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Neural Dynamics of Variable-Rate Speech Categorization

Stephen Grossberg, Ian Boardman, and Michael Cohen
Boston University

What is the neural representation of a speech code as it evolves in time? A neural model
simulates data concerning segregation and integration of phonetic percepts. Hearing two
phonetically related stops in a VC-CV pair (V = vowel; C = consonant) requires 150 ms
more closure time than hearing two phonetically different stops in a VC,-C2V pair. Closure
time also varies with long-term stimulus rate. The model simulates rate-dependent category
boundaries that emerge from feedback: interactions between a working memory for short-term
storage of phonetic items and a list categorization network for grouping sequences of items.
The conscious speech code is a resonant wave. It emerges after bottom-up signals from
the working memory select list chunks which read out top-down expectations that amplify
and focus attention on consistent working memory items. In VCi-C2V pairs, resonance is
reset by mismatch of Cj with the C, expectation. In VC-CV pairs, resonance prolongs a
repeated C.

What is the nature of the process that converts brain

events into behavioral percepts? An answer to this question

is needed in order to understand how the brain controls

behavior and how the brain is, in turn, shaped by environ-

mental feedback that is experienced on the behavioral level.

The nature of this connection also needs to be understood in

order to develop neurally plausible connectionist models.

Without it, a correct linking hypothesis cannot be developed

between psychological data and the brain mechanisms from

which they are generated.

The Resonant Dynamics of Conscious

Speech Percepts

The present article illustrates the hypothesis that con-

scious speech percepts are emergent properties that arise

from resonant states of the brain. Such a resonance develops

when bottom-up signals that are activated by environmental

events interact with top-down expectations, or prototypes,

that have been learned from prior experiences. The top-

down expectations carry out a matching process that selects

those combinations of bottom-up features that are consistent

with the learned prototype while inhibiting those that are
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not. In this way, an attentional focus starts to develop that

concentrates processing on those feature clusters that are

deemed important on the basis of past experience. The

attended feature clusters, in turn, reactivate the cycle of

bottom-up and top-down signal exchange. This reciprocal

exchange of signals eventually equilibrates in a resonant

state that binds the attended features together into a coherent

brain state. Such resonant states, rather than the activations

that are due to bottom-up processing alone, are proposed to

be the brain events that represent conscious behavior.

A classical example of such a matching process occurs

during phonemic restoration (Samuel, 1981; Warren, 1984;

Warren & Sherman, 1974). Suppose that a noise is followed

immediately by the words "eel is on the ...." If that string

of words is followed by the word "orange," then under

proper temporal conditions, listeners hear "peel is on the

orange." If the word "wagon" completes the sentence,

"wheel is on the wagon" is heard. If the final word is

"shoe," "heel is on the shoe" is heard. Such experiences

show that a bottom-up stimulus alone, such as "noise-eel,"

may not determine a conscious perception. Rather, the per-

cept may be determined by the sound that one expects to

hear in that auditory context on the basis of previous lan-

guage experiences.

To explain such percepts, we need to understand why

"noise-eel" is not heard before the last word of the sentence

is even presented. This may be explained by the fact that if

the resonance has not developed fully before the last word

is presented, then this word can influence the expectations

that determine the conscious percept. We also need to

explain how the expectation can convert "noise-eel" into a

percept of "peel." This is attributed to the top-down match-

ing process that selects expected feature clusters for atten-

tive processing while suppressing unexpected ones. In the

"noise-eel" example, those spectral components of the noise

are suppressed that are not part of the expected consonant

sound.

This selection process directly influences phonetic per-
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cepts. It is not merely a process of symbolic inference. For
example, if silence replaces noise, then only silence is
heard. If a reduced set of spectral components is used in the
noise, then a correspondingly degraded consonant sound is

heard (Samuel, 1981).
Given that a resonant event may lag behind the environ-

mental stimuli that cause it, we need to develop a refined
concept of how perceived psychological time is related to
the times at which stimuli are presented. In particular, how
can "future" events influence the perception of "past"
events yet time be perceived to always flow from past to
future? The theory to be presented here suggests that this is
accomplished by a resonant wave that develops from past to
future even while it incorporates future constraints into its
top-down decision process until each event in the resonance
equilibrates.

In order to represent such a process, we need to distin-

guish the external input rate from the internal rate at which
the resonance process evolves. Because external events
may, in principle, occur at arbitrary times, the internal rate
process must have a finer time scale than any detectable
external rate. It must also be faster than the resonance time
scale that emerges as a result of bottom-up and top-down
interactions. That is why differential equations are used in
the model to be developed here. Differential equations are
the universally accepted mathematical formalism in science
that is used to describe events that are evolving in real time.

A related question concerns how future events can influ-
ence past events without smearing over all the events that
intervene. In particular, how can silent intervals be per-
ceived between the words "peel" and "orange" in "peel is on
the orange" even after "orange" crosses all of the interven-
ing sounds to influence "peel"? Here again the nature of the
top-down matching process is paramount. This matching
process can select feature components that are consistent
with its prototype, but it cannot create something out of
nothing. Silence remains silence, no matter how active the

top-down prototypes may be.
The opposite concern is also of importance. How can

sharp word boundaries be perceived even if the sound
spectrum that represents the words exhibits no silent inter-
vals between them? The theory proposes that silence will be
heard between words whenever there is a temporal break
between the resonances that represent the individual words.
In other words, silence is a discontinuity in the rate at which
resonance evolves.

In order to make these concepts precise and workable, an
analysis of psychological space, no less than of psycholog-
ical time, is required. In particular, it is not sufficient to
posit processing levels that proceed, say, from letters to
words, as in the popular interactive activation model (IAM;
McClelland & Rumelhart, 1981; Rumelhart & McClelland,
1982), which is discussed later in this article. The language
units that are familiar to us from daily experience, such as
phonemes, letters, and words, do not form appropriate levels
in a language processing hierarchy. Such a representation
cannot learn stable representations of words in an unsuper-
vised fashion and is not consistent with various data about
word recognition (Grossberg, 1984, 1986). Rather, process-

ing levels that compute more abstract properties of auditory
processing are needed; in particular, a working memory
(Baddeley, 1986; Cohen & Grossberg, 1986; Grossberg,
1978/1982b; Miller, 1956) is posited herein that represents
sequences of "items" that have been unitized through prior
learning experiences. Such items are familiar feature clus-
ters that are presented within a brief time interval.

As items are processed through time, they generate an
evolving spatial pattern of activation across the working
memory. This spatial pattern represents both item informa-
tion (which items are stored) and temporal order informa-
tion (the order in which they are stored). A number of
articles have modeled the design principles governing such
item-and-order working memories and have used them to
explain data about free recall (Grossberg, 1978, 1978/
1982b), reaction time during sequential motor performance
(Boardman & Bullock, 1991; Grossberg & Kuperstein,
1986, 1989), errors in serial item and order recall that are
due to rapid attention shifts (Grossberg & Stone, 1986a),
errors and reaction times during lexical priming and epi-
sodic memory experiments (Grossberg & Stone, 1986b),
and data concerning word superiority, phonemic restoration,
and backward effects on speech perception (Grossberg,
1986). Such a wide range of data falls under the purview of
these working memory models because they all satisfy two
simple postulates (Bradski, Carpenter, & Grossberg, 1992,
1994; Grossberg, 1978, 1978/1982b). These postulates lead
to working memories that can store sequences of events in
a way that enables them to be grouped, or unitized, into
categories, or "list chunks," by a learning process that
retains its stability even as new events are stored in the
working memory through time.

In like manner, the working memory described in this
article interacts with a categorization network that unitizes
sequences of items by activating nodes that represent list
chunks. These list chunks may represent the items them-
selves or larger groupings of items, such as phonemes,
letters, syllables, or words. The chunking network is de-
signed to select those list categories that are most predictive
of the temporal context that the items, taken together, col-
lectively generate across the working memory as its activity
pattern evolves through time (Cohen & Grossberg, 1986,
1987; Grossberg, 1978/1982b, 1986; Grossberg & Stone,
1986a, 1986b). Such chunking networks have been used to
explain a variety of data about list categorization, including
Miller's (1956) magic number seven (Grossberg, 1978/
1982b) and the word length effect of Samuel, van Santen,
and Johnston (1982).

As the most predictive chunks are selected through com-
petitive interactions, they read out the learned top-down
prototypes that are matched against the items in working
memory. This is how the contextually correct item group-
ings are selected, including the groupings that replace
"noise-eel" in the phonemic restoration example that was
discussed earlier. Thus, by closing the bottom-up top-down
feedback loop, the model clarifies how the process of unit-
ization is linked to the process of phonetic perception.

Learning plays a key role in rationalizing why brain
resonances exist that bind features into attentional states.
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These resonant dynamics are modeled by adaptive reso-

nance theory, or ART, mechanisms that were introduced by

Grossberg (1976a, 1976b; see also Orossberg 1980, for an

early review). ART proposes that top-down matching fo-

cuses attention so that the brain can rapidly learn new

information without just as rapidly being forced to forget

previously learned information that is still useful. In other

words, ART shows how the brain learns to solve the

stability-plasticity dilemma (see Carpenter & Grossberg,

1991, 1992,1993, and Grossberg, 1995, for recent reviews).

ART learning hereby escapes the type of catastrophic for-

getting that bedevils all feedforward learning models, in-

cluding the popular back propagation model of Werbos

(1974) and Parker (1982) that was popularized within the

cognitive science community by Rumelhart, Hinton, and

Williams (1986).

A number of previous articles have been devoted to

showing how ART mechanisms can be used to explain

speech and language data (Bradski et al., 1992,1994; Cohen

& Grossberg, 1986, 1987; Grossberg, 1978, 1978/1982b,

1986; Grossberg & Stone, 1986a, 1986b). In the present

article we analyze data concerning category boundary shifts

that are measured when VCj-C^V pairs are experienced.

