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ABSTRACT 

 

What is the neural representation of a speech code as it evolves in time? How do listeners 

integrate temporally distributed phonemic information across hundreds of milliseconds, even 

backwards in time, into coherent representations of syllables and words? What sorts of brain 

mechanisms encode the correct temporal order, despite such backwards effects, during speech 

perception? How does the brain extract rate- invariant properties of variable-rate speech? This 

article describes an emerging neural model that suggests answers to these questions, while 

quantitatively simulating challenging data about audition, speech and word recognition. This 

model includes bottom-up filtering, horizontal competitive, and top-down attentional interactions 

between a working memory for short-term storage of phonetic items and a list categorization 

network for grouping sequences of items. The conscious speech and word recognition code is 

suggested to be a resonant wave of activation across such a network, and a percept of silence is 

proposed to be a temporal discontinuity in the rate with which such a resonant wave evolves. 

Properties of these resonant waves can be traced to the brain mechanisms whereby auditory, 

speech, and language representations are learned in a stable way through time. Because 

resonances are proposed to control stable learning, the model is called an Adaptive Resonance 

Theory, or ART, model.  

 

Key words : speech perception, word recognition, auditory scene analysis, consciousness, 

adaptive resonance, context effects, consonant perception, vowel perception, neural network, 

working memory, categorization, habituation, automatic gain control 
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1. Introduction: Learning, Expectation, Attention, and Resonance 

How are brain events converted into behaviors and percepts? An answer to this question is 

needed if we are to understand how the brain controls behavior and how the brain is, in turn, 

shaped by environmental feedback that is experienced on the behavioral level. The nature of this 

connection also needs to be understood if we are to develop biologically plausible models of how 

the brain works.  

The present article illustrates the hypothesis that conscious auditory and speech percepts 

are emergent properties that arise from resonant states of the brain. Such a resonance develops 

when bottom-up signals that are activa ted by environmental events interact with top-down 

expectations, or prototypes, that have been learned from prior experiences (Figure 1a). The top-

down expectations control a matching process that selects those combinations of bottom-up 

features which are consistent with the learned prototype, while inhibiting those that are not 

(Figure 1b). In this way, an attentional focus starts to develop that concentrates activation on 

those feature clusters that are deemed important, based on past experience. The attended feature 

clusters, in turn, reactivate the cycle of bottom-up and top-down signal exchange. This reciprocal 

exchange of signals causes the selected cells to resonate with amplified and synchronized 

activities. Such a resonance binds the attended features together into a coherent brain state. 

Resonant states, rather than the activations that are due to bottom-up processing alone, are 

proposed to be the brain events that represent conscious behavior. The amplified and 

synchronous activations that occur during brain resonances are also proposed to enable the brain 

to learn quickly about important new information without just as rapidly forgetting all previously 

learned information. Adaptive Resonance Theory, or ART, is a cognitive and neural theory that 

is being developed to explain how the brain processes such resonant events (Grossberg, 1980, 

1999b). 
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( a ) 
 

 
( b ) 

 
Figure 1. ART matching: (a) Auditory items activate short term memory (STM) traces in a working memory, which 

send bottom-up signals towards a level at which list categories, or chunks, are activated in STM. These bottom-up 

signals are multiplied by learned long-term memory (LTM) traces that influence the competitive selection of the list 

categories that are stored in STM. The list categories, in turn, activate top-down expectation signals that are also 

read out of LTM. These expectations, or prototypes, are matched against the active STM pattern in working 

memory. (b) This matching process selects STM activations that are supported by contiguous LTM traces (large 

hemi-disks) and suppresses those that are not. [Reprinted with permission from Grossberg (1999b).] 
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2. Phonemic Restoration and Conscious Speech Perception 

A classical example of such a matching process occurs during phonemic restoration (Warren & 

Sherman, 1974; Samuel, 1981; Warren, 1984). Suppose that a broad-band noise is followed 

immediately by the rapidly presented words eel is on the ...” If that string of words is followed 

by the word orange, then under proper temporal conditions, subjects hear peel is on the orange. 

If the word wagon completes the sentence, wheel is on the wagon is heard. If the final word is 

shoe, then heel is on the shoe is heard. Such experiences show that a bottom-up stimulus alone, 

such as noise-eel, may not always determine a conscious perception. Rather, the percept may be 

determined by the sound that one expects to hear in that auditory context on the basis of previous 

language experiences.  

To explain such percepts, we need to understand why noise-eel is not heard before the 

last word of the sentence is even presented. This may be explained by the fact that, if the 

resonance has not developed fully before the last word is presented, then this last word, when 

grouped together with earlier words of the sentence, can influence the selection of the top-down 

expectations that determine the conscious percept. We also need to explain how the expectation 

can convert noise-eel into a percept of heel. This is attributed to the top-down matching process 

that selects expected feature clusters for attentive processing while suppressing unexpected ones. 

In the noise-eel example, those spectral components of the noise are suppressed that are not part 

of the expected consonant sound. This selection process directly influences conscious phonetic 

percepts. It is not merely a process of symbolic inference. For example, if a silent interval 

replaces noise, then only silence is heard. Moreover, if the sentence eel is on the shoe is heard, 

then that sentence conveys an entirely different meaning than the sentence heel is on the shoe. 

Such data indicate that representations of phonetics and meaning must be able to intimately 

interact. Finally, if a reduced set of spectral components is used in the noise, then a 

correspondingly degraded consonant sound is heard (Samuel, 1981). This last property shows 

that the expectation selects consistent formants while suppressing inconsistent ones. 

 

3. Neural Substrates of Attention, Matching, and Learning 

ART has predicted that a matching law with just these properties is needed for the brain to be 

able to stably learn new perceptual and cognitive representations, including auditory 

representations, without experiencing “catastrophic forgetting” (Grossberg, 1980, 1999b). The 
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type of matching which is evident in speech percepts like phonemic restoration is thus proposed 

to illustrate brain mechanisms for rapidly learning speech and language representations. ART 

predicts that such matching is realized by a top-down modulatory on-center off-surround circuit 

(Figure 2a). The on-center is modulatory because its excitatory and inhibitory signals are 

approximately balanced. Such a top-down signal may increase the baseline activity of cells in the 

on-center, but cannot fire them by itself. The off-surround can strongly inhibit non-matched cues. 

