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Abstract

Multiple sound sources often contain harmonics that overlap and may be degraded by environmental noise. The auditory system is capable of
teasing apart these sources into distinct mental objects, or streams. Such an 'auditory scene analysis' enables the brain to solve the cocktail party
problem. A neural network model of auditory scene analysis, called the ARTSTREAM model, is presented to propose how the brain

together into a distinct stream based on pitch and spatial location cues. The model also clarifies how multiple streams may be distinguished and
separated by the brain. Streams are formed as spectral-pitch resonances that emerge through feedback interactions between frequency-specific
spectral representations of a sound source and its pitch. First, the model transforms a sound into a spatial pattern of frequency-specific activation
across a spectral stream layer. The sound has multiple parallel representations at this layer. A sound's spectral representation activates a bottom-
up filter that is sensitive to the harmonics of the sound's pitch. This filter activates a pitch category which, in turn, activates a top-down

one another. Resonance provides the coherence that allows one voice or instrument to be tracked through a noisy multiple source environment.
Spectral components are suppressed if they do not match harmonics of the top-down expectation that is read-out by the selected pitch, thereby
allowing another stream to capture these components, as in the 'old-plus-new heuristic' of Bregman. Multiple simultaneously occurring spectral-
pitch resonances can hereby emerge. These resonance and matching mechanisms are specialized versions of Adaptive Resonance Theory, or

ART,
model also clarifies how spatial location cues can help to disambiguate two sources with similar spectral cues. Data are simulated from
psychophysical grouping experiments, such as how a tone sweeping upwards in frequency creates a bounce percept by grouping with a
downward sweeping tone due to proximity in frequency, even if noise replaces the tones at their intersection point. illusory auditory percepts are
also simulated, such as the auditory continuity illusion of a tone continuing through a noise burst even if the tone is not present during the noise,
and the scale illusion of Deutsch whereby downward and upward scales presented alternately to the two ears are regrouped based on frequency
proximity, leading to a bounce percept. Since related sorts of resonances have been used to quantitatively simulate psychophysical data about

system. Proposals
for developing the model to explain more complex streaming data are also provided.
@ 2004 Elsevier Ltd. All rights reserved.
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~ the hubbub, even though the sounds emitted by the friendly
voice partially overlap the sounds emitted by other speakers
and noise sources. How do we separate this jumbled mixture
of sounds into distinct voices? This issue is often called the
cocktail party problem. The same problem is solved
whenever we listen to a symphony or other music wherein
overlapping harmonic components are emitted by several
instruments. If we could not separate the instruments or

1. Introduction: cocktail party problem and auditory
continuity illusion

i'l~
When we talk to a friend in a crowded noisy room, we

can usually keep track of our conversation above
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Additional properties of this phenomenon are clarified by
the third condition: If no noise occurs between two
temporally disjoint tones, as in Fig. lc, then the tone is
not heard across the silent interval. Instead, two temporally
disjoint tones are heard. This fact raises the additional
question: how does the brain use the noise to continue the
tone through it?

Many philosophers and scientists have puzzled about this
sort of problem. This article clarifies how the process
whereby we consciously hear the first tone takes some time
to unfold, so that by the time we hear it, the second tone has
an' opportunity to influence it. To make this argument, we
need to ask: Why does conscious audition take so long to
occur after the actual sound energy reaches our brain? Just
as important: why can the second tone influence the
conscious percept so quickly, given that the first tone
could not?

An analysis of the mechanisms of auditory scene analysis
is important for understanding how the human auditory
perceptual system operates, as well as for technological
applications. While speech recognition systems have
improved greatly within the last decade, they are still
prone to noise and interference from other speakers.

voices into distinct sources, or auditory streams, then we
could not hear the music as music, or intelligently recognize
a speaker's sounds. The ability to segregate these different
signals has been generally tenDed auditory scene analysis
(Bregman, 1990).

A simple version of this competence is illustrated by the
auditory continuity illusion (Miller & Licklider, 1950).
Suppose that a steady tone shuts off just as a broadband
noise turns on. Suppose, moreover, that the noise shuts off
just as the tone turns on once again; see Fig. 1a. When this
happens under appropriate temporal constraints, the tone
seems to continue right through the noise, which seems to
occur in a separate auditory' stream'. This example suggests
that the auditory system can actively extract those
components of the noise that are consistent with the tone
and use them to track the 'voice' of the tone right through
the hubbub of the noise.

In order to appreciate how remarkable this property is, let
us compare it with what happens when the tone does not
turn on again for a second time, as in Fig. 1 b. Then the first
tone does not seem to continue through the noise. It is
perceived to stop before the noise ends. How does the brain
know that the second tone will turn on after the noise shuts
off, so that it can continue the tone through the noise, even
though the tone is not perceived to persist through the noise
if the second tone does not eventually occur? Does this not
seem to require that the brain can operate 'backwards in
time' to alter its decision as to whether or not to continue a
past tone through the noise based on future events?

1.1. Auditory scene analysis

The nomenclature associated with auditory scene
analysis contains several keywords: source, stream, group-
ing and stream segregation. The source is a physical,
external entity which produces sound; e.g. a speaker. The
perceptual correlate of this source is a stream; i.e. it is what
the brain takes to be a single sound. The stream is created by
the perceptual grouping and segregation of acoustic proper-
ties that are thought to correspond to an acoustic object.
Grouping and stream segregation, or streaming, assign
appropriate combinations of frequency components to a
stream through time. For an exhaustive review of auditory
scene analysis, the reader is referred to Bregman (1990).

The scene analysis process can be thought of as two
processes that interact: a simultaneous grouping process and
a sequential grouping process. For example, in Fig. 2, the
simultaneous grouping process tries to group B and C
together if they have synchronous onsets and offsets, or if
they are harmonically related. Similarly.. the sequential
grouping process tries to group A and B together based on
their frequency and temporal proximity.

AUDITORY CONTINUITY ILLUSION

PerceptInput

(a)

1.2. Grouping principles
(b)

(c)

Fig. 1. (a) Auditory continuity illusion: when a steady tone occurs both
before and after a burst of noise, then under appropriate temporal and
amplitude conditions, the tone is perceived to continue through the noise.
(b) This does not occur if the noise is not followed by a tone. (c) Nor does it

occur if two tones are separated by silence.

In order to denote which acoustic attributes correspond to
a stream, researchers, including Gestalt scientists and, more
recently, Bregman (1990) and his colleagues, have
suggested several grouping principles.

Proximity. The proximity grouping principle is shown in
Fig. 2. If two tones are closer together in frequency and
time, then it is more likely that they should be grouped
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1.3. Primitive versus schema-based segregation

Bregman (1990) noted that auditory stream segregation
consists of a primitive, nonattentive, unlearned process and a
schema-based, attentive, learned process. Bregman and
Rudnicky (1975) found that tones in an unattended stream
can capture tones from an attended stream. In addition, van
Noorden (1975) presented a repetition of two alternating
tones whose frequency and temporal spacing were manipu-
lated to subjects. van Noorden obtained two curves: the
temporal coherence boundary (TCB) and the fission boundary
(FB). The TCB corresponds to the boundary where the
frequency separation between the temporally adjacent tones
was too large to hear one stream. The FB corresponds to the
point where the two frequencies were too close in frequency
to be heard as separate streams. The FB varied little as a
function of the tone repetition rate, and was mainly a function
of the frequency separation. On the other hand, the TCB
showed that as the frequency separation between the tones
increased, one needed to slow down the repetition rate in order
to maintain one stream with both tones. Bregman (1990)
argued that the FB corresponds to an attentional mechanism
and the TCB corresponds to a nonattentional mechanism, and
noted that the schema-based mechanisms can override the
primitive mechanisms. The mechanism proposed here
addresses the preattentive, primitive segregation
mechanisms, but also proposes how automatic attentional
mechanisms help to determine perceived streams.

I';

Fig. 2. A groups better with B if they are closer in frequency. However,
simultaneous cues, such as common onsets, common offsets and
harrnonicity, can help group B and C. [Adapted with permission from
Bregman and Pinker (1978).]

2. Grouping cues

One can find acoustic attributes that correspond to the
grouping principles. The attributes include temporal and

frequency separation, harmonicity, spatial location, amplitude
modulation, frequency modulation, and onsets and offsets.

2.1. Temporal andfrequency separation

Bregman and Pinker (1978) showed that tones in a
repeating sequence tend to group if they are closer in
frequency, e.g. A and B in Fig. 2. In addition, faster
presentation rates of alternating high and low frequency
tones causes the two tones to be segregated into two streams
(Bregman & Campbell, 1971). The effect of faster
presentation rates is to narrow the temporal separation
between adjacent instances of the high tone (and low tone),
allowing the tones in each frequency region to form a
separate stream. The Bregman and Rudnicky (1975) stimuli,
which are shown in Fig. 3, show how tones that are part of
one stream can be captured into a different stream by adding
additional tones that are close in frequency. When A and B
were presented by themselves, listeners could easily judge
their temporal order. When A and B were flanked by tones
F, listeners had a more difficult time. However, if the captor
tones C surrounded the flankers, then F streamed with C,

together, e.g. A and B should be grouped together if they are
close enough.

Closure and belongingness. Closure and belongingness
lead to percepts of continuity and completion. Closure is the
perceptual phenomenon of completing streams when there is
evidence for it. For example, listeners may hear a tone
continuing through noise under certain conditions, even
though the tone is not present during the noise, as in the
auditory continuity illusion of Fig. la. Thus, the perceptual
system completes the tone across the noise, given the
evidence that the same frequency tone is present on either
side of the noise.

Good continuation. Good continuation states that an
object's sound does not make rapid jumps, but instead
continues smoothly. For example, in Fig. la, the slope of the
tone is the same on either side of the noise, and thus should
be grouped together due to good continuity of the tone.
However, if the post-noise tone was at a distant frequency,
then the tone would not have good continuity and would not
stream across the noise. Note that continuity is closely
related to proximity.

Common fate. Common fate states that those attributes
which are going through similar manifestations should be
grouped together. For example, those frequency com-
ponents which originate from the same spatial location
share the same 'fate', and therefore, should correspond to
the same object. Similarly, those frequency components
which are being modulated (frequency or amplitude) at the
same rate or have synchronous onsets and offsets should
correspond to an object.

