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Abstract 

A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The 
present article describes recent progress towards explaining how laminar neocortical circuits give 
rise to biological intelligence. These circuits embody two new and revolutionary computational 
paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel 
synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-
attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but 
has a far greater predictive range that naturally extends to self-organizing processes. Examples 
from vision and cognition are summarized. A LAMINART architecture unifies properties of visual 
development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that 
the mechanisms which enable development and learning to occur in a stable way imply properties 
of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical 
regions, and how spatial and object attention work together to learn view-invariant object 
categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-
invariant object category to remain active while multiple view categories are associated with it 
during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the 
LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal 
cortex. LIST PARSE models the short-term storage of event sequences in working memory, their 
unitization through learning into sequence, or list, chunks, and their read-out in planned sequential 
performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item 
and Order working memories, also called Competitive Queuing models, that have been supported 
by both psychophysical and neurobiological data. These examples show how variations of a 
common laminar cortical design can embody properties of visual and cognitive intelligence that 
seem, at least on the surface, to be mechanistically unrelated. 
 
Keywords: Neocortex; Laminar circuits; Learning; Grouping; Attention; 3D Vision; Working 
memory; Categorization; V1; V2; V4; Prefrontal cortex 
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Introduction 
Although there has been enormous experimental and theoretical progress on understanding brain or 
mind in the fields of neuroscience and psychology, establishing a mechanistic link between them 
has been very difficult, if only because these two levels of description often seem to be so different. 
Yet establishing a link between brain and mind is crucial in any mature theory of how a brain or 
mind works. Without such a link, the mechanisms of the brain have no functional significance, and 
the functions of behavior have no mechanistic explanation. Throughout the history of psychology 
and neuroscience, some researchers have tried to establish such a link by the use of metaphors or 
the application of classical concepts to the brain. These have included hydraulic systems, digital 
computers, holograms, control theory circuits, and Bayesian networks, to name a few. None of 
these approaches has managed to explicate the unique design principles and mechanisms that 
characterize biological intelligence. The present chapter summarizes aspects of a rapidly developing 
theory of neocortex that links explanations of behavioral functions to underlying biophysical, 
neurophysiological, and anatomical mechanisms. Progress has been particularly rapid towards 
understanding how the laminar circuits of visual cortex see (Grossberg et al., 1997; Grossberg, 
1999a, 2003a; Grossberg and Raizada, 2000; Raizada and Grossberg, 2001, 2003; Grossberg and 
Howe, 2003; Grossberg and Seitz, 2003; Grossberg and Swaminathan, 2004; Yazdanbakhsh and 
Grossberg, 2004; Cao and Grossberg, 2005; Grossberg and Yazdanbakhsh, 2005; Grossberg and 
Hong, 2006).  

This progress illustrates the introduction of qualitatively new computational paradigms, as 
might have been expected, given how long these problems have remained unsolved. These results 
overcome a conceptual impasse that is illustrated by the popular proposal that our brains possess 
independent modules, as in a digital computer. The brain’s organization into distinct anatomical 
areas and processing streams supports the idea that brain processing is specialized, but that, in 
itself, does not imply that these streams contain independent modules. This hypothesis gained 
dominance despite the fact that much behavioral data argue against independent modules. For 
example, during visual perception, strong interactions are known to occur between perceptual 
qualities (Kanizsa, 1974; Egusa, 1983; Faubert and von Grunau, 1995; Smallman and McKee, 
1995; Pessoa et al., 1996). In particular, form and motion can interact, as can brightness and depth, 
among other combinations of qualities.  

 
Complementary Computing and Laminar Computing 

At least two new computational paradigms have gradually been identified from the cumulative 
experiences of modeling many kinds of brain and behavior data over the past three decades: 
Complementary Computing and Laminar Computing (Grossberg, 1999a, 2000). Complementary 
Computing concerns the discovery that pairs of parallel cortical processing streams compute 
complementary properties in the brain. Each stream has complementary computational strengths 
and weaknesses, much as in physical principles like the Heisenberg Uncertainty Principle. Each 
cortical stream can also possess multiple processing stages. These stages realize a hierarchical 
resolution of uncertainty. “Uncertainty” here means that computing one set of properties at a given 
stage can suppress information about a complementary set of properties at that stage. The 
computational unit of brain processing that has behavioral significance is thus not a single 
processing stage, or any smaller entity such as the potential of a single cell, or spike or burst of 
spikes. Instead, hierarchical interactions within a stream and parallel interactions between streams 
resolve their complementary deficiencies to compute complete information about a particular type 
of biological intelligence. These interactions have been used to clarify many of the data that do not 
support the hypothesis of independent modules. To model how the brain controls behavior, one 
thus needs to know how these complementary streams are organized with respect to one another.  
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Figure 1. Some visual processes and their anatomical substates that are being modeled as 
part of a unified vision system. LGN = Lateral Geniculate Nucleus; V1 = striate visual 
cortex; V2, V4, MT, MST = prestriate visual cortex; IT = inferotemporal cortex; PPC = 
posterior parietal cortex; PFC = prefrontal cortex. 
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Understanding how the brain sees is one area where experimental and modeling work have 
advanced the furthest, and illustrate several types of complementary interactions. Figure 1 provides 
a schematic macrocircuit of the types of processes that are being assembled into a unified theory of 
how the brain sees, including processes of vision, recognition, navigation, tracking, and visual 
cognition. In particular, matching and learning processes within the What and Where cortical 
streams have been proposed to be complementary: The What stream, through cortical areas V1-V2-
V4-IT-PFC, learns to recognize what objects and events occur. The Where stream, through cortical 
areas V1-MT-MST-PPC-PFC, spatially localizes where they are, and acts upon them. 
Complementary processes also occur within each stream: What stream boundary grouping via the 
(V1 interblob)-(V2 pale stripe)-V4 stages, and surface formation via the (V1 blob)-(V2 thin 
stripe)-V4 stages, have complementary properties. Where stream target tracking via MT-(MST 
ventral) and navigation via MT-(MST dorsal) have complementary properties. Such 
complementary processes are predicted to arise from symmetry-breaking operations during cortical 
development. 

Laminar Computing concerns the fact that cerebral cortex is organized into layered 
circuits (usually six main layers) which undergo characteristic bottom-up, top-down, and 
horizontal interactions, which have been classified into more than fifty divisions, or areas, of 
neocortex (Brodmann, 1909; Martin, 1989). The functional utility of such a laminar organization 
in the control of behavior has remained a mystery until recently. Understanding how different 
parts of the neocortex specialize the same underlying laminar circuit design in order to achieve 
all the highest forms of biological intelligence remains a long-term goal, although challenging 
data about both vision and cognitive information processing (Grossberg and Pearson, 2006; 
Pearson and Grossberg, 2005) have now been modeled as variations of this design.  

 
Laminar Computing by Visual Cortex:  

Unifying Adaptive Filtering, Grouping, and Attention 
A number of models have been proposed (Douglas et al., 1995; Stemmler et al., 1995; Li, 1998; 
Somers et al., 1998; Yen and Finkel, 1998) to simulate aspects of visual cortical dynamics, but 
these models have not articulated why cortex has a laminar architecture. Our own group’s 
breakthrough on this problem (Grossberg et al., 1997; Grossberg, 1999a) began with the 
suggestion that the laminar organization of visual cortex accomplishes at least three things: (1) the 
developmental and learning processes whereby the cortex shapes its circuits to match 
environmental constraints in a stable way through time; (2) the binding process whereby cortex 
groups distributed data into coherent object representations that remain sensitive to analog 
properties of the environment; and (3) the attentional process whereby cortex selectively processes 
important events.  