Related modeling work has identified laminar cortical circuits that realize such a top-down 

circuit and are capable of carrying out the ART matching rule (Grossberg, 1999a; Raizada & 

Grossberg, 2001); see Figure 2b. It has also been shown how, when the modulatory property 

fails, auditory hallucinations may result (Grossberg, 2000a). 

 
    ( a )       ( b ) 
 
Figure 2. (a) The ART matching rule may be realized by a modulatory top-down on-center off-surround network. 

When only bottom-up signals 1 and 2 are active, they can activate their target cells. When only the top-down 

expectation is active, it cannot activate any cells. This is because a cell that receives an excitatory signal in the on-

center (top-down + pathways) will also receive an approximately matched inhibitory signal (top-down – pathways). 

The baseline activity of such a cell may be slightly excited by a net advantage to the excitatory pathway. Cells that 

receive no excitatory signals can be suppressed. When both bottom-up and top-down signals are active, the bottom-

up activation caused by pathway 2 can persist, and even be amplified, but the bottom-up activation caused by 

pathway 1 is suppressed by the off-surround. (b) One known anatomical pathway by which cortical cells from a 

higher level, in this case area V2 of the visual cortex, can attentionally modulate the activity of cells at a lower level, 

in this case area V1. In particular, a top-down output signal from layer 6 of the higher cortical area can activate 

apical dendrites of layer 5 pyramidal cells at the lower cortical area. These pyramidal cells can activate layer 6 of the 

lower cortical area, which in turn activates a modulatory on-center off-surround network of inputs to layer 4 of the 

lower cortical area (open symbols are excitatory on-center cells; closed symbols are inhibitory off-surround cells). 

This circuitous route from layer 6-to-6-to-4 is called “folded feedback” because it folds feedback from a higher 

cortical area into the bottom-up processing of signals within a lower cortical area. [Reprinted with permission from 

Grossberg & Raizada (2000).] 
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Recent neurophysiological experiments have begun to directly confirm the ART-predicted links 

between learning, top-down matching, attention and synchronous resonant dynamics. In 

particular, the claim that bottom-up sensory activity is enhanced when matched by top-down 

signals is in accord with an extensive neurophysiological literature showing the facilitatory effect 

of attentional feedback (e.g, Luck, Chelazzi, Hillyard, & Desimone 1997; Roelfsema, Lamme, & 

Spekreijse 1998). The on-center off-surround structure of top-down feedback has been 

demonstrated in the visual system both for V2-to-V1 feedback (Bullier, Hupé,  James, & Girard 

1996) and for V1-to-LGN feedback (Sillito, Jones, Gerstein, & West 1994). Zhang, Suga, & Yan 

(1997) have shown that feedback from auditory cortex to the medial geniculate nucleus and the 

inferior colliculus also has an on-center off-surround form. Temereanca & Simons (2001) have 

described evidence for such feedback in the rodent barrel system. Various other psychophysical 

and neurophysiological data have also shown that attention has a facilitatory on-center and 

suppressive off-surround (Downing, 1988; Steinman, Steinman, & Lehmkuhle, 1995; Caputo & 

Guerra, 1998; Mounts, 2000; Smith, Singh, & Greenlee, 2000; Vanduffel, Tootell, & Orban, 

2000). 

 Ahissar & Hochstein (1993) have provided psychophysical evidence for the predicted 

role of attention in controlling adult plasticity and perceptual learning. Gao & Suga (1998) have 

reported neurophysiological evidence that acoustic stimuli caused plastic changes in the inferior 

colliculus of bats only when it received top-down feedback from auditory cortex. This plasticity 

was also found to be enhanced when the auditory stimuli were made behaviorally relevant. 

Krupa, Ghazanfar, & Nicolelis (1999) and Parker & Dostrovsky (1999) have found that cortical 

feedback also controls thalamic plasticity in the somatosensory system.  

 Various data have also linked the themes of top-down cortical feedback and learning to 

the prediction that resonant states tend to synchronize the activities of the resonating cells.  

Pollen (1999) and Engel, Fries, & Singer (2001) have provided excellent reviews of these ART-

supportive literatures. In summary, recent neurophysiological and psychophysical data have 

provided significant additional experimental support for basic ART predictions that were first 

made in the 1970s. 
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4. How Can the Future Influence the Past while Perception Proceeds from Past to Future? 

Given that a resonant event may lag behind the environmental stimuli that cause it, we need to 

develop a refined concept of how perceived psychological time is related to the times at which 

stimuli are presented. In particular, how can “future” events influence the perception of “past” 

events, yet time be perceived to always flow from past to future? ART suggests that this is 

accomplished by a resonant wave that develops from past to future while it incorporates future 

constraints into its top-down decision process until each event in the resonance equilibrates. In 

other words, future events can influence past events if the future events occur in the time interval 

after the past events are first registered by the brain, yet before the past events resonate and 

become conscious.  

In order to represent such a time-dependent resonant process, we need to distinguish the 

external input rate from the internal processing rate at which the resonance evolves. Because 

external events may, in principle, occur at arbitrary times, the brain’s rate process must have a 

finer time scale than any detectable external rate. It must also be faster than the resonance time 

scale that emerges as a result of bottom-up and top-down interactions. That is why differential 

equations are used to describe ART models. Differential equations are the universally accepted 

mathematical formalism in science that is used to describe events that are evolving in real time.    

A related question concerns how future events can influence past events without smearing over 

all the events that intervene. In particular, how can silent intervals seem to separate the words in 

the sentence heel is on the shoe given that the influence of shoe must cross all of the preceding 

sounds to influence heel? Here again the nature of the top-down matching process is paramount. 

This matching process can select feature components that are consistent with its prototype, but it 

cannot create something out of nothing. Without bottom-up input, the top-down on-center is 

merely modulatory. As a result, when the signal includes physical silence, a silent interval is 

perceived, as silence remains silence no matter how active the top-down prototypes may be.  