Principle of exclusive allocation. This principle states
that attributes are assigned to one stream or another, but not
both. While this principle seems to hold in sequential
streaming, it can fail in simultaneous streaming, where
harmonics of two streams can overlap.
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experiment is important because, in it, the principle of good
continuation is overcome by frequency proximity.

2.3. Harmonicity and pitch

Time

Fig. 3. When A and B are presented by themselves, listeners could easily
judge the order of them. If A and B were flanked by tones F, then listeners
had a more difficult time. However, if the captor tones C surrounded the
flankers, then F streamed with C, leaving A-B to a different stream,
allowing the listeners to hear the order once again. [Adapted with
permission from Bregman and Rudnicky (1975).]

, .t

A-B split into a different stream, andi!tt{6lis~ii~fs could
again hear the order of A-B. Thus, if~ and ~':are in the
middle of a stream, their order is more ~fficult t6;determine.

2.2. Continuity illusion
"

As mentioned above, proximity combined with closure
leads to the auditory continuity illusioU. In the continuity
illusion, sound A seems to continue through sound B, even
though sound A is not present during sound B. This illusion
works for both tones and glides that are interrupted by brief
bursts of noise.

An example involving glides is shown in Fig. 4. The top
two figures show the two different stimuli that Steiger
(1980) presented to listeners. In (b), broadband noise
replaced the glide portion. However, for both the stimuli
in (a) and (b), listeners heard the two streams shown in (c)
and (d). Thus, in (b), the glide complex is completed, or
continued, through the noise. Also in (b), a third stream is
heard corresponding to the broadband noise bursts. This

Periodic sources typically have frequency components,
called harmonics, at integer multiples of the fundamental
frequency, Fo. The subjective experience of Fo is denoted as
pitch, and is influenced by the harmonic content and other
attributes of the signal. Consider a speaker producing a
vowel at a particular fundamental frequency; e.g. 150 Hz.
The vowel contains harmonics at integer multiples; e.g. 300,
450, 600, etc. and the relative amplitudes of these harmonics
lead to a given vowel percept. Since a set of related
harmonics will correspond to the same source, the pitch can
be used to group these harmonic components.

A harmonic of a complex tone can be heard separate from
the tone if it is mistuned by 1.5-3%, as well as causi~g the
complex pitch to shift. If the mistuning is greater than ~%~lhe
harmonic has little effect on the pitch, and is still he~as a
second source (Moore, Glasberg, & Peters, 1985t,: Also,
lower harmonics are easier to hear separately from admplex
than higher harmonics, and harmonics are easierl~pture
out of a complex if the neighboring harmonics are removed
(van Noorden, 1975). Partials spaced 14 semi tones apart fuse
better than ones that 16 semitones apart (Bregman, 1990).
A semitone is the smallest pitch interval in Western music,
and two tones separated by a semitone corresponds to tones at
frequencies f and (1.06}f. These effects may be related to the
resolution of the harmonics within the auditory channels
(Cohen, Grossberg, & Wyse, 1995).

Segregation based on harmonicity is used by listeners in
speech perception. It has been shown that listeners can use
Fo to segregate multiple voices. Listeners' identification of
two concurrent vowels increases as the difference in the two
F 0 increases, and plateaus between 0.5 and 2 semitones
(Scheffers, 1983). When Fo was an octave apart, identifi-
cation is also very poor (Brokx & Noteboom, 1982; Chalika
& Bregman, 1989). Since an octave corresponds to a
doubling of frequency, half the harmonics for the two
vowels will overlap. It should be noted "that listeners can
identify concurrent vowels with the same F 0 with greater
than chance accuracy, implying that listeners can also use
schema-based segregation. In addition, a formant (frequen-
cies with greater energy that correspond to vowel identity)
of a single vowel may become segregated when the formant
has a differing Fo under certain conditions (Broadbent &
Ladefoged, 1957; Gardner, Gaskill, & Darwin, 1989).
Finally, speech stimuli with discontinuous pitch contours
tend to segregate at the discontinuities (Darwin &
Bethell-Fox, 1977).

(b)(a)

(c) (d)

Fig. 4. Stimuli and percept of the experiment by Steiger (1980). (a) and (b)
show the stimuli that were presented to the subjects. In (b), the noise is not
added to the glides, but actually replaces the glide pof1ions. For both the
stimuli in (a) and (b), listeners hear the two streams shown in (c) and (d). In
(b), a third stream is heard corresponding to the broadband noise bursts.
[Adapted with permission from Steiger (1980).]

2.4. Bounce and cross percept in crossing glide complexes

While the harmonicity cues can cause components to
group, they can also compete with frequency proximity
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cues, leading to a bounce or a cross percept in the perception
of crossing glides. The influence ofharmonicity is seen in the
experiments of Bregman and Doehring (1984), who showed
that a glide can be captured into a stream if two partials form a
harmonic frame around the glide. While harmonicity can
cause streaming, glides which cross sometimes produce a
bounce percept, presumably due to frequency proximity at
the crossing point (Halpern, 1977; Tougas & Bregman,
1990). A bounce percept corresponds to hearing two streams,
one with a ' U ' shaped percept and another with a ' n '

shaped percept, due to the crossing of glides. The cross
percept corresponds to hearing two streams, each stream
containing one of the glides. Halpern (1977) presented the six
different one second glide stimuli shown in Fig. 5 to subjects
and asked them to rate how well they produced a bounce
percept. The numbers below each figure corresponds to the
preference of hearing a bounce or a cross: numbers greater
than 2.5 correspond to a bounce percept, and numbers below
2.5 correspond to a cross percept. The numbers next to the
glides correspond to the harmonic number of an underlying
Fo. The stimuli in (a) and (d) produced a bounce percept,
while the others produced a cross percept. This experiment
shows that the harmonic structure in (b) and (c) help to

overcome the ambiguity at the crossing point that occurs in
(a) and promotes a cross percept.

Tougas and Bregman (1990) performed an experiment
very similar to that of Halpern. Tougas and Bregman had
four different harmonic stimuli: rich crossing, rich boun-
cing, all pure, and all rich (Fig. 6). All but the rich crossing
condition produced a bounce percept, even when the
interval I was filled with silence, noise, or just the glides.
The bounce percept was greatest for rich bouncing, then all
pure, and then all rich, for all three-interval conditions. An
implication of this experiment is that regardless of noise,
silence, or glide during the crossing point, one gets the same
percept.

2.5. Spatial location

While spatial location seems to be a strong principle for
grouping, the auditory system does not treat it as a dominant
cue. The principle that frequency components arising from
the same spatial location should belong to the same object
seems reasonable, but the pliable nature of sound confounds
the unambiguous implementation of this idea. Since sounds
can travel around objects or corners, one object's sound can

I
~
~
='

oS

J

~
~!
..
oS

(a) (b)Time

i
~
t
"=
~

i
...
5
;...
.::
eIJ
,g

(d)(c)

I
i
5-

~
N

I
~
~
~
1

(e) Time (f) Time

Fig. 5. Stimuli and listeners' responses in Halpern (1977) for different harmonic conditions. The complex glides were alII second long, and the numbers next to
a glide is its harmonic number. The numbers below each figure corresponds to the preference of hearing a bounce or a cross: numbers greater than 2.5
correspond to a bounce percept, and numbers below 2.5 correspond to a cross percept. [Adapted with permission from Halpern (1977).]
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Fig. 6. Stimuli of Tougas and Bregman (1990) for four different hannonic conditions. All but the rich crossing condition produced a bounce percept, even when
the interval I was filled with silence, noise, or just the glides. The order, from greatest to the least, of bounciness was rich bouncing, all pure, and all rich.
[Adapted with pennission from Tougas and Bregman (1990).]

travel through another object's sound. Moreover, two 2.6. Amplitude modulation (AM)
sounds can arise from the same location, e.g. two talkers
on a monophonic radio, which listeners can easily segregate.
Thus, spatial cues alone are not sufficient to separate
streams. Shackleton, Meddis, and Hewitt (1994) presented
two different concurrent vowels to listeners and varied the
spatial and pitch separation of the two vowels. They found
no improvement in identification of both vowels by
introducing a spatial difference, while keeping the pitch
the same for both vowels. However, by introducing a pitch
difference and no spatial cue, performance improved by
35.8%. With both a pitch difference and a spatial difference,
the performance improved by 45.5%.

Grouping can also affect perceived location. If a tone
located in the medial plane is captured by a left ear tone
(due to frequency proximity), as opposed to a right ear 2.7. Frequency modulation (FM)

tone, then the central tone will be perceived to come from
the left side (Bregman & Steiger, 1980). The scale illusion
of Deutsch (1975) also illustrates this point (Fig. 7a). In
this illusion, a downward and an upward scale are played at
the same time, except that every other tone in a given scale
is presented to the opposite ear. In the figure, the ear
presentation is shown as an L or R for left and right ear.
The result is that listeners grouped the sounds based on
frequency proximity, and heard the two streams A and B
shown in Fig. 7b. In addition, right-handed listeners stated
that they heard the higher tones (A) in the right ear, and the
lower tones (B) in the left ear.

Overall, it seems that spatial cues are secondary cues, and
the perceptual system relies more on harmonicity and
proximity cues. Section 6 describes how the model
integrates both pitch and spatial position cues to offer an
explanation of the scale illusion.

~Time

Time

Amplitude modulation (AM) can be a possible cue if theperceptual 
system groups those frequency components whichhave 

correlated amplitude fluctuations. One effect of AM is
that the perception of a tone, which is masked by a noise bandcentered 

on the tone, can become easier to perceive if anotherband 
of noise is modulated with the centered noise (Hall &

Grose, 1988). The release of the tone from masking is knownas 
comodulation masking release. Despite this effect, an

experiment by Summerfield and Culling (1992) showed that,
at slow AM rates (2.5 Hz), segregation of two vowels did notimproved 

due to AM. So, the influence of AM on segregation
of multiple voices of seems unlikely.

Frequency modulation (FM) could act as a Sb"eaming cue ifthe 
auditory system could detect correlated frequency
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7. (a) Scale illusion in which a downward and an upward scale are
being played at the same time, except that every other tone in a given scale
is presented to the opposite ear, corresponding to an L or R for left and rightear. 

(b) The result is that listeners group based on frequency proximity, and
heard the two streams A and B. [Adapted with pennission from Deutsch

(1975).]