Repp (1980) presented /ib/-/ga/ and /ib/-/ba/ syllables to

listeners under conditions that are described more fully later

in this article. In brief, the silence interval was varied

between the initial vowel-consonant (VC,) syllable and the

terminal consonant-vowel (C2V) syllable. If die silence was

short enough, then /ib/-/ga/ sounded like /iga/ and /ib/-/ba/

sounded like /iba/. Repp showed that the transition from

perceiving /iba/ to /ib/-/ba/ requires around 150 ms more

silence than the transition from /iga/ to /ib/-/ga/. One hun-

dred fifty milliseconds is a very long time compared with

the time needed to activate neurons, which is at least an

order of magnitude smaller. Why is this shift so large? We

trace it in the present article to how the /ib/-/ga/ and

/ib/-/ba/ resonances evolve through time. In particular, a

mismatch between /g/ and the internal representation of a

recently presented /b/ can reset the resonance that /b/ would

otherwise have generated and lead to a switch from an

/ib/-/ga/ percept to an /iga/ percept at relatively short silence

intervals. On the other hand, a second /b/ can prolong the

resonance due to a recently presented /b/ and thus allow the

percept /iba/ to supplant /ib/-/ba/ until much longer silence

intervals.

A related issue about the processing of psychological time

also needs to be understood in order to explain these data. If

a resonance can lag behind the stimulus event that caused it,

then why do not resonances take so long to occur that brain

events cannot keep up with the rate at which stimuli are

presented? This problem could become acute during pro-

cesses like speech perception that need to respond to both

slow and fast rates of input presentation. We will show how

a process of automatic gain control can track the speech rate

through time and use this running estimate to speed up or

slow down the processing rate in the working memory and

chunking network. As a result, the delays at which reso-

nances emerge and the times at which they terminate can

keep up with the speech rate. In fact, finer properties of the

Repp (1980) data show categorical boundary shifts that are

sensitive to the mean silence interval, that is, the "speech

rate" in his paradigm. We show that the variability of these

category boundaries derives from the system's efforts to

generate a speech code that is invariant under changes in the

speech rate.

In a similar fashion, during phonemic restoration, the

maximum duration of the noise intervals that permits an

uninterrupted speech percept is nearly equal to the average

duration of the most frequent units in the speech stream

(Bashford & Warren, 1987). Thus, noise intervals may be

roughly as long as the average syllable duration when

disconnected syllables are presented. A similar effect was

reported by Repp, Liberman, Eccardt, and Pesetsky (1978).

They presented the words "gray chip" using an interval of

fricative noise in place of the second word's initial conso-

nant and noted that "gray chip" can be heard as "great ship"

merely by increasing die duration of the noise. The III

percept appears to be labile and may either group with the

/// ("sh") to form the affricate A// ("ch") or move across the

intervening silence and group with die syllable that pre-

ceded the noise to form a word. In this study too, die

temporal boundary shifted with die average speaking rate of

die carrier sentence. These and other studies discussed fur-

ther on indicate that die interactive grouping process is

modulated by contextually determined timing information

and results in percepts that are invariant with variable global

speech rate.

In die discussion that follows we explain how sensitivity

to temporal variations can be incorporated in die reciprocal

interactions between a working memory and a chunking

field to produce rate-invariant speech percepts. The dynam-

ics of matching input against expectation provide an ac-

count of temporal integration and segregation of phonetic

percepts. This leads to die development of a neural network

model of die interactive feedback process. Computer simu-

lations of the model closely approximate human perfor-

mance in discriminating stop-consonant pairs. We also

compare die model with alternative models for explaining

speech and language data, in particular die fuzzy logical

model of perception (FLMP; Massaro, 1989), die JAM

(McClelland & Rumelhart, 1981), and the TRACE model

(McClelland & Elman, 1986).

Adaptive Resonance in Speech and

Language Processing

As noted above, the dynamical interaction between items

in working memory and list chunks is illustrative of a

cyclical process mat has been described by ART (Carpenter

& Grossberg, 1991; Grossberg, 1978/1982b, 1980, 1986).
The present application of ART to the modeling of phonetic

percepts is called die ARTPHONE model. An earlier ver-

sion of die model was briefly reported by Boardman, Co-

hen, and Grossberg (1993). Widiin diis model, die interac-

tion at the phonemic processing stage begins with die

speech signal being preprocessed (via prior stages of adap-
tive resonance) into unitized item representations. These



484 GROSSBERG, BOARDMAN, AND COHEN

items are sequentially stored in a working memory (Badde-
ley, 1986; Bradski, et al., 1992; Grossberg, 1978, 1978/
1982b; Grossberg & Stone, 1986a). The rate of processing
in the working memory automatically adjusts itself based on
temporal information in the speech signal so that the speech
representation remains approximately invariant even with
variable long-term speech rates.

As items enter the memory buffer, working memory item
nodes send bottom-up priming signals to list chunk nodes
by means of adaptive filters, activating several potential
item groupings, or list categories (see Figure 1). For exam-
ple, as a spoken word beginning with "ba..." (/b«/) enters
the working memory, it sequentially activates populations
responsive to the /b/ and then the /ae/. These items prime
chunks encoding lists that start with /b/ and /baV. List
chunks exhibit properties of self-similarity, so that chunks
for longer lists require greater input to exceed threshold
(Cohen & Grossberg, 1986; Grossberg, 1978/1982b). Fur-
thermore, larger chunks inhibit, or mask, smaller ones, so
that larger lists containing a prescribed sublist are favored
over smaller ones. This combination of list chunk properties
is often called a masking field. See Grossberg (1984) for a
discussion of relevant data.

Thus the /ba;/ chunk can become fully activated only after
the /ae/ item is activated. As the Ibxl chunk becomes active,
it suppresses the /b/ chunk. Once active, list chunks begin to
send top-down feedback to associated items. These top-
down signals represent a learned expectation of the pattern
that is stored in working memory (see Figure 2). Those
chunks whose top-down signals are best matched to the
sequence of incoming data reinforce the working memory
items and receive greater bottom-up signals from them.
Mismatched chunks are either not activated in the first place
or are progressively inhibited by recurrent inhibition from
the better matched chunks. As the best-matched chunks
receive excitatory signals from and emit excitatory signals
to the working memory, they continue to reinforce one
another. As a result, a resonant wave travels across the
network that embodies the speech code and percept. For

bong bang bag

List
STM chunks

Bottom-Up ^ Top-Down
filtering

Working |(Q |ooo
Memory

Expectations

items

AE B
t

Figure 1. A working memory that stores phonemic items inter-
acts with list categories through bottom-up and top-down adaptive
filters. Item lists in working memory prime the list categories,
which in turn send top-down expectation signals back to the
working memory to reorganize its contents through a matching
process. STM = short-term memory.

chunks

Working
Memory

Resonance

items

"bang"

Figure 2. A particular list category wins the competition at the
chunk level and generates top-down excitatory feedback that rep-
resents the category's expectation. Matching between bottom-up
list items and the top-down expectation selects those item features
that are consistent with the expectation and suppresses the rest AE
is "a" as in "hat"; NO is as in "bong." STM = short-term memory.

example, completion of the word "bang," as in Figure 2,
extends the pattern in working memory, matching the ex-
pectation from the list category for "bang" and reinforcing
it. The emerging resonance enables this category (and pos-
sibly related sublist categories) to win the competition at the
chunk level and to complete the recognition event.

The resonant process can be interrupted or terminated by
two different mechanisms: mismatch reset and habituative
collapse. Mismatch reset is due to a mismatch between the
top-down expectations and incoming bottom-up data. When
an input pattern arises in working memory that Mis to
match an active category's top-down expectation, the cate-
gory loses its bottom-up support while simultaneously being
suppressed by competition from other categories that make
a better match with the input pattern. Mismatch reset has
already been used to model many other speech and language
data, including reaction time and error data about lexical
priming and decision processing (Grossberg & Stone,
1986b; Schvaneveldt & McDonald, 1981).

Habituative collapse can occur after a resonance develops
and a category maintains resonant activation levels for some
time. The synaptic transmitter in the excitatory pathways
between the list category and its associated working mem-
ory items gradually becomes inactivated or habituated
(Grossberg, 1986, Section 28). When habituation progresses
past a certain point, the signals in the pathways can no
longer support the resonance. Activation decays below the
signal threshold, and a category "collapse" occurs. Reset
mat is due to habituative synaptic transmitters has also been
used to model many other brain phenomena, including
visual persistence (Francis, Grossberg, & Mingolla, 1994),
visual afterimages (Francis & Grossberg, 1996a; Grossberg,
1976a), form-motion interactions (Francis & Grossberg,
1996b), binocular vision (Grossberg & Grunewald, 1995),
circadian rhythms (Carpenter & Grossberg, 1983, 1984,
1985), and the control of arm movements (Gaudiano &
Grossberg, 1991).

In summary, a resonance can either self-terminate after
fully unfolding and habituating its transmitters or it can be
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actively reset by an input mismatch, possibly even before
reaching resonant levels of activation. Both cases are illus-
trated in the simulated data later in this article. More gen-
erally, all the key elements of the model—its working
memory, chunking network, matching and resonance rules,
and habituative transmitters—have been used to explain
many other behavioral and brain data. In this sense, the
ARTPHONE model provides a parsimonious explanation of
the data targeted herein by using basic model mechanisms
that seem to be utilized in many brain systems.

The model is elaborated below after a review of percep-
tual phenomena that we will use the model to simulate. Our
focus is on the grouping over time of categorical responses,
often described as the temporal integration and segregation
of phonetic percepts (Repp, 1988). Integration maps multi-
ple speech segments, for example, phones, onto a single
mental unit that unifies them into a single percept. Segre-
gation maps multiple segments onto distinct mental units or
percepts. Processes in the model perform these perceptual
functions through dynamical feedback interactions between
item and list categories that are proposed to represent
speech percepts.

Segregation and Integration of
Stop-Consonant Percepts

An example of a phonetic grouping phenomenon is stop-
consonant gemination. Here, gemination refers to the per-
cept of a double consonant that can arise from a single
closure production. In English, production of a stop conso-
nant embedded between two vowels could be perceived
either as a single stop, within a word, or as two stops across
a word boundary, for example, "topic" versus "top pick."
Gemination is generally cued by longer closure duration,
but it can also be signaled by the burst at the onset of the
second consonant. There is a temporal boundary, called the
single-geminate boundary, at which one or two stops are
equally probable percepts. Pickett and Decker (I960)
showed that this boundary, typically around 200 ms, was
sensitive to the global speech rate context. In Italian, where
double stops can appear within some words, the boundary is
also sensitive to temporal cues, in particular, the duration of
the preceding vowel (Rossetti, 1994).