These results further develop the proposal that even the earliest stages of visual cortex are 
not merely a bottom-up filtering device, as in the classical model of Hubel and Wiesel (1977). 
Instead, bottom-up filtering, horizontal grouping, and top-down attention are all joined together in 
laminar cortical circuits. Perceptual grouping, the process that binds spatially distributed and 
incomplete information into 3D object representations, starts at an early cortical stage; see Figure 
2c. These grouping interactions are often cited as the basis of “non-classical” receptive fields that 
are sensitive to the context in which individual features are found (von der Heydt et al., 1984; 
Peterhans and von der Heydt, 1989; Knierim and van Essen, 1992; Grosof et al., 1993; Kapadia et 
al., 1995; Sillito et al., 1995; Sheth et al., 1996; Bosking et al., 1997; Polat et al., 1998). Likewise, 
even early visual processing is modulated by system goals via top-down expectations and attention 
(Motter, 1993; Sillito et al., 1994; Roelfsema et al., 1998; Watanabe et al., 1998; Somers et al., 
1999). The model proposes how mechanisms governing (1) in the infant lead to properties (2) and 
(3) in the adult, and properties (2) and (3) interact together intimately as a result.  
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The laminar model proposes that there is no strict separation of pre-attentive data-driven 
bottom-up filtering and grouping, from attentive task-directed top-down processes. The model 
shows how these processes may come together at a shared circuit, or interface, that is called the 
preattentive-attentive interface, which exists between layers 6 and 4 (Figures 2a–2c, and 2e). 
Significantly, by indicating how cortical mechanisms of stable development and learning impose 
key properties of adult visual information processing, the model begins to unify the fields of 
cortical development and adult vision. The model is called a LAMINART model (Figure 2; 
Grossberg, 1999a, Raizada and Grossberg, 2003) because it clarifies how mechanisms of Adaptive 
Resonance Theory, or ART, which have previously been predicted to stabilize cortical development 
and learning of bottom-up adaptive filters and top-down attentive expectations (Grossberg, 1980, 
1999c; Carpenter and Grossberg, 1993) can be joined together in laminar circuits to processes of 
perceptual grouping through long-range horizontal interactions (Grossberg and Mingolla, 1985b). 

 
A New Way to Compute:  

Feedforward and Feedback, Speed and Uncertainty, Digital and Analog  
The LAMINART model proposes how laminar neocortex embodies a novel way to compute 
which exhibits at least three major new computational properties (Grossberg, 2003a). These new 
properties allow the fast, but stable, autonomous self-organization that is characteristic of cortical 
development and life-long learning in response to changing and uncertain environments. They go 
beyond the types of Bayesian cortical models that are so popular today, but also clarify the intuitive 
appeal of these models (Pilly and Grossberg, 2005). 

The first property concerns a new type of hybrid between feedforward and feedback 
computing. In particular, when an unambiguous scene is processed, the LAMINART model can 
quickly group the scene in a fast feedforward sweep of activation that passes directly through layer 
4 to 2/3 and then on to layers 4 to 2/3 in subsequent cortical areas. This property clarifies how 
recognition can be fast in response to unambiguous scenes; e.g., Thorpe et al. (1996). If, however, 
there are multiple possible groupings, say in response to a complex textured scene, then 
competition among these possibilities due to inhibitory interactions in layers 4 and 2/3 can cause all 
cell activities to become smaller. This happens because the competitive circuits in the model are 
self-normalizing; that is, they tend to conserve the total activity of the circuit. This self-normalizing 
property emerges from on-center off-surround networks that obey membrane, or shunting, 
equations. Such networks are capable of processing input contrasts over a large dynamic range 
without saturation (Grossberg, 1973, 1980; Heeger, 1992; Douglas et al., 1995). 

In other words, these self-normalizing circuits carry out a type of real-time probability 
theory in which the amplitude and coherence of cell activity covaries with the certainty of the 
network’s selection, or decision, about a grouping. Amplitude also covaries with processing speed. 
Low activation greatly slows down the feedforward processing in the circuit because it takes longer 
for cell activities to exceed output thresholds and to activate subsequent cells above threshold. In 
the model, network uncertainty is resolved through feedback: Weakly active layer 2/3 grouping 
cells feed back signals to layers 6-then-4-then-2/3 to close a cortical feedback loop that rapidly 
contrast enhances and amplifies a winning grouping. As the winner is selected, and weaker 
groupings are suppressed, its cells become more active, hence can again more rapidly exceed 
output thresholds and send the cortical decision to subsequent processing stages.  

In summary, the LAMINART circuit behaves like a real-time probabilistic decision circuit 
that operates in a fast feedforward mode when there is little uncertainty, and automatically switches 
to a slower feedback mode when there is significant uncertainty. Feedback selects a winning 
decision that enables the circuit to speed up again. Activation amplitude and processing speed both 
increase with certainty. The large activation amplitude of a winning grouping is facilitated by the 
synchronization that occurs as the winning grouping is selected. 
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Figure 2. How known cortical connections join the layer 6  4 and layer 2/3 
circuits to form an entire V1/V2 laminar model. Inhibitory interneurons are shown filled-in 
black. (a) The LGN provides bottom-up activation to layer 4 via two routes. First, it makes 
a strong connection directly into layer 4. Second, LGN axons send collaterals into layer 6, 
and thereby also activate layer 4 via the 6  4 on-center off-surround path. The combined 
effect of the bottom-up LGN pathways is to stimulate layer 4 via an on-center off-surround, 
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which provides divisive contrast normalization (Grossberg, 1973, 1980; Heeger, 1992) of 
layer 4 cell responses. (b) Folded feedback carries attentional signals from higher cortex 
into layer 4 of V1, via the modulatory 6  4 path. Corticocortical feedback axons tend 
preferentially to originate in layer 6 of the higher area and to terminate in layer 1 of the 
lower cortex (Salin and Bullier, 1995, p.110), where they can excite the apical dendrites of 
layer 5 pyramidal cells whose axons send collaterals into layer 6. The triangle in the figure 
represents such a layer 5 pyramidal cell. Several other routes through which feedback can 
pass into V1 layer 6 exist (see Raizada and Grossberg (2001) for a review). Having arrived 
in layer 6, the feedback is then “folded” back up into the feedforward stream by passing 
through the 6  4 on-center off-surround path (Bullier et al., 1996). (c) Connecting the 6 
 4 on-center off-surround to the layer 2/3 grouping circuit: like-oriented layer 4 simple 
cells with opposite contrast polarities compete (not shown) before generating half-wave 
rectified outputs that converge onto layer 2/3 complex cells in the column above them. Just 
like attentional signals from higher cortex, as shown in (b), groupings that form within 
layer 2/3 also send activation into the folded feedback path, to enhance their own positions 
in layer 4 beneath them via the 6  4 on-center, and to suppress input to other groupings 
via the 6  4 off-surround. There exist direct layer 2/3  6 connections in macaque V1, as 
well as indirect routes via layer 5. (d) Top-down corticogeniculate feedback from V1 layer 
6 to LGN also has an on-center off-surround anatomy, similar to the 6  4 path. The on-
center feedback selectively enhances LGN cells that are consistent with the activation that 
they cause (Sillito et al., 1994), and the off-surround contributes to length-sensitive 
(endstopped) responses that facilitate grouping perpendicular to line ends. (e) The entire 
V1/V2 circuit: V2 repeats the laminar pattern of V1 circuitry, but at a larger spatial scale. In 
particular, the horizontal layer 2/3 connections have a longer range in V2, allowing above-
threshold perceptual groupings between more widely spaced inducing stimuli to form 
(Amir, Harel, & Malach, 1993). V1 layer 2/3 projects up to V2 layers 6 and 4, just as LGN 
projects to layers 6 an 4 of V1. Higher cortical areas send feedback into V2 which 
ultimately reaches layer 6, just as V2 feedback acts on layer 6 of V1 (Sandell & Schiller, 
1982). Feedback paths from higher cortical areas straight into V1 (not shown) can 
complement and enhance feedback from V2 into V1. Top-down attention can also modulate 
layer 2/3 pyramidal cells directly by activating both the pyramidal cells and inhibitory 
interneurons in that layer. The inhibition tends to balance the excitation, leading to a 
modulatory effect. These top-down attentional pathways tend to synapse in layer 1, as 
shown in Figure 2b. Their synapses on apical dendrites in layer 1 are not shown, for 
simplicity. (Reprinted with permission from Raizada and Grossberg (2001).) 

 
These concepts are illustrated within a emerging unified model of how cortical form and 

motion processes interact. This 3D FORMOTION model has quantitatively simulated and 
predicted the temporal dynamics of how the visual cortex responds to motion stimuli, including 
motion stimuli whose coherence is probabilistically defined (Chey et al., 1997; Grossberg et al., 
2001; Berzhanskaya et al., 2007; Grossberg and Pilly, 2007). Grossberg and Pilly (2007) have, in 
particular, proposed a how Retina/LGN-V1-MT-MST-LIP-Basal Ganglia interactions can 
quantitatively explain and simulate data about probabilistic decision-making in LIP (Shadlen and 
Newsome, 2001; Roitman and Shadlen, 2002). These experiments have been presented as 
supportive of Bayesian processing. 