] F
~ E
~ D

C



S. Grossberg et al. / Neural Networks 17 (2004) 511-536 517

The pitch was derived using an autocorrelation.
However, the model did not handle temporally varying
stimuli. Brown (1992) and Cooke (1991) have presented
models which perform segregation of temporally vary-
ing stimuli. These models use pitch cues derived from
autocorrelation methods to perform segregation. How-
ever, these models use time-frequency kernels to
achieve segregation. In other words, they treat the
stimuli as a static pattern, a spectrogram, and then
perform dynamic programming and spatio-temporal
processing, which treats time as another spatial dimen-
sion. None of these models has tried to model the
process dynamically.

changes among spectral components. One needs to dis-
tinguish coherent PM from incoherent PM. In coherent PM,
all partials (a harmonic or inharmonic component of a
complex tone) are modulated at the same rate. In incoherent
PM, the partials are modulated independently. Changes in F 0
correspond to coherent PM since all the harmonics are being
changed by a proportionate amount. Thus, segregation based
on coherent PM could be a result of changes in Fo.

Several psychophysical experiments seem to imply that
segregation based on PM is not used. Carlyon (1991) found
that with inharmonic complex tone pairs, listeners could not
distinguish between coherent and incoherent PM, per se.
Extending this, Carlyon (1992) found that if listeners did
discriminate between coherent and incoherent PM, it was due
to mistuning a harmonic and not to PM explicitly. Moreover,
McAdams (1989) showed that by adding vibrato and jitter to
different components of a three vowel mixture, the
components did not segregate. Summerfield (1992) found
that identification of a vowel presented with another vowel
did not improve when a difference in PM was used, and all the
harmonics had been randomly shifted. However, there was
some benefit if the components of one vowel in a two vowel
presentation was frequency modulated while the other was
not (Summerfield & Culling, 1992). This result could,
however, be due to pitch difference cues. Thus, for the most
part, it seems that PM is not used as cue for segregation.

4. ARTSTREAM model of auditory streaming

4.1. From SPINET and ART to ARTSTREAM

2.8. Onsets and offsets

The ARTSTREAM model developed in this article
suggests how harmonicity and frequency proximity
interact in the brain. The model, which is shown in
Fig. 8, consists of several stages. The model includes a
specialized filter which inputs to a network that groups
frequency components based on pitch. The filter is a.;
Spatial PItch NETwork, or SPINET model, that has
been developed in order to simulate psychophysical
data concerning how the brain converts sound streams
into frequency spectra that activate spatial represen-
tations of pitch (Cohen et al., 1995). The grouping
network is the type of circuit that arises in Adaptive
Resonance Theory, or ART. ART proposes how the
brain rapidly learns to recognize and categorize vast
amounts of information by using learned top-down
expectations and attentional focusing to help stabilize
the learning process (Carpenter & Grossberg, 1991,
1993; Grossberg, 1976, 1980, 1999b). A specialized
version of such an ART grouping network has been
joined to a SPINET front end in the ARTSTREAM
model of auditory scene analysis, in order to simulate
psychophysical data concerning how the brain achieves
pitch-based separation and streaming of multiple
acoustic sources.

First, the SPINET model will be introduced and its
operations illustrated by a simulation of pitch perception.
Next, some general ART principles will be reviewed.
Finally the ARTSTREAM model will be described and
illustrative streaming simulations presented. In Section 8,
ARTSTREAM will be compared with the Gjerdingen
(1994) analysis of streaming percepts in music, which was
based upon the motion perception model of Grossberg and
Rudd (1989, 1992). Gjerdingen's analysis quantifies an
analogy between visual motion perception and auditory
streaming that several authors have noted; see Bregman
(1990) for a review. Other extensions of the ARTS!fREAM
model will also be discussed.

Common onset and offset cause grouping, even over
sequential grouping (Bregman & Pinker, 1978; Dannenbring
& Bregman, 1978). Bregman and Pinker (1978) presented
the stimulus shown in Fig. 1 as a repeating sequence. They
found that as A and B were further separated in frequency,
onset and offset synchrony grouped B and C together.
However, as B and C became asynchronous, A and B
grouped together to form a stream.

The interaction between harmonicity and onset asyn-
chrony was investigated by Darwin and Ciocca (1992).
They found that if a harmonic started 160 ms before rest of a
complex tone, then it had a diminished influence on pitch of
the complex tone. Moreover, if it started 300 ms before the
complex, then it has no influence on the pitch. Finally,
Bregman and Rudnicky (1975) found that two 250 ms tones
that have 88% overlap fuse into one stream.

While not as strong as onset asynchrony, offset
asynchrony influences grouping. A harmonic which has an
offset asynchrony of 30 ms with respect to a vowel complex
contributes less to its identity than one with a synchronous
offset (Darwin, 1984; Darwin & Sutherland, 1984).

3. Existing models of segregation

Meddis and Hewitt (1992) presented a static model
that segregated concurrent vowels based on pitch.
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(a) 4.2. The SPINET model

Pitch
stream
layer

The SPINET model (Cohen et al., 1995) was developed
in order to neurally instantiate ideas from the spectral pitch
modeling literature and join them to neural network signal
processing designs to simulate a broader range of perceptual
pitch data than previous spectral models. A key goal of
SPINET is to transform a spectral representation of an
acoustic source into a spatial distribution of pitch strengths
that could be incorporated into a larger network architec-
ture, such as ARTSTREAM, for separating multiple sound
sources in the environment. The first several stages of
SPINET are based on a model of the physiology and
psychophysics of the auditory periphery (Cohen et al.,
1995). The peripheral processing preemphasizes the signal,
or boosts the amplitude of higher frequencies, which
emulates the outer and middle ears. Next, the preempha-
sized signal is filtered by a bank of bandpass filters, which
emulates the cochlea. Finally, an energy measure is
obtained at the output of these filters. This energy measure
inputs to a spatial representation of the frequencies in
the sound. These frequencies pass through a filter to activate
pitch category cells. This filter converts spectral frequency
activations into pitch category activations by using a
weighted harmonic sieve whereby the strength of activation
of a given pitch category is derived from activations by a
weighted sum of narrow regions around the frequency
harmonics of that pitch at the spectral layer, with higher
harmonics contributing less to a pitch than lower ones.

Suitably chosen harmonic weighting functions enabled
computer simulations of pitch perception data involving
mistuned components (Moore et al., 1985), shifted harmo-
nics (Patterson & Wightman, 1976; Schouten, Ritsma, &
Cardozo, 1962), and various types of continuous spectra
including rippled noise (Bilsen & Ritsma, 1970; Yost, Hill,
& Perez-Falcon, 1978). It was shown how the weighting
functions produce the dominance region (Plomp, 1967;
Ritsma, 1967), how they lead to octave shifts of pitch in
response to ambiguous stimuli (patterson & Wightman,
1976; Schouten, Ritsma, & Cardozo, 1962), and how they
lead to a pitch region in response to the octave-spaced
Shepard tone complexes and Deutsch tritones (Deutsch,
1992a,b; Shepard, 1964) without the use of attentional
mechanisms to limit pitch choices. An on-center off-
surround network in the model helped to produce noise
suppression, partial masking and edge pitch (von Bekesy,
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Fig. 8. (a) Block diagram of the ARTSTREAM auditory streaming model.
See text for further details. (b) Interaction between the energy measure, the
spectral stream layer, the pitch stream layer, and the pitch summation layer.
The energy measure layer is fed forward in a frequency-specific one-to-
many manner to each frequency-specific stream node in the spectral stream
layer. This feed-forward activation is contrast-enhanced. Competition
occurs within the spectral stream layer across streams for each frequency so
that a component is allocated to only one stream at a time. Each stream in
the spectral stream layer activates its corresponding pitch stream in the
pitch stream layer. Each pitch neuron receives excitation from its
harmonics in the corresponding spectral stream. Since each pitch stream
is a winner-take-all network, only one pitch can be active at any given time.
Across streams in the pitch stream layer, asymmetric competition occurs for

each pitch so that one stream is biased to win and the same pitch cannot be
represented in another stream. The winning pitch neuron feeds back
excitation to its harmonics in the corresponding spectral stream. The stream
also receives nonspecific inhibition from the pitch summation layer, which
sums up the activity at the pitch stream layer for that stream. This
nonspecific inhibition helps to suppress those components that are not
supported by the top-down excitation, which plays the role of a priming
stimulus or expectation. [Reprinted with permission from Grossberg
(1999b).]
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when harnlonic components lfn = nfo, n = 1, ...) are all
shifted by a constant amount, .1, in frequency so that they
maintain their spacing of fo, lfn = nfo +.1, n = 1, ...), the

pitch shift in linear frequency is slower than that of the
components (Patterson & Wightman, 1976; Schouten,
Ritsma, & Cardozo, 1962). The data exhibit an ambiguous
pitch region at shift values of.1 = lfo, 1 = 0.5, 1.5, 2.5,...
where the most commonly perceived pitch jumps down to
below the value offo. Fig. 10 shows the pitch of components
spaced by fo = 100 Hz as a function of the lowest

component's harnlonic number, I. When the shift value .1
is near a harnlonic of fo (.1 = lfo, 1 = 0,1,2, ...), then the

pitch is unambiguous and near 100 Hz.
The model explains these data, as in Fig. lOb, in terms of

the gradual reduction in the contribution a component
makes to a pitch as it is mistuned, combined with the effect
of filters whose widths are approximately constant in log
coordinates for high frequencies (see Level 6 in Fig. 9).
As the components shift together in linear frequency away
from harnlonicity, the higher components move into the
shallow skirts of the filters centered at harnlonics of the
original nominal pitch frequency much more slowly than do
the lower components, thereby slowing the shift away from
the original pitch. Moreover, as the lowest stimulus
component increases in harnlonic number, all components
are moving through broader filters, so the slopes of the pitch
shift become less steep, as can be seen in bOth the data and
the model output in Fig. 10.

Various other pitch data explanations of the SPINET
model depend for their explanation upon properties of other
model processing levels. The full array of simulated data
makes use of all these levels. A key hypothesis of the model
in all these explanations is that the harnlonic summation at
Level 7 of Fig. 9 filters each frequency spectrum through a
harmonic sieve (Duifhuis, Willems, & Sluyter, 1982;
Goldstein, 1973; Scheffers, 1983; Terhardt, 1972) that
transforms logarithmically scaled and Gaussianly weighted
harnlonic components into activations of pitch nodes (or cell

Fig. 9. Graphical representation of the SPINET model processing stages.
[Reprinted with permission from Cohen, Grossberg, and Wyse (1995).]