  

5. Perceived Silence is a Discontinuity in the Rate at which Resonance Evolves 

The opposite concern must also be considered: How can sharp word boundaries be perceived 

even if the sound spectrum that represents a sequence of words exhibits no silent intervals 

between them? ART proposes that an apparent discontinuity between words will be heard 

whenever there is a temporal delay between the resonances that represent the individual words. 
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In other words, apparent silence of this type is a discontinuity in the rate at which resonance 

evolves. This hypothesis helps to account for the fact that there is no simple relationship between 

the presence or absence of energy in the waveform at a given time, and the experience of 

apparent silence associated with perceived word boundaries at that time. Data of Repp  (1980), 

admittedly for nonsense syllables rather than real words, illustrate the complexity of the 

relationship between the duration of physical silence in a particular context and what is 

perceived. The syllables [ib], [ga] and [ba], synthesized without bursts and with identical 

parameters except for the first three formant frequencies, were combined so that [ib] was 

followed by either [ga] or [ba], and the duration of the silent interval between the two syllables 

varied in equal steps, 10 ms for [ib]-[ga] and 20 ms for [ib]-[ba]. The ranges over which the 

silences varied also differed for the two sequences, as shown in Figure 3. Listeners made forced-

choice responses, ‘b’ or ‘bg’ in the single/cluster condition, and ‘b’ or ‘bb’ in the single/geminate 

condition. As Figure 3 shows, listeners heard a single consonant, [iga] or [iba], at the shorter 

silent intervals in each series, and two consonants, [ibga] or [ibba], at the longer intervals. 

Moreover, they heard two distinct consonants in the sequence [ibga] at the same silent interval at 

which they heard only one consonant (i.e. [iba], not [ibba]) in the single-geminate condition, in 

which the spectral cues in each syllable were consistent with a single place of consonantal 

articulation. ART explains such data as an example of resonant reset of /b/ by /g/ in the case of 

[ibga], and resonant fusion of the first /b/ with the second /b/ in the case of [ibba], which fills a 

physically silent interval with the percept of a single place of plosive articulation; see Figure 4. 
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Figure 3. Probability (%) of perceiving two consonants in response to the VC-CV pairs [ib]-[ga] and [ib]-[ba], 

instead of a single intervocalic consonant, [iga] or [iba], when the mean silent interval is varied. ‘Cluster’ and 

‘geminate’ refer to the [ib]-[ga] and [ib]-[ba] series respectively. ‘Low’, ‘no’, and ‘high’ refer to stimulus frequency 

effects built into the design. See text for details. [Adapted with permission from Repp (1980).] 

 

Given that a resonance can be reset by a mismatching later event, it remains to explain how 

resonances end when there are no later mismatching events. The ART model proposes that 

chemical transmitters are released within the resonating pathways of the model.  Persistent 

release of these transmitters during resonance inactivates, habituates, or depresses them, thereby 
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weakening the feedback signals that support the resonance and ending it. Thus, a resonance can 

be terminated by either of two mechanisms: resonant reset or habituative collapse.  

 
         ( a )       ( b ) 

 
       ( c )         ( d ) 

Figure 4. Heuristic summary of the resonances that are proposed to explain the data in Figure 3. (a) Response to a 

single stop with (solid line) and without (dashed line) resonant feedback. The ordinate represents category node 

activity and the abscissa represents time. The horizontal line represents an activation above which resonance occurs, 

along with a conscious percept. Resonant activation is shaded. (b) Reset due to phonologic mismatch. Here the 

activity corresponding to /b/ is reset by mismatch with /b/ before /b/ can resonate. Only the /g/ sound reaches 

resonance, leading to a percept of /iga/. (c) It takes a while for the /b/ activity to grow large enough to resonate, but a 

second occurrence of /b/ can more quickly boost already resonant activity. If the second /b/ occurs before the 

resonance in response to the first /b/ can collapse, then fusion of the two /b/ sounds can occur over the intervening 

silent interval, leading to prolongation of the /iba/ resonance through time. (d) A sufficiently long silent interval 

allows a two-stop percept to be heard. Habituative collapse of the /ib/ resonance before the /ba/ or /ga/ resonance 

develops leads to a percept of both syllables separated by a silent interval. [Adapted with permission from 

Grossberg, Boardman, & Cohen (1997).] 
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Figure 3 also illustrates an important property of variable-rate speech perception. Note that there 

are three category-boundary curves for each of the VC-CV syllables [ib]-[ga] and [ib]-[ba]. This 

is because the mean physically silent interval was varied in each of the three cases for a fixed 

pair of VC-CV syllables. A low anchor condition had its distribution of silent intervals skewed to 

be shorter, a high anchor condition had them skewed to be longer, and a no anchor condition had 

no skew. The three curves show that listeners track the mean physically silent interval in each 

case in order to make their judgements. These rate-dependent category boundary shifts have been 

explained by assuming that the brain is trying to create rate-independent speech and language 

representations. In particular, humans can understand variable-rate speech without having to 

represent it internally at every rate, which would create an uncontrollable combinatorial 

explosion and undeciferable decoding problem. The model assumes that there exists a rate-

dependent gain control process which can speed up or slow down the integration rate of the 

resonance in response to the speech rate. The model uses the rate of speech, notably of speech 

transients, to control the integration rate. Figure 5 summarizes the ARTPHONE model of 

Grossberg, Boardman, & Cohen (1997) which quantitatively simulated the Repp (1980) data, 

and showed how to explain many other data of this type, by using a combination of resonant 

feedback, rate-dependent gain control, and habituative transmitter gating. 
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Figure 5. The ARTPHONE model: Working memory item activities (w) excite list chunk activities (u) through 

previously learned bottom-up pathways. List chunk activities send top-down excitatory feedback down to their item 

source cells. Bottom-up and top-down pathways are modulated by habituative transmitter gates (filled squares). Item 

cells receive inputs in an on-center off-surround anatomy. The sum of all the inputs (I) is averaged through time to 

generate a time -averaged estimate of input rate (r) that adjusts the working memory gain (g). Because this gain 

tracks the speech rate, it adjusts the integration rates of the working memory and chunking network to compensate 

for changes in speech rate. Excitatory paths are marked with arrowheads, inhibitory paths with small open circles. 

