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Abstract 
A full understanding of consciousness requires that we identify the brain processes from which 
conscious experiences emerge. What are these processes, and what is their utility in supporting 
successful adaptive behaviors? Adaptive Resonance Theory (ART) predicted a functional link 
between processes of Consciousness, Learning, Expectation, Attention, Resonance, and Synchrony 
(CLEARS), including the prediction that “all conscious states are resonant states.” This connection 
clarifies how brain dynamics enable a behaving individual to autonomously adapt in real time to a 
rapidly changing world. The present article reviews theoretical considerations that predicted these 
functional links, how they work, and some of the rapidly growing body of behavioral and brain data 
that have provided support for these predictions. The article also summarizes ART models that 
predict functional roles for identified cells in laminar thalamocortical circuits, including the six 
layered neocortical circuits and their interactions with specific primary and higher-order specific 
thalamic nuclei and nonspecific nuclei. These predictions include explanations of how slow 
perceptual learning can occur without conscious awareness, and why oscillation frequencies in the 
lower layers of neocortex are sometimes slower beta oscillations, rather than the higher-frequency 
gamma oscillations that occur more frequently in superficial cortical layers. ART traces these 
properties to the existence of intracortical feedback loops, and to reset mechanisms whereby 
thalamocortical mismatches use circuits such as the one from specific thalamic nuclei to nonspecific 
thalamic nuclei and then to layer 4 of neocortical areas via layers 1-to-5-to-6-to-4. 
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Introduction 
Adaptive Resonance Theory (ART) proposes that there is an intimate link between an animal’s 
conscious awareness and its ability to learn quickly about a changing world throughout life. In 
particular, ART points to a critical role for “resonant” states in driving fast learning; hence the name 
adaptive resonance. These resonant states are bound together, using internal top-down feedback, 
into coherent representations of the world. In particular, ART proposes how learned bottom-up 
categories and learned top-down expectations interact to create these coherent representations. 
Learned top-down expectations can be activated in a data-driven manner by bottom-up processes 
from the external world, or by intentional top-down processes when they prime the brain to 
anticipate events that may or may not occur. In this way, ART clarifies one sense, but not the only 
one, in which the brain carries out predictive computation. 

When such a learned top-down expectation is activated, matching occurs of the top-down 
expectations against bottom-up data. If the bottom-up and top-down patterns are not too different, 
such a matching process can lead to the focusing of attention upon the expected clusters of 
information, which are called critical feature patterns, at the same time that mismatched signals are 
suppressed. A resonant state emerges through sustained feedback between the attended bottom-up 
signal pattern and the active top-down expectation as they reach a consensus between what is 
expected and what is there in the outside world.  

ART predicts that all conscious states in the brain are resonant states, and that these resonant 
states can trigger rapid learning of sensory and cognitive representations, without causing 
catastrophic forgetting. This prediction clarifies why it is easier to quickly learn about information 
to which one pays attention. ART hereby proposes that one reason why advanced animals are 
intentional and attentional beings is to enable rapid learning about a changing world throughout life. 

Psychophysical and neurobiological data in support of ART have been reported in 
experiments on vision, visual object recognition, auditory streaming, variable-rate speech 
perception, somatosensory perception, and cognitive-emotional interactions, among others. Some of 
these data are summarized below. Others are reviewed in Carpenter and Grossberg (1991), 
Grossberg (1999b, 2003a, 2003b, 2003c), and Raizada and Grossberg (2003). In particular, ART 
mechanisms seem to be operative at all levels of the visual system, and it has been proposed how 
these mechanisms are realized by laminar circuits of visual cortex as they interact with specific and 
nonspecific thalamic nuclei (Grossberg, 2003b; Grossberg and Versace, 2007; Raizada and 
Grossberg, 2003; Versace and Grossberg, 2005, 2006). These laminar models of neocortex have 
been called LAMINART models because the laminar anatomy of neocortex embodies the types of 
attentional circuits that were predicted by ART (Grossberg, 1999a). Most recently, it has been 
proposed how a variation of these laminar neocortical circuits in the prefrontal cortex can carry out 
short-term storage of event sequences in working memory, learning of categories that selectively 
respond to these stored sequences, and variable-speed performance of the stored sequences under 
volitional control (Grossberg and Pearson, 2006; Pearson and Grossberg, 2005, 2006),. These 
examples from vision and cognition show how both spatial and temporal processes can be carried 
out by variations of the same neocortical design, and point the way towards a general theory of 
laminar neocortex that can explain aspects of all higher-order intelligent behavior. 
 
What vs. Where: Why Procedural Memory is Not Conscious 
Although ART-style learning and matching processes seem to be found in many sensory and 
cognitive processes, another type of learning and matching is found in spatial and motor processes. 
Spatial and motor processing in the brain's Where processing stream (Goodale and Milner, 1992). 
obey learning and matching laws that are often complementary (Grossberg, 2000b) to those used for 
sensory and cognitive processing in the What processing stream of the brain (Mishkin, Ungerleider, 
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and Macko, 1983; Ungerleider and Mishkin, 1982). Whereas sensory and cognitive representations 
use attentive matching to maintain their stability as we learn more about the world, spatial and 
motor representations are able to forget learned maps and gains that are no longer appropriate as our 
bodies develop and grow from infanthood to adulthood.  

These memory differences can be traced to complementary differences in the corresponding 
matching and learning processes. ART-like sensory and cognitive learning occurs in an approximate 
match state, and matching is excitatory, which enables it to realize a type of excitatory priming. 
Spatial and motor learning often embodies Vector Associative Map (VAM) circuits (Gaudiano and 
Grossberg, 1991; Guenther, Bullock, Greve, and Grossberg, 1994) that occur in a mismatch state, 
and matching is realized by an inhibitory process. These complementary differences clarify why 
procedural memories are unconscious; namely, the inhibitory matching process that supports spatial 
and motor processes cannot lead to resonance.  
 