1963; Small & Daniloff, 1967). FinaJly, it was shown how
peripheraJ filtering and short term energy measurements
produced a model pitch estimate that is sensitive to certain
component phase relationships (Moore, 1977; Ritsma &
Engel, 1964).

Fig. 9 shows the main processing stages of the SPINET
model. Fig. lOb compares an illustrative computer simu-
lation of pitch data in Fig. lOa concerning pitch shifts as a
function of shifts in component harmonics. In particular,
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Fig. 10. Pitch shift in response to a complex of 6 components spaced by 100 Hz, as a function of the lowest component's hannonic number. (a) Data from
Patterson and Wightman (1976). (b) Maximally activated pitch produced by the netwo1:k model. [Reprinted with permission from Cohen, Grossberg, and Wyse

(1995).]
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populations) at the model's final layer. The harmonic sieve
prevents spectral components that are not harmonically
related to a prescribed pitch from activating the correspond-
ing pitch node. It is assumed that the harmonic sieve gets
adaptively tuned during development in response to
harmonic preprocessing by peripheral acoustic mechanisms.
This learning process is not explicitly modeled in SPINET,
but the use of ART matching and resonance mechanisms in
the ARTSTREAM model clarify how this learning process
could occur.

a self-organizing system that is capable of rapid yet stable
autonomous learning of huge amounts of data in a
nonstationary environment. Discovering the brain's solution
to this key problem is as important for understanding
ourselves as it is for developing new pattern recognition and
prediction applications in technology.

The problem whereby the brain learns quickly and stably
without catastrophically forgetting its past knowledge has
been called the stability-plasticity dilemma (Grossberg,
1980). The stability-plasticity dilemma must be solved by
every brain system that needs to rapidly and adaptively
respond to the flood of signals that subserves even the most
ordinary experiences. If the brain's design is parsimonious,
then similar design principles should operate in all the brain
systems that can stably learn an accumulating knowledge
base in response to changing conditions throughout life. The
discovery of such principles should clarify how the brain
unifies diverse sources of information into coherent
moments of conscious experience.

4.3. The ARTSTREAM model

4.5. ART matching and resonance: the link between
attention, intention, and consciousness

Accordingly, the final two spectral (Level 6) and pitch
(Level 7) layers of the SPINET model in Fig. 9, including
the harmonic sieve, are embedded in the ARTSTREAM
model of Fig. 8, where they are elaborated into multiple
spectral and pitch stream layers that interact via excitatory
and inhibitory pathways. In particular, instead of there being
just one spectral or pitch representation, ARTSTREAM
contains multiple copies of the spectral and pitch represen-
tations (Fig. 8), each one providing a spatial substrate for a
different stream. Said in another way, each frequency can
activate a band of cells in the spectral representation. The
cells in a given frequency band lie at spatial positions that
are perpendicular to, or at least different from, the positions
at which different frequencies are represented. The spatial
organization of excitatory and inhibitory interactions
converts these bands of cells into different perceptual
streams.

For example, as in the SPINET model, each of the
bottom-up filters from spectral to pitch layers forms a
harmonic sieve. In addition, the top-down filters also form
harmonic sieves. As clarified below, these top-down signals
select those spectral components that are harmonically
related to a chosen pitch category, while suppressing all
other frequencies that may have initially activated that
spectral stream layer. The ARTSTREAM model incorpor-
ates general ART principles which clarify how the bottom-
up and top-down harmonic sieves are learned, and then used
to generate percepts of distinct auditory streams.

4.4. ART: fast learning and stable memory
in a changing world

Adaptive resonance theory claims that, in order to solve
the stability -plasticity dilemma, resonant states, such as the
ones mentioned above, can drive new learning. That is why
the theory is called adaptive resonance theory. How this
works is more completely explained in Carpenter and
Grossberg (1991) and Grossberg (I 999b). Some impli-
cations of ART principles are as follows.

The first implication provides a new answer to why, as
philosophers have asked for many years, humans are
'intentional' beings who are always anticipating or planning
their next behaviors and their expected consequences. ART
suggests that 'stability implies intentionality'. That is, stable
learning requires that we have expectations about the world
that are continually matched against world data. In the
special case of the ARTSTREAM model, these expectations
are top-down harmonic sieves that are activated by pitch
categories. The second implication is that 'intention implies
attention and consciousness'. That is, expectations start to
focus attention on data worthy of learning, and these
attentional foci are confirmed when the system as a whole
incorporates them into resonant states that are predicted to
include conscious states of mind. In the ARTSTREAM
model, these attentional foci are harmonics of a selected

pitch category.
Implicit in the concept of intentionality is the idea that

one can get ready to experience an expected event so that,
when it finally occurs, it can be reacted to it more quickly
and vigorously, and until it occurs, we are able to ignore
other, less desired, events. This property is an example of
priming. It shows that, when a top-down expectation is read-
out in the absence of a bottom-up input, it can modulate, or
subliminally select, the cells that would ordinarily respond
to the bottom-up input, but not vigorously fire them, while it

Humans are able to rapidly learn enormous amounts of
new information throughout life. For example, after seeing
and hearing an exciting movie, we can tell our friends many
details about it later on, even though the individual scenes
flashed by very quickly. More generally, we can quickly
learn about new environments, even if no one tells us how
the rules of each environment differ. To a surprising degree,
new facts can be learned without forcing rapid forgetting of
what we already know.

The brain hereby solves a very hard problem that many
current approaches to technology have not solved: It is
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that are proposed to realize it within the laminar architecture
of neocortex. See Grossberg (1999a, 2003b) and Raizada
and Grossberg (2003) for reviews.

In the ARTSTREAM model (Fig. 8), the top-down
excitatory harmonic sieve is balanced by inhibition from
the pitch summation layer to realize these properties. As a
result, feedback from the pitch stream layer to the spectral
stream layer activates a matching process that reinforces
consistent spectral components and suppresses inconsistent
components. The inconsistent spectral components are then
freed to be captured by other streams, as in the 'old-plus-
new heuristic' of Bregman (1990). Competition between
streams for each frequency component (Fig. 8b) presents a
frequency from being simultaneously allocated to two
streams; hence, a frequency is uniquely assigned to a pitch
whose top-down harmonic filter succeeds in selecting it.
Reciprocal excitatory interactions between active pitch
stream neurons and their consistent spectral components
may continue until they give rise to a nonlinear resonance
across both layers. The listener's conscious percept is
hypothesized to correspond to the activity at the spectral
stream layer when there is resonance between it and the
pitch stream layer. In other words, a conscious streaming
percept is predicted to arise from a spectral-pitch
resonance.

4.6. Resonant dynamics explain the auditory
continuity illusion

Resonant processing in the ARTSTREAM model helps
to explain cocktail party separation of distinct voices into
auditory streams, as in the auditory continuity illusion of
Fig. 1, as follows. As noted above, after the auditory signals
are preprocessed by SPINET mechanisms, the active
spectral, or frequency, components are redundantly rep-
resented in multiple spectral streams. These streams are then
filtered by bottom-up signals that activate multiple rep-
resentations of the sound's pitch at the pitch stream level.
These pitch representations compete to select a winner,
which inhibits the redundant representations of the same
pitch across streams, while also sending top-down matching
signals back to the spectral stream level. By the ART
matching rule, the frequency components that are consistent
with the winning pitch node are selected, and all others are
suppressed. The selected frequency components reactivate
their pitch node which, in turn, reads out selective top-down
signals. In this way, a spectral-pitch resonance develops
within the stream of the winning pitch node. The pitch layer
hereby coherently binds together the frequency components
that correspond to a prescribed auditory source. All the
frequency components that are suppressed by ART match-
ing in this stream are freed to activate and resonate with a
different pitch in a different stream. The net result is
multiple resonances, each selectively grouping together into
pitches those frequencies that correspond to distinct
auditory sources.

suppresses cells whose activity is not expected. Correspond-
ingly, the ART matching rule computationally realizes the
following properties at any processing level where bottom-
up and top-down signals are matched.

Bottom-up automatic activation. A cell, or cell popu-
lation, can become active enough to generate output signals
if it receives a large enough bottom-up input, other things

being equal.
Top-down priming. A cell can be sensitized, modulated,

or subliminally activated, but cannot generate large output
signals, if it receives only a large top-down expectation
input. Such a top-down priming signal prepares a cell to
react more quickly and vigorously to subsequent bottom-up
input that matches the top-down prime.

Match. A cell can become active if it receives large
convergent bottom-up and top-down inputs. Such a match-
ing process can generate enhanced activation and synchro-
nization with other primed cells as resonance takes hold.

Mismatch. A cell is suppressed even if it receives a large
bottom-up input if it also receives only a small, or zero, top-
down expectation input.

This ART matching rule and the resonance rule that it
implies have been mathematically proved necessary to solve
the stability-plasticity dilemma (Carpenter & Grossberg,
1991). In particular, where they are violated, examples have
been constructed wherein learning is unstable through time.
These examples illustrate how we can continue to learn
rapidly and stably about new experiences throughout life by
matching bottom-up signal patterns from more peripheral to
more central brain processing stages against top-down
signal patterns from more central to more peripheral
processing stages. The top-down signals represent the
brain's learned expectations of what the bottom-up signal
patterns should be based upon past experience. The
matching process is designed to confinn those combinations
of features in the bottom-up pattern that are consistent with
the top-down expectations, and to suppress those features
that are inconsistent. This top-down matching step initiates
the process whereby the brain selectively pays attention to
experiences that it expects, binds them into coherent and
synchronous internal representations through resonant
states, and incorporates them through learning into its
knowledge about the world.

ART predicted (Carpenter & Grossberg, 1987; Gross-
berg, 1999b) that the brain uses the simplest possible circuit
to realize the ART matching rule; namely, a modulatory
top-down on-center off-surround network. In such a net-
work, excitation and inhibition are approximately balanced
within the on-center, so that top-down attentive priming can
sensitize but not fire target cells, yet matched bottom-up and
top-down signals can fire and even gain-amplify the
activities of cells to which attention is paid. The oif-
surround can vigorously suppress mismatched cells. Many
psychophysical and neurobiological experiments have by
now supported this predicted link between attention,
competition, and matching, and circuits have been identified
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The fact that noise is needed to continue the tone in
Fig. la is due to the fact that top-down expectations in ART
can select active bottom-up signals, but cannot create
suprathreshold activation in their absence, which also
explains the property in Fig. lc. The fact that a future
tone can help the resonance persist through the noise is
traced to the fact that it takes a relatively long time for a
spectral-pitch resonance to become suprathreshold and
conscious, but a much shorter time for a consistent
bottom-up signal to maintain such a resonance after it
begins. Similar properties help to explain a lot of data about
speech perception, including classical percepts like
phonetic restoration (Grossberg, 1999b, 2003b; Grossberg,
Boardman, & Cohen, 1997; Grossberg & Myers, 2000).

filter would have if it passed the same power:

ERB(f) = 6.23 e-6r + 93.39 e-3f + 28.52. (5)

Sixty gammatone filters, which were equally spaced in
ERB, were used to cover the range 100-2000 Hz. The
output of each gammatone filter was converted into an
energy measure.