[Reprinted with permission from Grossberg, Boardman, & Cohen (1997).] 

 

The example in Figure 3 may at first seem to be in conflict with the lesson learned from 

phonemic restoration that a bottom-up signal, such as the noise in “noise-eel,” is needed to hear a 

word like “heel” in response to the action of a top-down expectation: The top-down expectation, 

by itself, cannot “create something out of nothing”. How, then, can the sound /b/ in Figure 3 fill 

such a long silent interval during which it is not actively being generated by spectral energy from 

the outside world? ART proposes that this can happen because sounds are stored in a working 

memory (Miller, 1956; Baddeley, 1986) which enables them to be acted upon by later-acting, 

top-down expectations, much as the noise is stored in “noise-eel” until the last word of the 

rapidly presented sentence “noise-eel is on the shoe” can occur and lead to the percept of “heel.” 
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6. Resonance between STORE Working Memory Items and List Chunk Categories 

Working memories cannot work well unless they operate at correctly defined processing levels 

and obey correctly constrained laws. In particular, it is not sufficient to posit that phonemes, 

letters, and words each have their own processing levels, as proposed in the Interactive 

Activation Model (McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982). These 

levels are inadequate because they cannot learn stable representations of words in an 

unsupervised fashion, and are not consistent with various data about word recognition, as was 

noted in Grossberg (1984, 1986). Rather, processing levels that compute more abstract groupings 

of auditory signals are needed. In particular, a working memory is posited that represents 

sequences of items that have been unitized through prior learning experiences. Familiar feature 

clusters that are presented within a brief time interval become items by being categorized, or 

unitized, at a processing stage that occurs before the working memory stage. As item categories 

are processed through time, they input to the working memory stage at which multiple items are 

simultaneously stored as part of an evolving spatial pattern of activations across a network of 

item representations. The working memory hereby recodes a temporally occurring sequence of 

events into an evolving spatial pattern of activation. This spatial pattern represents both item 

information (which items are stored) and temporal order information (the order in which they are 

stored). Individual items can be recalled when a rehearsal wave nonspecifically activates the 

entire working memory. The rehearsal wave allows the most active items to be recalled first, 

after which they inhibit their own representations using recurrent inhibitory feedback, so that less 

active items can also be recalled in the order of their relative activity (Grossberg, 1978a, 1978b; 

Koch & Ullman, 1985). 

A number of articles have modeled the design principles governing such item-and-order 

working memories (Grossberg, 1978a, 1978b; Cohen & Grossberg, 1986) and have used them to 

explain data about free recall (Grossberg, 1978a, 1978b), reaction time during sequential motor 

performance (Grossberg & Kuperstein, 1986/1989; Boardman & Bullock, 1991), errors in serial 

item and order recall that are due to rapid attention shifts (Grossberg & Stone, 1986a), errors and 

reaction times during lexical priming and episodic memory experiments (Grossberg & Stone, 

1986b), and data concerning word superiority, phonemic restoration, and backward effects on 

speech perception (Grossberg, 1986). Such a wide range of data fall under the purview of these 
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working memory models because they all satisfy two simple postulates (Grossberg, 1978a, 

1978b; Bradski, Carpenter, & Grossberg, 1992, 1994). These postulates predict how unitized 

representations that are activated by lists of items in working memory can be learned in a stable 

way; see Figure 1.  These representations are called “list chunks” because they are selectively 

activated by prescribed lists of items in working memory. List chunks may be learned in 

response to any grouping of items that can successfully and persistently activate such a chunk. 

List chunks can, in principle, code familiar words, as well as phonemes, letters, and syllables; cf., 

Greenberg (2003), in this volume. All these language units can be represented within a single 

chunking network.  

The key postulate, which I have called the LTM Invariance Principle (Grossberg, 1978a, 

1978b), proposes how working memories, which encode a type of short-term memory, are 

designed in a way to enable the stable learning and long-term memory of list chunks. For 

example, after having learned the words my and self, suppose that the word myself is temporarily 

stored in working memory for the first time. How does a listener learn a new word representation 

for myself that is stored in long-term memory, without erasing the previously learned word 

representations for my and self? When such learning occurs in an unsupervised fashion in real 

time, as it does when a child learns a language, a poorly designed working memory could easily 

cause catastrophic forgetting of my and self when learning myself.  

The second postulate requires that the maximal total activity of the working memory is 

finite and, indeed, independent of the total number of active chunks. This postulate implies the 

limited capacity of working memory: Since the total activity in working memory cannot increase 

indefinitely with the number of chunks that might be activated, some chunks must be eliminated 

from working memory in order to enable other chunks to be stored. 

Working memories that satisfy these postulates have been called STORE (Sustained 

Temporal Order REcurrent) models. Remarkably, specialized recurrent on-center off-surround 

networks naturally satisfy both of the STORE postulates. Recurrent on-center off-surround 

networks are ubiquitous in the brain because they enable distributed input patterns to be 

processed without a loss of sensitivity by their target cells (Grossberg, 1980). Thus, designing a 

working memory, which may seem at the outset to be a highly sophisticated task, reduces to 

adapting an ancient neural design that is needed to process all sorts of spatially distributed data.  
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7. The Temporal Chunking Problem and Multiple-Scale Chunks in Masking Fields  

In all the examples of ART speech and language processing, working memories interact 

reciprocally with a categorization network that represents list chunks (Figure 1). These list 

chunks may represent the items themselves or larger groupings of items of variable length--such 

as phonemes, letters, syllables, or words—that can all be represented at the same masking field 

level. Which of these chunks will be activated or learned in any given situation depends upon 

contextual properties of the language. A chunking network called a masking field is designed to 

select those list categories that are most predictive of the temporal context that the items, taken 

together, collectively generate across the working memory (Grossberg, 1978a, 1986; Cohen & 

Grossberg, 1986, 1987; Grossberg & Myers, 2000). The word masking connotes that active list 

chunks which represent longer sequences of items, and thus a less ambiguous temporal context, 

can inhibit or mask chunks that represent shorter sequences of items, more than conversely. This 

property gives a chunk that codes a longer novel list like myself an a priori advantage over 

chunks that code shorter lists like my and self. If the shorter lists are familiar, and thus already 

coded by shorter chunks, then their adaptive filters in the masking field will have been tuned by 

learning to more strongly activate these chunks than before they were familiar. The masking 

advantage of the chunk that represents myself is needed for it to successfully compete with these 

amplified familiar chunks of shorter lists like my and self, even before the list chunks that myself 

activates can be tuned through learning to that word.  