A New Way to Compute: Digital and Binary, Feedforward and Feedback, Analog Coherence 
The LAMINART models (e.g., Figure 1) are not merely anatomically more precise versions of 
previous ART ideas. They represent a breakthrough in computing that identifies new principles and 
processes that embody novel computational properties with revolutionary implications. LAMINART 
models embody a new type of hybrid between feedforward and feedback computing, and also 
between digital and analog computing (Grossberg, 2003b) for processing distributed data. These 
properties go beyond the types of Bayesian models that are so popular today. They underlie the fast 
but stable self-organization that is characteristic of cortical development and life-long learning.  
 The synthesis of feedback and feedback processing can be understood from the following 
example: When an unambiguous scene is processed, the LAMINART model can quickly group the 
scene in a fast feedforward sweep of activation that passes directly through layer 4 to 2/3 and then on 
to layers 4 to 2/3 in subsequent cortical areas (Figures 2c and 2e). This property clarifies how 
recognition can be so fast in response to unambiguous scenes; e.g., Thorpe et al. (1996). On the other 
hand, if there are multiple possible groupings in a scene, say in response to a complex textured 
scene, then competition among these possibilities due to inhibitory interactions in layers 4 and 2/3 
(black cells and synapses in Figure 2) can cause all cell activities to become smaller. This happens 
because the competitive circuits in the model are self-normalizing; that is, they tend to conserve the 
total activity of the circuit. This self-normalizing property is related to the ability of the shunting on-
center off-surround networks that realize the competitive circuits to process input contrasts over a 
large dynamic range without saturation (Douglas et al., 1995; Grossberg, 1973, 1980; Heeger, 1992).  
 In other words, these self-normalizing circuits carry out a type of real-time probability 
theory in which the amplitude of cell activity covaries with the certainty of the network’s selection, 
or decision, about a grouping. Amplitude, in turn, is translated into processing speed and coherence 
of cell activities. Low activation slows down the feedforward processing in the circuit because it 
takes longer for cell activities to exceed output threshold and to activate subsequent cells above 
threshold. In the model, network uncertainty is resolved through feedback: Weakly active layer 2/3 
grouping cells feed back signals to layers 6-then-4-then-2/3 to close a cortical feedback loop that 
contrast enhances and amplifies the winning grouping to a degree and at a rate that reflect the 
amount of statistical evidence for that grouping. As the winner is selected, and weaker groupings are 
suppressed, its cells become more active and synchronous, hence can again rapidly send the cortical 
decision to subsequent processing stages.  
 



 5

 
Figure 1. How known cortical connections join the layer 6  4 and layer 2/3 circuits to form 
an entire V1/V2 laminar model. Inhibitory interneurons are shown filled-in black. (a) The 
LGN provides bottom-up activation to layer 4 via two routes. First, it makes a strong 
connection directly into layer 4. Second, LGN axons send collaterals into layer 6, and 
thereby also activate layer 4 via the 6  4 on-center off-surround path. The combined effect 
of the bottom-up LGN pathways is to stimulate layer 4 via an on-center off-surround, which 
provides divisive contrast normalization (Grossberg, 1973, 1980; Heeger, 1992) of layer 4 
cell responses. (b) Folded feedback carries attentional signals from higher cortex into layer 4 
of V1, via the modulatory 6  4 path. Corticocortical feedback axons tend preferentially to 
originate in layer 6 of the higher area and to terminate in layer 1 of the lower cortex (Salin 
and Bullier, 1995, p.110), where they can excite the apical dendrites of layer 5 pyramidal 
cells whose axons send collaterals into layer 6. The triangle in the figure represents such a 
layer 5 pyramidal cell. Several other routes through which feedback can pass into V1 layer 6 

mvj
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exist (see Raizada and Grossberg (2001) for a review). Having arrived in layer 6, the 
feedback is then “folded” back up into the feedforward stream by passing through the 6  4 
on-center off-surround path (Bullier et al., 1996). (c) Connecting the 6  4 on-center off-
surround to the layer 2/3 grouping circuit: like-oriented layer 4 simple cells with opposite 
contrast polarities compete (not shown) before generating half-wave rectified outputs that 
converge onto layer 2/3 complex cells in the column above them. Just like attentional signals 
from higher cortex, as shown in (b), groupings that form within layer 2/3 also send activation 
into the folded feedback path, to enhance their own positions in layer 4 beneath them via the 
6  4 on-center, and to suppress input to other groupings via the 6  4 off-surround. There 
exist direct layer 2/3  6 connections in macaque V1, as well as indirect routes via layer 5. 
(d) Top-down corticogeniculate feedback from V1 layer 6 to LGN also has an on-center off-
surround anatomy, similar to the 6  4 path. The on-center feedback selectively enhances 
LGN cells that are consistent with the activation that they cause (Sillito et al., 1994), and the 
off-surround contributes to length-sensitive (endstopped) responses that facilitate grouping 
perpendicular to line ends. (e) The entire V1/V2 circuit: V2 repeats the laminar pattern of V1 
circuitry, but at a larger spatial scale. In particular, the horizontal layer 2/3 connections have 
a longer range in V2, allowing above-threshold perceptual groupings between more widely 
spaced inducing stimuli to form (Amir, Harel, & Malach, 1993). V1 layer 2/3 projects up to 
V2 layers 6 and 4, just as LGN projects to layers 6 an 4 of V1. Higher cortical areas send 
feedback into V2 which ultimately reaches layer 6, just as V2 feedback acts on layer 6 of V1 
(Sandell & Schiller, 1982). Feedback paths from higher cortical areas straight into V1 (not 
shown) can complement and enhance feedback from V2 into V1. Top-down attention can 
also modulate layer  2/3 pyramidal cells directly by activating both the pyramidal cells and 
inhibitory interneurons in that layer. The inhibition tends to balance the excitation,  leading to 
a modulatory effect. These top-down attentional pathways tend to synapse in layer 1, as 
shown in Figure 2b. Their synapses on apical dendrites in layer 1 are not shown, for 
simplicity. (Reprinted with permission from Raizada and Grossberg (2001).) 
 

In summary, the LAMINART circuit behaves like a real-time probabilistic decision circuit that 
operates as quickly as possible, given the evidence. It operates in a fast feedforward mode when 
there is little uncertainty, and automatically switches to a slower feedback mode when there is 
uncertainty. Feedback selects a winning decision which enables the circuit to speed up again, since 
activation amplitude, synchronization, and processing speed both increase with certainty. 
 The LAMINART model also embodies a novel kind of hybrid computing that 
simultaneously realizes the stability of digital computing and the sensitivity of analog computing. 
This is true because the feedback loop between layers 2/3-6-4-2/3 that selects or confirms a winning 
grouping (Figures 2c and 2e) has the property of analog coherence (Grossberg, 1999a; Grossberg, 
Mingolla, and Ross, 1997; Grossberg and Raizada, 2000); namely, this feedback loop can 
synchronously choose and store a winning grouping without losing analog sensitivity to amplitude 
differences in the input pattern. The coherence that is derived from synchronous storage in the 
feedback loop provides the stability of digital computing⎯the feedback loop exhibits hysteresis that 
can preserve the stored pattern against external perturbations⎯ while preserving the sensitivity of 
analog computation. 
 