The second property concerns a novel kind of hybrid computing that simultaneously 
realizes the stability of digital computing and the sensitivity of analog computing. This is true 
because the intracortical feedback loop between layers 2/3-6-4-2/3 that selects or confirms a 
winning grouping has the property of analog coherence (Grossberg et al., 1997; Grossberg, 
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1999a; Grossberg and Raizada, 2000); namely, this feedback loop can synchronously store a 
winning grouping without losing analog sensitivity to amplitude differences in the input pattern. 
The coherence of synchronous selection and storage provides the stability of digital computing. 
The sensitivity of analog computation can be traced to how excitatory and inhibitory interactions 
are balanced within layers 4 and 2/3, and to the shunting dynamics of the inhibitory interactions 
within these layers. 

The third property concerns its ability to self-stabilize development and learning using the 
intracortical feedback loop between layers 2/3-6-4-2/3 by selecting cells that fire together to wire 
together. As further discussed below, this intracortical decision circuit is predicted to help stabilize 
development in the infant and learning throughout life, as well as to select winning groupings in the 
adult (Grossberg, 1999a).  

The critical role of the layer 6-to-4 decision circuit in the realization of all three properties 
clarifies that they are all different expressions of a shared circuit design. 

 
Linking Stable Development to Synchrony 

 The LAMINART model clarifies how excitatory and inhibitory connections in the cortex can 
develop in a stable way by achieving and maintaining a balance between excitation and inhibition 
(Grossberg and Williamson, 2001). Long-range excitatory horizontal connections between 
pyramidal cells in layer 2/3 of visual cortical areas play an important role in perceptual grouping 
(Hirsch and Gilbert, 1991; McGuire et al., 1991). The LAMINART model proposes how 
development enables the strength of long-range excitatory horizontal signals to become balanced 
against inhibitory signals that are mediated by short-range di-synaptic inhibitory interneurons 
which target the same pyramidal cells (Figure 1c). These balanced connections are proposed to 
realize properties of perceptual grouping in the adult. In a similar way, development enables the 
strength of excitatory connections from layer 6-to-4 to be balanced against those of inhibitory 
interneuronal connections (Wittmer et al., 1997); see Figures 2a and 2c. Thus the net excitatory 
effect of layer 6 on layer 4 is proposed to be modulatory. These approximately balanced excitatory 
and inhibitory connections exist within the on-center of a modulatory on-center, off-surround 
network from layer 6-to-4. This network plays at least three functional roles that are intimately 
linked: maintaining a contrast-normalized response to bottom-up inputs at layer 4 (Figure 2a); 
forming perceptual groupings in layer 2/3 that maintain their sensitivity to analog properties of the 
world (Figure 2c); and biasing groupings via top-down attention from higher cortical areas (Figure 
2b; also see Figures 2d and 2e). 

Balanced excitatory and inhibitory connections have been proposed by several models to 
explain the observed variability in the number and temporal distribution of spikes emitted by 
cortical neurons (Shadlen and Newsome, 1998; van Vreeswijk and Sompolinsky, 1998). The 
LAMINART model proposes that such variability may reflect mechanisms that are needed to 
ensure stable development and learning. If indeed “stability implies variability,” how does the 
cortex convert these variable spikes, which are inefficient in driving responses from cortical 
neurons, into reliable responses to visual inputs? Within LAMINART circuits, such balanced 
excitatory and inhibitory connections respond to inputs by rapidly synchronizing their responses to 
input stimuli (Yazdanbakhsh and Grossberg, 2004; Grossberg and Versace, 2007; see also 
Grossberg and Somers, 1991; Grossberg and Grunewald, 1997). In fact, the article that introduced 
ART predicted a role for synchronous cortical processing, including synchronous oscillations, 
which were there called “order-preserving limit cycles”, as part of the process of establishing 
resonant states (Grossberg, 1976). Since the experimental reports of Eckhorn et al. (1988) and 
Gray and Singer (1989), many neurophysiological experiments have reported synchronous cortical 
processing. The ART model further predicted a functional link between properties of stable 
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development, adult perceptual learning, attention, and synchronous cortical processing, to which 
the LAMINART model adds perceptual grouping in laminar cortical circuits.  

The Synchronous Matching ART (SMART) model of Grossberg and Versace (2005, 
2006, 2007) further develops LAMINART to clarify how multiple levels of brain organization 
work together, ranging from individual spikes, through local field potentials and inter-areal 
synchronization, to cognitive learning dynamics. SMART proposes how higher-order specific and 
nonspecific thalamic nuclei are coordinated with multiple stages of cortical processing to control 
stable spike-timing-dependent plasticity (STDP). The model proposes how gamma oscillations can 
facilitate STDP learning, and how slower beta oscillations may be generated during reset events. It 
furthermore predicts that reset is mediated by the deeper layers of cortex. The model hereby 
predicts that “more gamma” can be expected through time in the superficial layers of cortex than the 
deeper layers. 

 
Attention Arises from Top-Down Cooperative-Competitive Matching 

Attention typically modulates an ongoing process. In order for the concept of attention to be 
scientifically useful, these processes need to be articulated and the way in which attention 
modulates them needs to be mechanistically explained. LAMINART, and ART before it, predicted 
that an intimate link exists between processes of attention, competition, and bottom-up/top-down 
matching. LAMINART predicts, in particular, that top-town signals from higher cortical areas, 
such as area V2, can attentionally prime, or modulate, layer 4 cells in area V1 by activating the on-
center off-surround network from layer 6-to-4 (Figures 2b and 2e). Because the excitatory and 
inhibitory signals in the on-center are balanced, attention can sensitize, or modulate, cells in the 
attentional on-center, without fully activating them, while also inhibiting cells in the off-surround.  

The importance of the conclusion that top-down attention is often expressed through a top-
down, modulatory on-center, off-surround network cannot be overstated. Because of this 
organization, top-down attention can typically provide only excitatory modulation to cells in the on-
center, while it can strongly inhibit cells in the off-surround. As Hupé et al. (1997, p. 1031) have 
noted: “feedback connections from area V2 modulate but do not create center-surround interactions 
in V1 neurons.” When the top-down on-center matches bottom-up signals, it can amplify and 
synchronize them, while strongly suppressing mismatched signals in the off-surround. This 
prediction was first made as part of ART in the 1970’s (Grossberg, 1976, 1978, 1980, 1999a, 
1999c). It has since received both of psychological and neurobiological empirical confirmation in 
the visual system (Downing, 1988; Sillito et al., 1994; Steinman et al., 1995; Bullier et al., 1996; 
Caputo and Guerra, 1998; Somers et al., 1999; Reynolds et al., 1999; Mounts, 2000; Smith et al., 
2000; Vanduffell et al., 2000). Based on such data, this property has recently been restated, albeit 
without a precise anatomical realization, in terms of the concept of “biased competition” 
(Desimone, 1998; Kastner and Ungerleider, 2001), in which attention biases the competitive 
influences within the network. Figure 3 summarizes data of Reynolds, Chelazzi, and Desimone 
(1999) and a simulation of these data from Grossberg and Raizada (2000) that illustrate the on-
center off-surround character of attention in macaque V2. 

