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Abstract

How does the brain group together di�erent parts of an object into a coherent visual

object representation� Di�erent parts of an object may be processed by the brain at dif


ferent rates and may thus become desynchronized� Perceptual framing is a process that

resynchronizes cortical activities corresponding to the same retinal object� A neural network

model is presented that is able to rapidly resynchronize desynchronized neural activities�

The model provides a link between perceptual and brain data� Model properties quanti


tatively simulate perceptual framing data� including psychophysical data about temporal

order judgments and the reduction of threshold contrast as a function of stimulus length�

Such a model has earlier been used to explain data about illusory contour formation� texture

segregation� shape
from
shading� �
D vision� and cortical receptive �elds� The model hereby

shows how many data may be understood as manifestations of a cortical grouping process

that can rapidly resynchronize image parts which belong together in visual object represen


tations� The model exhibits better synchronization in the presence of noise than without

noise� a type of stochastic resonance� and synchronizes robustly when cells that represent

di�erent stimulus orientations compete� These properties arise when fast long
range coop


eration and slow short
range competition interact via nonlinear feedback interactions with

cells that obey shunting equations�
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� Introduction

The primate visual system performs the complex task of analyzing the visual environment
in several stages� Retinal signals are transmitted to the lateral geniculate nucleus �LGN�
and from there to the striate cortex �V��� It is known that the latency of the response
onset of retinal and geniculate neurons is variable� even to identical stimuli �Shapley �
Victor� ����� Sestokas � Lehmkuhle� ������ Moreover� the latency depends on stimulus
parameters� More luminant stimuli are processed faster than less luminant stimuli� and
lower spatial frequencies are processed faster than higher spatial frequencies �Bolz� Rosner�
� W�assle� ����� Sestokas � Lehmkuhle� ������ Since most images from a real environment
contain a variety of luminances and spatial frequencies� processing of di�erent parts of an
image may happen at di�erent rates� so that the cortical representation of the image may
be desynchronized� As long as the retinal image is constant� this does not cause serious
problems� However� when there is motion in the retinal image� the visual system needs to
ensure that all the parts corresponding to the same retinal image are processed together� to
avoid illusory conjunctions that could impair recognition of objects in a scene� This problem
is illustrated in Figure �� Under extreme conditions� such as the rapid presentation of visual
stimuli� it can happen that illusory conjunctions do occur �Intraub� ������
Perceptual framing is the process whereby the parts of an image are resynchronized

�Varela� Toro� John� � Schwartz� ������ In the present study� a neural network model is
presented that exhibits perceptual framing� so that inputs to the network are resynchronized
if they are temporally o�set by less than a critical delay� The present study also shows
that perceptual framing can be implemented with the same type of bipole cell cooperative
connections that have been postulated in a model of form perception and perceptual grouping
�Cohen � Grossberg� ����� Gove� Grossberg� � Mingolla� ����� Grossberg� ����� �����
Grossberg � Mingolla� ����a� ����b� Grossberg� Mingolla� � Todorovi�c� ����� and reported
in neurophysiological experiments on area V� of the primate visual cortex �von der Heydt�
Peterhans� � Baumgartner� ����� Peterhans � von der Heydt� ������
Another issue that has to be dealt with by the visual system is that information in

the visual cortex is spatially distributed� How does this information get bound together
into coherent object representations� This is necessary since the interpretation of an image�
which includes the recognition and spatial localization of objects in the image� requires global
information� The anatomy of visual cortex suggests that horizontal connections within each
area� and feedback connections between di�erent areas� occur at multiple processing stages
�Felleman � Van Essen� ����� Gilbert� ������ The present study focuses on interactions
between neighboring neurons via feedback from subsequent processing stages� It is shown
that horizontal integration within the visual cortex can enhance performance of single cortical
cells� and thus can form a starting point for the global grouping and understanding of visual
images� The perceptual framing model is developed herein to suggest explanations of the
following types of data�
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Figure �� An illustration of the temporal framing problem� Some stimulus attributes are
processed faster than others� Since real world scenes contain a whole spectrum of attributes
it is possible that di�erent parts of a single image get processed at di�erent times�
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� Neural activities synchronize across wide regions of visual cortex in cats �Eckhorn�
Bauer� Jordan� Brosch� Kruse� Munk� � Reitboeck� ����� Gray� K�onig� Engel� �
Singer� ����� and monkeys �Freeman � van Dijk� ����� Kreiter � Singer� ����� with
a period of about ��ms�

� Temporal order judgment data suggest that at about ��ms stimulus onset asynchrony
�SOA� subjects begin to obtain a reliable representation of the temporal order of two
brief stimuli �Hirsch � Sherrick� ������

� Spatial pooling e�ects lead to a reduction of the contrast threshold as the length of
stimuli is increased up to ��� degrees �Essock� ������

� Stochastic resonance can improve performance in the presence of noise at small levels of
noise� This improvement manifests itself in an enhanced signal�to�noise�ratio �SNR�
in the output compared to that in the input �McNamara � Wiesenfeld� ������

� Synchronization also occurs in the presence of intercellular competition�

Furthermore� the model makes the following prediction about spatial pooling and temporal
threshold�

� Spatial pooling leads to a reduction of the minimum time necessary for detection as
the length of stimuli is increased�

Some of the results described here have previously been presented in abstract form �Grunewald
� Grossberg� ����a� ����b��

� Other models of cortical synchronization

What sorts of mechanisms could� in principle� achieve cortical synchronization� Bottom�up
convergence of signals in visual cortex does not su
ce as a mechanism for synchronization� if
only because cortical cells have a fast rate of integration �Mason� Nicoll� � Stratford� ������
yet the responses of cortical cells within the �rst �ms after response onset is a ��� accurate
predictor of the entire response strength �Celebrini� Thorpe� Trotter� � Imbert� ����� Oram
� Perrett� ������ It has also been shown that synchronization cannot be mediated by
a clocking mechanism such as the cortical alpha�rhythm �Gho � Varela� ������ because
triggering stimuli in a temporal order judgment task �see Section ���� to the alpha rhythm
did not a�ect performance�
Here wemodel how synchronization of distributed cortical activities by recurrent cooperative�

competitive interactions that can temporally realign out
of
phase image parts� Cortical ac

tivities synchronize in the cat and in the monkey when a stimulus is present in the visual
�eld �Eckhorn et al�� ����� Gray � Singer� ������ even when the receptive �elds of the
units recorded do not overlap� Speci�cally� when the receptive �elds of the cells from which
recordings were made did not overlap� then synchronization nonetheless occurred when a bar
that extended across both receptive �elds was swept through the image� Weak synchroniza

tion also occurred when the bar was occluded in the middle �i�e�� the area that lies between
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the receptive �elds�� No synchronization occurred if two separate bars were swept through
both receptive �elds simultaneously in opposite directions� Similar results were also found
in the awake monkey �Kreiter � Singer� ������ Synchronization has been shown to occur
across wide cortical distances �Gray et al�� ������ and even across hemispheres �Engel� K�onig�
Kreiter� � Singer� ������ Initially it was postulated that synchronization occurs between
oscillating cell sites �Gray � Singer� ������ a claim that has been controversial �Ghose �
Freeman� ����� Young� Tanaka� � Yamane� ������
These experiments have inspired a large number of models of cortical synchronization

�Baldi � Meir� ����� Eckhorn� Reitboeck� Arndt� � Dicke� ����� K�onig � Schillen� ������
The present model di�ers from these alternative models in several important respects� First
and foremost� the present model is part of a larger neural theory of visual perception that
already has been used to explain and predict many psychophysical and neural data� see
for example Francis et al� ������� Field et al� ������� Gove et al� ������� Graham et al�
������� Grossberg ������� Grossberg and Mingolla �����a� ����b� ����� and Lesher and
Mingolla ������� Here we show that a variant of the same boundary segmentation process
that has already explained data about such varied phenomena as illusory contours� texture
segregation� shape�from�shading� visual persistence� and hyperacuity can also explain data
about perceptual framing and spatial pooling� Other models of cortical synchronization have
not yet been used to parametrically simulate perceptual data� Without such a behavioral
linking hypothesis� such models cannot be said to explain the binding problem of visual
object perception�
Second� the present model achieves fast synchronization of desynchronized and dis


tributed data� Grossberg and Somers ������ �rst demonstrated this property with computer
simulations� and Somers and Kopell ������ have proved it mathematically� Fast synchroniza

tion is needed to frame together desynchronized object parts before they can be incorrectly
bound with incorrect parts of other objects� as Intraub ������ has shown can occur among
image parts from di�erent images in very rapidly presented image sequences� see Section ����
The present work builds upon the results of Grossberg and Somers ������� Various other
synchronization models have not demonstrated fast synchronization� or do not represent
neuron dynamics� but instead use formal equations for phase synchronization �Baldi � Meir�
����� Lumer � Huberman� ����� Niebur� Schuster� Kammen� � Koch� ������ Terman and
Wang ������ described an oscillator that shares some mathematical properties of the Ellias
and Grossberg ������ oscillator that is the basis for the present model� see Sections � and
�� Their model uses local cooperation and global competition� rather than our long
range
cooperation and short
range competition employed herein� to rapidly synchronize locally
connected image �gures and to desynchronize spatially disjoint �gures� The Terman
Wang
study does not attempt to explain any perceptual data or to explain how neurons with spa

tially separated receptive �elds can synchronize� The present model does make this attempt�
and provides a functional rationale for the longer
range cooperation and shorter
range com

petition that have been reported in both cortical area V� and V� �Gilbert � Wiesel� �����
Grosof et al�� ����� Kapadia et al�� ����� Kisv�arday et al�� ����� von der Heydt et al�� ������
One reason for these gaps in other models may be that they do not view the synchroniza


tion task as one of perceptual framing� or of fast resynchronization of temporarily desynchro

nized object parts� Rather� they attribute all binding properties to the very existence of a
synchronous oscillation between object parts� In many such models� the phase of the oscilla
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tion is taken to encode all the features that belong within a single object� Some models also
require that attention be focused upon an object or object part before it can synchronously
oscillate �Crick � Koch� ������ It is hard to understand� however� how an object�s phase
can remain constant as its image size and position on the retina change radically� while
the same is happening to other objects� due to changes in their distances and angles with
respect to an observer� It is also well
known that segmentation of unfamiliar objects can
occur preattentively before attention is engaged�
In the present account� the ability to resynchronize asynchronous object parts� not the

existence of oscillations per se� becomes the focus of interest� Here� key properties of framing
are attributed to interactions of long
range cooperative cells that are called bipole cells�
Although we simulate this model in a parameter range where oscillations occur� segmentation
can also occur using the present type of model in parameter ranges where oscillations do not
occur �Grossberg � Mingolla� ����a� ����b�� In the present model� oscillations provide an
extra degree of freedom that calibrates how asynchronous object parts can become and still
be rapidly resynchronized� or framed� together �Grossberg � Somers� ������
Using bipole cells� textured objects can be bound together �Gove et al�� ����� Grossberg