All Conscious States are Resonant States, but Not the Converse: Biased Competition 
Another property of note in a LAMINART circuit reflects the claim that the ability to rapidly learn 
throughout life without a loss of stability is related to consciousness: “all conscious states are 
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resonant states”. However, the converse statement: “all resonant states are conscious states” is not 
predicted to be true. An example of such an exception will now be described.    
 LAMINART circuits can stabilize development and learning using the intracortical 
feedback loop between layers 2/3-6-4-2/3. This feedback loop supports an intracortical “resonance”. 
This contrast-enhancing feedback loop selects winning groupings in the adult. It is also predicted to 
help stabilize development in the infant and learning throughout life, since cells that fire together 
wire together (Grossberg, 1999a). This intracortical circuit can work even before intercortical 
attentional feedback can develop (Figure 2e) . The LAMINART model clarified that both of these 
circuits can stabilize cortical development and learning, not only the top-down intercortical circuit 
that ART originally predicted. The intracortical feedback loops between different layers of the 
neocortex prevent an infinite regress from occurring, by stabilizing cortical development and 
learning before top-down intercortical feedback can develop and play its own role in stabilization.  
 Early versions of ART predicted that top-down attention can modulate and stabilize the 
learning process through a competitive matching process (Grossberg, 1976, 1980). Later modeling 
studies (e.g., Carpenter and Grossberg, 1987) refined this prediction to assert that this matching 
process is realized by a top-down, modulatory on-center, off-surround network. A great deal of 
perceptual and brain data have accumulated in support of this hypothesis; see Grossberg (2003b) and 
Raizada and Grossberg (2003) for reviews of these data, including the popular “biased competition” 
term for this process  (Desimone, 1998). 
 The LAMINART model advanced this prediction by identifying intercortical and 
interlaminar circuits that can realize top-down, modulatory on-center, off-surround feedback (Figure 
2b). This additional step also clarified how pre-attentive grouping and top-down attention share the 
same modulatory on-center, off-surround decision circuit from layer 6-to-4 with each other, and also 
with feedforward pathways that automatically activate cells in response to bottom-up inputs (Figures 
2a - 2c). Because a “pre-attentive grouping is its own attentional prime,” these intracortical feedback 
loops also solve another problem: ART predicted that, in order to prevent unstable development and 
learning, only bottom-up inputs can supraliminally activate brain sensory and cognitive cells that are 
capable of learning, since top-down attention is typically modulatory (except when volition enables 
top-down attention to generate visual imagery or thoughts; see Grossberg (2000a)). How, then, can 
illusory contours form without destabilizing brain circuits? Because a “pre-attentive grouping is its 
own attentional prime,”  it can use the layer 6-to-4 competitive decision circuit to select the correct 
grouping cells for learning, even without top-down attention. 
 This refinement of the ART prediction implies that, although top-down attention is needed 
for fast and stable learning of conscious experiences to occur, learning can also occur if a pre-
attentive grouping competitively selects the correct cells with which to “resonate,” and thereby 
synchronize, for a sufficiently long time using its intracortical 2/3-6-4-2/3 feedback circuit.  Such 
learning may be slow and inaccessible to consciousness. Watanabe et al. (2003) have recently 
reported consistent data about slow perceptual learning without conscious awareness. More 
experiments need to be done to test if the predicted intracortical but interlaminar cortical 
mechanisms contribute to this sort of learning. 
  
Three Types of Attention: Boundary, Surface, and Prototype Attention 
The sharing by grouping and attention of the same decision circuit also enables the model to explain 
and simulate more data, including data about how attention can selectively activate an object by 
propagating along the object’s boundary (Roelfsema et al. 1998); see Grossberg and Raizada (2000). 
Additional examples of the role of boundary attention have been described in simulations of the 
Necker cube (Grossberg and Swaminathan, 2004) and of bistable transparency (Grossberg and 
Yazdanbaksh, 2005).  
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 Given the importance of attention in generating conscious experiences, it should be noted 
that at least three mechanistically-distinct types of attention have been distinguished by cortical 
modeling studies of visual perception and recognition: Boundary attention, whereby spatial attention 
can propagate along an object boundary to select the entire object for inspection; surface attention, 
whereby spatial attention can selectively fill in the surface shape of an object to form an “attentional 
shroud” (Tyler and Kontsevich, 1995); and prototype attention whereby critical feature patterns of a 
learned object category can be selectively enhanced. Boundary attention is summarized above. 
Surface attention helps to intelligently search a scene with eye movements and to learn view-
invariant object categories (Fazl, Grossberg, and Mingolla, 2007). Prototype attention is the type of 
attention that is realized by ART top-down category learning circuits (Carpenter and Grossberg, 
1987, 1991; Grossberg, 2003a). All three types of attention utilize one or another type of resonant 
feedback loops.  
 Distinguishing these three types of attention is difficult if only because they interact within 
and across the What and Where cortical processing streams. For example, boundary attention seems 
to be activated, at least in the experiments of Roelfsema et al. (1998), when spatial attentional maps 
in the Where cortical stream, notably parietal cortex, project to perceptual boundary representations 
in the What cortical stream, notably the pale stripes of cortical area V2.  Surface attention can be 
activated when spatial attentional maps in the Where cortical stream, again from parietal cortex, 
project to perceptual surface representations, notably in the thin stripes of cortical area V2 and in V4, 
and conversely to form a surface-shroud resonance. Finally, prototype attention seems to act entirely 
within the What cortical stream from learned recognition categories in prefrontal cortex and 
inferotemporal cortex to perceptual representations in V2 and V4. 
 Characterizing these three mechanistically distinct types of attention is further complicated 
by the fact that feedback interactions occur between the boundary and surface representations in 
cortical areas V1 and V2, and are predicted to help separate figures from their background in depth, 
and to control saccadic eye movements (Fang and Grossberg, 2007; Fazl, Grossberg, and Mingolla, 
2007; Grossberg, 1994, 1997). Modulation of either boundary or surface representations by spatial 
attention can therefore be expected to have effects on both types of representations due to these 
inter-stream feedback interactions. In addition, it is well-known that moving stimuli can activate 
both the What and Where streams and can automatically attract spatial attention in parietal cortex via 
Where stream pathways from V1 and MT to MST and parietal cortex, 
 