A second important property of a masking field is that a list chunk does not fire unless it 

receives enough bottom-up evidence. Otherwise, incompletely activated large chunks could 

always win over small chunks due to their greater masking potency. Larger chunks can be 

subliminally primed by incomplete evidence, and thereby readied to fire when that evidence 

becomes sufficient, but do not mask smaller chunks if insufficient evidence is available. Thus, 

even if my and  myself are both familiar words, the myself chunk may be primed by inputting the 

word my, but cannot fire suprathreshold signals, thereby enabling the chunk for my to survive the 

otherwise overwhelming inhibition from the myself chunk. As the word my is supplanted by 

presentation of the complete word myself, the pattern of active list chunks shifts through time, 

until myself has enough evidence to mask the chunks for my, self, elf, etc.  
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A third property is that a masking field can represent lists only up to a finite maximal 

length, which is determined by the way in which the connections of the adaptive filter develop 

from the item field, or working memory, to the masking field, or chunking network (Cohen & 

Grossberg, 1986). Lists that are longer than the maximal length are necessarily represented by 

more than one list chunk. Shorter lists of items can also be represented by more than one list 

chunk, but the set of active chunks becomes more selective as the item list becomes more 

predictive (Cohen & Grossberg, 1986, 1987). 

By implementing all of these properties, a masking field provides a solution of what I 

have called the  Temporal Chunking Problem (Grossberg, 1984; Cohen & Grossberg, 1986); 

namely, why is not every list of items coded in terms of already familiar chunks, like my and 

self? How can a new, heretofore non-existent, representation of a novel word, like myself, begin 

to form, under the type of unsupervised learning conditions that typify a child’s language 

learning experiences, despite the competitive salience of its previously learned parts, like my and 

self?  Masking Fields help to solve the Temporal Chunking Problem by enabling larger chunks to 

form despite the salience of smaller, previously chunked lists, and STORE working memories 

embody the LTM Invariance Principle so that learning of these larger chunks does not force 

catastrophic forgetting of smaller, previously learned, chunks. The chunks that win the masking 

field competition activate their top-down expectations and thereby selectively amplify and focus 

attention upon consistent working memory items, while suppressing inconsistent working 

memory items. Feedback establishes a resonance which temporarily boosts the activation levels 

of selected working memory items and list chunks, thereby creating an emergent conscious 

percept.  

We earlier noted that item working memories that embody the LTM Invariance Principle 

can be defined using recurrent on-center off-surround networks. How can a masking field of list 

chunks that solves the Temporal Chunking Problem be designed? Remarkably, masking fields 

can also be defined using recurrent on-center off-surround networks, albeit multiple-scale 

networks that can represent lists of variable length (Grossberg, 1978a; Cohen & Grossberg, 

1986, 1987). This is a satisfying conclusion, because it clarifies how a masking field network 

that represents list chunks of a previous working memory in a network hierarchy can also serve 

as the working memory for a still higher level of list chunks in the hierarchy that can represent 

list chunks of list chunks. And so on. The ability of larger chunks to mask smaller chunks in a 
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masking field translates into the statement that the multiple size chunks are self-similar with 

respect to one another. In other words, the bigger cells that represent longer lists can more 

strongly inhibit the smaller cells that represent shorter lists within the masking field, and can 

provide stronger excitatory priming for items at the previous working memory. All parameters of 

one cell size are thus (approximate) multiples of the parameters of other cell sizes. This self-

similarity property can grow in the network using simple developmental rules (Cohen & 

Grossberg, 1986).  

I note in passing that the above discussion is consistent with the fact that some acoustical 

properties of my as a word may subtly differ from those of my as a syllable of myself, such as 

prosodic differences. A full discussion of these differences is beyond the scope of this review. 

However, it can be noted that a key goal of this part of the system, as noted below, is to derive a 

speech representation that is independent of speaker rate and various other prosodic variations. 

This representation is then used to encode such variations in a parallel working memory. This 

design principle is called the Factorization of Order and Rhythm (Grossberg, 1986). 

 

8. The Magical Number Seven, Word Superiority, and Backward Effects 

Self-similar multiple-scale chunking networks have explained and predicted a variety of data 

about list categorization, including the Miller (1956) “Magical Number Seven, Plus or Minus 

Two”  and the Samuel, van Santen, & Johnston (1982, 1983) data about word length effects 

during word superiority experiments (Grossberg, 1978a, 1984). The Magical Number Seven 

summarized data about the maximal number of chunks that could simultaneously be stored in 

working memory, independent of chunk size. This property naturally follows from self-

similarity, since each winning subnetwork of chunks has similar properties to all the other 

subnetworks, and has a limited capacity. The word length effect says that a letter is better 

recognized as it is embedded in longer words of lengths from 1 to 4. This property also follows 

from self-similarity; namely, from the fact that chunks which code longer lists can provide 

stronger excitatory priming of their items in working memory. The data of Wheeler (1970) 

inspired discovery of the word length effect. These data challenge the idea that letters and words 

are represented on separate processing levels. Were this true, then letters such as I and A that are 

also words would be better recognized than other letters, since they would selectively receive 

excitatory top-down feedback from the word level. This is not true. Within a masking field, 
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familiar letters that are words, as well as familiar letters that are not words, have list chunks, and 

thus a top-down advantage for letters that are words is not expected. 