English phonotactic rules permit two phonetically differ-
ent stop consonants (e.g., /b/ and /d/) to appear consecu-
tively only when the first ends a syllable and the second
begins the next syllable. The closure interval can be artifi-
cially shortened, however, to the point that the syllable-final
consonant may not be perceived by the listener. That closure
duration for which one or two stops are equally probable
percepts defines a single-duster boundary (Dorraan,
Raphael, & Liberman, 1979; Repp, 1978). This boundary
was reported to be approximately 70 ms.

Repp (1980) continued his investigation of the role of the
closure duration in integration and segregation of stop-
consonant percepts. The purpose of the Repp experiment
was to determine how single-cluster and single-geminate
boundaries respond to changes in the long-term statistics

(mean and variance) of silent intervals across trials. It was
not expected that the single-cluster boundary would be
sensitive to this manipulation, because it was thought that
the interference due to later occurring formant transitions
reflected an essentially acoustic or precategorical process-
ing (Repp, 1988). The study failed to confirm this expecta-
tion and, instead, provided quantitative information about
the adaptation of categorical percepts to long-term speech
rate.

The Repp (1980) experiments used stimuli consisting of
pairs of vowel-consonant (VC) or consonant-vowel (CV)
syllables. A VC syllable was always followed by a CV
syllable. These syllable pairs were separated by a silent
closure interval of variable duration. There were two sets of
experiments. In one set, the two consonants were perceived
as phonetically distinct, whereas in the other set, they were
perceived as the same. The consonants were in all cases the
voiced stops /b/ or /g/. A phonetically different pair of stops
is referred to as a stop cluster. A phonetically similar pair of
stops is called geminate if it produces a double stop percept.
The duration of closure for each trial was chosen randomly
from a set according to one of three probability distributions
for each of the two classes of stop pairs (see Figure 3). The
"no anchor" case covered the full range of silence intervals,
a set of 11 specific values equally spaced across the range,
with uniform probability of being presented. The "low an-
chor" case used a subset of the 8 shortest intervals and had
a higher probability of the shortest interval being presented.
The "high anchor" case used a subset of the 8 longest
intervals and had a higher probability of the longest interval
being presented. Depending on the silent interval presented,
the VC,-C2V stimulus was perceived by the listener as
either VC2V or VQ-CjV, and the VC-CV stimulus was
perceived as either VCV or VC-CV. With three ranges of
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Figure 3. Distributions of silent intervals for VC,-C2V (upper
time scale) and VC-CV (lower time scale) stimuli used by Repp
(1980). V = vowel; C = consonant
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silence intervals for both VC-CV and VCj-C2
v stimuli

types, there were a total of six experimental conditions.
Eight individuals participated, including Repp himself.

All had previous exposure to synthetic speech sounds. The
results, averaged over all participants, are shown in Figure
4. Repp (1980) reported that "all subjects tested showed
these shifts, including the author who, despite foreknowl-
edge and to his considerable surprise, was affected just as
much as the other subjects." The curves describe category
boundaries between one and two stops for each experimen-
tal condition. For all conditions, participants were more
likely to perceive two stops as the silent interval between
the two syllables increased. The horizontal shift of the
curves in relation to the range of silence interval used in
each condition indicates that the participants' decisions
were strongly influenced by the distribution of silences
across trials. In fact, averaged over participants, the decision
boundary appears to be established right around the mean
silent interval used in that condition (see the value of the
abscissa at the 50% probability point of each curve in Figure
4.) Also clearly evident is the broad time gap between the
single-cluster and single-geminate boundaries. Hearing two
of the same stop typically requires about 150 ms more
closure time than does hearing two different stops.

TOO 150 200 25TT

silent interval (msec)

Figure 4. Psychometric functions in response to the two-
syllable stimuli for all six conditions, averaged over 8 participants.
Adapted with permission from "A Range-Frequency Effect on
Perception of Silence in Speech," by B. H. Repp, 1980, Status
Report on Speech Research SR-61. Copyright 1980 by Haskins
Laboratories.

The shift of category boundaries can be viewed from two
perspectives. On the one hand, a two-stop stimulus with a
given interval can be perceived as a single stop if it arises in
a series for which the mean silent interval is long, but it can
be perceived as two stops if the mean silent interval is
sufficiently short. On the other hand, the same percept can
be obtained from a range of silent intervals if the ratio of the
silent interval presented to the mean silent interval is fixed.
For example, a listener has a 50% probability of hearing two
stops whenever the silent interval in the stimulus equals the
mean silent interval for the series. Thus the percept can be
said to remain invariant with changes in the long-term
average silent interval.

Concerning the statistical significance' of these results,
Repp (1980, p. 161) wrote,

One obvious further point to consider is the possibility that
the large range-frequency effects were simply a consequence
of the large region of uncertainty, reflected in the shallow
slopes of the identification functions. This question was in-
vestigated by computing product-moment correlations across
subjects between slopes of individual identification functions
and extent of boundary shift. While a negative correlation of
—0.55 was found in the single-geminate condition (which
supports the hypothesis that smaller slopes go with larger
shifts), a positive correlation of +0.59 was found in the
single-cluster condition (which contradicts the hypothesis);
both correlations were nonsignificant. It should also be noted
that individual identification functions were often consider-
ably steeper than the average functions shown in Figure 4, and
there were several instances of large boundary shifts despite
steep slopes. Thus, no convincing evidence for a direct rela-
tion between uncertainty and sensitivity to range-frequency
was found within the present experiment, suggesting that a
shallow-sloped identification function is neither necessary nor
sufficient for large context effects to occur.

Repp (1980) replicated these results with a second exper-
iment that used natural speech stimuli rather than synthetic
speech sounds. A two-alternative forced-choice discrimina-
tion task was used to study the single-cluster condition.
Here, the first stop consonant, which preceded /g/, was
varied to be either Ibl or /oV. Again a range-frequency effect
on category boundaries was found, as in Figure 4.

Description of Phonetic Grouping in the
ARTPHONE Model

The ARTPHONE model provides an integrated account
of the gap between cluster and geminate conditions and
boundary shifts reported by Repp (1980), as follows. First,
assume that a consonant is consciously perceived only when
resonance between item and list categories raises the con-
sonant's category node above some output threshold (see
Figure 5A). When two inputs which each activate different
item nodes are presented in rapid succession, the response
of the category node, or nodes, associated with the first item
will be reset because of a category mismatch with the
second item. This may occur before die category node
activation has exceeded the output threshold. Hence the
response to the first input would be undetected, because



SPEECH CATEGORIZATION 487

with
resonance

[ib -[ga] -+ [iga]

mismatch

._TL
phonetic input closure interval

B

Figure 5. A: Response to a single stop with (solid line) and
without (dashed line) resonance. The oidinate represents category
node activity and the abscissa represents time. Suprathreshold
activation (above horizontal line) is shaded. B: Reset that is due to
phonologic mismatch. Here the activity corresponding to /b/ is
reset by mismatch with /g/ before it can resonate. Only the /g/
sound reaches resonance, leading to a percept of /iga/.

only suprathreshold resonances lead to conscious percepts
(see Figure 5B). Even if the activation does exceed the
output threshold, it can still be rapidly reset if a mismatch
occurs with respect to a subsequent input (Carpenter &
Grossberg, 1991; Grossberg, 1986; Grossberg & Stone,
1986b).

When two inputs that both activate the same item node
are presented sufficiently close in time, the integrated re-
sponses may "fuse" into a single suprathreshold event (see
Figure 6A). This can happen because the second activation
of the item node can occur while the resonance that is due
to its first activation is still intact. Without an intervening
subthreshold interval, the system can detect only one pro-
longed resonance in response to the two inputs. Sufficiently
long silence following a given input allows a resonant
response to terminate because of habituative collapse. When

[ib]-[ba] -» [iba]
fusion

[ib]-[ba] or [ib]-[ga]

perceived
silence

.J~LTL

Figure 6. A: Fusion in response to similar iterated /b/ phones
leads to a prolongation of the /iba/ resonance through time. B: A
sufficiently long silent interval allows a two-stop percept to be
heard. Habituative collapse of the /ib/ resonance before die /ba/ or
/ga/ resonance develops leads to a percept of both the vowel-
consonant and consonant-vowel sounds.

its activity falls below threshold, the associated percept ends
and begins an interval of perceived silence (see Figure 6B).
A second percept of the /b/ sound can thus develop when /b/
is presented as part of /ba/. This example illustrates how
resonant timing may reorganize the time scale of external
events to define discontinuous gaps in the rate at which a
resonant wave evolves and thus result in a perception of
silence.

In Figures 7 and 8 ARTPHONE simulations of these
category boundaries are summarized and compared with the
Repp (1980) data. Unlike other models of speech categori-
zation, which typically plot category boundaries as a func-
tion of the two alternative percepts (Massaro, 1989; Mas-
saro & Cohen, 1993; Massaro & Oden, 1995; McClelland,
1985; McCleUand & Elman, 1986), the ARTPHONE model
computes category boundaries as they are created from their
emerging speech representations in real time. In subsequent
sections we describe the model in detail and show how these
representations and their category boundaries are formed.

The ARTPHONE Model

The ARTPHONE model has been implemented as a neu-
ral network representing a working memory for phonetic
items and a list category stage. The dynamics of resonance,
category mismatch, and collapse are governed by differen-
tial equations that represent the continuous unfolding of
system dynamics in real time. These properties are demon-
strated in the computer simulations presented later in this
article. The simulations show how the model can transform
item sequences in working memory into categorical re-
sponses that shift in time with changes in mean input rate.

It cannot be overemphasized that the category boundaries
simulated in this way do not represent a curve fit in the
sense that this concept is usually understood in fitting psy-
chological data. The model does not fit the data to prees-
tablished functions that represent data curves with some free
parameters. Rather, the model generates category bound-
aries as an emergent property of the systemwide interactions
that give rise to its resonances. The model's most important
function is to dynamically generate internal representations
of the data through its bottom-up and top-down interactions.
The properties of these representations are then fit to the
data.

