling-in process needs to be controlled across multiple 

depth planes when it fills-in 3D curved surfaces. A potential problem is that a multiple-depth 

boundary may have gaps at some depths, but not others, which could allow spreading colors and 

brightnesses to spill out during filling-in. As noted in Figure 11, and illustrated in Figures 12 and 

13, if there is a large gap in a boundary, then the filling-in within that boundary will not have an 

impact on conscious perception. I call this problem the lightness dissipation problem. A related 

problem is seen in 3D illusory displays that induce a percept of a 3D curved surface (Carman and 
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Welch, 1992; Liinasuo et al., 2000). Here the filling-in signal needs to spread in a controlled way 

across depths where there are no boundaries or filling-in inducers at all in the original images. 

How does the brain contain the filling-in process across a surface that spans multiple depths? 

   

 

 
 

Figure 17.  Filling-in of slanted surfaces. (a) The input is a slanted rectangle. (b) Multiple depth representation of 

the slanted rectangle.  (c) Filling-in barriers: The boundary representation act as a strong filling-in barrier at the 

corresponding depth of the input representation, and as a weak barrier at nearby depths, thus creating closed 

boundary compartments within each depth. D1 (near) and D2 (far) represent different depths. 

 

This problem is overcome in the 3D LAMINART model as follows: A boundary signal that acts 

as a strong barrier to filling-in at its preferred depth also weakly acts as a barrier to filling-in at 

other depths. For example, consider a slanted rectangle in depth, as in Figure 17a. Each boundary 

representation is activated at its preferred depths, as in Figure 17b, and this boundary 

representation has gaps at each depth. If no other boundaries existed, filling-in signals would 

flow out of the boundary gaps at each depth. The model proposes that the boundary at a 

particular depth is also represented, albeit weakly, at nearby other depths. This hypothesis has 

earlier been made to explain how a finite pool of depth-selective boundaries can control a 

continuous change in perceived depth (Grossberg, 1994, 1997). Here it is predicted to also 

contribute to percepts of slanted and curved surfaces in depth. In particular, the total boundary 

signal that acts as a barrier to filling-in at each depth is shown in Figure 17c. Now, a closed 

a)

b) 

c) 
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boundary exists at each depth, and the filling-in signal is at least partially contained at each 

depth. Because of differences in boundary strength, however, the filled-in activity is not 

uniformly strong at each position. It is stronger wherever there is a strong boundary, since 

lightness and color can dissipate more through a weaker boundary than a stronger one. Grossberg 

and Swaminathan (2003) have simulated how a slanted surface representation can be generated 

by such differential filling-in across different depths.  

Future Research Directions 

This review has considered some of the recent progress in modeling how the laminar circuits of 

visual cortex control processes of development, learning, attention, and 3D vision. These models 

make detailed predictions about how particular cell types and connections are linked to all of 

these processes. The models also identify previously unsuspected conceptual and mechanistic 

links between these processes that should provide inspiration for qualitatively new types of 

interdisciplinary experiments.  

These results form part of a larger neural theory of 3D vision and figure-ground perception that 

is called FACADE theory, which derived its name from its goal of explaining how 

representations of Form-And-Color-And-DEpth are formed by visual cortex; see Figure 1. 

FACADE theory models many data that have not yet been analysed within a laminar framework, 

including data about 3D figure-ground perception (Grossberg, 1994, 1997; Kelly and Grossberg, 

2000), 3D surface perception (Grossberg and Mingolla, 1987), texture perception (Grossberg and 

Pessoa, 1998), brightness and lightness perception (Grossberg and Kelly, 1999; Grossberg and 

Todorovic, 1988; Pessoa, Mingolla, and Neurmann, 1995), cortical synchronization (Grossberg 

and Grunewald, 1997; Grossberg and Somers, 1991), visual persistence (Francis, Grossberg, and 

Mingolla, 1994; Francis and Grossberg, 1996a, 1996b), and perceptual aftereffects (Francis and 

Grossberg, 1996a; Grossberg, Hwang, and Mingolla, 2002). Of immediate interest is the fact that 

grouping properties of 3D figure-ground perception seem to be significantly elaborated by 

cortical area V2 (Lamme, 1998). How such figure-ground constraints, many of which have 

already been modeled in a non-laminar context, will fit together with 3D LAMINART circuitry 

is of great current interest.  
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More generally, future research may be expected to expand the number of phenomena that can 

be explained using a unified laminar theory, with different specific processes being understood 

as variations of an underlying general theory of laminar cortical design. Due to the ubiquity of 

laminar neocortex, such progress may be expected to include a wide range of perceptual and 

cognitive processes, including modalities other than vision. For example, long-range horizontal 

connections are known to occur in many areas of neocortex, such as the auditory and language 

areas of the human temporal cortex (Schmidt, Schlote, Bratzke, Rauen, Singer, and Galuske, 

1997). The proposed role of ART-based mechanisms in helping to ensure stable development 

and learning of  LAMINART model circuits creates a context for such additional studies. In  

particular, neural models of visual object learning and recognition (Bradski and Grossberg, 1995; 

Carpenter, 1997; Carpenter and Ross, 1995; Grossberg, 1999c; Grossberg and Williamson, 

1999), visual motion perception (Chey, Grossberg, and Mingolla, 1997; Grossberg, Mingolla, 

and Viswanathan, 2001), visual search (Grossberg, Mingolla, and Ross, 1994), auditory 

perception and streaming (Grossberg, 1999b), and speech perception and word recognition 

(Grossberg, Boardman, and Cohen, 1997; Grossberg and Myers, 2000; Grossberg and Stone, 

1986), among other competences, have been developed in which ART-like cortical mechanisms 

play a key role in helping to explain the targeted data. It remains to be seen whether and how 

such ART-like mechanisms are specialized within the laminar circuits of other cortical areas to 

realize a variety of intelligent behaviors.  
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