Balancing Excitation and Inhibition: The Road to Synchrony 
The dynamics of LAMINART circuits, whether in their pre-attentively or attentively activated 
modes, depend upon the existence of balanced excitatory and inhibitory signals in different cortical 
layers. In particular, a balance between excitation and inhibition is needed in the perceptual grouping 
circuit by bipole cells in layer 2/3 (Figures 2c and 2e). This balance helps to ensure that perceptual 
groupings can form inwardly between pairs or greater numbers of inducers, but not outwardly from a 
single inducer. Likewise, a balance between excitation and inhibition is required in the on-center of 
the circuit from layer 6-to-4 that can provide excitatory modulation of cell activities in layer 4, but 
not fire them fully (Figures 2a - 2c). As noted above, this latter circuit plays an important role in 
attention  (Figure 2b) and in the pre-attentive selection of a correct perceptual grouping in response 
to a complicated scene (Figure 2c). Grossberg and Williamson (2001) proposed that such balanced 
circuits are needed for the cortex to develop and learn in a stable way, and simulated how such 
balanced connections could grow during cortical development. Indeed, if inhibition if inhibition 
develops to be too weak, then excitation can propagate uncontrollably, whereas if it is too strong, 
then cells cannot get sufficiently activated. 
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 On the other hand, balanced excitatory and inhibitory connections have also been used to 
explain the observed variability in the number and temporal distribution of spikes emitted by cortical 
neurons (Shadlen and Newsome, 1998; van Vreeswijk and Sompolinsky, 1998). These spiking 
patterns are quite inefficient in firing cortical cells. Given the LAMINART model proposal that such 
variability may reflect mechanisms that are needed to ensure stable development and learning by 
cortical circuits⎯that is, “stability implies variability”⎯ the cortex is faced with the difficult 
problem of how to overcome the inefficiency of variable spiking patterns in driving responses from 
cortical neurons. The LAMINART model shows how these balanced excitatory and inhibitory 
connections work together overcome the inefficiency of intermittent spiking by resynchronizing 
desynchronized signals that belong to the same object, and thereby ensuring that the cortex processes 
them efficiently. In other words, the very process that enables cortical cells to respond selectively to 
input patterns ⎯namely, balanced excitation and inhibition⎯also ensures that cortical cells can fire 
vigorously and synchronously in response to those patterns that are selected by cortical bottom-up 
filtering, horizontal grouping, and top-down attention processes. 
 The remainder of this article summarizes properties of cortical circuits that enable them to 
realize the predicted CLEARS relationships, and illustrative data that support these predicted 
circuits. 
  
The Stability-Plasticity Dilemma: Rapid Learning Throughout Life 
The problem of learning makes the unity of conscious experience particularly hard to understand, if 
only because we are able to rapidly learn such enormous amounts of new information, on our own, 
throughout life. How do we integrate them into unified experiences that cohere into a sense of self? 
One has only to see an exciting movie just once to marvel at this capacity, since we can then tell our 
friends many details about it later on, even though the individual scenes flashed by very quickly. 
More generally, we can quickly learn about new environments, even if no one tells us how the rules 
of each environment differ. To a remarkable degree, we can rapidly learn new facts without being 
forced to just as rapidly forget what we already know. As a result, we can confidentally go out into 
the world without fearing that, in learning to recognize a new friend's face, we will suddenly forget 
our parents' faces. This is sometimes called the problem of catastrophic forgetting. 

Many contemporary learning algorithms do experience catastrophic forgetting, particularly 
when they try to learn quickly in response to a changing world. Speaking technically, the brain 
solves a challenging problem that many current approaches to technology have not yet solved: It is 
a self-organizing system that is capable of rapid, yet stable, autonomous learning of huge amounts 
of data from a changing environment that can be filled with unexpected events. Discovering the 
brain's solution to this key problem is as important for understanding ourselves as it is for 
developing new pattern recognition and prediction applications in technology.  

I have called the problem whereby the brain learns quickly and stably without 
catastrophically forgetting its past knowledge the stability-plasticity dilemma.  The stability-
plasticity dilemma must be solved by every brain system that needs to rapidly and adaptively 
respond to the flood of signals that subserves even the most ordinary experiences. If the brain's 
design is parsimonious, then we should expect to find similar design principles operating in all the 
brain systems that can stably learn an accumulating knowledge base in response to changing 
conditions throughout life. The discovery of such principles should clarify how the brain unifies 
diverse sources of information into coherent moments of conscious experience. ART has attempted 
to articulate some of these principles, and the neural mechanisms that realize them. The next 
sections summarize aspects of how this is proposed to occur. 
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How CLEARS Mechanisms Interact 
Humans are intentional beings who learn expectations about the world and make predictions about 
what is about to happen. Humans are also attentional beings who focus processing resources upon a 
restricted amount of incoming information at any time. Why are we both intentional and attentional 
beings, and are these two types of processes related? The stability-plasticity dilemma and its 
solution using resonant states provides a unifying framework for understanding these issues. 

To clarify the role of sensory or cognitive expectations, and of how a resonant state is 
activated, suppose you were asked to “find the yellow ball as quickly as possible, and you will win 
a $10,000 prize”. Activating an expectation of a “yellow ball” enables its more rapid detection, and 
with a more energetic neural response. Sensory and cognitive top-down expectations hereby lead to 
excitatory matching with consistent bottom-up data. Mismatch between top-down expectations and 
bottom-up data can suppress the mismatched part of the bottom-up data, to focus attention upon the 
matched, or expected, part of the bottom-up data.  

Excitatory matching and attentional focusing on bottom-up data using top-down 
expectations generates resonant brain states: When there is a good enough match between bottom-
up and top-down signal patterns between two or more levels of processing, their positive feedback 
signals amplify and prolong their mutual activation, leading to a resonant state. Amplification and 
prolongation of activity triggers learning in the more slowly varying adaptive weights that control 
the signal flow along pathways from cell to cell. Resonance hereby provides a global context-
sensitive indicator that the system is processing data worthy of learning, hence the name Adaptive 
Resonance Theory, or ART.  

In summary, ART predicts a link between the mechanisms which enable us to learn quickly 
and stably about a changing world, and the mechanisms that enable us to learn expectations about 
such a world, test hypotheses about it, and focus attention upon information that we find interesting. 
ART clarifies this link by asserting that, in order to solve the stability-plasticity dilemma, only 
resonant states can drive rapid new learning.  

It is just a step from here to propose that those experiences which can attract our attention 
and guide our future lives by being learned are also among the ones that are conscious. Support for 
this additional assertion derives from the many modeling studies whose simulations of behavioral 
and brain data using resonant states map onto properties of conscious experiences in those 
experiments. 

The type of learning within the sensory and cognitive domain that ART mechanizes is match 
learning: Match learning occurs only if a good enough match occurs between bottom-up 
information and a learned top-down expectation that is read out by an active recognition category, 
or code. When such an approximate match occurs, previously learned knowledge can be refined. 
Match learning raises the concern about what happens if a match is not good enough? How does 
such a model escape perseveration on already learned representations? 