5.1.3. Energy measure
The energy measures a short-time energy spectra (Cohen

et al., 1995)

~t W/&
ef(t) = -w 2' Igf(t -k~t)re-a&k, (6)

k=O

where ef(t) is the energy measure output of the gammatone
filter gf(t) centered at frequency f at time t; W is the time
window over which the energy measure is computed; and a
represents the decay of the exponential window. In the
simulations, a = 0.995, and W = 5 ms. The output of the
energy measure feeds identically to the multiple fields in
the spectral stream layer.

5. ARTSTREAM model

The ARTSTREAM model is mathematically defined in
this section. Readers can skip to Section 6 for model
simulations before studying the model equations.

5.1. Auditory peripheral processing
5.2. Spectral stream layer

5.1.1. Outer and middle ear
The outer and middle ear act as a broad bandpass filter,

linearly boosting frequencies between 100 and 5000 Hz. An
approximation to this is to preemphasize the signal using a
simple difference

y(t) = x(t) -Ax(t -~.f), (1)

where A is the preemphasis parameter, and ~t is the
sampling interval. In the simulations, A was set to 0.95, and
~t = 0.125 ms, corresponding to a sampling frequency of
8kHz.

5.1.2. Cochlear filterbank
The overall effect of the basilar membrane is to act as a

filterbank, where the response at a particular location on the
basilar membrane acts like a bandpass filter. This bandpass
characteristic has been modeled as a fourth order gamma-
tone (de Boer & de Jongh, 1978; Cohen et al., 1995) filter

{ (-I e-21rtb(f'o) COS(21Tfot + 4», if t > 0,
glo (t) = (2)

0, otherwise

and

and its frequency response is

G/o(f) = [1 + jif -/o)/bifo)]n, (3)

where n is the order of the filter; /0, the center frequency of
the filter; cp, a phase factor; bif) is the gammatone filter's
bandwidth parameter, corresponding to:

bif) = 1.02 ERB(f). (4)

The equivalent rectangular bandwidth (ERB) of a gamma-
tone filter is the equivalent bandwidth that a rectangular

Iif = l' Efgs(eg) + J l'. l'Nfg[Skg]+ + LTj,
g..f k... g

(9)

Segregation based on harmonicity is achieved by having
objects compete for frequency channels, which are excited
by their pitch counterparts and supported by the bottom-up
input (Fig. 8b). As noted above, the spectral stream layer is a
plane with one axis representing frequency, and the other
axis representing frequency bands that can be allocated to
different auditory streams.

Each frequency channel in the energy measure, ef, feeds
up to the corresponding frequency channel in the spectral
stream layer Sf in a one-to-many manner, so that all streams
in the spectral stream layer receive equal bottom-up
excitation. Mter the spectral stream layer becomes activated,
the different streams activate their corresponding pitch
streams in the pitch stream layer. When a pitch is selected
in a given stream, it feeds back excitation to its spectral
harmonics, and inhibits that pitch value in other streams in
the pitch stream layer. An asymmetric gradient of inhibition
across streams prevents a deadlock in the selection of a
stream. In addition, nonspecific inhibition, mediated by the
pitch summation layer, helps to suppress those spectral
components that do not belong to the given pitch within its
stream, and thereby realizes the ART matching rule.

The following equation describes the dynamics of the
spectral stream layer:

Sif = -ASif + [B -Sif]Eif -[C + Sif]Iif,' (7)
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where Sit is the activity of the spectral stream layer neuron
corresponding to the ith stream and frequency f. Term
-ASif in Eq. (7) is the spontaneous decay. Term Dfgs(eg) in

Eq. (8) is the excitation from the energy measure, which has
been passed through a sigmoid s(x) to compress the dynamic

range:

parameter, UN

Nig = G(f. UN) = ~e-O.5(f-gY/~UN ..J2:jT . (16)

Tenn LTj in Eq. (9) is the inhibition from the pitch
summation layer, which nonspecifically inhibits all com-
ponents in stream i. The effect of this is to subtract out those
nonhannonic components which are not reinforced by the
top-down excitation from the pitch unit in the pitch stream
layer. This is akin to the matching process used in Adaptive
Resonance Theory (Carpenter & Grossberg, 1991, 1993;
Grossberg, 1980). As realizes the ART matching rule, so
that a spectral stream layer neuron can become

{ ~/(NS +x1. if x> 0,
s(x) =

0, otherwise
(10)

Similarly, Efgs(eg) in Eq. (9) is the inhibition from the
energy measure, which has been passed through a sigmoid
s(x). Thus, with both Dfgs(eg) and Efgs(eg), each spectral
stream layer receives a contrast-enhanced version of the
energy measure. Both Dfg and Efg are Gaussians which are
centered at frequency t, and have standard deviation
parameters, (FD and (FE, and scaling parameters D and E,

respectively; namely

Dig = DG(f, (TD) = D--.!.--e-O.5<f-gtloi,
(T D .J2:j;:

(11)

and

.Active if only an energy input is present (bottom-up
automatic activation),

.Partially, or subliminally, active if only a pitch input is
present (top-down priming),

.Active if both energy and pitch inputs are present
(bottom-up and top-down consistency),

.Inactive if both energy and pitch inputs are present, but
the spectral component is not a harmonic of pitch
(bottom-up and top-down inconsistency).Eig = EGlf, ITp) = E-~e-O.5(f-g)2/~IT E .ji;;:r , (12)

The first constraint allows bottom-up activation to
initiate the segregation process. So, if there is no pitch
unit that is active, then there is no inhibition from the pitch
stream layer, via the pitch summation layer. Thus, the
spectral stream layer will become active. The second
constraint makes sure that the pitch units do not activate
spurious spectral units by themselves, but only in conjunc-
tion with an input. This is accomplished by letting the
inhibition from the pitch summation layer be no smaller
than the excitation from the pitch units. The third and fourth
constraints state that only harmonics of the particular pitch
that are present in the input are excited. This is
accomplished by setting the combined excitation from the
input and pitch stream unit to be greater than the inhibition
from the pitch summation layer. If a spectral unit is a
harmonic of a pitch P and it has an input at that frequency,
then the spectral unit will remain active. However, if the
unit is not a harmonic (or a slightly mistuned harmonic),
then the inhibition from the pitch summation layer will be
greater than only the bottom-up input. In all the simulations,
the parameters were set to: A = 1, B = 1, C = 1, D = 500,
E = 450, F = 3, J = 1000, L = 5, Mh = 0.3, N = 0.01,
Ns = 10000, Ng = 0.01, (TD = 0.2, (TE = 4, (TM = 0.2, and
(TN = 1.

In addition, the tenD F2'p2'kMf,kpg(Pip)h(k) in Eq. (8) is
the sum of all the pitches p which have a hannonic kp near
frequency f in the pitch stream layer corresponding to
stream i. In Eq. (8), g(x) is a sigmoid function

2-/(Ng+2-), ifx>O,

0, otherwise
g(x) = (13)

where h(k) is the harmonic weighting function, which
weights the lower harmonics more heavily than higher
harmonics:

1 -Mh log2(k), if 0 < Mh log2(k) < 1,

0, otherwise
h(k) = (14)

and Mf,kp is a nonnalized Gaussian, so that if a hannonic is
slightly mistuned it will still be within the Gaussian and thus
get partially reinforced. The width of the Gaussian dictates
the tolerance for mistuning. Kernel Mf,kp is centered at
frequency f and has a standard deviation parameter, O'M :

M = Glf 0' ) = _-.!.--e-O.5if-kptloi,. (15)f,kp , M
12=O'MVL.1T

The tenD JLk,..i LgNfg[Skg]+ in Eq. (9) represents the
competition across streams for a component, so that a
hannonic will belong to only one object. This inhibition
embodies the principle of 'exclusive allocation.' Since a
hannonic can be mistuned slightly, a Gaussian window Nfg
exists within which the competition takes place. Kernel Nfg
is centered at frequency f and has a standard deviation

5.3. Pitch summation layer

The pitch summation layer sums up the pitch activity at
stream i, and provides nonspecific inhibition LTj to stream
i's spectral stream layer in Eqs. (7)-(9) so that only those
hannonic components that correspond to the selected pitch
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6. Streaming simulationsremain active:

Tj = ATj + [B -Tj] Lg(Pip),

p

(17) The model qualitatively emulates bounce percepts for
crossing glides, as well as several variants of the continuity
illusion. Fig. 11 shows the stimuli and the listeners' percepts
that the model emulates. It should be reiterated that the
percept that a listener would hear corresponds to the
resonant activity in the spectral layer.

where g(x) is the sigmoid function described in Eq. (13). In
the simulations, A = 100, B = 100.