 
The Preattentive-Attentive Interface and Object-Based Attention 

Top-down attention and pre-attentive perceptual grouping interact within the cortical layers to 
enable attention to focus on an entire object boundary, thereby enabling whole object boundaries to 
be selectively attended and recognized. This happens because the same layer 6-to-4 competition, or 
selection, circuit may be activated both by pre-attentive grouping cells in layer 2/3, and by top-
down attentional pathways (Figures 2b and 2c). Layer 4 cells can then, in turn, reactivate layer 2/3 
cells (Figure 2c). This layer 6-to-4 circuit “folds” the feedback from top-down attention or a layer 
2/3 grouping back into the feedforward flow of bottom-up inputs to layer 4. It is thus said to  
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Figure 3. The effect of attention on competition between visual stimuli. A target 
stimulus, presented on its own (a), elicits strong neural activity at the recorded cell. When 
a second, distractor stimulus is presented nearby (b), it competes against the target, and 
activity is reduced. Directing spatial attention to the location of the target stimulus (c), 
protects the target from this competition, and restores neural activity to the levels elicited 
by the target on its own. The stimuli shown here, based on those used in the 
neurophysiological experiments of Reynolds et al. (1999), were presented to the model 
neural network. Spatial attention (c), was implemented as a Gaussian of activity fed back 
into layer 6. (d) Neurophysiological data from macaque V2 that illustrate the recorded 
activity patterns described above: strong responses to an isolated target (dotted line), 
weaker responses when a competing distractor is placed nearby (dashed line) and restored 
levels of activity when the target is attended (solid line). (Adapted with permission from 
Reynolds et al. (1999, Fig. 5).) (See also Reynolds, J., Nicholas, J., Chelazzi, L. & 
Desimone, R. (1995). Spatial attention protects macaque V2 and V4 cells from the 
influence of non-attended stimuli. Society for Neuroscience Abstracts, 21, 693.1). (e) 
Model simulation of the Reynolds et al. data. The time-courses illustrated show the 
activity of a vertically oriented cell stimulated by the target bar. If only the horizontal 
distractor bar were presented on its own, this cell would respond very weakly. If both 
target and distractor were presented, but with the horizontal distractor attended, the cell 
would respond, but more weakly than the illustrated case where the distractor and target 
are presented together, with neither attended. (Reprinted with permission from Grossberg 
and Raizada (2000).) 

e d 
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Model simulation 
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embody a “folded feedback” process (Grossberg, 1999a). Thus, when ambiguous complex scenes 
are being processed, intracortical folded feedback enables stronger groupings in layer 2/3 to inhibit 
weaker groupings, whereas intercortical folded feedback enables higher-order attentive constraints 
to bias which groupings will be selected. 

Figure 2e summarizes the hypothesis that top-down attentional signals to layer 1 may also 
directly modulate groupings via apical dendrites of both excitatory and inhibitory layer 2/3 cells in 
layer 1 (Rockland, and Virga, 1989; Lund and Wu, 1997). By activating both excitatory and 
inhibitory cells in layer 2/3, the inhibitory cells may balance the excitatory cell activation, thereby 
enabling attention to directly modulate grouping cells in layer 2/3.  
Because the cortex uses the same circuits to select groupings and to prime attention, attention can 
flow along perceptual groupings, as reported by Roelfsema, et al. (1998). In particular, when 
attention causes an excitatory modulatory bias at some cells in layer 4, groupings that form in 
layer 2/3 can be enhanced by this modulation via their positive feedback loops from 2/3-to-6-to-
4-to-2/3. The direct modulation of layer 2/3 by attention can also enhance these groupings. 
Figure 4 summarizes a LAMINART simulation of data from Roelfsema et al. (1998) of the 
spread of visual attention along an object boundary grouping. LAMINART has also been used to 
simulate the flow of attention along an illusory contour (Raizada and Grossberg, 2001), 
consistent with experimental data of Moore et al. (1998). The ability of attention to selectively 
light up entire object representations has an obviously important survival value in adults. It is 
thus of particular interest that the intracortical and intercortical feedback circuits that control this 
property have been shown in modeling studies to play a key role in stabilizing infant 
development and adult perceptual learning within multiple cortical areas, including cortical areas 
V1 and V2. 

 
 

Stable Development and Learning through Adaptive Resonance 
Adaptive Resonance Theory, or ART (Grossberg, 1980, 1995, 1999c; Pollen, 1999; Engel et al., 
2001) is a cognitive and neural theory which addresses a general problem that faces all adaptive 
brain processes; namely, the stability-plasticity dilemma: how can brain circuits be plastic 
enough to be rapidly fine-tuned by new experiences, and yet simultaneously stable enough that 
they do not get catastrophically overwritten by the new stimuli with which they are continually 
bombarded? 

The solution that ART proposes to this problem is to allow neural representations to be 
rapidly modified only by those incoming stimuli with which they form a sufficiently close 
match. If the match is close enough, then learning occurs. Because an approximate match is 
required, such learning fine-tunes the memories of existing representations, so that outliers 
cannot radically overwrite an already learned representation. ART proposes how a learning 
individual can flexibly vary the criterion, called vigilance, of how good a match is needed 
between bottom-up and top-down information in order for the presently active representation to 
be refined through learning. When coarse matches are allowed (low vigilance), the learned 
representations can represent general and abstract information. When only fine matches are 
allowed (high vigilance), the representations are more specific and concrete. If the active neural 
representation does not match with the incoming stimulus, then its neural activity is extinguished 
and hence unable to cause plastic changes. Suppression of an active representation enables 
mismatch-mediated memory search, or hypothesis-testing, to ensue whereby some other 
representation can become active through bottom-up signaling. This representation, in turn, reads  



 12 

a 

 
 
 
 

              
 

Figure 4. Spread of visual attention along an object boundary grouping, from an 
experiment by Roelfsema et al. (1998). (a) The experimental paradigm. Macaque monkeys 
performed a curve-tracing task, during which physiological recordings were made in V1. A 
fixation spot was presented for 300 ms, followed by a target curve and a distractor curve presented 
simultaneously. The target was connected at one end to the fixation point. While maintaining 
fixation, the monkeys had to trace the target curve, then, after 600 ms, make a saccade to its 
endpoint. (b) Neurophysiological data showing attentional enhancement of the firing of a neuron 
when its receptive field (RF) lay on the target curve, as opposed to the distractor. Note that the 
enhancement occurs about 200 ms after the initial burst of activity. Further studies have indicated 
that the enhancement starts later in distal curve segments, far from the fixation point, than it does in 
proximal segments, closer to fixation (Pieter Roelfsema, personal communication). This suggests 
that attentional signals propagate along the length of the target curve. (Figures (a) and (b) adapted 
with permission from Roelfsema et al. (1998).) (c) Model simulation of the Roelfsema et al. data. 
(Reprinted with permission from Grossberg and Raizada (2000).)work, top-down expectations 
initially have large enough adaptive memory traces to enable a match to occur with a newly selected 
representation. It has been suggested that breakdowns in vigilance control can contribute to various 
disorders, including medial temporal amnesia (abnormally low vigilance; Carpenter and Grossberg, 
1993) and autism (abnormally high vigilance; Grossberg and Seidman, 2006). 

b c Neurophysiological data 
 

Model simulation 
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out top-down signals that either gives rise to a match, thereby allowing learning, or a non-match, 
causing the search process to repeat until either a match is found or the incoming stimulus causes 
a totally new representation to be formed. For this to work, top-down expectations initially have 
large enough adaptive memory traces to enable a match to occur with a newly selected 
representation. It has been suggested that breakdowns in vigilance control can contribute to various 
disorders, including medial temporal amnesia (abnormally low vigilance; Carpenter and Grossberg, 
1993) and autism (abnormally high vigilance; Grossberg and Seidman, 2006). 

In both ART and its elaboration into LAMINART, attention is mediated by a top-down, 
modulatory on-center, off-surround network (e.g., Grossberg, 1980, 1982, 1999b), whose role is 
to select and enhance behaviorally relevant bottom-up sensory inputs (match), and suppress those 
that are irrelevant (nonmatch). Mutual excitation between the top-down feedback and the bottom-up 
signals that they match can amplify, synchronize, and maintain existing neural activity in a resonant 
state long enough for rapid synaptic changes to occur. Thus, attentionally relevant stimuli are 
learned, while irrelevant stimuli are suppressed and prevented from destabilizing existing 
representations. Hence the name adaptive resonance. Grossberg (1999c, 2003a) provides more 
detailed reviews. 

The folded feedback layer 6-to-4 modulatory on-center, off-surround attentional pathway in 
the LAMINART model (Figure 2b) satisfies the predicted properties of ART matching. The claim 
that bottom-up sensory activity is enhanced when matched by top-down signals is in accord with 
an extensive neurophysiological literature showing the facilitatory effect of attentional feedback 
(Sillito et al., 1994; Luck et al., 1997; Roelfsema et al., 1998), but not with models in which 
matches with top-down feedback cause suppression (Mumford, 1992; Rao and Ballard, 1999). The 
ART proposal raises two key questions: First, does top-down cortical feedback have the predicted 
top-down, modulatory on-center, off-surround structure in other neocortical structures, where 
again the stabilizing role of top-down feedback in learning would be required? Second, is there 
evidence that top-down feedback controls plasticity in the area to which it is directed? 

Zhang et al. (1997) have shown that feedback from auditory cortex to the medial geniculate 
nucleus (MGN) and the inferior colliculus (IC) also has an on-center off-surround form, and 
Temereanca and Simons (2001) have produced evidence for a similar feedback architecture in the 
rodent barrel somatosensory system. 