If novel information cannot form a good enough match with the expectations that are read-
out by previously learned recognition categories, then a memory search, or hypothesis testing, is 
triggered that leads to selection and learning of a new recognition category, rather than catastrophic 
forgetting of an old one. Figure 2 illustrates how this happens in an ART model; it will be discussed 
in greater detail below. In contrast, as noted above, learning within spatial and motor processes is 
proposed to be mismatch learning that continuously updates sensory-motor maps or the gains of 
sensory-motor commands. As a result, we can stably learn what is happening in a changing world, 
thereby solving the stability-plasticity dilemma, while adaptively updating our representations of 
where objects are and how to act upon them using bodies whose parameters change continuously 
through time. 
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Figure 2. Search for a recognition code within an ART learning circuit: (a) The input pattern 
I is instated across the feature detectors at level F1 as a short term memory (STM) activity 
pattern X. Input I also nonspecifically activates the orienting system with a gain that is called 
vigilance (ρ); that is, all the input pathways converge with gain ρ onto the orienting system 
and try to activate it. STM pattern X is represented by the hatched pattern across F1. Pattern 
X both inhibits the orienting system and generates the output pattern S. Pattern S is multiplied 
by learned adaptive weights, also called long term memory (LTM) traces. These LTM-gated 
signals are added at F2 cells, or nodes, to form the input pattern T, which activates the STM 
pattern Y across the recognition categories coded at level F2. (b) Pattern Y generates the top-
down output pattern U which is multiplied by top-down LTM traces and added at F1 nodes to 
form a prototype pattern V that encodes the learned expectation of the active F2 nodes. Such 
a prototype represents the set of commonly shared features in all the input patterns capable of 
activating Y. If V mismatches I at F1, then a new STM activity pattern X* is selected at F1. 
X* is represented by the hatched pattern. It consists of the features of I that are confirmed by 
V. Mismatched features are inhibited. The inactivated nodes corresponding to unconfirmed 
features of X are unhatched. The reduction in total STM activity which occurs when X is 
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transformed into X* causes a decrease in the total inhibition from F1 to the orienting system. 
(c) If inhibition decreases sufficiently, the orienting system releases a nonspecific arousal 
wave to F2; that is, a wave of activation that equally activates all F2  nodes. This wave 
instantiates the intuition that “novel events are arousing”. This arousal wave resets the STM 
pattern Y at F2 by inhibiting Y. (d) After Y is inhibited, its top-down prototype signal is 
eliminated, and X can be reinstated at F1. The prior reset event maintains inhibition of Y 
during the search cycle. As a result, X can activate a different STM pattern Y at F2. If the top-
down prototype due to this new Y pattern also mismatches I at F1, then the search for an 
appropriate F2 code continues until a more appropriate F2 representation is selected. Such a 
search cycle represents a type of nonstationary hypothesis testing. When search ends, an 
attentive resonance develops and learning of the attended data is initiated. [Adapted with 
permission from Carpenter and Grossberg (1993).] 

It has been mathematically proved that match learning within an ART model leads to stable 
memories in response to arbitrary list of events to be learned (Carpenter and Grossberg, 1991). 
However, match learning also has a serious potential weakness: If you can only learn when there is 
a good enough match between bottom-up data and learned top-down expectations, then how do you 
ever learn anything that you do not already know? ART proposes that this problem is solved by the 
brain by using an interaction between complementary processes of resonance and reset, that are 
predicted to control properties of attention and memory search, respectively. These complementary 
processes help our brains to balance between the complementary demands of processing the 
familiar and the unfamiliar, the expected and the unexpected.  
        Organization of the brain into complementary processes is predicted to be a general principle 
of brain design that is not just found in ART (Grossberg, 2000b). A complementary process can 
individually compute some properties well, but cannot, by itself, process other complementary 
properties. In thinking intuitively about complementary properties, one can imagine puzzle pieces 
fitting together. Both pieces are needed to finish the puzzle. Complementary processes in the brain 
are much more dynamic than any such analogy, however: Pairs of complementary processes 
interact in such a way that their emergent properties overcome their complementary deficiencies to 
compute complete information about some aspect of the control of intelligent behavior. 
          The resonance process in the complementary pair of resonance and reset is predicted to take 
place in the What cortical stream, notably in the inferotemporal and prefrontal cortex. Here top-
down expectations are matched against bottom-up inputs (Desimone, 1998; Miller, Li, and 
Desimone, 1991). When a top-down expectation achieves a good enough match with bottom-up 
data, this match process focuses attention upon those feature clusters in the bottom-up input that are 
expected. If the expectation is close enough to the input pattern, then a state of resonance develops 
as the attentional focus takes hold.  

Figure 2 illustrates these ART ideas in a simple two-level example. Here, a bottom-up input 
pattern, or vector, I activates a pattern X of activity across the feature detectors of the first level F1. 
For example, a visual scene may be represented by the features comprising its boundary and surface 
representations. This feature pattern represents the relative importance of different features in the 
inputs pattern I. In Figure 2a, the pattern peaks represent more activated feature detector cells, the 
troughs less activated feature detectors. This feature pattern sends signals S through an adaptive 
filter to the second level F2 at which a compressed representation Y (also called a recognition 
category, or a symbol) is activated in response to the distributed input T. Input T is computed by 
multiplying the signal vector S by a matrix of adaptive weights that can be altered through learning. 
The representation Y is compressed by competitive interactions across F2 that allow only a small 
subset of its most strongly activated cells to remain active in response to T. The pattern Y in the 
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figure indicates that a small number of category cells may be activated to different degrees. These 
category cells, in turn, send top-down signals U to F1. The vector U is converted into the top-down 
expectation V by being multiplied by another matrix of adaptive weights. When V is received by F1, 
a matching process takes place between the input vector I and V which selects that subset X* of F1 
features that were “expected” by the active F2 category Y. The set of these selected features is the 
emerging “attentional focus”.  

 
Binding Distributed Feature Patterns and Symbols during Conscious Resonances 
If the top-down expectation is close enough to the bottom-up input pattern, then the pattern X* of 
attended features reactivates the category Y which, in turn, reactivates X*. The network hereby 
locks into a resonant state through a positive feedback loop that dynamically links, or binds, the 
attended features across X* with their category, or symbol, Y.  

Resonance itself embodies another type of complementary processing. Indeed, there seem to 
be complementary processes both within and between cortical processing streams (Grossberg, 
2000). This particular complementary relation occurs between distributed feature patterns and the 
compressed categories, or symbols, that selectively code them: 

Individual features at F1 have no meaning on their own, just like the pixels in a picture are 
meaningless one-by-one. The category, or symbol, in F2 is sensitive to the global patterning of these 
features, and can selectively fire in response to this pattern. But it cannot represent the “contents” of 
the experience, including their conscious qualia, due to the very fact that a category is a 
compressed, or “symbolic” representation. Practitioners of Artificial Intelligence have claimed that 
neural models can process distributed features, but not symbolic representations. This is not, of 
course, true in the brain, which is the most accomplished processor both of distributed features and 
of symbols that is known to humans. Nor is it true in ART. 