� Mingolla� ����b� ����� Grossberg et al�� ����� Waxman et al�� ������ In a textured scene�
objects are often de�ned by spatially disjoint textural elements� Moreover� the textural
elements belonging to di�erent objects may be as close together as the elements belonging to
the same objects� In order to separate such objects from one another� a mechanism is needed
that can bridge the featureless spaces between texture elements� and can use properties such
as texture orientation� size� depth� and alignment across space to distinguish which textures
belong to which objects� The Boundary Contour System model of which bipole cells form
a part has been shown capable of grouping under these conditions� It is hard to see how
a mechanism using unoriented nearest
neighbor cooperation and global competition� as in
Terman and Wang ������� could accomplish this� All simulations of their model use simple
connected �gures that are widely separated from one another�
Finally� one in�uential binding model� that of von der Malsburg ������� suggests that

binding requires a type of ultrafast synaptic plasticity that has not yet been experimentally
observed� see also Terman and Wang ������� The present model synchronizes without the
bene�t of fast plasticity� On the other hand� its synchronous� or resonant� neural states have
been proposed to initiate synaptic learning on a slower time scale �Carpenter � Grossberg�
����� Grossberg� ����� ����� that is consistent with known properties of long
term poten

tiation or LTP �Bliss � Collingridge� ������ Perceptual framing may thus be utilized not
only for perception� but also for learning about the visual environment� Indeed it is known
that perceptual learning can occur within hours� with e�ects lasting for a long time �Karni
� Sagi� ������

� Perceptual framing and temporal order judgments

This section provides a review of psychophysical data on temporal aspects of visual per

ception which suggests that the temporal precision of behavioral visual processing can be
quite accurate� A brief review of neurophysiological data shows that early stages of neural
processing are temporally inaccurate� but later stages are not� The model suggests how a
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synchronization process can reconcile these various data� The reader can skip to Section �
for an intuitive discussion of the model itself� The model is used to simulate data about
temporal order judgments in Section � to illustrate its temporal synchronization properties�
Data about spatial pooling are simulated in Section � to further test the spatial interactions
that achieve temporal synchronization� The model�s robustness is illustrated in Section �
with simulations in noise or in the presence of competitive interactions� Model equations
and parameters are given in Section ��

��� Psychophysical data concerning of temporal dynamics

One partially informative way to study temporal dynamics in visual perception is to use
reaction time studies� The reaction time paradigm has been used to study the dependence
of reaction time on the contrast of a �ash of light� and it was found that the reaction time
decreases with increasing contrast �Burkhardt� Gottesman� � Keenan� ������ even if the
energy of the �ash is kept constant� provided the �ash is not too close to threshold� in
which case Bloch�s law holds� Similarly the reaction time depends on the wavelength of the
stimulus �Ueno� Pokorny� � Smith� ����� and the spatial frequency �Gish� Shulman� Sheehy�
� Leibowitz� ������
Such RT studies show that changing the stimulus along a feature dimension may change

the rate of processing� In a display with several stimuli characterized by di�erences along
the same feature dimension� these results would carry over if processing of the image were
independent for each stimulus� However� spatiotemporal interactions occur during image
processing� including brightness illusions and e�ects of �lling
in �Arrington� ����� Grossberg
� Todorovi�c� ����� Paradiso � Nakayama� ������ Thus RT studies of single feature pro

cessing cannot be directly used to predict the temporal dynamics of composite images or
realistic scenes�
Temporal order judgment �TOJ� is another paradigm that has been used to compare the

rates at which two di�erent stimuli are processed� In this paradigm� observers are presented
with two �ashes of light at di�erent locations in rapid succession� and they have to indicate
which stimulus appeared �rst� Usually the duration of the stimuli is kept constant� but
the stimulus onset asynchrony �SOA� is varied� The result of such an experiment is a
psychometric curve� where the probability for correct detection is given as a function of
SOA�
Two points of that psychometric function are of particular importance� the point of

subjective simultaneity �PSS�� and the threshold for accurate TOJ perception� The PSS is
the point at which the psychometric function crosses the ��� level� If the two stimuli are
identical� then the PSS will lie at � SOA� and it will shift if the two stimuli are processed at
di�erent rates� By convention� the point at which the psychometric function is ��� is often
used as a threshold value for simultaneity� An in�uential study by Hirsch and Sherrick ������
showed that the threshold lay at about ��ms under optimal conditions� Their subjects were
highly trained� and the stimuli used were bright dots with high ambient illumination�
In another study� Sternberg and Knoll ������ developed the independent channels model

of TOJs� According to this model� each stimulus is processed independently� and they only
interact at the site at which the temporal order is actually determined� Several decision
functions at that site distinguish between di�erent versions of the independent channels
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model�
Recent investigations comparing RT and TOJ data have investigated whether the two

paradigms yield equivalent results� Ja�skowski ������ varied the onset rise times of visual
stimuli� and compared that to a stimulus with zero rise time� The RT study showed that the
rise time had only a small e�ect� while the TOJ experiments showed a clear slowing down of
processing as rise time increased� Similarly� Tappe� Niepel� and Neuman ������ found that if
gratings were used as stimuli� then RT relative to a reference stimulus increased signi�cantly
more with spatial frequency than PSS�
In summary� RT studies and TOJs do not yield the same results about relative rates

of processing� It has been shown that the motor component of RT is not independent of
stimulus properties �Ulrich � Stapf� ������ Thus it is possible that the dependence of motor
reaction time on the visual stimulus may corrupt RT times too much for them to be a useful
tool in the present context� For this reason� TOJ results are preferable over RT results as an
explanatory target� The results from TOJs suggest that temporal perception is remarkably
accurate�
Rapid serial visual presentation �RSVP� is a di�erent paradigm that can employ realistic

scenes� Observers are presented with a sequence of visual stimuli at very high frame rates
�about �� Hz�� Several tasks are used in conjunction with RSVP� Observers may be asked to
detect a particular stimulus� they may be asked to identify which stimulus had a particular
feature� which feature followed a particular cue� etc� The nature of the paradigm lends itself
for the study of how subsequent stimuli interact when they are being rapidly processed�
Intraub ������ employed a RSVP paradigm in which observers had to recognize which

object was surrounded by a frame �see Figure ��� The motivation for that study was to
investigate how di
cult it is to perceive a single visual stimulus as a whole� She found
that subjects were quite reliable at this task until she increased the frame rate to very high
levels� In that case� observers often reported that the frame appeared around an object that
preceded or followed the correct object� These illusory conjunctions do not seem to depend
upon attentional manipulation� This experiment also indicates that only under very extreme
conditions do the processing of the object and the surrounding frame not occur together�
Similar observations using colored digits have also been reported �McLean� Broadbent� �
Broadbent� ������ These experiments� in which observers had to identify the color of a target
digit in a stream of digits� showed that observers sometimes reported the color of an earlier
or later digit�

��� Neurophysiological data concerning temporal dynamics

Latencies of neuronal responses in the retina and in the lateral geniculate nucleus �LGN� vary
to a considerable extent for identical stimuli �Shapley � Victor� ����� Sestokas � Lehmkuhle�
������ The standard deviation of response onset latencies in the LGN has been reported
to vary between �� and �� ms depending on the stimulus� and the standard deviation of
the response peak latency has been shown to be even bigger �Bolz et al�� ����� Sestokas
� Lehmkuhle� ������ In other words� the timing of neural events at early stages of visual
processing seems quite crude�
If the neuronal responses in the visual cortex were independent� and only based on

independent feedforward activation from the LGN� then one would expect that the variances
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Figure �� Illusory conjunctions can occur under extreme conditions� as shown by Intraub
������� In that study� observers were shown sequences of images at high presentation rates
�� Hz�� One of those images was surrounded by a frame� and observers had to report which
image was surrounded by a frame� Observers often reported objects prior or after the correct
object�
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of the response onset latencies to add� thus yielding even greater uncertainty as to the
precise onset of neuronal responses� Several neurophysiological studies addressed this issue
and concluded that the standard deviation of response onset latencies in the visual cortex
is just �� ms �Celebrini et al�� ����� Maunsell � Gibson� ����� Vogels � Orban� ������ A
careful analysis of the response onset latencies �Maunsell � Gibson� ����� by cortical layer
showed that the standard deviation is as small as �ms� These data suggest that� contrary to
the expected increase in variability� a decrease is taking place� In other words� the activities
in visual cortex cannot be independent� and some form of interaction reduces earlier levels
of temporal uncertainty�
A recent study by Nowak� Munk� Girard� and Bullier ������ reported recordings from the

primate visual cortex in areas V� and V� in which higher values for the standard deviation
were obtained� even when they took into account the cortical layer within which a neuron
is situated� At �rst sight� these data appear puzzling� and in direct contradiction to the
above cited primate data� However� the di�erences may be accounted for by the animal
preparation used� The animals in the study by Maunsell and Gibson ������ were awake and
behaving monkeys� while Nowak et al� ������ used anesthetized monkeys� It is possible that
the anesthesia had an adverse e�ect on the response accuracy of cells�
Recordings from the retina and from the LGN show that processing speed also depends

on stimulus characteristics� Very luminant stimuli are processed substantially faster than
less luminant stimuli �Bolz et al�� ����� Sestokas � Lehmkuhle� ������ and gratings with
lower spatial frequency are processed faster than gratings with higher spatial frequencies
�Sestokas � Lehmkuhle� ������ This e�ect has been studied when only a small stimulus is
in the image� This result needs to be reconciled with the perceptual constancy of PSS as
spatial frequency changes �Tappe et al�� ������

��� Perceptual framing as resynchronization

More generally� the upper limit within which di�erent features of an image appear simulta

neous needs to be explained� The above discussion of psychophysical and neurophysiological
data can be viewed very much as expressing the same result� Temporal processing of visual
information can be variable� due to di�erent rates of processing for di�erent stimulus fea

tures� yet when several features belonging to the same object are presented simultaneously�
that variability is reduced� except in extreme circumstances such as RSVP� through a process
of perceptual framing �Varela et al�� ������ The data suggest that perceptual framing occurs
only in the presence of several stimuli within the visual �eld� In other words� perceptual
framing is inherently a spatio
temporal phenomenon wherein spatial interactions between
visual events in time somehow resynchronize them�

� A model of perceptual framing

The model we propose is an extension of a model that was introduced by Grossberg and
Somers ������ to explain how cortical activity can quickly be synchronized without a central
rhythm generator� That model is a simpli�cation of the Boundary Contour System �BCS�
for emergent boundary segmentation of Grossberg and Mingolla �����a� ����b�� The BCS
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has been progressively developed over the years to explain ever larger data bases about how
the interblob processing stream of the visual cortex helps to generate internal representations
of Form
And
Color
And
DEpth� or FACADES� that are� predicted to be completed in area
V� of the extrastriate cortex� See Grossberg ������� Grossberg et al� ������ and Grossberg
������ for reviews� Many previous BCS computer simulations have used a non
oscillatory
variant of the model to suggest explanations of data on illusory contours� texture segregation�
brightness perception� shape
from shading� and �
D vision �see above references�� Other
studies extended this steady
state analysis to the dynamics of segmentation reset in the ���
ms range with simulations of visual persistence data that measure how long a boundary
segmentation persists after stimulus o�set �Francis � Grossberg� ����� Francis et al�� ������
The present work analyses the temporal dynamics of the faster time scale on which boundary
segmentation forms�
The goal of Grossberg and Somers ������ was to simplify the BCS model as a much as

possible to expose the core mathematical mechanism behind fast resynchronization� They
thereby demonstrated how this key property could be used to explain cortical neural data on
synchronization �e�g�� Eckhorn et al�� ����� Freeman and van Dijk� ����� Gray et al�� �����
Kreiter and Singer� ����� using a perceptual theory that had already been used to suggest
explanations of many other types of perceptual and neural data� The present work contin

ues this strategy to strengthen the linking hypothesis between perceptual and neural data
that both probe the synchronization process� To the present time this is the only model of
which we are aware that makes the linking hypothesis� Indeed� the model� ��� demonstrates
fast synchronization� Fast synchronization means that the model can resynchronize desyn