There are no preestablished curves against which to fit the
data. Thus, the number of parameters that are needed to
define model interactions is not the key factor in determin-
ing model complexity. Rather, it is the number of processes
that are needed to explain the data and whether the quali-
tative properties of each of these processes are robust under
parameter changes that do not unbalance the system. In the
present instance, only two processes, a working memory
and a chunking network, are needed. Both of these process-
ing levels have been implicated in numerous other expla-
nations of speech, language, and motor control data. In this
sense, the model is parsimonious and even elementary. On
the other hand, a grand unified simulation of all of these
data using one set of parameters remains a goal for future
research at the present stage of model development.
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Figure 7. Top graph plots computer simulations; bottom graph, the original data of Repp (1980).

Parameters: a = 0.5, ft = I, y = 0.097, S = 0.28, K = 100, x = 1. <t> = 5 x 1°~4. i) = 6, T =
350, v = 0.005, f = 0.11, A = 0.1, n = 2.2, <r = 0.06, 6 = 0.22.

The ARTPHONE model is shown schematically in Figure

9. The item nodes in the working memory layer encode

partially compressed representations of the acoustic features

of the speech sounds (Cohen, Grossberg, & Stork, 1988;

Grossberg, 1978/1982b; Grossberg & Stone, 1986a). The

encoding is the result of learning by the adaptive weights, or

long-term memory (LTM) traces, that exist in the adaptive

pathways from the acoustic feature representations to the

item nodes. As incoming speech segments associated with

words sequentially activate these tuned item nodes, spatial

patterns of activation evolve across the working memory.

Repeated exposure to specific spatial patterns permits learn-

ing by the LTM traces in the adaptive pathways between the

item nodes and the list nodes. Just as any given activity

pattern arises sequentially from smaller patterns, there are

list nodes that categorize familiar sublists of any given list,

even one-item lists known as singletons. For the purposes of

the following discussion, we can assume that the adaptive

tuning of the pathways that activate the item and category

nodes occurred during a critical developmental period and is

stable; see Carpenter and Grossberg (1991, 1993) and

Grossberg (1980, 1986) for a discussion of model mecha-

nisms with these properties. Thus, no adaptive weights or

processes are included in the present implementation.

After a speech segment activates an item node, the item

node then excites associated list nodes. These list nodes, in

turn, activate excitatory top-down feedback to the item

nodes, which corresponds to learned expectations. This re-

ciprocal exchange of bottom-up and top-down signals en-

ables a resonant state to develop. Both the bottom-up and

top-down excitatory signals pass through transmitter gates

that are inactivated, or habituated, by the signals in their
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Figure 8. Repp's (1980) data are the thin solid lines; computer simulations ate the dotted lines
with points. Top panels show the cluster case, and bottom panels, the geminate case. Each
simulation curve is an average over S runs of 100 trials each. Error bars represent 1 standard
deviation from the mean.

respective pathways (Carpenter & Grossberg, 1990; Gross-

berg, 1972, 1980). When a transmitter is sufficiently habit-

uated by the signals passing through its pathway, then the

resonance supported by that pathway can begin to collapse,

after which node activations decay passively.

Resonant activation of item nodes results from a combi-

nation of bottom-up input and top-down feedback. Any one

item node may receive top-down signals from many list

chunks as the input sequence progresses. The bottom-up

input has an on-center off-surround organization that re-

flects auditory anatomy at several levels of organization

(Irvine, 1986; Pickles, 1988). Because of this anatomy,

inhibition arising from subsequent inputs serves to suppress

prior activations that mismatch the evolving top-down ex-

pectation. A second mechanism of mismatch reset by means

of an orienting, or novelty-sensitive, subsystem (Carpenter

& Grossberg, 1991; Grossberg, 1980) is implemented in a

later section of this article (see Mismatch Reset by an

Orienting Subsystem).

Rate Invariance and Gain Control

The time needed for resonance to bring activation to a

perceptually significant level and for the resonant response

to collapse is dependent on the neural activation rates in the

network model. Activation rates play a critical role in adapt-

ing to speech rate by speeding up processing in response to

a high rate of speech units and slowing it down in response

to a slow rate. The parameter that controls an equation's

processing rate is called its gain. In the ARTPHONE model,

the gain is automatically adjusted to a running estimate of

the input rate (cf. Grossberg, 1986, Section 45). Whether we

hear "topic" or "top pick," given a fixed target stimulus, is
determined by the speech rate cue from the surrounding

context (Pickett & Decker, 1960). In fact, the Repp (1980)

data show that listeners' percepts are approximately invari-
ant with respect to the mean silent interval between stop-

consonant clusters, which is inversely related to the input

rate. These data suggest that an estimate of mean input rate
may serve as a basis for adjusting the activation rate of the
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Figure 9. Working memory item activities (w) excite list chunk
activities (u) through previously learned bottom-up pathways. List
chunk activities send top-down excitatory feedback down to their
item source nodes. Bottom-up and top-down pathways are modu-
lated by habituative transmitter gates (filled squares). Item nodes
receive input in an on-center off-surround anatomy. Total input (/)
is averaged to control an item rate signal (r) that adjusts the
working memory gain (#). This gain tracks the speech rate and
adjusts the integration rates of working memory and chunking
network accordingly. Excitatory paths are marked with arrow-
heads; inhibitory paths, with small open circles.

system so that phonetic percepts become independent of
changes in the mean input rate.

Network Equations

With the basic concepts of the model described, we can
next specify mathematically how these features are imple-
mented. In the following network equations, Greek letters
are fixed parameters. Each equation describes the time rate
of change of a system variable x, denoted by dxldt, in terms
of its inputs and internal processes.

Item Working Memory Level

Let Wj be the activity of the j* item representation pp and
let Ij be its input. Then w, obeys the equation

-37

obeys the equation

wj(a (1)

In Equation 1, term g(r) represents the automatic gain
control process. It multiplies the entire right-hand side of
Equation 1 and thereby speeds up or slows down the rate
dWjtdt with which Wj changes as it increases or decreases,
respectively, through time. The gain term g(r) is defined by

In Equation 2, x is a constant, or tonic, baseline activation
rate. Term ^r71 is a variable rate, where $ is a constant and
r adapts slowly to the input rate, as described in Equation 9.

Term (ft - wj) (Ij + in Equation I defines the

g(r) = * + </>r" (2)

excitatory effects of the bottom-up input /, and the net
top-down feedback signal UjZJU on Wj. The top-down feed-
back signal Uj arises from the activity of the list chunk that
is associated with item pl via item node j. Signal Uj is
multiplied, or gated, by the transmitter zju, which habituates
in response to intense resonant activation of Uj, as shown in
Equation 5 below.

Both the bottom-up and top-down signals are multiplied
by the shunting, or membrane equation, term ft — Wj. This
term assures that Wj cannot exceed ft. It also causes the
processing rate to be input-dependent, because all terms that
multiply Wj on the right-hand side of Equation 1 determine
wfs net processing rate.

The inhibitory terms in Equation 1 are combined in the
expression —Wj (a + K £t,y Ik). Parameter a is a passive
decay parameter. Multiplying the inhibitory input - K 2t^
4 by the shunting term Wj assures that Wj never becomes
negative. It also makes the rate dwjldt of w, processing
dependent on all the terms 4, k + j, that inhibit Wj via lateral
inhibitory interactions.

Taken together, the excitatory and inhibitory interactions
in Equation 1 define a shunting on-center off-surround
network. The on-center off-surround interpretation can be
summarized as follows: The excitatory "on-center" input /•
can turn on only those ft — Wj cell sites that are unexcited,
as in term (ft — w,)/,. The inhibitory "off-surround" input
2t,y 4 fr°m other phones Pk,k± j, can turn off only those
sites Wj that are already excited, as in term —Wj £^4- Such
a network has been proved capable of accurately detecting
and storing the ratios Ij (2t 4)"' °f me item inputs in
working memory, assuming that they are simultaneously
presented, even if the total input £t 4 becomes very large
(Grossberg, 1973/1982a, 1980). Such a shunting network
extracts a normalized response even from wildly fluctuating
inputs while processing relative input importance without
saturation.

List Chunking Level

As noted above, «, is the activity of the list chunk asso-
ciated with item node j. Activity «, also obeys a gain-
controlled shunting equation, namely

(3)

In Equation 3, the gain control term g(r) scales the rate
duj/dt with which Uj changes, just as it did for Wj in Equation
1. Also as in Equation 1, only unexcited sites (ft — Uj) can
be excited, here only by a bottom-up signal wj

+zjw from
item j. This signal is derived from the activity w.• of item j
via the thresholded signal Wj+ = max(Wj — y, 6). In par-
ticular, item/' cannot begin to excite chunky until its activity
Wj exceeds threshold a. Once this signal is emitted from
item node /', it is multiplied, or gated, by a transmitter z ,̂
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that habituates in response to item activity, as shown in
Equation 4 below. Thus both the bottom-up and the top-
down transmitters between items and chunks habituate in
response to activity in the pathways that they gate.

Transmitter Dynamics

The bottom-up transmitter z „ and the top-down transmit-
ter zjw between the/11 item and category both obey the same
habituative law, albeit in response to different signals. This
law was introduced by Grossberg (1968, 1969). In the
present instance, it becomes

(4)

and

Consider Equation 4 for definiteness. By term f(l - z^),
transmitter accumulates to a target level 1 at a fixed rate £.
When the system is at rest (namely h = 0 for a sufficiently
long time), the transmitter variable equilibrates at its max-
imum value 1. By term — h(uj)zjw, transmitter is inactivated,
or habituates, by a mass action interaction between the
amount z^ of available transmitter and a function h(Wj+) of
the bottom-up signal Wj+ emitted by item j. Thus z/w is
inactivated, and a resonant collapse initiated, at a rate pro-
portional to how active item/ becomes. Equation 5 says that
the same is true for the top-down transmitter zju, except here
the habituation rate increases as a function of h(u;), which
grows with activity w, of chunk./'.