 The resonance between these two types of information converts the pattern of attended 
features into a coherent context-sensitive state that is linked to its category through feedback. It is 
this coherent state, which binds together distributed features and symbolic categories, that can enter 
consciousness. This resonant binding process joins spatially distributed features into either a stable 
equilibrium or a synchronous oscillation. The original ART article (Grossberg, 1976) predicted the 
existence of such synchronous oscillations, which were there described in terms of their 
mathematical properties as “order-preserving limit cycles”. Since the first neurophysiological 
experiments reported such synchronous oscillations (Eckhorn et al., 1988; Gray and Singer, 1989; 
Gray et al., 1989), there have been a rapidly growing number of supportive experiments. 
Simulations of fast-synchronizing ART and perceptual grouping circuits were reported in Grossberg 
and Somers (1991) and Grossberg and Grunewald (1997), and in a laminar cortical model by 
Yazdanbakhsh and Grossberg (2004). The ability of neural circuits to synchronize quickly is a topic 
that is worthy of considerable discussion in its own right. 
 
Resonance Links Intentional and Attentional Information Processing to Learning 
In ART, the resonant state, rather than bottom-up activation, is predicted to drive the learning 
process.  The resonant state persists long enough, and at a high enough activity level, to activate the 
slower learning processes in the adaptive weights that guide the flow of signals between bottom-up 
and top-down pathways between levels F1 and F2 in Figure 2. This viewpoint helps to explain how 
adaptive weights that were changed through previous learning can regulate the brain's present 
information processing, without learning about the signals that they are currently processing unless 
they can initiate a resonant state. Through resonance as a mediating event, one can understand from 
a deeper mechanistic view why humans are intentional beings who are continually predicting what 
may next occur, and why we tend to learn about the events to which we pay attention.  
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        More recent laminar versions of ART, notably the Synchronous Matching ART (SMART) 
model  (Grossberg and Versace, 2007; Versace and Grossberg, 2005, 2006), show how a match may 
lead to fast gamma oscillations that facilitate spike-timing dependent plasticity (STDP), whereas 
mismatch can lead to slower beta oscillations that greatly lower the probability that mismatched 
events can be learned by a STDP learning law. These new features will be summarized below after 
more basic concepts are reviewed. 
 
Complementary Attentional and Orienting Systems Control Resonance vs. Reset 
A sufficiently bad mismatch between an active top-down expectation and a bottom-up input, say 
because the input represents an unfamiliar type of experience, can drive a memory search. Such a 
mismatch within the attentional system is proposed to activate a complementary orienting system, 
which is sensitive to unexpected and unfamiliar events. ART suggests that this orienting system 
includes the hippocampal system, which has long been known to be involved in mismatch 
processing, including the processing of novel events (Deadwyler, West, and Lynch, 1979; 
Deadwyler, West, and Robinson, 1981; Otto and Eichenbaum, 1992; Sokolov, 1968, Vinogradova, 
1975). More recent work on SMART also implicated the nonspecific thalamic nuclei; see below. 
Output signals from the orienting system rapidly reset the recognition category that has been 
reading out the poorly matching top-down expectation (Figures 2b and 2c). The cause of the 
mismatch is hereby removed, thereby freeing the system to activate a different recognition category 
(Figure 2d). The reset event hereby triggers memory search, or hypothesis testing, which 
automatically leads to the selection of a recognition category that can better match the input.         
Various data support the existence of this predicted hypothesis testing cycle. In particular, Banquet 
and Grossberg (1987) summarized evidence from an experiment on humans that was designed to 
test this ART prediction by measuring event-related potentials (ERP). This study showed that 
sequences of P120 – N200 – P300 ERPs have the properties of ART mismatch – arousal – reset that 
are predicted to occur during a hypothesis testing cycle. Many subsequent studies have provided 
additional evidence for predictive coding; e.g., Ahissar et al. (2002), Desimone et al. (1998),  Engel 
et al. (2001), Gao et al. (1998), Hermann et al. (2004), Krupa et al. (1999), and Salin and Bullier  
(1995). 

If no such recognition category exists, say because the bottom-up input represents a truly 
novel experience, then the search process automatically activates an as yet uncommitted population 
of cells, with which to learn about the novel information. In order for a top-down expectation to 
match a newly discovered recognition category, its top-down adaptive weights initially have large 
values, which are pruned by the learning of a particular expectation.  

This learning process works well under both unsupervised and supervised conditions 
(Carpenter et al., 1992). Unsupervised learning means that the system can learn how to categorize 
novel input patterns without any external feedback. Supervised learning uses predictive errors to let 
the system know whether it has categorized the information correctly. Supervision can force a 
search for new categories that may be culturally determined, and are not based on feature similarity 
alone. For example, separating the featurally similar letters E and F into separate recognition 
categories is culturally determined. Such error-based feedback enables variants of E and F to learn 
their own category and top-down expectation, or prototype. The complementary, but interacting, 
processes of attentive-learning and orienting-search together realize a type of error correction 
through hypothesis testing that can build an ever-growing, self-refining internal model of a 
changing world. 
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Controlling the Content of Conscious Experiences: Exemplars and Prototypes 
What combinations of features or other information are bound together into conscious object or 
event representations?  One view is that exemplars, or individual experiences, are learned, because 
humans can have very specific memories. For example, we can all recognize the particular faces of 
our friends. On the other hand, storing every remembered experience as exemplars can lead to a 
combinatorial explosion of memory, as well as to unmanageable problems of memory retrieval. A 
possible way out is suggested by the fact that humans can learn prototypes which represent general 
properties of the environment (Posner and Keele, 1968). For example, we can recognize that 
everyone has a face. But then how do we learn specific episodic memories? ART provides an 
answer to this question that overcomes problems faced by earlier models.  

The first thing to realize is that ART prototypes are not merely averages of the exemplars 
that are classified by a category, as is typically assumed in classical prototype models. Rather, they 
are the actively selected critical feature patterns upon which the top-down expectations of the 
category focus attention. In addition, the generality of the information that is codes by these critical 
feature patterns is controlled by a gain control process, called vigilance control, which can be 
influenced by environmental feedback or internal volition (Carpenter and Grossberg, 1987). Low 
vigilance permits the learning of general categories with abstract prototypes. High vigilance forces a 
memory search to occur for a new category when even small mismatches exist between an exemplar 
and the category that it activates. As a result, in the limit of high vigilance, the category prototype 
may encode an individual exemplar.  

Vigilance is computed within the orienting system of an ART model (Figures 2b-d). It is 
here that bottom-up excitation from all the active features in an input pattern I are compared with 
inhibition from all the active features in a distributed feature representation across F1. If the ratio of 
the total activity across the active features in F1 (that is, the “matched” features) to the total activity 
due to all the features in I is less than a vigilance parameter ρ (Figure 2b), then a reset wave is 
activated (Figure 2c), which can drive the search for another category with which to classify the 
exemplar. In other words, the vigilance parameter controls how bad a match can be before search 
for a new category is initiated. If the vigilance parameter is low, then many exemplars can all 
influence the learning of a shared prototype, by chipping away at the features which are not in 
common with all the exemplars. If the vigilance parameter is high, then even a small difference 
between a new exemplar and a known prototype (e.g., F vs. E) can drive the search for a new 
category with which to represent F.  