chronized cell activities within a few cycles of the oscillation� Grossberg and Somers ������
demonstrated synchronization within a single cycle� Such rapid synchronization enables the
model to carry out perceptual framing� In addition� the model provides an explanation of�
��� cortical neural data about synchronization� ��� perceptual data about synchronization�
and ��� perceptual data about grouping processes other than synchronization�
The BCS contains a feedforward �lter followed by a feedback grouping network� The

simpli�ed BCS only contains a variant of the feedback grouping network� It contains three
types of cells �Figure ��� The �rst two cell types are fast excitatory cells �cells that react
quickly� and slow inhibitory cells �cells that react slowly� that are coupled together through
reciprocal pathways �Figure ��� An excitatory cell excites itself� an inhibitory interneuron�
and a third type of cell� called a bipole cell� that couples excitatory cells together� An in

hibitory cell inhibits only the excitatory cell from which it derives its excitation� Inputs
to the excitatory cells are capable of triggering oscillations within such a network� Each
excitatory cell obeys a membrane equation which includes multiplicative� or shunting� in

teractions between the cell potential and its input and feedback signals �Grossberg� �����
Hodgkin� ������ Each slow inhibitory cell obeys a simpler additive equation that linearly
time
averages signals from the excitatory cell� This combination of fast shunting and slow
addition was �rst used in Ellias and Grossberg ������ to simulate oscillatory dynamics� A
mathematically similar type of dynamics was proposed by Morris and Lecar ������ to explain
voltage oscillations in an invertebrate preparation� Somers and Kopell ������ have analyzed
mathematically how Ellias
Grossberg and Morris
Lecar models generate fast resynchroniza

tion �e�g�� synchronization within one processing cycle�� whereas sinusoidal oscillators do
not�
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Figure �� The architecture of the fast synchronization model� A layer of fast�slow oscillators
is recurrently coupled to a layer of bipole cells�

The third cell type� called a bipole cell� couples the excitatory cells together via long
range
cooperative feedback� Bipole cells have tripartite receptive �elds� Two of these sub�elds
branch in a laterally oriented direction from the bipole cell body� The third inputs directly
to the cell body� The bipole cell �res if at least two of the three sub�elds are activated
by excitatory cells� If the two oriented branches are excited� then a bipole cell can help to
complete a boundary between these branches� If one branch and the cell body are activated�
then a bipole cell can be activated at a line end�
The present study re�nes that of Grossberg and Somers ������ by using a tripartite�

rather than a bipartite� bipole cell receptive �eld and a sigmoidal signal function in the fast

slow oscillator� rather than the threshold
linear signal function that was previously used�
to quantitatively simulate psychophysical data� The tripartite bipole cell facilitates syn

chronization near line ends� The sigmoid function enables low levels of activity spread out
over space to collectively generate su
ciently high activity in the bipole cells to trigger
feedback signals� In this way� small and temporally desynchronized signals that converge
on bipole cells can induce large and synchronous network responses� The model is de�ned
mathematically later in the article�
It should also be noted that models which use similar cell dynamics do not necessarily

synchronize when they are coupled in di�erent ways� Grossberg and Somers ������ �����
demonstrated that synchronous oscillations occur when any of several excitatory couplings
are used� bipole� adaptive �lter� nearest neighbor� and random� Alternative cooperative

competitive couplings can� however� generate combinations of in
phase and anti
phase oscil

lations that have been used to model the control of gait changes during quadruped locomotion
in vertebrates �Grossberg� Pribe� � Cohen� ����� Pribe� Grossberg� � Cohen� ������ Thus
the present model forms part of a larger mathematical theory that is being developed to
clarify how cell dynamics and geometry work together to determine the emergent oscillatory
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structure�

� Simulation of temporal order judgments

As noted in Section ���� one way to test the notion of perceptual framing is to link it to
temporal order judgments �TOJs� between two visual stimuli� When perceptual framing
breaks down� two stimuli can be perceived as successive� whence observers can identify their
temporal order� Hirsch and Sherrick ������ found that the point at which subjects reach
threshold in a TOJ task lies at about ��ms SOA for highly trained subjects using bright
stimuli with high ambient illumination� See Figure �� which also shows that the behavior of
the model closely approximates their data�

Figure �� Accuracy of temporal order judgments as a function of SOA� Comparison between
experimental results �Hirsh � Sherrick ����� and model simulation� SOA indicates the time
by which stimulus one �e�g�� the �left stimulus�� leads the other stimulus in a two stimulus
presentation task� The ordinate gives the percent responses that stimulus one appeared �rst�
Solid line� results from simulation of the model� Dashed line� results from experimental
study� Positive SOA means that the �left� stimulus was presented �rst� negative means that
the �right� stimulus was presented �rst�

Figure � provides a �ner description of how synchronization is related to the plot of
Figure �� This simulation plots the time di�erence between the peak activity of the internal
representations of two external stimuli as a function of their SOA� The solid line shows
the e�ects of synchrony on small SOAs� For di�erent SOAs� we found the internal time
di�erence  t for the corresponding neural signals in the model� The time of the response
peak corresponding to each of the two stimuli is a random variable� and the mean of the
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di�erence between the two random variables corresponding to the two stimuli is the internal
time di�erence  t� The probability that each of those neural signals occurs at any given
time follows the normal distribution� where the mean of the �rst signal can be set to zero�
and the mean of the second can be set to  t� The standard deviation of the time of the peak
response � is the same for both� and has been reported experimentally to be �ms �Maunsell
� Gibson� ����� Zack� ������ The probability that the signal corresponding to the �rst
stimulus is perceived �rst can be found by taking the di�erence of the two random variables�
which is also a normal distribution� with mean  t and standard deviation

p
��� Thus the

probability that the �rst stimulus in a two stimuli paradigm is perceived �rst� and hence
that the temporal order of the stimuli is perceived correctly� is given by