 
 

Figure 6. Masking field and ARTWORD model: (a) A masking field is organized so that longer item sequences, up 

to some optimal length, selectively activate cells with more potent masking, or inhibitory, properties. Familiar 

individual items, as well as item sequences, may be represented in the masking field. See text for details. [Reprinted 

with permission from Cohen & Grossberg, 1986.] (b) The ARTWORD model incorporates the same types of 

mechanisms as in the ARTPHONE model, with the addition of a multiple -scale masking field. [Reprinted with 

permission from Grossberg & Myers (2000).] 

 

Later studies exploited the fact that, because resonances kick in later than their initial working 

memory activations, they can be influenced by information presented after relatively long 

intervening silent intervals. Variations in the durations of speech sounds and silent pauses can 

hereby produce different perceived groupings of words, and future sounds can influence how we 

hear past sounds. For example, the ARTWORD model (see Figure 6) was developed in 

Grossberg & Myers (2000) to quantitatively simulate context-sensitive speech categorization 

data wherein variable- length list groupings can strongly influence conscious percepts. The 

ARTWORD model generalized the earlier ARTPHONE model by incorporating a multiple-scale 

masking field categorization network. ARTWORD was used to quantitatively simulate 

psychophysical data showing that increasing the silent interval between the words gray chip may 

result in the percept great chip, whereas increasing the duration of fricative noise in chip may 
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alter the percept to great ship (Repp, Liberman, Eccardt, & Pesetsky, 1978); see Figure 7. These 

patterns reflect those of natural speech, and are to be expected in a forced-choice design when 

only the durations of silence and aperiodicity varied. Nonetheless, data of this kind are 

paradoxical for several reasons, and we need to account for them. For example, how can 

increasing the silent interval between the two words gray and chip cause gray to sound like 

great? Even allowing for the fact that the spectro-temporal patterns here reflect the patterns made 

in natural speech to distinguish these words, might not one expect greater temporal separation 

between two familiar words to make them easier to distinguish, not to enable a sound from the 

later word to leap over a 100 ms silent interval to change the percept of one familiar word, gray, 

to another one, great? Likewise, how can increasing the duration of the fricative noise in chip 

make it easier for the noise to leap over the silent interval between it and the earlier word gray to 

generate the percept great while leaving behind the remainder of the word chip to which it is 

temporally contiguous, leading to the percept ship?  

 The resonant dynamics of STORE working memory and masking field interactions 

account naturally for these context effects. For example, when the word gray is heard, a masking 

field can fire the gray chunk but can only prime the chunk for great. When the interval of silence 

between the two words is relatively long, a resonant transfer from the gray to the great chunk  

becomes more likely because the gray chunk can resonate longer with its working memory 

items, and thus the transmitters in the bottom-up and top-down pathways that support this 

resonance can become more habituated, thereby weakening activation of the gray chunk, along 

with its ability to inhibit other competing chunks. The great chunk can be quickly activated when 

the fricative noise in chip occurs because it was already significantly primed by the auditory 

signals that activated gray. When the great chunk finally fires, it can more easily inhibit the gray 

chunk after the longer interval, thereby altering the percept to great. 

Such data and their explanatory resonances emphasize how future sounds can leap over a 

physical interval of silence to join a past word. The same type of resonance mechanisms were 

used in the ARTPHONE simulations of the data in Figure 3. These and many other long-domain 

context-sensitive percepts (see Coleman, 2003; Hawkins, 2003; and Local, 2003; all in this 

volume) can now be given a unified explanation in terms of how the evolving resonance between 

working memory items and list chunks naturally leads to such context effects.   
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Figure 7. (a) Perceptual boundaries reported in Repp et al. (1978). Four distinct percepts, in regions (1) through (4), 

may be perceived when silence duration and/or fricative noise duration are varied. See text for details. [Adapted 

with permission from Repp et al. (1978).]  

 

9. How is a Temporally Invariant Speech Code Derived from Variable-Rate Speech? 

In order to explain othe r types of auditory and speech data, preprocessing of acoustic signals 

plays a crucial role. As noted above, such preprocessing has been proposed to play a role in 

solving the problem of how humans can understand variable-rate speech without having to 

represent it internally at every rate, and thereby creating an uncontrollable combinatorial 
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explosion and undeciferable decoding problem. The ARTPHONE model of Figure 5, and its 

elaboration in the ARTWORD model, suggested that preprocessing in the form of a rate-

dependent gain control adjusts the integration rate of working memory and chunking networks to 

keep up with the overall speech rate.  

In addition to this long-term change in processing rates, it has also been proposed that a 

rapidly acting gain control helps to generate more temporally- invariant representations within 

individual syllables. In particular, Cohen & Grossberg (1997) proposed that auditory signals are 

processed by parallel auditory streams, one of which responds preferentially to transient, and the 

other to sustained properties of the acoustic signal before being stored in parallel transient and 

sustained working memories. In fact, it is well known that there are cells in the brain’s auditory 

system that are selectively sensitive to transient and sustained properties of acoustic waveforms  

(Britt & Starr, 1976; Sachs & Young, 1979; Young & Sachs, 1979; Moller, 1983; Delgutte & 

Kiang, 1984a, 1984b; Rhode & Smith, 1986; Pickles, 1988; Mendelson, Schreiner, Sutter, & 

Grasse, 1993; Tian & Rauschecker, 1994). Cohen & Grossberg (1997) suggested that this 

decomposition helps to partially separate coarticulated consonants and vowels into distinct, but 

parallel, working memories, and also to explain data about auditory-nerve processing. 

Decomposition of sensory signals into transient and sustained cell responses is also well known 

to occur within the visual system. 