Transmitter Inactivation Rate

The transmitter inactivation rate is a nonlinear function of
its signal, namely

h(x) = \x+ f (6)

As first simulated by Gaudiano and Grossberg (1991), the
higher order term in Equation 6 causes the gated signals
wzjn and uzju in Equations 1 and 3 to exhibit nonmonotonic
responses as a function of the signals w and M, respectively,
that cause their activity-dependent inactivation. To see this,
solve Equation 4 at equilibrium (dzjjdt — 0) to find that

(7)

By Equations 3, 6, and 7, the bottom-up signal from item;
to list chunky is then

(8)

Thus, as activity w} increases because of resonance, the
signal (Equation 8) first increases and then decreases. The
inactivation rule (Equation 6) hereby ensures that input

signals eventually decrease at sufficiently high activation
levels. The effect of varying parameters A and /j, in Equation
6 is demonstrated later in the simulations.

Estimation of Input Density by Means of Automatic

Gain Control

It remains to define the automatic gain control g(r) that
modulates the integration rate of w, and Uj in Equations 1
and 3, respectively. This function tracks input density —
namely, a time average of input energy. Time averaging of
inputs is a simple leaky integration operation common to
neurons and is thus an intuitive mechanism for estimating
the speech input rate. Although Repp (1980) directly varied
the mean silent interval between input speech segments, he
consequently also varied the mean input density, because
the number and amplitude of the input segments were fixed
for the entire experiment. In the model, it is assumed that
gain control is based on a running average of input density.
We infer from the fact that decision boundaries are posi-
tioned near the mean (intrastimulus) silent interval that
listeners completely discount the much longer (2.5 s) inter-
vals between stimulus presentations. Thus the estimator
should ignore long intervals without input. These intervals
can be discounted by limiting the input averaging to a fixed
time frame, or window, following input. In the simulations
that follow, the rate signal r that goes into g(r) is given by

dr

where 7 = 2t 4 is me total input,

1 t-t,<r
0 otherwise,

(9)

(10)

and te is the last time that I 2 £ in a given input bout. By
Equations 9 and 10, r time-averages input / at rate v and
decays when input is not present such that integration is
gated off by w at T ms after / falls below the threshold value
£. Whenever the input was on, it exceeded threshold e in
Equation 10. The dependence of the average value of r on
mean silent interval, s, can be interpolated by a decaying
exponential function of the form

r(s) = a2, (11)

where the parameters a,, a2, and s0 are determined empir-
ically and mean input energy and parameters v and T are
assumed to be fixed. For example, in the simulations below
with v = .005 and T = 350 ms, Uj = 1.9, a^ = 1.25, and
s0 — 256 ms.

Computer Simulations of Variable-Rate

Categorization

In this section we present computer simulations of the
ARTPHONE model defined above. The simulations dem-
onstrate the following properties of the model.
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1. An exchange of bottom-up and top-down feedback
generates a resonance between phonetic items and
list categories that is required for auditory perception.

2. Category collapse arises following an uninterrupted
resonance because of habituation of transmitter gates
in the pathways between the item and list levels. The
resonant phase that precedes collapse explains the
long interval needed to segregate geminate stops.

3. Category mismatch explains the short interval needed
to distinguish between two stops in a consonant
cluster.

4. Changes in the network integration rate that track an
on-line estimate of input rate explain shifts of psy-
chometric functions in the cluster and geminate
conditions.

All simulations were performed by numerical integration
using a fourth-order Runge-Kutta method, with step size
fixed at 0.1. At each time step, the simulator sets input
variables according to an event schedule set by the experi-
menter and then sequentially computes the next change in
each system variable while holding all values constant.

Dynamics of Resonant Feedback

The first simulation demonstrates the response of the

network to a single phone input. The graphs in Figure 10

show the time course of the network activities w and «in the

upper panels and of transmitters zv and zu in the lower

panels. The indexing subscript j is redundant in this case.

The network variables start at their rest levels: zero for

activations w and u, unity for the z transmitter levels. When

input has driven the item activity w above its output thresh-

old y, then a signal w+z^, as in Equation 3, begins to

activate u and list activity u begins to grow. Typically, item

activity w begins to decay at the offset of input (see cusp in

the w graph shortly after input terminates) because top-

down list feedback from u is not yet great enough to

overcome the passive decay.

Bottom-up w excitation to the chunking node continues,

however, at a level great enough to overcome the passive

decay of u, even though w may be momentarily decaying,

and so u continues to increase. Consequently, w changes

from decreasing to increasing, an event called a resonant

boost (ca. 40 ms in the top panel of Figure 10). Without this

boost from top-down feedback, w and u would decay pas-

sively to rest. With top-down feedback, u increases until it

exceeds a resonance detection threshold 6 and thereafter

reaches its resonance asymptote. During this phase, trans-

mitter habituates, or is inactivated (see bottom panel in

Figure 10), until eventually the gated excitatory input to the

item activity w in Equation 1 is no longer sufficient to

support further growth, as when uzu < aw/(p — w). List

activity « then follows item activity w downward, resulting

in category collapse.

An important rate inequality between Equations 1 and 3

ensures the desired qualitative dynamics. The rate differ-
ence is established by constraining passive decay rates in

Equations 1 and 3 to satisfy 8 < a. Consequently, list

50 100 150 200 250 300 350 400 450
time (ms)

0 50 100 150 200 250 300 350 400 450
time (ms)

Figure 10. Activation time course for network variables w and u
(top) and jw and zu (bottom) through time. Rectangular pulse at
lower left of top panel indicates the input interval and amplitude.
Parameters: a = 0.5, £ = 1, y = 0.1, 6 = 0.28, f = 0.1, A = 0.1,
fi. = 2. Gain g was set to 1.1, a midrange value. a.u. = arbitrary
units.

activity u follows its excitatory input w at a slower rate. The

ability of top-down feedback from u to w to support w

following termination of input is also consistent with the

constraint that w decay rapidly relative to u. Without feed-

back from u to w, u is deprived of the extra excitatory boost

in w input that it needs to exceed the resonance threshold.

The rate difference between Equations 1 and 3 is chosen

long enough to reflect the observed value of the single-

cluster boundary, which in the model is determined by the

time needed for u to exceed threshold 6 (see the section

Reset Due to Mismatch below). The lag is also constrained

to avoid oscillations between « and w, which, for a given

value of a, sets a lower bound for 8. Figure 11 shows the

effect of varying S. Oscillations, evident in the leftmost trial

of Figure 11 (8 = 0.1), can arise when small passive decay

S permits list activity u to remain sufficiently large to retard

the decline of item activity w even after substantial trans-

mitter habituation occurs.
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Figure 11. A series of five trials each showing w responses
(solid curves) and u responses (dashed curves) to a single input
pulse (rectangular graphs) as the passive decay rate S in Equation
3 increases. From left to right, 8 = 0.1, 0.2, 0.3, 0.4, 0.5. Other
parameters are chosen as in Figure 10. Gain g was set to 1.2. a.u.
= arbitrary units.

Phonetic Segregation After Category Collapse

Any point in time that list activity u falls below the

resonance threshold 9 is assumed to begin an interval of

perceived silence. Such a negative threshold crossing, or

offset time, determines the earliest time that the next pho-

nemically related input could be detected as a separate

phone. Thus it corresponds to the single-geminate bound-

ary. Segregation of a pair of phonemically related inputs

into separate category responses is demonstrated in the next

simulation (see Figure 12). The time interval when « < 6

between the two suprathreshold phases of u models a silent

interval that permits the detection of two distinct speech

sounds.

Reset Due to Mismatch

At any point in time before the list activity u reaches 9,

the item activity w can be suppressed by a competing input,

such as a /g/ instead of a /b/, that results in the collapse of

«. In that case, the corresponding list category may not

reach resonance and is thus not detected or "perceived" by

the network. The onset time, or time taken to achieve a

positive threshold, thus determines the minimum interval

needed for phonetic perception and corresponds to the

single-cluster boundary. Reset of a list category's response

by a later occurring, different item is demonstrated in the

next simulation (see Figure 13). This example demonstrates

the case in which only the second phone is perceived.

Transmitter Habituation

The time course of the resonant response is affected by

the transmitter habituation parameters A and /t in Equation

6. Figure 14 shows two cases, one for which the nonlinear

habituation parameter pi is zero and the other for which the

linear habituation parameter A is zero. The second-order pi

term is more robust in producing a dynamic reset, as illus-

trated by Equation 8. In fact, the « response continues to

decay below threshold even as ju, is reduced by more than

half. By comparison, the response exhibits premature recov-

ery when A is reduced by a smaller proportion.

In general, increasing transmitter habituation lowers the

range of the u response above threshold. Changes in trans-

mitter habituation can thus change the onset and offset times

that predict the single-cluster and single-geminate bound-

aries and also the difference or gap between them. This gap

has an additional dependence on the rate-controlled system

gain g(r) in Equations 1 and 3, and transmitter habituation

affects this dependence as well. To depict these relation-

ships, we plot onset and offset times as a function of gain

and vary transmitter habituation, as shown in Figure 15.

Increasing in- in Equation 6 causes the onset and offset

boundaries to move closer together, as expected from Figure

14B, but in addition, it causes the gap between them to

narrow at low values of gain. In other words, the u range

above threshold is more sensitive to changes in mean input

rate as n increases.

Performance of Input Rate Estimator

The input rate signal r reflects a running estimate of the

input density as given by Equations 9 and 10. Each simu-

lation of a Repp (1980) experiment begins with r = 0, and

a fixed parameter v in Equation 9 is chosen so that r is

within lie of asymptote by the end of 10 warm-up trials (see

Figure 16A). A more detailed view of the estimator is

shown in Figure 16B, where r is shown for a set of discon-

tinuous, randomly selected trials, one for each silent interval

used in the simulation. Activation r increases during each

input interval (always 30 ms) and decays passively follow-

ing inputs. To save unnecessary computation, the simulator

runs each trial only until the output response («,-) following

the second input has decayed below threshold. At that time,

which is always less than the window time r, variable r is

set to the value it would have decayed to if the simulation

had run till the window closed. Other network values are

also set to their rest conditions. Going from left to right in

Figure 16B, silent intervals used in the trials increase, which

is reflected in the increasing time for decay between inter-

vals of growth.