 
The Link between Attention and Learning 

Accumulating evidence also shows that top-down feedback helps to control cortical plasticity. 
Psychophysically, the role of attention in controlling adult plasticity and perceptual learning was 
demonstrated by Ahissar and Hochstein (1993). Gao and Suga (1998) reported physiological 
evidence that acoustic stimuli caused plastic changes in the inferior colliculus (IC) of bats only 
when the IC received top-down feedback from auditory cortex. Plasticity is enhanced when the 
auditory stimuli were made behaviorally relevant, consistent with the ART proposal that top-down 
feedback allows attended, and thus relevant, stimuli to be learned, while suppressing unattended 
irrelevant ones. Cortical feedback also controls thalamic plasticity in the somatosensory system 
(Krupa et al., 1999; Parker and Dostrovsky, 1999). See Kaas (1999) for a review.  

Models of intracortical feedback due to grouping, and of intercortical feedback due to 
attention, have shown that either type of feedback can rapidly synchronize the firing patterns of 
higher and lower cortical areas (Grossberg and Somers, 1991; Grossberg and Grunewald, 1997; 
Yazdanbakhsh and Grossberg, 2004; Grossberg and Versace, 2007). ART predicts that such 
synchronization phenomena under lie the type of resonances that can trigger cortical learning by 
enhancing the probability that “cells that fire together wire together.” Engel et al. (2001) review data 
and related models that are consistent with the proposal that synchrony, attention, and learning are 
related. 
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View-Invariant Object Category Learning: 

Coordinating Object Attention and Surface-based Spatial Attention Shrouds 
The above summary has focused on object attention. It did not discuss spatial attention, how spatial 
and object attention work together, or how attention is hierarchically organized. The above 
summary also talks about category learning, but not the fact that view-invariant object categories 
may be learned from combinations of multiple object views. The present section sketches some 
results concerning these more global issues about brain organization. 
 One way in which attention may globally influence many brain regions is illustrated in 
Figure 2e, which shows how attention can leap from higher cortical levels to multiple lower cortical 
areas via their layers 6. This anatomy proposes a solution to an otherwise challenging problem: 
How can attention prime so many cortical areas with higher-order constraints without inadvertently 
firing them all? Figure 2e shows that attention can leap between the layers 6 of different cortical 
areas without firing them all, because the layer 6-to-4 circuits that act intracortically are modulatory. 

The above example illustrates how attention can act “vertically” between cortical regions. 
Many studies have analyzed how attention is spread “horizontally” across a given level of cortical 
processing, including how spatial attention may be simultaneously divided among several targets 
(Pylyshyn and Storm, 1988; Yantis, 1992), and how object and spatial attention may both 
influence visual perception (Posner, 1980; Duncan, 1984). The distinction between object and 
spatial attention reflects the organization of visual cortex into parallel What and Where processing 
streams (Figure 1). Many cognitive neuroscience experiments have supported the hypotheses of 
Ungerleider and Mishkin (1982; see also Mishkin et al. (1983)) and of Goodale and Milner (1992) 
that inferotemporal cortex and its cortical projections learn to categorize and recognize what objects 
are in the world, whereas the parietal cortex and its cortical projections learn to determine where 
they are and how to deal with them by locating them in space, tracking them through time, and 
directing actions towards them. This design into parallel streams separates sensory and cognitive 
processing from spatial and motor processing.  

The What stream strives to generate object representations that are independent of their 
spatial coordinates, whereas the Where stream generates representations of object location and 
action. The streams must thus interact to act upon recognized objects. Indeed, both object and 
spatial attention are needed to search a scene for visual targets and distractors using saccadic eye 
movements. Grossberg et al. (1994) illustrated how object and spatial attention may interact by 
quantitatively fitting a large human psychophysical database about visual search with a model, 
called the Spatial Object Search (SOS) model, that proposes how 3D boundary groupings and 
surface representations interact with object attention and spatial attention to find targets amid 
distractors. This analysis proposed that surface properties may engage spatial attention, as when 
search is restricted to all occurrences of a color on a prescribed depth plane (Egeth et al., 1984; 
Nakayama and Silverman, 1986; Wolfe and Freedman-Hill, 1992).  

More recent modeling work has advanced the theoretical analysis of how spatial and object 
attention are coordinated by surface and boundary representations, by showing how they support 
the learning of view-invariant object categories (Fazl et al., 2005, 2006, 2007). This work advances 
the solution of the following problem: What is an object? How does the brain learn what an object 
is under both unsupervised and supervised learning conditions? How does the brain learn to bind 
multiple views of an object into a view-invariant representation of a complex object while scanning 
its various parts with active eye movements? How does the brain avoid the problem of erroneously 
classifying views of different objects as belonging to a single object, even before it has a concept of 
what the object is? The ARTSCAN model predicts how spatial and object attention work together 
to direct eye movements to explore object surfaces and to enable learning of view-invariant object 
categories from the multiple view categories that are thereby learned.  
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In particular, ARTSCAN predicts that spatial attention employs an attentional shroud, or 
form-fitting distribution of spatial attention, that is derived through feedback interactions with an 
object’s surface representation.. ARTSCAN modifies the original Tyler and Kontsevich (1995) 
concept of an attentional shroud in which the shroud was introduced as an alternative to the 
perception of simultaneous transparency, with evidence that only one plane is seen at a time within 
the perceptual moment. This concept focuses on object perception. ARTSCAN proposes that an 
attentional shroud also plays a fundamental role in regulating object learning.  

Such a shroud is proposed to persist within the Where Stream during active scanning of an 
object with attentional shifts and eye movements. This claim raises the basic question: How can the 
shroud persist during active scanning of an object, if the brain has not yet learned that there is an 
object there? ARTSCAN proposes how a preattentively formed surface representation leads to 
activation of a shroud, even before the brain can identify the surface as representing a particular 
object. Such a shroud can be formed starting with either bottom-up or top-down signals. In the 
bottom-up route, a surface representation (e.g., in visual cortical area V4) direcetly activates a 
shroud, which conforms its shape to that of the surface, in a spatial attention cortical area (e.g., 
posterior parietal cortex). The shroud, in turn, can topographically prime the surface representation 
via top-down feedback. A surface-shroud resonance can hereby develop. In the top-down route, a 
volitionally-controlled, local focus of spatial attention (an attentional spotlight) can send a top-down 
attentional signal to a surface representation. This spotlight of enhanced activation can then fill-in 
across the entire surface, being contained only by the surface boundary (Grossberg and Mingolla, 
1985b). Surface filling-in generates a higher level of filled-in surface activation than did the 
bottom-up input to the surface alone. The filling-in of such a top-down attentional spotlight can 
hereby have an effect on the total filled-in surface activity that is similar to that caused by a higher 
bottom-up stimulus contrast (Reynolds and Desimone, 2003). The more highly active surface 
representation can reactivate the spatial attention region to define a surface form-fitting spatial locus 
of spatial attention; that is, a shroud. Again, the shroud is defined by a surface-shroud resonance. 

Any surface in a scene can potentially sustain an attentional shroud, and surface 
representations dynamically compete for spatial attention. The winner of the competition at a given 
moment gains more activity and becomes the shroud. 

As saccadic eye movements explore an object’s surface, the surface-induced shroud 
modulates object learning in the What stream by maintaining activity of an emerging view-invariant 
category representation while multiple view-specific representations are linked to it through 
learning. Output from the shroud also helps to select the boundary and surface features to which 
eye movements will be directed, via a surface contour process that is predicted to play a key role in 
3D figure-ground separation (Grossberg, 1994, 1997) and to be mediated via cortical area V3A 
(Nakamura and Colby, 2000a, b). 

The model postulates that an active shroud weakens through time due to self-inhibitory 
inputs at selected target locations (“inhibition of return”; Grossberg, 1978; Koch and Ullman, 
1985) combined with chemical transmitters that habituate, or are depressed, in an activity-
dependent way (Grossberg, 1968; Francis et al., 1994; Abbott et al., 1997) and gate the signals 
that sustain the shroud. When an active shroud is weakened enough, it collapses and cannot any 
longer inhibit a tonically active reset signal. When a reset signal is disinhibited, it inhibits the active 
view-invariant object category in the What Stream, thereby preventing it from erroneously being 
linked to the view categories of subsequently foveated objects. Then a new shroud, corresponding 
to some other surface, is selected in the Where Stream, as a new object category is activated in the 
What Stream by the first view of the new object.  