P ! "

�
 tp
��

�
� ���

where " is the cumulative normal distribution function�

"�x� !
�p
��

Z x

��

e�
�

�
t�dt� ���

Each SOA leads to a di�erent value for  t� and hence a di�erent probability P � In Figure �
the experimental results of Hirsch and Sherrick ������ about temporal order judgments and
the simulation results are compared� The simulations match the data closely�

� Simulation of spatial pooling

Spatial pooling describes the property that the contrast sensitivity for larger stimuli is lower
than for smaller stimuli� For stimuli of about one degree in size� this property is often
attributed to spatial summation� Generally� spatial summation depends upon the area of the
image �Ricco�s Law�� If an object has larger area� then it will stimulate more photoreceptors�
and more geniculate and striate cortical neurons� thus leading to a lower threshold� However�
Thomas ������ found that� even using lines of constant area� an increase of the line length
leads to a lower detection threshold� Since the area was small enough to fall entirely within
the fovea� this suggests that some form of additional spatial interaction is at work� rather
than just a real summation� One interpretation is that the short lines cover only part of the
receptive �eld of a simple or complex cell� and that as longer lines begin to cover more and
more of the receptive �eld� the cells get more active� Along with this argument goes that
�nding that the receptive �eld sizes of simple and complex cells �Hubel � Wiesel� ����� are
in line with the dimensions used in some psychophysical studies �Bacon � King
Smith� �����
Thomas� ������
Other studies have used gratings that are substantially longer �Essock� ������ Here�

an e�ect of spatial pooling was observed which asymptoted only after the stimulus length
reached ��� degrees� This length is signi�cantly bigger than the receptive �elds size of simple
and complex cells in monkey �Hubel � Wiesel� ������ and hence speaks in favor of a process
involving oriented interactions between cortical neurons� Such interactions may be mediated
by horizontal connections within cortical area V� �Gilbert� ����� or V� �von der Heydt et al��
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Figure �� Perceptual framing� The abscissa indicates the SOA �in simulated ms� between
two stimuli� and the ordinate gives the resulting time di�erence �in simulated ms� between
peaks of activity in the internal representations of the two stimuli� Solid line� performance in
the presence of bipole coupling� dashed line� performance in the absence of bipole coupling�
The oscillatory nature of the underlying network processing is re�ected in the fact that both
curves cross the x
axis several times for nonzero SOAs�

����� Peterhans � von der Heydt� ����� or by feedback of such interactions from area V�
to V� �Alonson� Cudeiro� P�erez� Gonzalez� � Acu#na� ������ The present study attributes
spatial pooling interactions to horizontal connections mediated by bipole cells and shows
that such network spatial pooling is su
cient to simulate the data beyond the range of
spatial summation e�ects within single receptive �elds� No �t of the model was attempted
for very small stimulus sizes� Figure � shows a comparison between the spatial pooling data
of Essock ������ and simulations of the model� This graph was obtained by increasing the
contrast of the input until the minimum value was found that led to oscillations�
A second way in which spatial pooling could manifest itself is by a decrease in the

minimum presentation time needed for stimulus detection as stimulus length increases� The
same mechanism that synchronizes activities across the network model can also lead to such
spatiotemporal pooling� and thus to a reduction of the time necessary to perceive objects as
the line length is increased� This prediction of the model is simulated in Figure �� Since the
model is not calibrated in space� normalized spatial variables are shown�
One could argue that this spatial pooling e�ect could also be mediated by additional

cortical mechanisms� The present simulation shows that the same type of bipole cell cooper

ation that has been used to explain other types of boundary grouping data is also su
cient
to provide a quantitative explanation of spatial pooling�
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Figure �� Spatial pooling� As the stimulus size increases� the threshold contrast decreases�
Size and contrast are normalized with respect to the asymptotic value for large sizes� Solid
line� results from simulation of the model� Dashed line� data of Essock ������� $Reprinted
with permission from Essock �������%

Figure �� The minimal length predicted by the model for detection as a function of presen

tation time� At brief presentation times� long stimuli are more visible than short ones�
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� Stochastic resonance and competitive dynamics

Stochastic resonance is a phenomenon that typically occurs when a oscillatory signal is
fed into a bistable process that is capable of switching between two modes �McNamara �
Wiesenfeld� ������ The oscillations in the input entrain oscillations in the bistable unit�
Stochastic resonance is said to occur when� for some noise levels� the signal�to�noise�ratio
�SNR� in the output unit can be higher than in the input�
Stochastic resonance was �rst reported in the context of periodic variations of the climate

of the earth �Benzi� Sutera� � Vulpiani� ������ In a later study� it was suggested that
neural processing might employ such a mechanism to improve performance �Longtin� Bulsara�
� Moss� ������ This suggestion has recently been con�rmed in a physiological study of
mechanoreceptors in the cray�sh �Douglass� Wilkens� Pantazelou� � Moss� ������

Figure �� Perceptual framing can improve when there is noise in the background� a type of
stochastic resonance� Solid line� internal time di�erence in the presence of noise� Dashed
line� internal time di�erence in the absence of noise�

A simulation showing how the network maintains� and can even improve� its synchro

nization in noise is shown in Figure �� As in stochastic resonance� this key functional
property improves in noise� These properties continue to hold if the model neurons com

pete via recurrent lateral inhibition� or competition� Competition is well
known to be an
essential component of visual processing �Ku&er� ����� Ratli�� ������ Competition tends to
sharpen� or contrast
enhance� activities across a neural representation� while normalizing the
network�s total activity and preventing saturation of cell activities in response to variable
inputs �Grossberg� ������ Figure � shows how competition could occur within the model
between two oscillators coding di�erent orientations at the same location� This competi

tive interaction is analogous to the orientational competition that is posited to occur within
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cortical hypercomplex cells in the BCS model of Grossberg and Mingolla �����b� ������

Figure �� Competition between two oscillators coding two di�erent orientations at the same
location� Since only a one
dimensional simulation was used� only the horizontal oscillator
produces an output that is fed into bipole cells� Hence only horizontal oscillators receive
external input� Note that competition is between the slow node of one oscillator and the
fast node of the other oscillator�

It is not obvious that competition would not alter the ability of the entire nonlinear
oscillatory system to achieve synchrony� Figure �� shows that competition does not prevent
synchronization in the present model� Here two curves of perceptual framing are plotted�
one in the absence of competition� and one in its presence� with little di�erence�

� Model equations and parameters

Because bipole cells carry out oriented cooperation� the main model properties can ade

quately be demonstrated through one
dimensional simulations� In particular� model simula

tions used �� oscillators arranged along a ring� Each oscillator consisted of two nodes each�
one fast and one slow� The activity of the fast node is denoted by xi and of the corresponding
slow node by yi� The index i denotes the position of the oscillator and ranges from � to ���
Oscillators with indices di�ering by one are neighbors� Since the oscillators are arranged as a
ring� units indexed by � and �� are also neighbors� This structure was chosen to avoid edge
e�ects� Care was taken to ensure that input was su
ciently far removed from the wrap

around position to avoid interactions around the whole ring� The input is then processed
without edge e�ects or cross
talk due to spurious wrap
around interactions� The input to xi
is denoted by Ii and it is position speci�c� Associated with every oscillator is a bipole cell
whose activity is denoted by zi� The activities xi� yi� zi can also be interpreted as the mean
potential of a population of cells� which is in accord with recent evidence suggesting that
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Figure ��� The e�ect of competition on perceptual framing� Solid line� competition at each
orientation� Dashed line� no competition�

neurons that synchronize do not necessarily oscillate at each cycle �Eckhorn � Obermueller�
������ The equations governing the oscillators are�
FAST SHUNTING EXCITATORY NEURON

dxi
dt
! �Axi ' �B � xi� �Cfa�xi� ' fa�zi� ' Ii��Dxifa�yi� ���

SLOW ADDITIVE INHIBITORY NEURON

dyi
dt
! E�xi � yi� ���

where the sigmoid function fa in ��� that transforms cell activity into signals is given by

fa�x� !
xna

Qna
a ' xna

� ���

Equation ��� is a membrane� or shunting� equation which describes the in�uences of positive
feedback fa�xi� from the ith excitatory cell population to itself� positive feedback fa�zi� from
the ith bipole cell� input Ii� and negative feedback from the ith inhibitory interneuron� see
Figure �� The terms �B � xi� and ��Dxi� are the shunting terms that automatically gain
control the excitatory and inhibitory inputs� respectively� Equation ��� says that the ith
inhibitory interneuron slowly time
averages input from the ith excitatory cell�
Quantities A�B�C�D�E� na and Qa are parameters of the network� The equation gov


erning the bipole cells is�



March ��� ���� ��

BIPOLE NEURON

zi ! $fb�Li� ' fb�Ri� ' Ffb�Ci� � (%� ���

where $x%� ! max�x� �� and the bipole signal function is

fb�x� !
xnb

Qnb
b ' xnb

� ���

Equation ��� is expressed as an algebraic equation because it is assumed that the bipole cell
responds quickly to its input signals� The terms fb�Li� and fb�Ri� describe input signals to
the ith bipole cell from its left and right receptive �elds� respectively� The term Ffb�Ci�
describes a direct input to the location of the cell body� Each input term in ��� has a �nite
maximum due to the squashing e�ect of the sigmoid signal fb� The output threshold ( is
chosen so that at least two out of three of these receptive �eld parts must be active before
the cell could �re� In principle� parameter F could be chosen so that a single input at the
location of the bipole cell could also �re it� The terms Li� Ri and Ci that represent these
bottom
up inputs to each bipole cell are given by

Li !
�

w

wX
j��

fa�xi�j� ���

Ri !
�

w

wX
j��

fa�xi�j� ���

Ci ! fa�xi�� ����

where w is the halfwidth of the kernel� Taken together� equations ���
���� de�ne a system of
Ellias
Grossberg oscillators �Ellias � Grossberg� ����� coupled together with bipole feedback�
Scaling of time was done by taking into account that the period of oscillations should be

about �� ms� This is in line with the recent �nding suggesting that oscillations in the primate
have a considerably higher frequency ���
�� Hz� than in the cat ���
�� Hz� �Eckhorn� Frien�
Bauer� Woelbern� � Kehr� ������ It was found that putting a timestep of � unit in the model
equal to � ms yielded good results� Numerical integration was performed using a �xed step
Runge�Kutta method� The integration stepsize used was H ! ��� ms� The parameters used
throughout this report are A ! �� B ! �� C ! ���D ! ����� E ! ����� F ! ���� na ! �� Qa !
���� nb ! �� Qb ! ������( ! �� w ! �� The initial conditions of the network were chosen to
be xi ! yi ! zi ! � for all i� except in the simulation showing synchronization �Figure ����
where the initial conditions were chosen at random�
In the simulations of synchronization across the network �Figure ���� �� nodes received

an input of Ii ! ���� All other nodes received background input of Ii ! �� The initial
conditions of the network where chosen to lead to random phases if an input would come on�
Hence xi was chosen at random between � and ����� yi was chosen at random between ����
and ����� and zi ! � for all i� See Grossberg and Somers ������ for additional simulations
of the earlier model showing fast synchronization in response to two disjoint input bars and
creation of an illusory contour between them�
In the simulations of perceptual framing� two nodes received an input �Ii ! ���� which
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Figure ��� Simulation of synchronization of the network when the input is a bar stimulus�
Initial conditions were randomly distributed� The input is shown left� The resulting network
activities are shown on the right� When there is no coupling via feedback� network cells
remain in random phases �top�� With coupling� network cells synchronize rapidly from
random initial conditions �bottom��
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lasted for ��� ms� The �rst input �i ! ��� came on at simulation onset� the second input
�i ! ��� came on later at the SOA� The background activity of the network was zero� In
Figure �� it is shown how much time there was between the last peak of the activity �xi�
corresponding to the �rst stimulus� and the peak closest in time of the activity corresponding
to the second stimulus� This explains why some times are negative� The simulation of TOJ
was based on the simulation shown in Figure � and was obtained as described in the text�
The outcome is shown in Figure ��
In the simulations of spatial pooling� the background activity was set again zero in order