Simulation of Repp (1980) Psychometric Function

Method

The simulation procedure was directly analogous to Repp's
(1980) experimental paradigm. Each simulation consisted of a
series of 100 trials. For each trial, the network received two input
pulses of fixed amplitude and duration, separated by a silent
interval randomly selected from the appropriate Repp distribution
(see Figure 3). For each presented silent interval, a count was made
of the number of trials that yielded two output responses. Outputs
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Figure 12. Activations w (top panel), z^, and za (middle panel),

and u (lower panel) in response to two phonemically related inputs

(rectangular pulses, II and 12). The resonance threshold value « for

perception is 8 = 0.2. Both are detected (see two suprathreshold u

peaks). a.u. = arbitrary units.

were counted using the detection method described in the follow-

ing paragraph. Dividing this count by die total number of trials at

that silent interval gave the two-stop decision probability. The
simulation was run eight times (corresponding to each of the 8

experimental participants) for each of the six Repp distributions.

Simulations began with 10 warm-up trials, as were used by Repp

(1980), that alternately used the shortest and longest silent interval

between the two inputs. Stop clusters are represented by an input

pulse to PI followed by an input pulse to p2. Geminate stops are

represented by two input pulses to />,. The interstimulus interval of

2.5 s used by Repp can be deleted from the simulation trials

because the network variables wf uf zjw, and zju reach their resting

values within that period. Using the simulator event scheduler, we

set the variables to these values—zero for activations v/t and HJ and

unity for the transmitter levels zjw and zjo—at the start of each trial.

Detection of Output Responses

To simulate the Repp (1980) experiment, we had to define the

detection of a response, both its onset and offset A simple defi-

nition for detecting output is that the list category activity Uj

exceeds the resonance threshold 0. Parameter 9 is called a reso-

nance threshold because list activation can exceed 9 only after

top-down feedback from the category node has begun. In principle,

neural responses are noisy, so we seek a simple detection rule that

reflects not the instantaneous threshold crossing, but the likelihood

that the response will exceed threshold before reset. The chosen

strategy for detection is to wait for the peak list category response

and compare that value with the detection threshold. Perceived

silence exists during intervals in time between successive supra-

threshold category responses. Thus, in order to detect geminate

stops, category activation in response to the first phone must

collapse below threshold before the onset of the second phone

reinforces the response. If we use the same likelihood principle as

before, the strategy in this case is to wait for a trough in the

response trajectory and compare that value with the detection

threshold. The input to the decision processor is presumed to be

perturbed by Gaussian distributed noise (Green & Swets, 1974).

Figure 17 illustrates how phonetic percept detection is per-

formed for the two cases of stop pairs. A decision is made as to

whether the phone can be detected when the activity of the corre-

sponding list node reaches a peak. At that time, a random noise

sample is taken from a Gaussian distribution with zero mean and

variance <f and added to the peak response. The sum is compared

to the fixed threshold 6. After that time, a new peak in the activity

of the same category node can be detected only if another decision

is made that the response has fallen below threshold, in accord

with the proposition that the perception of silence between input

phones corresponds to an interval of subthreshold activation. The

below-threshold decision is made when the output activation

reaches a trough, and the same procedure as above is used. The

peak height before adding noise may be regarded as the determin-

istic response of the system to inputs separated by a given silent

interval. With noise, the peak corresponds to the mean value of a
Gaussian distribution that has some calculable integral above the

threshold criterion, which corresponds to the probability of ex-

ceeding threshold.

Simulation Results

Computer simulations of the model closely approximated
the categorical decision boundaries reported by Repp
(1980). These are shown in Figure 7. The simulated psy-
chometric functions replicate the principal trends of the
averaged data of all participants. Boundaries for all condi-
tions shift with mean silent interval, which indicates that the
percept is approximately invariant with changes in mean
silent interval. This shift property is a direct consequence of
the automatic gain control in the model. Single-geminate
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Figure 13. Activations Wj (top panel), z^ and iju (middle panel),

and Uj (lower panel) for a sequence of two phonemically unrelated

inputs (rectangular pulses, II and 12). Only the latter is detected

(see the single suprathreshold u peak), a.u. = arbitrary units.

boundaries are separated in time from the single-cluster
boundaries by an interval approximately equal to the gap
found in the data (=*150 ms, measured between the no-
anchor curves for the two conditions). This gap is deter-
mined by the suprathreshold phase of the category node
response. The single-cluster boundary occurs at the mean

onset time of the response, where there is a 50% probability

of detecting a suprathreshold response to the first input. The
single-geminate boundary occurs at the mean offset time,

where there is a 50% probability of detecting an interval of
subthreshold activity prior to the second onset.

Boundary slopes for the geminate condition are also

smaller than slopes for the cluster condition, as observed in
the data. Not only the slope of the averaged boundary but
slopes for all individual geminate simulations are shallow
compared to the cluster runs, which indicates that the prob-

ability of detecting a subthreshold u value varies relatively
slowly with silent interval when mean silent intervals are in

the geminate regime. To understand this result, recall that
by the detection procedure, probability bears a direct rela-
tion to the slope of the «trajectory within the time range of

silent intervals being presented. Gain is low in the geminate
regime, so u decays slowly with time in the temporal range
of the silent intervals presented. Consequently, the proba-
bility of u being below the threshold at the end of the silent

interval varies slowly with silent interval.
In Figure 8 a more detailed comparison of the simulation

and data is presented. There are no individual data, although
listener variability was reported to be high. Recent experi-
mental results of Govrndarajan and Cohen (1994) confirm

the high variability in /ib/-Vga/ discriminations. Therefore,
it is not possible to more completely characterize the degree
of agreement between the model and the individual data.

However, the mean values of the simulated percept

probabilities were compared with Repp's (1980) observed
average probabilities. The error in modeling probability

averaged over the six curves was 14%. The root mean

[uare error was computed for each curve using

i(fy — xjflN, where the y>j are the two-stop probabili-

ties reported in Repp (1980), the x} are the averaged simu-
lated probabilities, and 7 indexes silent interval.

The positions of the simulated boundaries in the high-
anchor, single-cluster condition (Case 1), and the low-
anchor, single-geminate condition (Case 2) appear to be
somewhat shifted with respect to the empirical boundaries,

although, as indicated above, the error is unknown. If these
differences are significant, they may suggest modifications
to any or all of the factors that control u onset and offset
times—namely, the gain function (in Equation 2), the

threshold 0, and the transmitter gates Zy, as discussed above.
Assuming that the gain as a function of input rate has a
monotone increasing slope, no simple change to the func-
tion will produce both a decrease in gain that delays onset

times for Case 1 and an increase in gain that advances offset
times for Case 2, all else remaining unchanged. However,
changes in the threshold 0 can also effect shifts in the
boundaries. If 6 were not constant but increased with the
duration of suprathreshold activity (Grossberg, 1976a;
Rumelhart & Zipser, 1985), then thresholds under single-
geminate input conditions would be higher than they are
with a constant threshold, and, consequently, offset times
would be earlier. It appears that combining this systematic
change in threshold with a small change of parameters in
Equation 2 would improve the fit, but such refinements are
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Figure 14. Category responses u in Equation 3 through time to a single input for two cases of

transmitter habituation: Either (A) there is no second-order term (fi = 0) in Equation 6, with A

indicated along each curve, or (B) there is no linear term (A = 0) in Equation 6, with p indicated

along each curve. Other parameters are the same as in Figure 10. The resonance threshold 0 = 0.2

is indicated by the horizontal dotted line. The rectangular pulse in the lower left-hand corner is the

input. a.u. = arbitrary units.

unwarranted in the absence of additional data. The main
purposes of the present simulations are (a) to show that

1.22
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OFF
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Figure IS. Gain g in Equation 2 is plotted along the ordinate and
resonance onset and offset times are plotted along the abscissa.

There is one pair of curves for each value of the habituation

parameter ju. with A = 0.1. Other parameters are the same as in
Figure 10, except y = 0.097 and 6 = 0.22.

resonance concepts are sufficient for capturing the main
trends in the data through a real-time simulation and (b) to
encourage further experiments that are better designed to
disclose details of resonant dynamics.

Mismatch Reset by an Orienting Subsystem

In this section we describe an alternative model mecha-
nism for mismatch reset. Category reset as defined in the
Network Equations section occurs when the category loses
its bottom-up support, coupled with the pressure of a rela-
tively strong decay controlled by S in Equation 3. In ART
(Carpenter & Grossberg, 1991, 1993; Grossberg, 1980), an
orienting subsystem continuously monitors the degree of
pattern matching between bottom-up input and top-down
activation at the input stage. When the patterns are insuffi-
ciently matched, as reflected by some metric of the distance
between the two pattern vectors, a novelty burst or "arousal
wave" is triggered which tends to inhibit active category
nodes as it initiates a memory search for a better-fitting
category, or hypothesis. As a result of this search, a new
category, better matched to the input pattern, can become
active.

An orienting subsystem was implemented with the ap-
proach of Carpenter and Grossberg (1987b). We compared
input and working memory activation vectors using a nor-
malized dot product rule, giving a matching value
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Figure 16. A: Response of input rate estimator r in Equation 9
through time during a simulation with 100 trials initialized by 10
warm-up trials. The main portions of intertrial intervals are deleted
(see text). B: Detailed view of input rate estimator during one
randomly selected trial for each of the silent intervals in the
stimulus distribution. The intertrial intervals are deleted as in A.

(12)

(15)

j. A reset signal is

sent if p exceeds that value, for some interval after the onset

of 72, which is plotted as the triangular pulse in the lower

graph of Figure 18. The reset inhibits active chunks in

proportion to their activation, because of the shunting in-

hibitory term —M/J in Equation 14, so ul drops sharply,

quenching the resonance with w,.

Comparison With Alternative Models: FLMP, IAM,

and the TRACE Model

In this section we compare the ARTPHONE model with

several other models to highlight their similarities and dif-

ferences. The Fuzzy Logical Model of Perception (FLMP)

of Massaro and colleagues (Massaro, 1989; Massaro &

Cohen, 1991; Massaro & Oden, 1995) has had some notable

successes simulating speech data. The FLMP also shares

some key features with the ART model but differs from it in

basic ways. In particular, the FLMP's heuristics are closer

to ART than is its computational instantiation.