One way to control vigilance is by a process of match tracking. Here a predictive error (e.g., 
D is predicted in response to F), the vigilance parameter increases until it is just higher than the ratio 
of active features in F1 to total features in I. In other words, vigilance “tracks” the degree of match 
between input exemplar and matched prototype. This is the minimal level of vigilance that can 
trigger a reset wave and thus a memory search for a new category. Match tracking realizes a 
Minimax Learning Rule that conjointly maximizes category generality while it minimizes predictive 
error. In other words, match tracking uses the least memory resources that can prevent errors from 
being made. 

Because vigilance can vary across learning trials, recognition categories capable of encoding 
widely differing degrees of generalization or abstraction can be learned by a single ART system. 
Low vigilance leads to broad generalization and abstract prototypes. High vigilance leads to narrow 
generalization and to prototypes that represent fewer input exemplars, even a single exemplar. Thus 
a single ART system may be used, say, to learn abstract prototypes with which to recognize abstract 
categories of faces and dogs, as well as “exemplar prototypes” with which to recognize individual 
views of faces and dogs. ART models hereby try to learn the most general category that is 
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consistent with the data. This tendency can, for example, lead to the type of overgeneralization that 
is seen in young children until further learning leads to category refinement (Chapman et al., 1986; 
Clark, 1973; Smith et al., 1985; Smith and Kemler, 1978; Ward, 1983).  

If vigilance control is important for normal learning, one might expect breakdowns in 
vigilance control to contribute to certain mental disorders. It has been suggested that an abnormally 
low vigilance may contribute to medial temporal amnesia (Carpenter and Grossberg, 1993) and that 
an abnormally high vigilance may contribute to autism (Grossberg and Seidman, 2006). These 
proposals point to the utility of classifying certain mental disorders as “vigilance diseases”.  

A biologically relevant neural model must be able to explain and predict more behavioral 
and neural data than its competitors. One additional mark of maturity of such a model is that it  
“works” and can solve complicated real-world problems. Many benchmark studies of ART show 
that it useful in many large-scale engineering and technological applications. See 
http://profusion.bu.edu/techlab for some illustrative benchmark studies. In particular, vigilance control in 
the classification of complex data bases enables the number of ART categories that are learned to 
scale well with the complexity of the input data.  
 
Memory Consolidation and the Emergence of Rules 
As sequences of inputs are practiced over learning trials, the search process eventually converges 
upon stable categories. It has been mathematically proved (Carpenter and Grossberg, 1987) that 
familiar inputs directly access the category whose prototype provides the globally best match, while 
unfamiliar inputs engage the orienting subsystem to trigger memory searches for better categories 
until they become familiar.  This process continues until the memory capacity, which can be chosen 
arbitrarily large, is fully utilized. The process whereby search is automatically disengaged is a form 
of memory consolidation that emerges from network interactions.  Emergent consolidation does not 
preclude structural consolidation at individual cells, since the amplified and prolonged activities that 
subserve a resonance may be a trigger for learning-dependent cellular processes, such as protein 
synthesis and transmitter production.   

It has also been shown that the adaptive weights which are learned by some  ART models 
can, at any stage of learning, be translated into IF-THEN rules (e.g.,  Carpenter et al., 1992). Thus 
the ART model is a self-organizing rule-discovering production system as well as a neural network. 
These examples show that the claims of some cognitive scientists and AI practioners that neural 
network models cannot learn rule-based behaviors are as incorrect as the claims that neural models 
cannot learn symbols. 

 
From Spikes to Cognition: Gamma Oscillations and STDP in Laminar Thalamocortical 
Circuits  
The Synchronous Matching Adaptive Resonance Theory (SMART) model advances ART in several 
ways (Grossberg and Versace, 2007; Versace and Grossberg, 2005, 2006); see Figure 3. SMART 
links attentive learning requirements to how laminar neocortical circuits interact with primary, 
higher-order (e.g., the pulvinar nucleus; Sherman and Guillery, 2001; Shipp, 2003), and nonspecific 
thalamic nuclei (van Der Werf et al., 2002). Corticothalamocortical pathways work in parallel with 
corticocortical routes (Maunsell and van Essen, 1983; Salin and Bullier, 1995; Sherman and 
Guillery, 2002). Specific first-order thalamic nuclei (such as the Lateral Geniculate Nucleus, LGN) 
relay sensory information to the cerebral cortex, whereas specific second-order thalamic nuclei 
receive their main input from lower-order cortical areas, notably from layer 5, and relay this 
information to higher-order cortical areas (Sherman and Guillery, 2002). The model clarifies how a 
match between cortical and thalamic inputs at the level of specific first-order and higher-order 
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thalamic nuclei might subserve fast stable learning of neural representations in the thalamocortical 
system.  
 

 
 
Figure 3. SMART model overview. A first-order and higher-order cortical area are linked by 
corticocortical and corticothalamocortical connections. The thalamus is subdivided into 
specific first-order, second-order, nonspecific, and thalamic reticular nucleus (TRN). The 
thalamic matrix (one cell population shown as an open ring) provides priming to layer 1, 
where layer 5 pyramidal cell apical dendrites terminate. The specific thalamus relays sensory 
information (first-order thalamus) or lower-order cortical information (second-order 
thalamus) to the respective cortical areas via plastic connections. The nonspecific thalamic 
nucleus receives convergent BU input and inhibition from the TRN, and projects to layer 1 of 
the laminar cortical circuit, where it regulates reset and search in the cortical circuit (see 
text). Corticocortical feedback connections link layer 6II of the higher cortical area to layer 1 
of the lower cortical area, whereas thalamocortical feedback originates in layer 6II and 
terminates in the specific thalamus after synapsing on the TRN.  Layer 6II corticothalamic 
feedback matches the BU input in the specific thalamus. V1 receives two parallel BU 
thalamocortical pathways. The LGN→V1 layer 4 pathway and the  modulatory LGN→V1 
layer 6I→4 pathway provide divisive contrast normalization (Grossberg, 1980; Heeger, 1992) 
of layer 4 cell responses. The intracortical loop V1 layer 4→2/3→5→6I→4 pathway (folded 
feedback, Raizada and Grossberg, 2003) enhances the activity of winning  layer 2/3 cells at 
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their own positions via the 6I →4 on-center, and suppresses input to other layer 2/3 cells via 
the 6I →4 off-surround. V1 also activates the BU V1→V2 corticocortical pathways (V1 layer 
2/3→V2 layers 6I and 4) and the BU corticothalamocortical pathways (V1 layer 5 
→PULV→V2 layers 6I and 4), where the layer 6I→4 pathway provides divisive contrast 
normalization to V2 layer 4 cells analogously to V1. Corticocortical feedback from V2 layer 
6II→V1 layer 5 → 6I → 4 also uses the same modulatory 6I→4 pathway. TRN cells of the 
two thalamic sectors are linked via gap junctions, which provide synchronization of the two 
thalamocortical sectors when processing BU stimuli. [Reprinted with permission from 
Grossberg and Versace (2007).] 
 