5.4. Pitch stream layer

Stimulus PerceptThe original SPINET model had two components: the
spectral layer and a pitch layer. The spectral and pitch
representations in ARTSTREAM enable multiple streams
to compete between pitch units within and across streams
(Fig. 8b). The modified pitch strength activation is

(a)

Pip = -APjp + [B -Pjp]Ejp -[C + Pjp]Ijp, (18) (b)

where

Eip = EL LMf,kp[Sif -n+h(k)
k f

(19)
(c)

(+noise)

and

lip = J L Hpqg(Piq) + L L g(Pkp)'
p~q k>i

(20) (d)

//:::~~--, 1
where Pip is the pth pitch unit of object i. The term
E2'k2'fMf,kp[Sif -n+h(k) in Eq. (19) corresponds to the
Gaussian excitation Mf,kp from the spectral layer which has
suprathreshold components near a harmonic kp of pitch p,
which is weighted by the harmonic weighting function
h(k). The harmonic weighting function h(k) and the
Gaussian Mf,kp are same as in the spectral layer (Eqs. (14)
and (15), respectively). The term J2'p..qHpqg(Piq) in
Eq. (20) represents the symmetric off-surround inhibition
across pitches within a stream. The off-surround compe-
tition across pitches within a stream makes the layer act as
a winner-take-all net so that only one pitch tends to be
active within a stream. In addition, Hpq is defined to be one
within a neighborhood around pitch unit j and zero
otherwise, so that a stream can maintain a pitch even if
the pitch fluctuates:

(eJ

..-/1
~2

' 

.,,""""
(f)

(g)

(h)

1, if Ip -ql > O"H,

0, otherwise
(21)Hpq=

(I)

The term L2'k>ig(Pkp) in Eq. (20) represents asymmetric
inhibition across streams for a given pitch, so that only one
stream will activate a given pitch. This asymmetry across
streams also provides a systematic choice of streams, and
prevents deadlock between two streams for a given pitch,
since all pitch streams receive equal bottom-up excitation
from the spectral layer initially. In all the simulations, the
parameters were set to: A = 100, B = 1, C = 10, E =
5000, J = 300, L = 2, (FH = 0.2, and T= 0.005.

Time

Fig. 11. Stimuli and the listeners' percepts that model simulations emulate.
The hashed boxes represent broadband noise. The stimuli consist of: (a) two
inharn1onic tones, (b) tone-silence-tone, (c) tone-noise-tone, (d) a ramp
or glide-noise-glide, (e) crossing glides, (1) crossing glides where the
intersection point has been replaced by silence; (g) crossing glides where
the intersection point has been replaced by noise, (h) Steiger (1980)
diamond stimulus, and (i) Steiger (1980) diamond stimulus where
bifurcation points have been replaced by noise.
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whose frequencies are 358 and 1233 Hz. Fig. 12b shows the
result after peripheral processing; i.e. the result after the
energy measure. Fig. 13 shows the resulting spectral and
pitch layers for the two tone stimulus for two different
streams. Fig. 13c shows how the streams initially compete
for the tones, but the first stream, which is inherently biased
in the pitch stream layer, wins the higher frequency
component, allowing the second stream to capture the
lower frequency tone.

Fig. 14 shows a schematic of how the grouping process
works for the two inharmonic tones. After the two tones are
processed by the peripheral processing, the higher fre-
quency tone has a larger activity due to the preemphasis.
The preprocessed activities feed into the spectral stream
layers at time t = O. Since there is no top-down activity at
the spectral stream layers, the two spectral layers are equally
active. Next, at time t = t1, the pitch stream layer receives
activation from the spectral stream layer. Since stream l's
pitch layer is inherently biased over stream 2's pitch layer,
and since the higher frequency tone has a larger activity, the
1233 Hz tone is chosen by stream l's pitch layer. Since the
pitch layer is a winner-take-all network, only one pitch can
be active within a pitch stream layer. Once the 1233 Hz tone
is chosen by stream 1, the corresponding frequency in
stream 2's pitch layer is inhibited by the stream l's winning
pitch neuron, allowing the 358 Hz tone to be captured by
stream 2's pitch layer. Next, at time t = t2, the winning
pitch neurons excite their corresponding harmonic com-
ponents in the spectral layer. In addition, the nonspecific
inhibition (shown as the darker arrow) inhibits all

1000-

0:1 0.24975
100-

(b)

Fig. 12. (a) Spectrogram and (b) result of energy measure for the two tone
stimulus.

6.1. lnharmonic simple tones

If two inharmonic tones are presented, then they should
segregate into two different streams since they do not have a
common pitch (Moore et aI., 1985). Fig. 11a shows the
stimulus and the listeners' percept for two inharmonic tones.
Fig. 12a shows the spectrogram for two inharmonic tones,

(a)

(b)

Stream 1 pitch layer Stream 2 pitch layer
(c)

t=tl

+-, +
Stream I spectral layer

1\.
Fig. 14. Schematic of how the model segregates the two inharmonic tones
into two different streams. See text for explanation.

t=t2

...=...

-,
l Stream 2 spectrallayer

--.1\(d)

Fig. 13. Model results for the two tone stimulus. (a) spectral stream layer
and (b) pitch stream layer for stream 1; and (c) spectral stream layer and (d)
pitch stream layer for stream 2.
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components in the spectral layer. Therefore, those com-
ponents that are not specifically excited by the pitch layer
are suppressed. For example, the 358 Hz tone is suppressed
in stream 1 since it is receiving top-down nonspecific
inhibition and no top-down specific excitation, whereas the
1233 Hz tone receives top-down excitation allowing it to
remain active. (a)

6.2. Auditory continuity illusion

(b)

The model is capable of simulating continuation of a tone
in noise, even though the tone is not physically present in
the noise (Miller & Licklider, 1950). In order to appreciate
the result for tone-noise-tone condition, one should
consider the result of the model for a tone-silence-tone
stimulus (Figs. 1c and lIb). For this stimulus, the tone
should not continue across the silence, but should stop
before penetrating the noise. Fig. 15 shows the spectrogram
and the result after the peripheral processing for the tone-
silence-tone stimulus. Fig. 16 shows the resulting spectral
and pitch layers for the tone-silence-tone stimulus for two
different streams. The figures show that the first stream
captures the tone, which decays into to the silent interval but
does not remain active throughout the silent interval. Since
the model does not yet have any onset/offset mechanisms,
the spectral stream activity slowly decays into the silent
interval. The percept does not, however, persist this long
because the pitch layer activity decays more quickly,
thereby aborting the spectral-pitch resonance. The same
stream then captures the tone after the silence as well. The
second stream is not active since there are no extraneous
components to capture.

Now consider the case where the silent interval is
replaced by noise; i.e. the tone-noise-tone stimulus. For
appropriate signal levels in the tone and noise, the tone
percept should continue across the noise, even though the
tone is not physically present during the noise interval.
Fig. 17 shows the spectrogram and the result after the
peripheral processing for the tone-noise-tone stimulus.

(d)

Fig. 16. Model results for the tone-silence-tone stimulus. (a) spectral
stream layer and (b) pitch stream layer for stream 1; and (c) spectral stream
layer and (d) pitch stream layer for stream 2.

Fig. 18 shows the resulting spectral and pitch layers for the
stimulus for the first two streams, and Fig. 19 shows a third
stream. The figures show that the first stream captures the
tone, and that the resonance between the spectral and pitch
layers continues through and past the noise interval.

The second and third streams contain the noise. The
reason that the second stream captures the high frequency
noise as opposed to the low frequency noise is due to

(a)

(b)

Fig. 17. (a) Spectrogram and (b) result of energy measure for the tone-
noise-tone stimulus.

(b)

Fig. 15. (a) Spectrogram and (b) result of energy measure for the tone-
silence-tone stimulus.
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(a)

(b) (b)

Fig. 20. (a) Spectrogram and (b) result of energy measure for the ramp
stimulus.

layers for the stimulus for the two different streams. The
figures show that the first stream captures the upward glide,
which then continues through the noise interval. After the
noise interval, the same stream captures the downward glide,
leading to the ramp percept. The reason that the ramp
completes across the noise is due to the same reason that the
tone completes across the noise in the tone-noise-tone
stimulus; namely, the temporal averaging at the spectral

(c)

(a)

(d)

Fig. 18. Model results for the tone-noise-tone stimulus. (a) spectral stream
layer and (b) pitch stream layer for stream 1; and (c) spectral stream layer
and (d) pitch stream layer for stream 2.

preemphasis: the noise at the highest frequency is most
active, and so it is captured by the second stream. If more
streams were present in the model, then they would capture
finer subsets of noise components.

The model is also capable of producing the continuity
illusion for the ramped stimulus shown in Fig. lId. Fig. 20
shows the spectrogram and the result after the peripheral
processing. Fig. 21 shows the resulting spectral and pitch

(b)

(c)
(a)

(d)

Fig. 21. Model results for the ramp stimulus. (a) Spectral stream layer and
(b) pitch stream layer for stream 1; and (c) spectral stream layer and (d)
pitch stream layer for stream 2.

(b)

Fig. 19. The (a) spectral and (b) pitch stream layers for stream 3 for the
tone-noise-tone stimulus.
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stream layer is reinforced by top-down excitation from the
pitch stream layer. Also, during the noise interval, some
noise adjacent to the plateau is active since the top-down
inhibition is not strong enough to suppress this activity.
Meanwhile, the second stream contains the extraneous
noise. If other streams were present, they might also capture
some noise components. (a)

6.3. Bounce percepts for crossing glides

(b)

(c)

(d)

Fig. 23. Model results for the crossing glide stimulus. (a) Spectral stream
layer and (b) pitch stream layer for stream 1; and (c) spectral stream layer
and (d) pitch stream layer for stream 2.

captures the higher frequency glide at the onset of the
stimulus and after the silent interval since these components
have a larger activity than the lower frequency glides due to
preemphasis. Since these components have a larger activity,
the first stream will choose these components, leading to the
grouping of the upper glides by stream 1, and the lower glides
by stream 2; i.e. a bounce percept.

The model is capable of qualitatively replicating the
Halpern (1977) and the Tougas and Bregman (1990) data.
For these stimuli, one obtains bounce percepts for crossing
glides (Fig. lIe), even if the crossing interval is replaced by
silence (Fig. lIt) or noise (Fig. Ilg). Fig. 22 shows the
spectrogram and the result after the energy measure for
the standard crossing glide stimulus; and Fig. 23 shows the
resulting spectral and pitch activity for the two streams. As
one can see, one stream supports a ' U ' percept, while the

other stream has a 'n' percept. The ARTSTREAM
explanation for the bounce percept in response to the
standard crossing glide stimulus is as follows: initially, the
higher frequency glide is captured by the first stream since it
has a larger activation, and thus the lower frequency glide is
captured by the second stream. The glides are maintained
within their streams as they approach the intersection point.
At the intersection point, the glides activate multiple,
adjacent channels at the spectral layer. These adjacent
channels can belong to the two different streams such that
the larger frequency channel belongs to the first stream, and
thus groups with the upper glide; and the lower adjacent
frequency channel belongs to the second stream, and thus
groups with the lower glide.

Fig. 24 shows the crossing glide stimulus for the silent-
center condition and the result of the energy measure. Fig. 25
shows the spectral and pitch layers for two different streams.
The result corresponds to a bounce percept, which does not
continue across the silent interval. The reason one obtains the
grouping of the upper glides is as follows. The first stream

(a)

(b)

Fig. 24. (a) Spectrogram and (b) result of energy measure for the crossing
glide stimulus with silence replacing the intersection point.