While a shroud remains active, the usual ART mechanisms direct object attention to ensure 
that new view categories and the emerging view-invariant object category are learned in a stable 
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way through time. ARTSCAN hereby provides a new proposal for how surface-based spatial 
attention and object attention are coordinated to learn view-invariant object categories. 

The ARTSCAN model learns with 98.1% accuracy on a letter database whose letters vary 
in size, position, and orientation. It does this while achieving a compression factor of 430 in the 
number of its category representations, compared to what would be required to learn the database 
without the view-invariant categories. The model also simulates reaction times (RTs) in human 
data about object-based attention: RTs are faster when responding to the non-cued end of an 
attended object compared to a location outside the object, and slower engagement of attention to 
a new object occurs if attention has to first be disengaged from another object first (Brown & 
Denney, in press; Egly et al., 1994). 

 
Learning without Attention: The Pre-Attentive Grouping is its Own Attentional Prime 

The fact that attentional feedback can influence cortical plasticity does not imply that unattended 
stimuli can never be learned. Indeed, abundant plasticity occurs during early development, before 
top-down attention has even come into being. Grossberg (1999a) noted that, were this not possible, 
an infinite regress could be created, since a lower cortical level like V1 might then not be able to 
stably develop unless it received attentional feedback from V2, but V2 itself could not develop 
unless it had received reliable bottom-up signals from V1. How does the cortex avoid this infinite 
regress so that, during development, plastic changes in cortex may be driven by stimuli that occur 
with high statistical regularity in the environment without causing massive instability, as modeled 
in the LAMINART simulations of Grossberg and Williamson (2001)? How does this process 
continue to fine-tune sensory representations in adulthood, even in cases where task-selective 
attention and awareness do not occur (Watanabe et al., 2001; Seitz and Watanabe, 2003)?  

The LAMINART model clarifies how attention is used to help stabilize learning, while also 
allowing learning to slowly occur without task-selective attention and awareness. It also links these 
properties to properties of pre-attentive vision that are not obviously related to them. For example, 
how can pre-attentive groupings, such as illusory contours, form over positions that receive no 
bottom-up inputs? Although we take such percepts for granted, illusory contours seem to 
contradict the ART matching rule, which says that bottom-up inputs are needed to fire cells, while 
top-down feedback is modulatory. How, then, can cells that represent the illusory contour fire at 
positions that do not receive bottom-up inputs without destabilizing cortical development and 
learning? If the brain had not solved this problem, anyone could roam through the streets of a city 
and destabilize the brains of pedestrians by showing them images of Kanizsa squares! The 
absurdity of this possibility indicates how fundamental the issue at hand really is. 

The LAMINART model proposes how the brain uses its laminar circuits to solve this 
problem using a preattentive-attentive interface in which both intercortical attentional feedback and 
intracortical grouping feedback share the same selection circuit from layer 6-to-4: When a grouping 
starts to form in layer 2/3, it activates the intracortical feedback pathway from layer 2/3-to-6, which 
activates the modulatory on-center, off-surround network from layer 6-to-4. This intracortical 
feedback pathway helps to select which cells will remain active in a winning grouping. Attention 
uses this same network to stabilize cortical development and learning through intercortical 
interactions. In other words, the intracortical layer 6-to-4 selection circuit, which in the adult helps 
to choose winning groupings, is also predicted to help stabilize visually-induced brain development 
by assuring that the ART matching rule holds at every position along a grouping. Because the 
matching rule holds, only the correct combinations of cells can “fire together and wire together,” 
and hence stability is achieved. Intracortical feedback via layers 2/3-to-6-to-4-to-2/3 realizes this 
selection process even before intercortical attentional feedback can develop. I like to say that: “The 
pre-attentive grouping is its own attentional prime” (Grossberg, 1999a).  
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The LAMINART model hereby shows how, by joining together bottom-up (interlaminar) 
adaptive filtering, horizontal (intralaminar) grouping, top-down intracortical (but interlaminar) 
pre-attentive feedback, and top-down intercortical (and interlaminar) attentive feedback, some 
developmental and learning processes can be stabilized without top-down attention. This is 
realized by using intracortical feedback processes that activate the same stabilizing networks that 
top-down intercortical attentional processes use. Because of this intimate link between 
intracortical and intercortical feedback processes, attention can modulate the selection and 
activation level of pre-attentive grouping processes, as in the case of the Roelfsema et al. (1998) 
data.  

 

 
 
 
 
 

             
 
 
 

 
Figure 5. Contrast-dependent perceptual grouping in primary visual cortex. (a) 
Illustrative visual stimuli. A variable-contrast oriented Gabor patch stimulates the 
classical receptive field (CRF), with collinear flanking Gabors of fixed high-contrast 
outside of the CRF. The stimulus shown here, based on those used Polat et al. (1998), 
was presented to the model neural network. (b) Neural responses recorded from cat V1. 
The colinear flankers have a net facilitatory effect on weak targets which are close to the 
contrast-threshold of the cell, but they act to suppress responses to stronger, above-
threshold targets. When the flankers are presented on their own, with no target present, 
the neural response stays at baseline levels. (Reproduced with permission from Polat et 
al. (1998).) (c) Model simulation of the Polat et al. data. (Reprinted with permission from 
Grossberg and Raizada (2000).) 

a b c Neurophysiological data 
 

Model simulation 
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Balanced Excitatory and Inhibitory Circuits as a Cortical Design Principle 
The circuits that realize grouping and attentional processes compute balanced excitatory and 
inhibitory interactions. The excitatory/inhibitory balance within layer 2/3 circuits helps achieve 
perceptual grouping. The balance between excitatory and inhibitory interactions within the on-
center of the network from layer 6-to-4 helps to do several things, among them render top-down 
attention modulatory. Figure 2 shows only these two types of balanced excitatory and inhibitory 
circuits. Other cortical interactions also balance excitation and inhibition, including the 
interactions that realize monocular simple cell receptive fields in layer 4 (data: Palmer and 
Davis, 1981; Pollen and Ronner, 1981; Liu et al., 1992; model: Olson and Grossberg, 1998). 
Balanced excitatory/inhibitory interactions within layer 3B also give rise to binocular simple 
cells that initiate stereopsis by matching monocular inputs from different eyes (Grossberg and 
Howe, 2003;  Cao and Grossberg, 2005). 

The balanced interactions within layer 2/3, and those from layer 6-to-4, as in Figure 2, can 
explain data in which the excitatory/inhibitory balance is altered by sensory inputs. Figure 5 
summarizes data of Polat et al. (1998) on contrast-dependent perceptual grouping in primary visual 
cortex, and a model simulation of Grossberg and Raizada (2000). The excitatory effects that enable 
co-linear flankers to facilitate activation in response to a low-contrast target are mediated by layer 
2/3 interactions, and the inhibitory effects that cause co-linear flankers to depress activation in 
response to a high-contrast target are mediated by the layer 6-to-4 off-surround. These two types of 
effects propagate throughout the network via layer 4-to-2/3 and layer 2/3-to-6 interactions, among 
others. An important factor in the model simulation is that the inhibitory interactions are of 
shunting type (Grossberg, 1973, 1980; Heeger, 1992; Douglas et al., 1995) and thereby compute 
cell activations that are contrast-normalized. 