Boardman, Grossberg, Myers, & Cohen (1999) modeled these transient and sustained 

working memories in the PHONET model and used their interaction to realize a more rate-

invariant representation of speech. In particular, increased activation of the transient working 

memory was proposed to increase the gain of the integration rate within the sustained working 

memory. Several experiments had earlier reported asymmetric vocalic context effects (Kunisaki 

& Fujisaki, 1977; Mann & Repp, 1980) from transient to sustained, but not conversely. Such 

asymmetric gain control in PHONET leads to a working memory representation of an individual 

syllable or word that is more invariant under changes in speech rate. For example, a faster speech 

rate may more strongly activate transients in the speech signal but leave less time to integrate 

sustained signals. Asymmetric gain control tends to correct this imbalance and to thereby 

generate relative activities across transient and sustained working memory representations that 

compensate for, and are thus invariant under, variable speaking rates. Invariant relative 

activations, in turn, lead to preserved categorization by the chunking network because the 
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bottom-up adaptive filter pathways between the working memory and the list chunks tends to 

activate the same set of chunks when relative activities are preserved (e.g., Grossberg, 1980).  

Parallel preprocessing into transient and sustained channels, followed by gain control 

from the transient to sustained channel, was used in PHONET to quantitatively simulate how, in 

CV syllables such as /ba/ and /wa/, an increase in the duration of the vowel /a/ can cause a switch 

in the percept of the preceding consonant from /w/ to /b/ (Miller & Liberman, 1979), and how a 

change in frequency extent (namely, total frequency change), but not rate, can also influence the 

/b/-/w/ distinction (Schwab, Sawusch, & Nusbaum, 1981).  

The rapidly-acting gain control in the PHONET model is proposed to work together with 

the longer-persisting gain control of the working memory and chunking network integration rates 

of the ARTWORD model. Taken together, these two sorts of gain control begin to explain how a 

temporally- invariant speech representation may be created internally by brain dynamics from 

variable-rate speech signals that themselves do not exhibit obvious properties of invariance.  

Other types of preprocessing are also needed to prepare auditory signals for speech analysis, as 

the following section notes. 

 

10. Resonance during Auditory Streaming 

If adaptive resonance is indeed a mechanism to control rapid learning of perceptual and cognitive 

codes without catastrophic forgetting, then resonant interactions may be expected to occur at 

multiple levels of the auditory system. In fact, suitably designed resonance networks have also 

been helpful in explaining data about auditory streaming and the cocktail party problem, albeit at 

a different level of auditory processing (Grossberg, 1999b, 1999c). It is well known that pitch is 

one of the major properties of the auditory signal that is used to separate voices or instruments 

into separately perceived auditory streams (Bregman, 1990). Auditory signals are thus first 

preprocessed to extract the pitch of a voice or instrument by using a model of early auditory 

preprocessing called the SPINET model, or Spatial PItch NETwork, so-called because SPINET 

converts temporally-occurring auditory signals into spatial representations of pitch (Cohen, 

Grossberg, & Wyse, 1995); see Figure 8a. The SPINET model was validated by quantitatively 

simulating many psychophysical data about pitch perception by human observers. Unlike more 

traditional transform models of pitch, the SPINET model proposes how different spectral and 

pitch representations can be represented in a spatial map. A key hypothesis of SPINET is that 
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harmonically-related spectral components (see stages 6 and 7 in Figure 8a) can activate a given 

pitch category through an adaptive filter that obeys laws similar to those which activate list 

categories in the speech models. As in the speech models, it is assumed that the selection of 

harmonics by the filter is due to learning, in particular, learning that is driven by the natural 

harmonic grouping of frequencies due to early auditory processing.  

 

              
 
                                    ( a )                                                     ( b ) 

 

Figure 8. SPINET and ARTSTREAM models: (a) SPINET model processing stages transform a sound stream into 

activations of spatially distributed pitch nodes. [Reprinted with permission from Cohen, Grossberg, & Wyse 

(1995).] (b) ARTSTREAM model processing stages. The spectral and pitch layers of the SPINET model (layers 6 

and 7) are elaborated in the ARTSTREAM model into multiple representations, or strips of cells, and top-down 

ART matching also occurs. Bottom-up signals group harmonically-related spectral components into activations of 

pitch categories. Inhibition within each pitch stream enables only one pitch category to be active at any time in a 

given stream. Asymmetric inhibition across streams in the pitch stream layer is biased so that the winning pitch 

cannot be represented in another stream. The winning pitch category feeds back excitation to its harmonics in the 

corresponding spectral stream. This stream also receives nonspecific top-down inhibition from the pitch layer. ART 

matching is hereby realized. It suppresses those spectral components that are not harmonically related to the active 

pitch. Inhibition across spectral streams then prevents the resonating frequency from being represented in other 

streams as well. [Reprinted with permission from Grossberg (1999b).] 
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Because of its spatial representation, the SPINET model could be naturally extended to define a 

more comprehensive model of pitch-based auditory streaming, called the ARTSTREAM model.  

To do this, the spectral and pitch representations of the SPINET model are extended into 

multiple representations of each frequency and pitch across a spatial map (Figure 8b). These 

multiple representations give rise to “strips” of the map that are devoted to a single frequency or 

pitch. A second extension is that a top-down filter encodes the “expectations” that the pitch 

categories  learn to expect. Each expectation codes the harmonics of the pitch that is represented 

by the pitch category. A spectral-pitch resonance can occur when a bottom-up adaptive filter and 

its top-down expectation generate a focus of attention. Such a resonance represents an auditory 

stream in the model. 

How can multiple streams simultaneously be experienced? Because of their spatial 

relationships, the multiple spectral and pitch representations can naturally interact across the 

network via cooperative and competitive feedback interactions that resonantly capture harmonic 

frequencies that belong to the same pitch source within a given stream, while enabling multiple 

streams to coexist simultaneously. In particular, exclusive allocation (Bregman, 1990), or the 

allocation of a frequency to only one stream, can arise as follows: When a given pitch captures 

its harmonics via a spectral-pitch resonance,  these harmonics at the spectral level can inhibit the 

same harmonics within other streams using within-frequency cross-stream lateral inhibition.  

This competition prevents the other streams from representing these frequencies.  

Other streaming data have also been simulated by the ARTSTREAM model, such as the 

auditory continuity illusion and how gliding frequencies, with and without noise, interact when 

they come together. The auditory continuity illusion (Miller & Licklider, 1950) is a classical 

example of streaming wherein properties of the ART matching rule fairly leap out from the page. 