In particular, suppose that, at a specific thalamic nucleus, a sufficiently good match occurs between 
a bottom-up input pattern and a top-down expectation from layer 6 of its corresponding cortical 
area. Such a match can trigger fast synchronized gamma oscillations (γ, 20–70Hz), whose short 
period enables synchronized spikes to drive learning via a spike-timing-dependent plasticity (STDP; 
Levy and Steward, 1983; Markram et al., 1997; Bi and Poo, 2001) learning rule. In particular, 
STDP is maximal when pre- and post-synaptic cells fire within 10-20ms of each other, and thus 
favors learning in match states whose synchronous fast oscillations fall within the temporal 
constraints of STDP (Traub et al., 1998; Wespatat et al., 2004). In contrast, mismatched cells 
undergo slower beta oscillations (ß, 4–20Hz). whose spikes do not fall within the STDP learning 
window.  

     SMART hereby brings the new features of synchronized oscillation frequency and STDP 
into the discussion of how learning is selectively regulated. Aggregate and single-cell recordings 
from multiple thalamic and cortical levels of mammals have shown high- and low-frequency 
rhythmic synchronous activity correlated with cognitive, perceptual and behavioral tasks, and large-
scale neuronal population models have been proposed to model oscillatory dynamics (Bazhenov et 
al., 1998; Lumer et al., 1997; Destexhe et al., 1999; Siegel et al., 2000). However, these models 
have not linked brain spikes, oscillations, STDP, and the brain states that subserve cognitive 
information processing. 

     SMART proposes that such a match or mismatch at a higher cortical level can occur as 
follows: Activation of layer 5 cells in a lower cortical area (e.g., V1) generates driving inputs to a 
higher-order specific thalamic area (e.g., pulvinar); see Rockland et al. (1999). Terminations arising 
from layer 5 are similar to retinogeniculate RL synapses, or driving, connections, often found in 
more proximal segments of the dendrites. This pattern of connectivity seems to be constant across 
species (Rouiller and Welcher, 2000).  

A top-down expectation from layer 6II of the corresponding cortical area (e.g., V2) is 
matched in this thalamic region against the layer 5 output pattern, similar to the way in which 
retinal inputs to the lateral geniculate nucleus are matched by top-down signals from layer 6II  of 
V1. If a sufficiently good match occurs, then synchronized gamma oscillations can be triggered in 
the pulvinar and V2, leading to learning of the critical features that are part of the matched pattern.  
 
Thalamocortical Mismatch. Nonspecific Thalamic Nucleus, and Layer 1 Mediated Reset 
If the match is not good enough, then the nonspecific thalamic nucleus gets activated by a 
mechanism that is similar to that summarized in Figure 2, but which is anatomically more precisely 
characterized in Figure 3. Nonspecific thalamic activation is nonspecifically broadcast as an arousal 
signal to many cortical areas via diffuse inputs across layer 1. We suggest that this nonspecific 
pathway is part of the orienting system that triggers reset in response to mismatch events. In 
particular, apical dendrites in layer 1 of layer 5 cells receive this arousal input. If some of these 
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layer 5 cells are active when the arousal burst occurs, their firing rate is enhanced in response to the 
arousal input. This enhancement of layer 5 cell firing triggers a selective reset of cortical and 
thalamic cells in the following way: 

Layer 5 cells project to layer 4 via layer 6 (Figure 3). The signals from layer 6 to 4 are gated 
by habituative transmitters, also called depressing synapses. Activation patterns in these circuits just 
prior to the arousal burst bias the habituative network of cells feeding layer 4. The active circuits are 
presumably the ones that caused the predictive mismatch. When the arousal burst occurs, these 
previously active cells are disadvantaged relative to cells that were not active. A reset event can 
then occur that inhibits the previously active cells as it selects new cells with which to better code 
the novel input. 

This model explanation is supported by quantitative simulations of data about single cell 
biophysics and neurophysiology, laminar neuroanatomy, aggregate cell recordings (current-source 
densities, local field potentials), and large-scale oscillations at beta and gamma frequencies, which 
the model functionally links to requirements about how to achieve fast stable attentive learning. 
 
A Prediction About Why Oscillation Frequencies Are Slower in Lower Cortical Layers: Reset 
As noted above, SMART predicts that thalamocortical mismatches may cause cortical reset via the 
deeper cortical layers 6 and 4. Model simulations also show that mismatches lead to slower beta 
oscillations. Putting these two properties together leads to the prediction that the deeper layers of 
neocortex may express beta oscillations more frequently than the superficial layers. Such a property 
has recently been experimentally reported (Buffalo et al., 2004). It remains to test whether the 
observed experimental property is related to the SMART reset prediction.  

Two issues may be noted in this regard. One concerns how the prediction may be tested: One 
possible test would be to carry out a series of experiments on the same animal in which the animal 
is exposed to environments with progressively more novel events. More novel events should cause 
more cortical resets. Do more cortical resets per unit time cause more beta oscillations in the lower 
cortical layers?  The second issue notes that the differences between the oscillation frequencies in 
the deeper and more superficial cortical layers are averages over time. This is essential to realize 
because there exist interlaminar intracortical feedback loops that may be expected to synchronize all 
the cortical layers during a match event (Yazdanbakhsh and Grossberg, 2004). Indeed, these are the 
intracortical feedback loops whereby “a pre-attentive grouping is its own attentional prime”, and 
thus enable neocortex to develop its circuits, without a loss of stability, even before intercortical 
attentional circuits can develop.  
 
Discussion 
This article summarizes how Adaptive Resonance Theory explains mechanistic relationships 
between the CLEARS properties of Consciousness, Learning, Expectation, Attention, Resonance, 
and Synchrony. ART proposes that these processes work together to solve the stability-plasticity 
dilemma, and thus to enable advanced animals, including humans, to learn quickly about a changing 
world throughout life without experiencing catastrophic forgetting.  Conscious events are predicted 
to be a subset of resonant events. Resonance, in turn, controls learning to avoid catastrophic 
forgetting by involving learned-top-down expectations in a predictive matching process that focuses 
attention on the critical feature patterns that are worthy of learning, and also of consciousness. 
Recent developments of ART, such as the LAMINART model, and the spiking SMART model,  
show that predicted ART mechanisms can be given detailed anatomical and neurobiological 
interpretation within a laminar corticothalamic architecture that greatly expands the explanatory and 
predictive power of ART. An important research theme is to characterize which resonant events are 
not conscious events. A start in this direction is the observation that intracortical resonances may 
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stabilize learning without supporting conscious experiences, which seems to be what happens in the 
perceptual learning experiments of Watanabe et al. (2001). 
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