Heuristically speaking, the FLMP assumes that sensory

systems activate bottom-up features that are matched

against top-down prototypes. It makes an identification de-

cision by using the relative goodness of match between

these ingredients. Thus, as in ART, both bottom-up and

top-down information are matched. For an illustration of

FLMP computations, suppose that prototypes R and L are

used in a given task. Denote the i* stimulus feature that sup-

ports R by fj and the complementary feature that supports

L by 1 - ft. Likewise, denote the j"1 top-down context

where ||"̂ || is the Euclidean norm, ftfx?, of the vector

"? = (*!, *2' • • •> *»)• A nonspecific inhibitory arousal signal
a is released as m falls below the vigilance level p. In

particular,

0, p — m), (13)

which is positive only when an input pattern is presented

that conflicts sufficiently with ~^ to drive m below p.

Subtracting the arousal signal a from the activity level

(Equation 3) gives

^ = *(r){(/3 - uj^wj* - «/8 + a)}. (14)

Once Uj is reset by a, working memory nodes that are
associated with Uj lose top-down support and their activa-

tion decays passively, even without feedforward inhibition,

if they receive no feedforward excitation. A stop-cluster

simulation that used the reset mechanism defined above is

shown in Figure 18. The reset signal is triggered by the

onset of /2, which creates a mismatch at the working mem-

ory stage. The match m in Equation 12 at the instant after I2

Figure 17. Typical list chunk activation traces plotted with the
values used to decide if output is detected. X is a sample value after
noise is added. In the examples shown, the first peak on the left
and the trough at right would not be detected, and so only one peak
would be reported in each case.
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Figure 18. Activations w, (top panel) and u, (bottom panel) for

a sequence of two phonenucally unrelated inputs (II and 12 rect-

angular pulses, top panel). Arousal signal given by Equation 13

begins synchronously with second input (triangular burst, lower

panel) and is plotted before scaling by coefficient i/< = 20, with

vigilance p = 0.9. Other parameters are similar to those in Figure

10, except K = 0 in Equation 1. a.u. = arbitrary units.

that supports R by c, and its complement by 1 - c,. Then the
degrees of match to R and L are given by the products of
bottom-up and top-down information—namely, R = f f j and
L — (1 — /j)(l — cj)—and the probability of an R response

P = - (16)

Equation 16 shares some properties with ART. For exam-
ple, it suggests that top-down context interacts with
bottom-up signals and that the match value is .normalized
against available alternatives. The ART matching rule and
self-normalizing competitive dynamics also have these
properties.

This being said, it needs to be noted that the FLMP,
computationally speaking, is an algebraic equation that is
used to fit data through parameter estimation. There are no

model internal representations. There is no emergent pro-
cess from whose dynamics category boundaries can be
estimated. Although Massaro and Cohen (1991) assumed
that a process such asf, can take hold through time via the
simple integration process

(17)

this process is not linked to any system representation, and

it proceeds at a constant rate that is insensitive to the
external speech rate and to temporally nonuniform proper-
ties such as mismatch reset or resonance. That is why the
FLMP is typically used to describe category boundaries
with the alternatives R and L, rather than elapsed time t, as

the independent variable.
Massaro and Cohen (1991) have argued that the FLMP is

more parsimonious and gives better data fits than models
like the TRACE model (McClelland & Elman, 1986) and is
thus preferable. Cutting, Bruno, Brady, and Moore (1992)

and Pitt (1995a, 1995b) have argued that the FLMP's par-
simony is of a type that allows it to fit data all too well
because it may equally well fit data with different, even
contradictory, processing implications. For example, to
show how bottom-up information ft from an initial speech
segment and top-down context c, from the following speech
segment interact, Massaro and Oden (1995) simply com-
puted/^. No analysis was given of how the system knows
how to do this or why, for example, other combinations
such as ffi were not also computed. More generally, the
definitions of the feature ft and context cs were not given
internal structure. For example, in the case of phonemic
restoration, what are the "features" in the noise that pre-

cedes "eel" in "noise-eel"? Are they individual spectral
components? If not, then how can they be multiplicatively
matched to select only those spectral components that are
consistent with the prototype? However, in applications of
the FLMP to date, the features have not been spectral
components. Likewise, it is not clear how the FLMP could
simulate nontrivial temporal properties of speech, such as
the 150-ms shift of the /ib/-/ba/ category boundary in Figure
4 or the separate boundaries given different mean silent
intervals. Without internal representations and temporal dy-
namics to constrain a model such as the FLMP, it must
remain a fundamentally incomplete model of cognitive pro-
cessing, notwithstanding its proven ability to fit some
speech data very well.

The interactive activation model (IAM) of letter percep-
tion (McClelland & Rumelhart, 1981; Rumelhart & Mc-
Clelland, 1982) and the TRACE model of speech perception
(McClelland & Elman, 1986) are closely related, both his-
torically and conceptually, to ART models, but they also
exhibit some notable differences. As in Grossberg (1978/
1982b), the IAM posited bottom-up and top-down influ-
ences on letter perception. Unlike ART, the 1981-82 ver-
sion of the IAM posited connections and processing levels
different from those of Grossberg (1978/1982b). In partic-
ular, the IAM assumed that both excitatory and inhibitory
connections exist between levels such that (say) compatible
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letters excite target words whereas incompatible letters in-

hibit target words. In addition, the IAM posited separate

phoneme, letter, and word levels of processing. In all ART

models (e.g., Orossberg, I976b, 1980), all connections be-

tween levels (both bottom-up and top-down) are excitatory,

and all inhibitory connections are contained within a level.

For purposes of language-related processing, the levels rep-

resent items in working memory and list chunks (Grossberg,

1978/1982b), rather than letters and words.

The ART processing levels and connections are prefera-

ble to those of the IAM because the latter cannot stably

learn their letter and word representations and are incom-

patible with various data about letter recognition, as was

pointed out by Grossberg (1984, 1987). Given how things

later turned out, it is of some interest that these deficiencies

of the IAM were pointed out to its authors as early as 1980,

half a year before the IAM articles were submitted for

publication. In a letter to Jay McClelland, Grossberg (per-

sonal communication, September 15, 1980) noted that the

ART model (Grossberg, 1978/1982b)

(1) explains the boundary effects on word recognition as
part of a theory of how temporal order information unfolds
through time over item representations. (2) uses these pat-
terned representations as a basis for code (or chunk) learning,
(3) shows how subfields of chunks sensitive to different length
lists mask each other using a principle of self-similarity as a
basis for resolving uncertain data, (4) explains how the feed-
back templates from words to letters are learned and matched
against letter codes, (5) shows why familiar letters need to
have word-like representations to distinguish between repre-
sentations that are reset by rehearsal and representations that
are reset only by competition from other representations. At
bottom, [ART] differs from [IAM] by showing how con-
straints on learning and code stability force the laws for
competition too.

This communication was inspired by the fact that the letter

and word recognition analyses in Grossberg (1978/1982b)

anticipated the data that the LAM was used to model in a

lecture that McClelland gave at the Massachusetts Institute

of Technology in 1980.

Several years later, McClelland (1985) and McClelland

and Elman (1986) replaced the IAM postulates with ART

postulates. At this time, McClelland (1985) also recom-

mended that the IAM be viewed not as a model but as a

framework of concepts in which one could avoid "worrying

about the plausibility of assuming that they provide an

adequate description of the actual implementation" (p. 144).

This attitude was criticized by Grossberg (1987) because it

would prevent falsifiability of a model. Indeed, the LAM

framework incorporated key properties and results of the

Grossberg (1978/1982b) ART model that were published

before the IAM ever appeared, and that were incompatible

with the original IAM model.

For example, the McClelland and Elman (1986) speech

model incorporated the following basic ART postulates:

Units on different levels that are mutually consistent have
mutually excitatory connections while units on the same level
that are inconsistent have mutually inhibitory connections.
The interactive activation model included inhibitory connec-

tions between [levels] ... more recent versions ... eliminate
these between-level inhibitory connections, since these con-
nections can interfere with successful use of partial informa-
tion. This feature of TRACE plays a very important role in its
ability to simulate a number of empirical phenomena. (Mc-
Clelland & Elman, 1986, pp. 10-12).

On the other hand, the TRACE model makes other assump-

tions that would make it very hard for it to explain the type

of data discussed herein and in earlier ART language anal-

yses such as those of Cohen and Grossberg (1986) and

Grossberg (1978, 1978/1982b, 1986).

A key problem of the TRACE model is that "it requires

massive duplication of units and connections, copying over

and over again the connection patterns that determine which

features activate which phonemes and which phonemes

activate which words." (McClelland & Elman, 1986, p. 77).

This happens in the TRACE model because it posits that

each event is recopied multiple times at every moment, or

"time slice," during which it occurs. The TRACE model

thus does not operate in real time. It does not treat time as

an independent variable. Rather, it treats time as a structural

variable that is used to separate events into different time

slices. As a result, the TRACE model cannot analyze

variable-rate speech, as in the Repp (1980) data. It is also

not possible for the model to understand generalization

effects, as they are usually understood, because each word

representation has multiple copies on multiple time slices.

Indeed, "there is a unit for every word in every time slice."

(McClelland & Elman, 1986, p. 18). Learning is also ren-

dered difficult for the same reason. In particular, how would

learning of a representation on one time slice influence a

representation of the same information on another time

slice?

The dynamical equations used by the IAM and the

TRACE model are related to the shunting equations used in

ART, as McClelland and Rumelhart (1981) and McClelland

and Elman (1986) both noted. As in the shunting equation

(Equation 1), the TRACE model's dynamical equations

describe activations that remain bounded because of multi-

plication by shunting terms. However, the TRACE model

equations were modified so that they do not have a plausible

neural interpretation and lose the main property of the

shunting on-center off-surround networks; that is, the ART

equations compute ratios of their inputs and do not saturate

when the total input becomes large. These properties are

crucial for designing working memories that can explain

temporal order data and whose activation patterns can be

stably learned by list chunks (Bradski et aL, 1992, 1994,

Grossberg, 1973/1982a, 1978, 1978/1982b). The TRACE

model loses these properties because the sum £ = E — I of

excitatory inputs £ and inhibitory inputs -/ to a cell with

activity x is multiplied in the TRACE model by a shunting

term (/} — x) if £ is positive and by a shunting term — (x +

y) if 2 is negative. This discrete switch between terms O —

x) and — (x + y) has no obvious physical interpretation.