How can perceptual grouping data be explained as a manifestation of excitatory/inhibitory 
balance? In cortical area V2 of monkeys, approximately co-linear interactions from approximately 
co-oriented cells are capable of firing a cell that does not receive bottom-up inputs (von der Heydt 
et al., 1984; Peterhans and von der Heydt, 1989), as occurs when an illusory contour is perceived. 
The von der Heydt, et al. (1984) experiment confirmed a prediction of Grossberg and colleagues 
(Cohen and Grossberg, 1984; Grossberg, 1984; Grossberg and Mingolla, 1985a, b) that perceptual 
grouping obeys a bipole property (Fig. 6); namely, such a cell can fire if it gets approximately co-
linear horizontal inputs from approximately co-oriented cells on both sides of its receptive field, 
even if it does not receive bottom-up input; or it can fire in response to bottom-up input alone, or to 
bottom-up input plus any combination of horizontal signals. The predicted bipole receptive field 
structure has been supported by later psychophysical experiments; e.g., Field et al. (1993) and 
Kellman and Shipley (1991), and anatomical experiments; e.g., Bosking et al. (1997). The 
LAMINART model (Grossberg et al., 1997; Grossberg, 1999a) extended this analysis by 
predicting how the bipole property may be realized by balanced excitatory/inhibitory interactions 
within layer 2/3, as summarized in Figure 6. Without these balanced inhibitory interactions, the 
growth of horizontal connections during development could proliferate uncontrollably if inhibition 
is too weak, or could be suppressed entirely if inhibition is too strong (Grossberg and Williamson, 
2001). 
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Figure 6. Schematic of the boundary grouping circuit in layer 2/3. Pyramidal cells with 
colinear, co-oriented receptive fields (shown as ovals) excite each other via long-range 
horizontal axons (Bosking et al., 1997; Schmidt et al., 1997), which also give rise to short-
range, di-synaptic inhibition via pools of interneurons, shown filled-in black (McGuire et 
al., 1991). This balance of excitation and inhibition helps to implement the bipole property. 
(a) Illustration of how horizontal input coming in from just one side is insufficient to cause 
above-threshold excitation in a pyramidal cell (henceforth referred to as the target) whose 
receptive field does not itself receive any bottom-up input. The inducing stimulus (e.g. a 
Kanizsa ‘pacman’) excites the oriented receptive fields of layer 2/3 cells, which send out 
long-range horizontal excitation onto the target pyramidal. This excitation brings with it a 
commensurate amount of disynaptic inhibition. This balance of “one-against-one” prevents 
the target pyramidal cell from being excited above-threshold. The boundary representation 
of the solitary pacman inducer produces only weak, sub-threshold colinear extensions (thin 
dashed lines). (b) When two colinearly aligned inducer stimuli are present, one on each 
side of the target pyramidal cell receptive field, a boundary grouping can form. Long-range 
excitatory inputs fall onto the cell from both sides, and summate. However, these inputs fall 
onto a shared pool of inhibitory interneurons, which, as well as inhibiting the target 
pyramidal, also inhibit each other (Tamas, Somogyi, & Buhl, 1998), thus normalizing the 
total amount of inhibition emanating from the interneuron pool, without any individual 
interneuron saturating. The combination of summating excitation and normalizing 
inhibition together create a case of “two-against-one”, and the target pyramidal is excited 
above-threshold. This process occurs along the whole boundary grouping, which thereby 
becomes represented by a line of suprathreshold-activated layer 2/3 cells (thick dotted line). 
Boundary strength scales in a graded analog manner with the strength of the inducing 
signals. (Reprinted with permission from Grossberg and Raizada (2000).) 
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A Synthesis of 3D Vision, Attention, and Grouping 
Our discussion so far has not considered how the brain sees the world in depth. Since the original 
LAMINART breakthrough in the mid-1990s, the model has been consistently extended into the 
3D LAMINART model of 3D vision and figure-ground perception. This step was achieved by 
unifying two previous models: the LAMINART model, which had until that time focused on 
cortical development, learning, grouping, and attention, but did not consider binocular interactions 
and 3D vision; and the non-laminar FACADE model of 3D vision and figure-ground perception 
(Grossberg, 1994, 1997; Grossberg and McLoughlin, 1997; McLoughlin and Grossberg, 1998; 
Kelly and Grossberg, 2000). The resulting unification was able to build upon LAMINART 
without having to discard any of its mechanisms, and to achieve a much broader explanatory and 
predictive range. Through this synthesis, the 3D LAMINART model has clarified how the laminar 
circuits of cortical areas V1, V2, and V4 are organized for purposes of stereopsis, 3D surface 
perception, and 3D figure-ground perception (Grossberg and Howe, 2003; Grossberg and 
Swaminathan, 2004; Cao and Grossberg, 2005; Fang and Grossberg, 2005; Grossberg and 
Yazdanbakhsh, 2005). As a result, the 3D LAMINART model predicts how cellular and network 
mechanisms of 3D vision and figure-ground perception are linked to mechanisms of development, 
learning, grouping, and attention. The following discussion merely hints at how this generalization 
builds seamlessly upon the already available LAMINART foundation. The original articles should 
be consulted for data support and model explanations and simulations of 3D vision data. 
 In the 3D LAMINART model, layer 4 no longer directly activates layer 2/3, as in Figure 2c. 
Instead, layer 4 monocular simple cells first activate layer 3B binocular simple cells, which in turn 
activate layer 2/3A binocular complex cells, as shown in Fig. 7. The layer 2/3A cells can then 
interact via horizontal interactions, like those summarized in Figs. 2c and 2e, to enhance cell 
activations due to approximately co-oriented and co-linear inputs. Second, binocular complex cells 
in layer 2/3A can represent different disparities, and thus different relative depths from an observer. 
Interactions between layer 2/3A cells that represent the same relative depth from the observer can 
be used to complete boundaries between object contours that lie at that depth.  

Because binocular fusion begins already in layer 3B, the binocular boundaries that are 
formed in layers 3B and 2/3A may be positionally displaced, or shifted, relative to their monocular 
input signals from layers 6 and 4. Figure 2c illustrates that these layer 2/3 boundaries feed signals 
back to layer 6 in order to select the winning groupings that are formed in layer 2/3, but issues 
about binocular shifts did not need to be considered in data explanations of the original 
LAMINART model. Signals from the monocular layer 4 cells activate positionally-shifted 
binocular cells in layer 3B, which in turn activate layer 2/3A binocular complex cells. This raises 
the question: How can the positionally displaced binocular boundaries in layer 2/3A of Figure 6 
contact the correct monocularly activated cells in layers 6 and 4, so that they can complete the 
feedback loop between layers 2/3-6-4-3B-2/3A that can select winning 3D groupings?  
 The 3D LAMINART model proposes that horizontal connections, which are known to 
occur in layers 5 and 6 (Callaway and Wiser, 1996), accomplish this. Feedback signals from layer 
2/3A propagate vertically to layer 5, whose cells activate horizontal axons in this layer that contact 
the appropriate layer 6 cells. These layer 5-to-6 horizontal contacts are assumed to be selectively 
formed during development. Grossberg and Williamson (2001) and Grossberg and Seitz (2003) 
have simulated how layer 2/3 connections and layer 6-to-4 connections may be formed during 
development. The selective layer 5-to-6 contacts are proposed to form according to similar laws. In 
summary, inward horizontal layer 4-to-3B and 2/3A-to-2/3A connections are proposed to form 
binocular cells and their groupings, while outward layer 5-to-6 connections are proposed to close 
the feedback loops that help to select the correct 3D groupings.  
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Figure 7. Model circuit diagram. The full 3D LAMINART model consists of a boundary 
stream that includes V1 interblobs, V2 pale stripes, and part of V4, and computes 3D 
perceptual groupings that are predicted to be amodal, or perceptually invisible, within this 
stream; and a surface stream that includes V1 blobs, V2 thin stripes, and part of V4, and 
computes 3D surfaces that are infused with visible color and lightness in depth. These 
two streams both receive illuminant-discounted signals from Retina/LGN cells, and 
interact with each other to overcome their complementary deficiencies to create 
consistent 3D boundary and surface percepts in cortical area V4. Also, 3D boundary and 
surface representations formed in the pale stripes and thin stripes of cortical area V2, 
respectively, are amodally completed, and provide neural support for the object 
recognition process in inferotemporal cortex. See Cao and Grossberg (2005) for 
additional discussion. 
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Given how 3D groupings in layer 2/3A contact the correct layer 6 cells, the preattentive-

attentive interface problem forces a proposal for how attention fits into the 3D circuit: namely, top-
down attentional outputs from layer 6 of a higher cortical level like V2 activates the same layer 5 
cells that contact monocular input sources in layer 6 via horizontal connections. Then the layer 
6-to-4 modulatory on-center, off-surround network controls attentional priming and matching, just 
like in Figure 2b. This proposal raises the question of how the top-down pathways from layer 6 of 
a higher cortical level know how to converge on the same layer 5 cells to which the layer 2/3 cells 
project at the lower cortical level? Since firing of the layer 2/3 cells activates the layer 5 cells as well 
as the layer 6 cells of the higher cortical level, this may occur due to associative learning.  