Suppose that a steady tone shuts off just as a broadband noise turns on. Suppose, moreover, that 

the noise shuts off just as the tone turns on once again. When this happens under appropriate 

conditions, the tone seems to continue through the noise, which seems to occur in a separate 

auditory stream. This example suggests that the auditory system can actively extract those 

components of the noise that are consistent with the tone and use them to track the “voice” of the 

tone right through the noise.  

 Suppose, however, that the tone does not turn on again for a second time. Then the first 

tone cannot continue through the noise to the other end. It is perceived to stop before the noise 



 25 

stops. A comparison of these two cases raises the question: How does the brain use the 

information about a future event, the second tone, to continue the first tone through the noise? 

This seems to require that the brain can operate “backwards in time” to alter its decision as to 

whether or not to continue a past tone through the noise based on future events. The 

ARTSTREAM model proposes that this backwards effect is due to a spectral-pitch resonance 

between the spectral representation of the tone and its pitch category; see Figure 8b. Such a 

resonance takes awhile to develop after the first tone occurs, but it takes much less time for the 

second tone to re-excite it once it has already begun, much as in the case of the second /b/ during 

resonant fusion of [ib]-[ba]. The third property of the auditory continuity illusion shows that the 

ART matching rule is obeyed here, and exhibits the same computational property whereby it 

helped to explain phonemic restoration. In particular, suppose that no noise occurs between two 

temporally disjoint tones. Then, unlike the case when broadband noise separates the two tones, 

the tone is not heard across the silent interval. Instead, two temporally disjoint tones are heard. 

This case shows that the brain actively uses the noise to continue the tone through it. The 

matching law can thus select a noise component that is consistent with the pitch category, but it 

cannot create a spectral sound unless there is already pitch-consistent activation at the spectral 

level that was caused by bottom-up inputs. 

 

11. Distinct but Interacting Streaming and Phonetic Processes 

 Taken together, the ARTSTREAM and PHONET/ARTWORD models support the 

hypothesis that auditory streaming and phonetic processes are distinct. Streaming includes the 

setting up of spectral-pitch resonances, whereas phonetic processing generates (working 

memory)-(list chunk) resonances in a different part of the brain. Due to the harmonic bottom-up 

and top-down filters that bind spectral components to pitch categories during auditory streaming 

(Figure 8a, level 7), the role of harmonics is more important during auditory streaming than 

during phonetic perception, as has been experimentally demonstrated by Remez, Rubin, Berns, 

Pardo, & Lang (1994) and Remez, Pardo, Piorkowski, & Rubin (2001); also see Remez (2003) in 

this volume. Coordinating these several processing levels into a complete auditory architecture 

remains an open problem. One exciting property is that both types of processing seem to use 

resonant processes. They, as it were, speak the same dynamical language, and thus one can begin 

to analyse how they interact in a context-sensitive manner.  
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12. The Intimate Link between Auditory Information Processing and Learning in the Brain 

In order for the auditory system to efficiently integrate information across its several processing 

levels, the mechanisms that occur at these levels need to be computationally consistent. ART 

predicts that there is a deeper reason why multiple levels of auditory processing may all use 

resonant dynamics. ART predicts that resonant processes enable our brains to continue to learn 

about a changing world in a stable fashion throughout life. These processes include the learning 

of top-down expectations, the matching of these expectations against bottom-up data, the 

focusing of attention upon the expected clusters of information, and the development of resonant 

states between bottom-up and top-down processes as they reach an attentive consensus between 

what is expected and what is there in the outside world. It is suggested that all conscious states in 

the brain are resonant states, and that these resonant states trigger learning of sensory and 

cognitive representations. The auditory models outlined above are proposed to be specialized 

versions of ART mechanisms for stably learning about temporally evolving auditory information 

about the world. Said in another way, ART clarifies how humans can so quickly learn to perceive 

and understand speech and language without experiencing catastrophic forgetting. This 

hypothesis suggests that experiments which attempt to probe the brain’s designs for speech and 

language should attempt, wherever possible, to link studies of information processing with 

manipulations of learning. 

In addition to ART-based explanations of temporal data from audition and speech, 

variants of predicted ART top-down expectation, attentional-priming, and matching circuits have 

also been used to quantitatively simulate psychophysical and neurobiological data from early 

vision and visual object recognition; see Figure 2b. Given that all of sensory and cognitive 

neocortex shares key laminar circuit properties, it will be interesting to test the hypothesis that 

similar circuits, suitably specialized, may operate in auditory thalamocortical circuits. 

Although ART mechanisms are predicted to occur in many brain processes, it is not 

proposed that they occur in all brain processes. In particular, the present article is devoted to 

sensory and cognitive processing in the What processing stream of the brain, which learns to 

recognize what objects and events occur in the world by using temporal cortex, among other 

brain regions (Ungerleider & Mishkin, 1982). A parallel Where cortical processing stream learns 

to spatially localize where objects are in the world and to act upon them, by using parietal cortex, 
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among other brain regions (Goodale & Milner, 1992). These What and Where streams obey top-

down matching and learning laws that are often complementary to one another (Grossberg, 

2000b). This enables sensory and cognitive representations in the What stream to use their ART-

like processing to maintain their stability as we learn more about the world, while allowing 

spatial and motor representations to forget learned maps and gains that are no longer appropriate 

as our bodies develop and grow from infanthood to adulthood. Detailed neural models of 

sensory-motor control and procedural memory clarify why procedural memories are not 

conscious. they often use inhibitory matching and learning processes that cannot lead to 

resonance, and hence cannot lead to consciousness (Fiala, Grossberg, & Bullock, 1996; 

Contreras-Vidal, Grossberg, & Bullock, 1997; Grossberg, Roberts, Aguilar, & Bullock, 1997; 

Bullock, Cisek, & Grossberg, 1998; Cisek, Grossberg, & Bullock, 1998). How to coordinate 

What and Where processing during auditory perception is another open problem that is ready for 

theoretical synthesis. 
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