Because of this switching term, x remains bounded between

the values /3 and —y but becomes insensitive to E and / as

£ becomes large in absolute value. In contrast, w} in Equa-

tion 1 does not lose its sensitivity to input ratios as the total
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input becomes large. This is because the excitatory on-
center inputs in Equation 1 multiply the shunting term (/3 —
Wj) while the inhibitory off-surround terms simultaneously
multiply the shunting term — wf Only then are the two terms
summed. In summary, adding E and —/ inputs before shunt-
ing them leads to qualitatively different properties than does
shunting them individually before adding them.

The TRACE model omits two of the most important ART
mechanisms for building a more complete theory of speech
and language processing. In particular, the TRACE model
does not develop mechanisms of resonance and reset. Its
authors claim that "it keeps straight what occurred when in
the speech stream" (McClelland & Elman, 1986, p. 75), but
it does this only at the price of replicating all events and
their representations in multiple time slices. Despite this
maneuver, the model cannot explain significant backward
effects in time over silent intervals. Indeed, silence is itself
treated as a feature that is input to the network into a new
time slice at each moment when silence occurs. Such a
rigidly clocked silence cannot naturally explain the 150-ms
shift in the category boundaries described by Repp (1980)
and simulated here. In contrast, a concept of resonance
allows fusion events, as in the [iba] percept of Figure 4, to
span an unusually long silence interval and allows future
data, such as [g] in the percept [iga] to influence past input
activations before they reach resonance.

The two types of ART reset—category collapse and
mismatch reset—also do not occur in the TRACE model.
These reset mechanisms clarify how resonances can be
terminated despite the positive feedback that occurs because
of bottom-up and top-down excitatory signals. In contrast,
the TRACE model has no natural real-time mechanisms for
resetting representations. Instead, it treats silence as a struc-
tural feature that can be used to inhibit nonsilent represen-
tations via lateral inhibition from silence nodes to other
nodal representations.

The TRACE model also does not implement an ART
matching rule. For example, "If higher levels insist that a
particular phoneme is present, then the unit for that pho-
neme can be activated ...; then the learning mechanism can
'retime' the detector" (McClelland & Elman, 1986, p. 75).
This property implies that learning in the TRACE model,
were it ever implemented, would be unstable through time
(Carpenter & Grossberg, 1987a; Orossberg, 1980). This
way of using top-down feedback also implies that the
TRACE model cannot explain phonemic restoration data in
which silence remains silent after top-down feedback acts,
and a reduced set of spectral components in a noise input
leads to a correspondingly degraded consonant sound.

The authors of the TRACE model were aware of some of
these difficulties. They ended their article by noting that a
"fundamental deficiency of TRACE is that it requires mas-
sive duplication of units. However, it remains necessary to
keep straight the relative temporal location of different...
activations . . . we need to have it both ways . . . so that we
can continue to accommodate both left and right contextual
effects" (McClelland & Elman, 1986, p. 77). The TRACE
model uses some basic ART postulates to partially accom-
plish this. On the other hand, by not incorporating a true

resonance event, and all that goes with it, the TRACE model
loses the ability to operate in real time and to self-organize.
We suggest, as did Grossberg (1978/1982b; 1986), that
many of these problems vanish when a speech percept is
analyzed as a resonant wave. Then silence can be inter-
preted as a temporal discontinuity in the resonant wave,
rather than as a built-in silence feature in a hardwired series
of time slices.

Discussion: How General Are Resonant Dynamics

in the Brain?

In this article we have described the ARTPHONE neural
network model for rate-invariant phonetic perception,
which quantitatively develops aspects of the speech and
word recognition model introduced by Grossberg (1978/
1982b, 1986; also see Cohen & Grossberg, 1986, and Gross-
berg & Stone, 1986b). The ARTPHONE model uses list
chunking nodes that categorize sequences of phonetic items
while supporting the storage of consistent items in working
memory using top-down feedback. Feedback to working
memory nodes, in turn, increases bottom-up input to the
associated list nodes, which leads to a resonant response
identified with the speech percept.

The long-lasting resonance time scale provides an expla-
nation of why the geminate categorical curves in Figure 4
are shifted 150 ms beyond those of the cluster curves. The
collapse of resonant responses because of habituation helps
to account for the finite span of conscious percepts in
general and the single-geminate boundary in particular. An
earlier version of the model, briefly reported by Boardman
et al. (1993), could not explain the 150-ms shift of the
categorical boundary in the geminate case because it did not
incorporate ART resonant matching.

In the cluster case, when new inputs, such as /g/, are
inconsistent with an active expectation, such as that of /b/,
as reflected in the pattern of top-down feedback, then active
list chunks are rapidly reset, which thereby explains how the
resonance time scale is actively cut short in the cluster case.
Network activation rates are also globally modulated using
a running average of input signal density so that the time
required to segregate or integrate responses covaries with
mean input presentation rate. These properties allow com-
puter simulations of the model to closely approximate hu-
man performance in psychophysical discriminations of
stop-consonant pairs.

The model simulation will be further extended in the
future to Include multiple scales for list nodes. List nodes
for list sizes greater than one are, for example, needed to
address the "gray chip"-"great ship" dichotomy reported by
Repp et al. (1978). The list nodes would then, as suggested
by Grossberg (1986), incorporate multiple scale chunking
network properties, also called masking field properties,
that were referred to earlier. With such an enhanced net-
work, as realized in Cohen and Grossberg (1986, 1987), a
list category node for /gret/ could mask the nodes for /gre/
under conditions that support activation of the HI item. It
would then be possible to investigate the role of segment
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duration and speaking rate on grouping dynamics for sev-

eral list lengths.

The central purpose of the present simulations was to

illustrate how a model in which conscious speech is an

emergent property of a resonant process can be used to

quantitatively explain difficult psychometric data about

variable-rate speech categorization. Such data exemplify

what Bregman (1990) has called the schema-based segre-

gation process, to distinguish it from the primitive stream-

ing process whereby multiple acoustic sources can be seg-

regated from one another with the use of cues such as pitch

and location, as in the cocktail party problem. Primitive

streaming data have recently been modeled with a neural

architecture, called the ARTSTREAM model, in which

ART resonant dynamics again obtain, here between multi-

ple spectral representations and pitch representations of

acoustic data (Govindarajan, Grossberg, Wyse, & Cohen,

1994).

In the ARTSTREAM model, the incoming auditory sig-

nal gets preprocessed by the ears' mechanical and neuro-

physiological filters, which divide sounds into groups of

similar frequencies. The spectral, or frequency, components

of a sound stream serve as inputs for multiple spectral

stream layers, which each convert the incoming signal into

a spatial map of frequencies. As a result, a specific sound

activates a specific spatial pattern of activation across the

spectral stream cells of all model streams. This representa-

tion is analogous to the working memory of the ART-

PHONE model.

Each spectral stream layer emits bottom-up signals to its

pitch stream layer, which plays the role of the category layer

in the ARTPHONE model. Between layers, the bottom-up

pathways act like a type of harmonic sieve that filters the

spectrum so that only certain harmonically related frequen-

cies can activate a pitch node within each pitch stream. The

filtered bottom-up signals activate multiple representations

of a sound's pitch across the several streams at the pitch

stream level. These pitch representations compete to select

a single winning pitch node, which becomes active much as

at the list chunking layer of the ARTPHONE model.

The winning pitch node inhibits the redundant pitch rep-

resentations in other pitch streams while it sends top-down

matching signals back to its spectral stream level. These

top-down signals realize the ART matching rule by exciting

spectral nodes whose harmonically related frequencies are

consistent with the selected pitch and by inhibiting all other

frequencies within its stream. As a result, only those spec-

tral nodes that receive simultaneous bottom-up and top-

down signals can remain active within that stream. This

leads to a spectral-pitch resonance within the stream of the

winning pitch node.

This resonance binds together the frequency components

that correspond to an auditory source with a prescribed

pitch. All of the suppressed frequency components in this

stream are then freed to activate other spectral streams and

to resonate with a different pitch node in a different pitch

stream. The net result is multiple spectral-pitch resonances,

each selectively grouping together the frequencies that cor-

respond to a distinct auditory source. The model shows how

a given stream can track changes through time in each

source's pitch in a manner that simulates psychophysical

data.

In summary, both the ARTSTREAM and ARTPHONE

models use similar resonant dynamics that are specialized to

deal with the different invariant properties of the inputs that

they process. It therefore appears that resonant matching

processes may play a role at multiple levels of auditory and

speech processing in constructing coherent representations

of acoustic objects from the jumble of noise and harmonics

that relentlessly bombard our ears throughout life.

How generally do similar resonant dynamics occur in

other brain systems? In approaching this question, it is

important that one realize that ART dynamics have been

proposed to solve the general stability-plasticity dilemma of

how the brain can rapidly learn new information without

being forced into catastrophically forgetting previously

learned information (Grossberg, 1980). This hypothesis

raises the question of whether similar ART principles and

mechanisms are used to enable other brain systems than the

auditory system to adapt to their changing input environ-

ments, perhaps with specialized properties that have

evolved to cope with the different invariant properties of the

inputs experienced by these systems. Grossberg (1995) has

reviewed evidence that, indeed, ART mechanisms of atten-

tive top-down matching and resonance are also used in brain

systems for early vision, visual object recognition, somato-

sensory recognition, and adaptive sensorimotor control. The

ability of ART systems to rapidly and stably learn in real

time to recognize large amounts of information in response

to a rapidly changing environment has also led to their use

in a wide variety of technological applications, ranging

from airplane design and medical database prediction to

remote sensing and the control of mobile robots (see Car-

penter & Grossberg, 1994, 1995, for some references).

An exciting prospect for future research will be the de-

velopment of a precise understanding of how the shared

organization principles in all of the brain systems that

undergo recognition learning, categorization, and prediction

have been specialized through evolution, development, and

learning for processing their own types of data. No less

exciting is the prospect that the existence of such similar

dynamics across modalities, and across levels of processing

within modalities, promises to clarify how the brain inte-

grates multiple sources of information into unified moments

of conscious experience.
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