to avoid unwanted lateral interactions� For each stimulus size� all cells that received any
input at all received it at the same level� In the threshold
contrast simulations� the presen

tation time was kept constant ��� ms�� and the input strength was varied� The threshold
input was the lowest value �up to ����� that led to oscillations� Inputs below threshold led to
non
oscillatory activities� Normalization was done for comparison with psychophysical data
�Essock� ������ Both simulation results and psychophysical data were normalized� Normal

ization was performed by dividing the input size by the value of that size at which no further
threshold reduction occurred �i�e�� the asymptotic value�� The contrast was normalized in
a similar way� The result is shown in Figure �� In the threshold duration simulations� the
input was of high strength �Ii ! ����� Threshold duration was the briefest period of pre

sentation time that led to oscillations� The same normalization was used for size� and no
normalization was necessary for time� The result of this simulations is shown in Figure ��
Noise was added to the system by introducing a random component in the input to each

oscillator� That component was uniformly distributed between � and ��� to generate the
simulation summarized in Figure ��
Competition at each location was modeled by having two oscillators at each location� one

corresponding to horizontal �xh� yh� and one to vertical �xv� yv� orientations� The slow node
of each individual oscillator inhibits not only the fast node of the same oscillator� but also
the fast node of the competing oscillator� as is shown in Figure �� It is assumed that the
only possible grouping direction� given the input distribution� is horizontal� The competition
equations used are as follows�

dxhi
dt

! �Axhi ' �B � xhi��Cfa�xhi� ' fa�zi� ' Ihi� �D�xhifa�yhi��D�xhifa�yvi�����

dyhi
dt

! E�xhi � yhi� ����

dxvi
dt

! �Axvi ' �B � xvi��Cfa�xvi� ' Ivi��D�xvifa�yvi��D�xvifa�yhi� ����

dyvi
dt

! E�xvi � yvi�� ����

The inhibitory feedback to a fast node from the slow node of the same oscillator is weighted
by D�� and from the other oscillator is weighted by D�� with D ! D� 'D� and D chosen
as in equation ���� The ratio R ! D��D� indicates the strength of competition� The same
parameters as before were used� and R was varied between � and �� In the simulations
shown in Figure ��� R ! ���� Larger values of R lead to a decrease of oscillator frequency
�Grossberg � Grunewald� ������
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The network model is made up of ��� coupled di�erential equations when there is no
competition� and ��� when there is competition� Such a large system can exhibit very
complex dynamics� In the present simulations� network dynamics were a�ected only quan

titatively� but not qualitatively� by modest changes in network parameters� In general� the
network parameters �A�B�C�D�(� w� in the present study were the same as those employed
in earlier studies �Ellias � Grossberg� ����� Grossberg � Somers� ������ mainly to maintain
continuity and to allow comparison� The slow
variable rate parameter E in equation ��� was
used to calibrate time in the network� It was chosen to yield realistic oscillation frequencies�
Parameter F in equation ��� allows boundaries to cooperatively complete and synchronize at
the ends of input bars� The parameters na and Qa in ��� de�ne the signal function fa� they
were chosen to approximate the signal function used previously �Grossberg � Somers� ������
The bipole signal function fb in equation ��� is de�ned by parameters nb and Qb� to achieve
a balance between allowing feedback signals to occur when the inputs to the network was
small� yet not saturating the oscillators due to excess feedback when large inputs occurred�
One interesting e�ect of the network dynamics is that when an input comes on� which

brings one or more nodes into an oscillatory regime� then the �rst oscillation takes longer
than subsequent oscillations� The reason is that the slow variable requires more time to
move into the range of activity that corresponds to the oscillatory regime�

� Discussion

Data about temporal order judgments and spatial pooling have been quantitatively simulated
using a neural model of cortical grouping via cooperative
competitive interactions� This pro

cess leads to rapidly synchronized cortical activities that de�ne a perceptual frame in which
object percepts may be elaborated� The cooperative bipole interactions that comprise the
model�s main synchronization mechanism were predicted to exist in visual cortex in Cohen
and Grossberg ������ and �Grossberg� ����� and were reported in cortical area V� by von der
Heydt et al� ������� The �rst BCS computer simulations of boundary segmentation used V�
model bipole cells to simulate the long
range interactions that help to form illusory contours
�Grossberg � Mingolla� ����a� ����b�� More recently� similar cooperative interactions� al

beit on a smaller spatial scale� have been reported in cortical area V� �Gilbert� ����� Gilbert
� Wiesel� ����� Kisv�arday et al�� ������ Grosof et al� ������ have reported� moreover� that
illusory contour completion can be supported over a shorter spatial range by V� cells� Ross
et al� ������ have described a re�nement of the BCS that explains all these data sets� In
this model� shorter
range bipole interactions in V� and longer
range bipole interactions V�
coexist within cooperative
competitive feedback networks at each cortical level� As in the
earlier BCS model� the model V� bipole cells help to achieve long
range boundary comple

tion� The model V� bipole interactions are mediated by complex cells and are hypothesized
to help stabilize the development of orientational and disparity tuning properties in V� while
suppressing network noise� The bipole cells of the present model could� in principle� act at
either or both of the V� or V� levels� since our results explore key mathematical properties
of this mechanism wherever it may be found in the brain�
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