As noted above, Grossberg and Versace (2005, 2006, 2007) have proposed an elaboration 
of the LAMINART model, called the Synchronous Matching Adaptive Resonance Theory 
(SMART) model, in which such learning processes are studied down to the level of individual 
spikes and dendrites. This model extends laminar cortical modeling in a different direction by 
investigating how synchronization of neuronal spiking occurs within and across multiple brain 
regions, including how neocortical areas interact with higher-order specific and nonspecific 
thalamic nuclei, and how synchronization abets synaptic plasticity using STDP. The SMART 
extension of LAMINART also proposes a functional explanation for the differential expression 
of oscillation frequencies, notably gamma and beta, during match (gamma) or mismatch (beta) 
between bottom-up thalamic input and top-down cortical expectations, and of aggregate cell 
recordings such as current-source densities and local field potentials. The main fact for our 
present review is that a rational extension of LAMINART can bridge between all the processing 
levels that join individual spikes to cognitive information processing, and that SMART can 
quantitatively simulate, and functionally rationalize, data on all these organizational levels. 

 
Habituation, Development, Reset, and Bistability 

In addition to fast mechanisms of activation and slower mechanisms of learning, another 
intermediate time scale is needed to control cortical dynamics; notably, activity-dependent 
habituative mechanisms, as was noted above in the discussion of attentional shrouds. In particular, 
habituation of chemical transmitter gates has proved to be essential in studies of cortical 
development (Grunewald and Grossberg, 1998; Olson and Grossberg, 1998; Grossberg and Seitz, 
2003); see Grossberg (2003b) for a review. The habituative mechanisms prevent the developmental 
process from “getting stuck” into activating, over and over, the cells that initially win the 
competition. Such perseveration would prevent multiple feature combinations from getting 
represented in a distributed fashion throughout the network. Habituative interactions help to solve 
this problem because habituation is activity-dependent: only those cells or connections habituate 
that are in active use. Thus, when habituation acts, it selectively weakens the competitive advantage 
of the initial winners, so that other cells can become activated to represent different input features.  

 Habituative mechanisms play an important role in adult vision by helping to reset 
previously active visual representations when the scenes or images that induced them change or 
disappear. Without such an active reset process, visual representations could easily persist for a 
long time due to the hysteresis that could otherwise occur in circuits with as many feedback loops 
as those in Figures 2 and 7. In many examples of this reset process, offset of a previously active 
input leads to an antagonistic rebound of activation of previously inactive cells, and these newly 
activated cells help to inhibit the previously active cells, including grouping cells in layer 2/3. This 
reset process is not perfect, however, and there are large perceptual databases concerning residual 
effects of previously active representations. In fact, such a reset process has elsewhere been used to 
explain psychophysical data about visual aftereffects (Francis and Grossberg, 1996; Grunewald 
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and Lankheet, 1996), visual persistence (Francis et al., 1994), and binocular rivalry (Grossberg, 
1987; Arrington, 1993, 1995, 1996; Liang and Chow, 2002), among other data that are all 
proposed to be manifestations of the reset process. Ringach et al. (1999) have reported direct 
neurophysiological evidence for rebound phenomena using reverse correlation techniques to 
analyze orientational tuning in neurons of cortical area V1. Abbott et al. (1997) have provided 
direct experimental evidence in visual cortex of the habituative mechanisms that were predicted to 
cause the reset (Grossberg, 1968, 1969, 1980). Grossberg (1980, 1999b) also predicted that such 
reset processes play a role in driving the reset and memory search processes that help the adult 
brain to rapidly discover and learn new representations of the world, as part of ART.  

The same habituative mechanisms that usually phasically reset active brain representations 
can also lead to persistent multi-stable percepts when two or more 3D interpretations of a 2D image 
are approximately equally salient, as in Necker cube percepts, and also during binocular rivalry. 
For example, Grossberg and Swaminathan (2004) used habituative and competitive mechanisms to 
simulate development of disparity-gradient cell receptive fields and how a 2D Necker cube image 
generates bi-stable 3D boundary and surface representations.  

 In summary, there is a predicted link, mediated by habituative transmitter mechanisms, 
between processes of cortical development in the infant and processes of perceptual and cognitive 
reset, learning, and bistability in the adult. This link is worthy of a lot more experimental study than 
it has received to date. 

 
Towards a Unified Theory of Laminar Neocortex: From Vision to Cognition 

The results above focus on vision, which is a spatial process, or more accurately, a SPATIO-
temporal process. Can LAMINART principles be used to explain data about the temporal 
dynamics of cognitive information processing, which involves more spatio-TEMPORAL 
processes? In particular, how do the layered circuits of prefrontal and motor cortex carry out 
working memory storage, sequence learning, and voluntary, variable-rate performance of event 
sequences? A neural model called LIST PARSE (Grossberg and Pearson, 2005, 2006) proposes 
an answer to this question that unifies the explanation of cognitive, neurophysiological, and 
anatomical data from humans and monkeys. It quantitatively simulates human cognitive data about 
immediate serial recall and free recall, and monkey neurophysiological date from the prefrontal 
cortex obtained during sequential sensory-motor imitation and planned performance. The human 
cognitive data include bowing of the serial position performance curves, error-type distributions, 
temporal limitations upon recall accuracy, and list length effects. LIST PARSE also qualitatively 
explains cognitive effects related to attention, temporal grouping, variable presentation rates, 
phonemic similarity, presentation of nonwords, word frequency/item familiarity and list strength, 
distracters and modality effects. 

The model builds upon earlier working memory models that predict why both spatial and 
nonspatial working memories share the same type of circuit design (Grossberg, 1978). These 
Item and Order working memories, also called Competitive Queuing models (Houghton, 1990), 
propose rules for the storage of event sequences in working memory as evolving spatial patterns 
of activation. LIST PARSE proposes how to embody an Item and Order cognitive working 
memory model into the laminar circuits of ventrolateral prefrontal cortex. Such Competitive 
Queuing models have gradually become the dominant model for how to temporarily store 
sequences of events in working memory. 

Grossberg (1978) derived this class of models from an analysis of how to store sequences 
of speech or motor items in working memory in a mannerthat can be stably coded in long-term 
memory (e.g., word, language, and skill learning) without destabilizing previously learned list 
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categories that are subcategories of the new ones being learned. For example, how do you learn a 
list category for the novel word MYSELF when you already know the words MY, SELF, and 
ELF? The main design principle is called the LTM Invariance Principle. An exciting 
consequence of the LTM Invariance Principle is that the following types of activity patterns 
naturally emerge across the items that are stored in working memory: (1) primacy gradients of 
activity across the stored items wherein the earliest items are stored with the greatest activity − a 
primacy gradient can control the correct order of recall; (2) recency gradients, which control a 
backwards order of recall; and (3) bowed gradients, which permit recall of items at the list ends 
before the items near the list middle, and with higher probability than the list middle. Even if a 
primacy gradient is stored for a short list, a bowed gradient will then always emerge for a 
sufficiently long list. As just noted, bowing means that the system is not able to reproduce the 
correct order from working memory, because items near the list end will be recalled before items 
in the middle. Thus, the inability to read-out the correct order of long lists from working memory 
can be traced to a constraint on the design of working memories that ensure stable learning of list 
categories, or chunks.  

Any model of working memory needs to confront the question of how it evolved during 
natural selection. Happily, the LTM Invariance Principle can be realized by the same sort of 
shunting on-center off-surround network that is so frequently found in other parts of the brain, 
notably the visual cortex (Bradski et al., 1992; Grossberg, 1978, 1994). These on-center off-
surround networks must be recurrent, or feedback, networks whose positive and negative feedback 
signals establish and store the spatial patterns of activity that represent the sotred working memory. 
Specialization of how these recurrent networks sequentially rehearse their stored patterns and reset 
each rehearsed item is what sets them apart from other recurrent shunting on-center off-surround 
networks across the brain. 

LIST PARSE is a LAMINART-style model that illustrates how variations on granular 
laminar cortical circuits can quantitatively simulate data about spatio-TEMPORAL cognitive 
processes as well as SPATIO-temporal visual processes. The family of LAMINART models now 
allows us to understand as variations of a shared cortical design brain processes that seem to be 
totally unrelated on the level of behavioral function. As just one example, LAMINART predict that 
the volitional mechanism which allows humans to experience visual imagery and fantasy, is the 
same mechanism, suitably specialized, that regulates the storage of event sequences in working 
memory. The volitional gain control mechanism that is predicted to carry out this function may be 
realized by inhibition of inhibitory interneurons in layer 4 of both cortical areas. It remains to be 
seen how such LAMINART mechanisms are specialized within the laminar circuits of other 
cortical areas to realize a variety of intelligent behaviors.  
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