(b)

Fig. 22. (a) Spectrogram and (b) result of energy measure for the crossing
glide stimulus.
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(a)

(b) (b)

Fig. 26. (a) Spectrogram and (b) result of energy measure for the crossing
glide stimulus with noise replacing the intersection point.

the spectral and pitch layers, and thus, maintaining the tone
across the noise interval. At the offset of the noise, the glides
are at approximately the same frequency as the tones that
were continuing through the noise. Thus, these glides are
grouped with the stream that has a tone close to its
frequency. As, a result, one obtains a bounce percept, where
the bounce completes across the noise interval.

(c)

(d)

Fig. 25. Model results for the crossing glide stimulus with silence replacing
the intersection point. (a) Spectral stream layer and (b) pitch stream layer
for stream 1; and (c) spectral stream layer and (d) pitch stream layer for
stream 2.

(a)

Fig. 11g shows the crossing glide stimulus where the
intersection point has been replaced by noise, and
the subjects' percepts of a bounce that is completed across
the noise interval. Fig. 26 shows the spectrogram and the
result of the energy measure for the crossing glide with
noise-center stimulus, and Fig. 27 shows the spectral and
pitch layers for two different streams. Once again, the
bounce percept is evident, but there is continuity of
the bounce through the noise interval. Stream 2 shows
some noise activity that 'leaks' through, which is due to not
enough top-down inhibition. The reason that the model
produces the bounce phenomenon can be understood from
the results on the auditory continuity illusion and the
standard crossing glide stimulus. Initially, the upper
frequency glide is chosen by stream 1, and the lower
frequency glide is chosen by stream 2, just as in the standard
crossing glide stimulus. The continuity illusion explanation
clarifies how top-down activity from the pitch layer helps
maintain the tone across the noise interval at the same
frequency as the offset of the glide. In addition, the temporal
averaging of the noise at the spectral stream layer provides
uniform activity over time that aids the resonance between

(b)

(c)

0 0;25 0.5 0.75 0.99975

(d)

Fig. 27. Model results for the crossing glide stimulus with noise replacing
the intersection point. (a) Spectral stream layer and (b) pitch stream layer
for stream 1; and (c) spectral stream layer and (d) pitch stream layer for
stream 2.
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6.4. Steiger (1980) diamond stimulus

(a)

(b)

(c)

(d)

Fig. 29. Model results for the Steiger (1980) diamond stimulus. (a) Spectral
stream layer and (b) pitch stream layer for stream 1; and (c) spectral stream
layer and (d) pitch stream layer for stream 2.

For the Steiger (1980) diamond stimulus (Fig. Ilh), the
percept consists of two streams, an 'M' stream and an
inverted 'V' stream. This percept shows that the principle
of continuity can be overcome by frequency proximity.
Fig. 28 shows the Steiger (1980) stimulus and the result
after the peripheral processing. Fig. 29 shows the spectral
and pitch layer for two different streams. As one can see,
the lower 'M' shaped component falls into one stream,
while the inverted 'V' is in the other stream, which
qualitatively emulates the percept. The reason the model
emulates the Steiger data is similar to the explanation for
the bounce percept for the standard crossing glide
explanation. Initially, stream 1 is active with the lower
frequency glide and stream 2 is inactive, since there is only
one component present in the stimulus. At the bifurcation
point, stream 1 continues with the lower frequency glide
since this frequency component was previously active in
stream 1. In other words, due to the temporal averaging of
the spectral layer activity and resonance with the pitch
layer, the frequency component that was activated
immediately prior to the bifurcation point will remain
active and group with the same frequency component
immediately after the bifurcation point. Since the first
stream groups the lower frequency glides together, the
second stream is capable of capturing the higher frequency
glides. Thus, stream 1 contains the 'M' percept, while
stream 2 contains the inverted 'V' percept.

Fig. 30 shows the spectrogram and the result of the
energy measure for the Steiger (1980) stimulus where the
bifurcation points have been replaced by noise. Fig. 31
shows the spectral and pitch layers for the two streams for
the Steiger (1980) stimulus when the bifurcation points have
been replaced by noise. The figures show that the 'M' and
the inverted 'V' segregate into two different streams, and the
'M' continues across the noise interval. The noise activates
other streams, which are not shown. The reason the model
emulates this percept derives from the explanation of

the Steiger (1980) diamond stimulus and the continuity
illusion; e.g. the ramp stimulus of Fig., lId. Stream 1
initially captures the increasing glide, while stream 2 is
inactive, just as in Steiger (1980) diamond stimulus. During
the noise interval, stream 1 completes across the noise
interval just as in the ramp stimulus, allowing stream 2 to
capture the inverted 'V' component.

(b)

Fig. 30. (a) Spectrogram and (b) result of energy measure for the Steiger
(1980) diamond stimulus with noise bursts replacing the bifurcation points.

(b)

Fig. 28. (a) Spectrogram and (b) result of energy measure for the Steiger
(1980) diamond stimulus.

1
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(a)

(b)

(0)

(d)

Fig. 31. Model results for the Steiger (1980) diamond stimulus with noise
bursts replacing the bifurcation points. (a) Spectral stream layer and (b)
pitch stream layer for stream I; and (c) spectral stream layer and (d) pitch
stream layer for stream 2.

7. Interactions between pitch and spaltiallocation cues

This section outlines how spatial location cues can be
incorporated into the model to aid the segregation process.
The spatial location cues indirectly influence grouping by
assisting grouping based on pitch. Spatial cues by
themselves cannot group objects, but require a pitch
difference to exist, in keeping with the data from
Shackleton, Meddis, and Hewitt (1994). The model is
extended using the same types of ART matching and
resonance circuits that have been used to achieve grouping
based on pitch in the previous sections. The extended model
shows how spatial location cues can prime the pitch stream
layer, and how the system can generate resonances that
consistently incorporate all the pitch and spatial location
cues that are available.

between the two ears (interaural) and making a judgment on
the sound's location (Handel, 1989).

ITD, which operates at low frequencies (less than 5 kHz),
corresponds to comparing the arrival time of a signal to the
two ears. If a signal is to the left, it will arrive at the left ear
some microseconds before it arrives at the right ear. Thus at
0 ITD, the source is centralized, and at other ITDs the source
is more lateral. However, ITDs only work for low
frequency, where the wavelength is long compared to the
size of the head. Fig. 32 shows a schematic representation of
an object that is lateralized to the right. As the object emits a
sound, it will arrive at the right ear first, and then at the left
ear T microseconds later, corresponding to the extra path
distance d that the source has to travel.

At high frequencies, the head 'shadows' a sound
lateralized to one side, causing an lID, or intensity
difference. For example, if a high frequency sound is
located to the left, the intensity of the sound to the right ear
is diminished compared to the left ear. Thus, one can
localize the sound by a computation based on the intensity
difference at the two ears. The extended model presented
here incorporates only ITDs in the segregation process.

The proposed model extension is schematized in Fig. 33.
The model first preprocesses the incoming signal in the
peripheral processing modules. This preprocessed signal is
then used to determine spatial locations for the frequency
components, and at the same time to group frequency
components based on pitch using the spectral and pitch
stream layers from the original model. Segregation of
components is accomplished in the pitch and spectral stream
layers; the spatial locations nonspecific ally prime their
corresponding pitch stream layer to bias them towards
grouping components. Next, those components which have
been grouped by pitch are reinforced based on their spatial
locations.

The peripheral preprocessing is identical for both the left
and right 'ears', and consists of the same module as in
the original model. The output of this peripheral processing
is fed to the f -T plane (Colburn, 1973, 1977), where
individual frequencies f are assigned to a spatial location T.

7.1. Influence of spatial location cues on streaming
I Right

Sagittal Ear
Plane
Back

Fig. 32. Geometric representation of spatiallateralization using interaural
timing differences (ITD).

Left
Ear

The auditory system localizes sounds using two different
mechanisms: interaural time differences (ITD) and inter-
aural intensity differences (lID). The concept behind both
ITD and lID is that the listener is comparing the signal
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Fig. 33. Block diagraml of an ARTSTREAM model that incorporates both pitch and spatial location cues.

exists only at the central location; noncentral streams
equally inhibit each other.

In addition, there is feedback from the spectral stream
layer back to the f-T plane. The feedback consists of
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Fig. 34. Interaction between spatial locations in the f -T field, pitch stream
layer, and the spectral stream layer. The nonspecific inhibitory neurons are
not shown. Only one stream can occupy one spatial location, except at the
central 'head-centered' location T = 0, where multiple streams can be
represented. Once a spatial location has been derived, the spatial location
nonspecifically primes all the neurons in its corresponding pitch stream
layer. At the central location, the N streams are all primed. Once
components have been grouped based on pitch, the neurons in a spectral
stream layer specifically excite the components at their corresponding
spatial location. At the central location, the spectral neurons, corresponding
to a given frequency, from all N streams excite the corresponding neuron at

T=O.

Variable 1" represents radial direction, taking on values from
-600 to 600 ~s. The value 1" = 0 corresponds to the central

location, which is a location centered between the 'ears' and
in front of the listener; 1" = -600 corresponds to a location
that is directly to the left of the listener; and 1" = 600

corresponds to a location that is directly to the right of the
listener. It is assumed that 1" maps to radial direction in a
linear fashion. It is also assumed that only one stream can
occupy one spatial location, except at the central 'head-
centered' location, where multiple streams can be rep-
resented, as when a symphony is heard through a pair of
balanced monaural microphones. This scheme realizes a
type of 'acoustic fovea' which donates more represen-
tational space to centered sounds than to peripheral sounds.
Once components have been assigned to a given location,
the location nonspecifically primes all the neurons in its
corresponding pitch stream layer. Fig. 34 depicts how the
spatial locations nonspecifically prime the pitch stream
layers, and how a frequency component at a given spatial
location in the 1-1" is reinforced by its corresponding
frequency component in the spectral stream layer.

The output of the right channel also feeds into the
different streams of the spectral stream layer. The spectral
stream layers are the same as in the original model. The
pitch stream layer is modified so that all neurons within a
stream become active if there are any components present at
that given location. Thus, a pitch stream layer will be biased
to win over another pitch stream layer if there are
components present at that location. At the central location,
the N streams are all excited. In addition, the asymmetric
competition across streams, term Ll',k>ig(Pkp) in Eq. (20),

f

~
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a specific excitatory feedback and a nonspecific inhibitory
feedback, akin to the connectivity from the pitch stream
layer to the spectral stream layer. The specific feedback
excites those harmonic components existing at a given
location where a pitch has been determined. At the central
location, the spectral neurons, corresponding to a given
frequency, from all N streams excite the corresponding
neuron at T = O. The spectral summation layer provides

nonspecific inhibitory feedback to suppress those (inhar-
monic) frequency components that do not belong to that
pitch, allowing other spatial locations to capture that
frequency component, and in turn, leading to complete
resonance within the model.

The extended model is capable of replicating Deutsch
(1975) scale illusion (Fig. 7), where a downward and an
upward scale are played at the same time, except that every
other tone in a given scale is presented to the opposite ear.
The result is that listeners group based on frequency
proximity, and hear a bounce percept. In order to understand
qualitatively how the model can explain this phenomenon,
one needs to recall that the model does not group based on
spatial location, but instead, spatial location only primes the
grouping based on the pitch process. For the first two
simultaneous tones, high C presented to the left ear and a
low C presented to the right ear, the left and right spatial
locations become active, priming their corresponding pitch
stream layers. This in turn causes the left stream to capture
the high C tone and the right stream to capture the low C
tone. For the next two simultaneous tones, a B presented to
the right ear and a D presented to the left ear, both the left
and right channels are still equally active, which causes both
the left and right pitch stream layers to remain equally
primed. Now due to frequency proximity in the spectral
stream layer, the B will be grouped with the high C tone, and
the D will be grouped with the low C tone. Thus, due to
equal activation of the left and right spatial locations,
grouping based on frequency proximity overcomes group-
ing based on spatial location. Similarly, the rest of the tones
in the sequence will be grouped based on proximity, leading
to the bounce percept.

8. Discussion

This paper neurally models aspects of the process that
Bregman (1990) calls primitive auditory scene analysis.
The model suggests how the brain segregates overlapping
auditory components using pitch cues to create different
coherent mental objects, or streams. The model is shown to
qualitatively replicate listeners' percepts of hearing two
streams for two inharmonic tones, variants of the auditory
continuity illusion, bounce percepts for crossing glides
even if the intersection point is replaced by silence or
noise, and the 'M' and inverted 'V' percept for Steiger
(1980) diamond stimulus even if the bifurcation points are
replaced by noise.

The model is called an ARTSTREAM model because the
core mechanisms that control the streaming process are
specializations of Adaptive Resonance Theory, or ART,
mechanisms (Carpenter & Grossberg, 1991; Grossberg,
1980, 1999b, 2003a; Grossberg & Stone, 1986; Raizada &
Grossberg, 2003). These include the matching process
which enables bottom-up energy inputs to activate spectral
stream components in the absence of top-down pitch-
activated inputs, top-down inputs to prime consistent
spectral components in the absence of bottom-up energy
inputs, and a confluence of bottom-up and top-down inputs
to selectively amplify those harmonic spectral components
that are consistent with the pitch, while inhibiting
inconsistent spectral components. Rejected components
are then freed to be represented by other streams, as in the
'old-plus-new heuristic' of Bregman (1990). After matching
selects consistent components, the continued reciprocal
action of bottom-up and top-down inputs generates a
resonance that is hypothesized to give rise to an auditory
percept. In many applications of ART, this resonance also
creates the dynamical substrate for triggering adaptive
tuning of the weights in the bottom-up and top-down
pathways; hence the name adaptive resonance theory. The
ART matching and resonance mechanisms have been
proved to be capable of stabilizing this learning process in
response to dynamically changing input patterns (Carpenter
& Grossberg, 1987, 1991).

Bregman (1990) distinguishes primitive segregation
mechanisms from higher-order processes that he calls
schema-based segregation. Grossberg et al. (1997) and
Grossberg and Myers (2000) have shown that psychophysi-
cal data about such a schema-based process, namely
variable-rate speech categorization, can also be quantitat-
ively modeled using ART matching and resonance rules; see
Grossberg (2003b) for a review. On the other hand, auditory
streaming and phonetic processes seem to have distinguish-
able properties. For example, streaming includes the setting
up of spectral-pitch resonances, whereas phonetic proces-
sing generates (working memory)-(list chunk) resonances
in a different part of the brain. Due to harmonic bottom-up
and top-down filters that bind spectral components to pitch
categories during auditory streaming (Figs. 8 and 9), the role
of harmonics is more important during auditory streaming
than during phonetic perception, as has been experimentally
demonstrated by Remez, Pardo, Piorkowski, and Rubin
(2001) and Remez, Rubin, Berns, Pardo, and Lang (1994).
These examples provide convergent evidence that similar
ART matching and resonance processes operate on multiple
levels of the auditory system. These results extend other
ART explanations of a variety of speech and word
recognition data (Cohen & Grossberg, 1986 and Grossberg
& Stone, 1986).

While the present model of primitive segregation is
capable of qualitatively producing correct responses for the
streaming stimuli mentioned above, the model needs to be
further developed in order to emulate other streaming
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phenomena. For example, the present version of ART-
STREAM does not contain transient onset or offset
mechanisms to help create more sharply synchronized
resonant onsets and offsets. As a result, the spectral layer
decays slowly at the offset of a tone. In addition, onset and
offset cues can influence the segregation process itself. For
example, the continuity illusion of hearing a tone in noise
can be destroyed by decreasing or increasing the amplitude
of the tone at the onset or offset of the noise (Bregman,
1990; Bregman & Dannenbring, 1977). Another set of data
that need further investigation demonstrate how the addition
of harmonics can help overcome grouping by proximity. In
particular, as in Fig. 5c, the addition of harmonics to one
glide in a stimulus that consists of crossing ascending and
descending glides can lead to a cross percept and not a
bounce percept (Bregman, 1990). Using analog, rather than
binary, winner-take-all, activations of pitch stream neurons
should handle these cases by making the activity of pitch
nodes covary with the number of harmonics that activate
them.

Streaming percepts in music perception have been
simulated by Gjerdingen (1994), who has exploited
similarities between apparent motion in vision and stream-
ing in audition. Gjerdingen notes that "a great deal of the
motion perceived in music is apparent rather than real. On
the piano, for example, no continuous movement in
frequency occurs between two sequentially sounded tones.
Though a listener may perceive a movement from the first
tone to the second, each tone merely begins and ends at its
stationary position on the frequency continuum" (p. 335).
By applying Grossberg and Rudd (1989, 1992) model of
visual apparent motion, Gjerdingen has simulated properties
of the van Noorden (1975) melodic-fission/temporal-
coherence boundary, various Gestalt effects involving
musical phrasing and rhythm, aspects of dynamic attending,
and the Narmour (1990) categorical distinction between
those musical intervals that imply a continuation and those
that imply a reversal of direction.

Why is visual apparent motion relevant to auditory
streaming? In an apparent motion display, two successive
flashes of light at different locations can cause a percept of
continuous motion from the first flash to the second flash if
their time delay and spatial separation fall within certain
bounds (Kolers, 1972). A key mechanism that helps to
simulate this percept in the Grossberg-Rudd model is
Gaussian filtering of visual inputs across space followed by
contrast-enhancing competition. If the input (flash) to one
Gaussian wanes through time as the input (flash) to another
waxes, then the sum of the Gaussian outputs has a maximum
that moves continuously between the input locations if the
Gaussians overlap sufficiently. In other words, a traveling
wave of activity moves continuously from one location to
the other. The contrast-enhancing competition spatially
localizes the maximum activity as it moves across space.
This Gaussian wave, or G-wave, has properties of apparent

motion percepts in response to a variety of stimulus
conditions.

In the acoustic domain, visual flashes are replaced by
acoustic tones. Gaussian filtering of visual inputs across
space followed by contrast-enhancing competition is
replaced by Gaussian filtering of acoustic inputs across
frequency followed by contrast-enhancing competition. For
example, although an arpeggio is composed of temporally
discrete tones, it leads to the perception of a continuous
musical phrase, which Gjerdingen (1994) has compared
with the properties of a G-wave. Such properties include the
key fact that a G-wave can continuously link distinct tones
whose relative timing is uniform but whose frequency
separation is variable.

How do the Gaussian and contrast-enhancing properties
needed to generate G-waves compare with properties of the
ARTSTREAM model? Remarkably, these properties are
already part of the spectral and pitch stream layers of the
ARTSTREAM model; see Eqs. (18)-(20). Term Ejp
describes the Gaussianly distributed kernel Mf,kp across
frequency. Term lip describes contrast-enhancing compe-
tition. Thus, the ARTSTREAM model, in its original form,
already incorporates the key mechanisms for causing
'apparent motion' between successive tones. Within ART-
STREAM, these mechanisms are a manifestation of the
need for harmonic grouping of frequency spectra into

winning pitch representations.
Other relevant properties of the Grossberg -Rudd model

are the use of transient cells that are sensitive to input onsets
and offsets, and multiple spatial scales to cope with objects
that move across space at variable speeds. In the acoustic
domain, a movement across space at variable speeds is
replaced by movement across frequencies with variable
speed or spacing.

Chey, Grossberg, and Mingolla (1997, 1998) and
Grossberg, Mingolla, and Viswanathan (2001) have built
upon the Grossberg-Rudd model to explain more data
about visual motion perception. The motion BCS model
uses transient cells and multiple spatial scales to simulate
human psychophysical data concerning the perceived
speed and direction of moving objects. Analogous
mechanisms can be naturally integrated into the ART-
STREAM model to explain directionally selective auditory
streaming percepts (e.g. Bregman, 1990; Steiger & Breg-
man, 1981) as well as properties of directionally sensitive
auditory neurons (Wagner & Takahashi, 1992). All the
properties simulated by Gjerdingen (1994) should also be
achievable with such an extended ARTSTREAM model
when the Gaussians, transient cells, and multiple scales are
combined.

Finally, no learning occurs presently within the ART-
STREAM model. Simulations of how an animal can learn
during development to adaptively tune the harmonic sieves
that abut its pitch stream representations remain to be
carried out. Previous analyses of learning by ART networks
provide helpful hints for how these bottom-up and top-down



S. Grossberg et aL / Neural Networks 17 (2004) 511-536 535

learning processes may be regulated by resonant states of
the brain.
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