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A real-time neural network model, called affective balance theory, is developed to explain many
properties of decision making under risk that heretofore have been analyzed using formal algebraic
models, notably prospect theory. The model describes cognitive-emotional interactions that are de-
signed to ensure adaptive responses to environmental demands but whose~mergent properties none-
theless can lead to paradoxical and even irrational decisions in risky environments. Emotional pro-
cessing in the model is carried out by an opponent processing network called a gated dipole. Learning
enables cognitive representations to generate affective reactions of the dipole. Habituating chemical
transmitters within a gated dipole determine an affective adaptation level, or context, against which
later events are evaluated. Neutral events can become affectively charged either through direct activ-
ations or antagonistic rebounds within a previously habituated dipole. The theory describes the
affective consequences of strategies in which an individual compares pairs of events or statements
that are not necessarily explicitly grouped within the stimuli. The same preference orders may some-
times, but not always, emerge from different sequences of pair-wise alternatives. The role of short-
term memory updating and expeCtancy-modulated matching processes in regulating affective reac-
tions is described. The formal axioms of prospect theory are dynamically explicated through this
analysis. Analyses of judgments of the utility of a single alternative, choices between pairs of regular
alternatives, choices between riskless and risky alternatives, and choices between pairs of risky alter-
natives lead to explanations of such phenomena as preference reversals, the gambler's fallacy, the
framing effect, and the tendency toward risk aversion when gains are involved but risk taking when
losses are involved. These explanations illustrate that data concerning decision making under risk
may now be related to data concerning the dynamics of conditioning, cognition, and emotion as
consequences of a single psychophysiological theory.

1. Some Previous Models of Risky Decision Making

Most environments are characterized by some degree of un-
certainty. Environmental uncertainty may be inherent in some
situations, such as a coin toss, or may arise due to imperfect
information about the physical or social environment. What-
ever the source, analysis of the structural and functional charac-
teristics of uncertainty is a problem of considerable importance
in a wide variety of research areas including mathematics, eco-
nomics, and psychology.

The multidisciplinary approach to the study of decision mak-
ing under risk has led to the development of two distinct types
of theory: normative and descriptive. Normative theories are
prescriptive in nature because they are concerned with devising
decision-making procedures or algorithms that are optimal

with regard to some set of intuitively reasonable constraints.
Descriptive theories, on the other hand, are concerned with pro-
viding an accurate portrayal of how individuals actually make
decisions, independent of whether those decisions are optimal
or even logical.

Historically, the distinction between the two types of theory
has been blurred because normative theories, particularly ex-
pected utility theory, have been widely accepted as adequate de-
scriptions of how individuals integrate information when mak-
ing risky decisions. For example, the earliest form of utility the-
ory, which was developed by Daniel Bernoulli as a solution to
the gambling puzzle known as the St. Petersburg Paradox, was
very influential in economics for over a century (Bernoulli,
1738). More recently, the axiomatic form of utility theory,
which was first developed by von Neumann and Morgenstern
(1944), has been assumed to provide an acceptable descriptive
model of decision making under risk.

Since the introduction of axiomatic utility theory, a large
body of evidence has accumulated which demonstrates that in-
dividuals systematically violate some of the fundamental tenets
of rational choice (e.g., Allais, 1953; Tversky & Kahneman,
1981 ). These numerous violations of rationality have motivated
a great deal of experimental and theoretical work aimed at de-
veloping a more accurate descriptive theory of decision making
under risk than is provided by utility theory. Overall, these
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efforts have been quite successful in the sense that many viola-
tions of the axioms of utility theory and rational choice are ex-
plicable within one or more of these theoretical frameworks.
For example, violations of the betweeness axiom of utility the-
ory are consistent with the axiomatic framework of portfolio
theory (Coombs, 1975).

The particular theory that has been the most successful in
uncovering and explaining these violations is prospect theory
(Kahneman & Tversky, 1979). This theory adopts a number
of coding, psychophysical, and decision-rule assumptions that
provide a natural account of many results that are inconsistent
with the axioms of utiijty theory and general assumptions of
rational choice. To illustrate, prospect theory explains the re-
flection effect, in which choices involving gains tend to be risk
averse, whereas choices involving losses tend to be risk taking. Jt
does so using an S-shaped value function and a decision weight
function that is characterized by the properties of subcertainty
and subproportionality (Section 7). These psychophysical as-
sumptions, in combination with certain coding assumptions,
also provide a plausible explanation of framing effects that in-
volve shifts in preference depending on whether the outcomes
of choices are stated positively or negatively (Section 13).

Despite the impressive array of data that are accounted for
by prospect theory, the theory is not immune to criticism. One
criticism is that prospect theory is a static, algebraic theory that
relies heavily on psychophysical functions derived from analy-
ses of group choice data. As a result, the theory provides little
insight into the information-processing dynamics that underlie
risky decision making. A second and perhaps sharper criticism
of prospect theory is that it does not account for all important
forms of nonrational decision making. The problem revolves
around the decision rule of prospect theory which assumes that
individuals act to maximize subjective value. A vivid illustra-
tion of the difficulty with this seemingly compelling assumption
is the paradoxical result that is called the preference reversal
phenomenon. Preference reversals'are observed when, in a bi-
nary choice situation, an individual prefers an alternative that
has been judged to be worth less than the nonpreferred alterna-
tive. To illustrate, an individual might judge one alternative to

r
be worth $10 when presented in isolation and a second alterna-
tive to be worth $8 when presented in isolation and yet prefer
the second alternative when given a choice between the two al-
ternatives. It is important to note that the preference reversal
phenomenon is a robust effect that cannot be dismissed as sta-
tistical noise, at least for the theoretically interesting cases
where the alternatives are reasonably close in'value (Grether &
Plott, 1979; Gutowski & Chechile, 1984; Hamril, 1979; Lich-
tenstein& Slovic, 1971, 1973; Lindman, 1971; Mowen & Gen-
try, 1980; Pommerehne, Schneider, & Zweifel, 1982; Reilly,
1982; Slovic & Lichtenstein, 1983). Therefore, preference re-
versals violate the maximization assumption of prospect theory
and constitute an important and as yet inadequately explained
example of nonrational choice.

This is not to say that the preference reversal phenomenon
has escaped theoretical attention. Lichtenstein and Slovic
( 1971), for example, assumed that judgment and choice task
requirements generate different information-processing se-
quences. More specifically, their formulation assumes that judg-
ments of the subjective value of risky alternatives follow an an-

choring-and-adjustment process, in which either the amount
that can be won or lost serves as the anchor and choice is pri-
marily governed by the probability of winning. Although such
a differential weighting model can account for much of the data
on preference reversals (for an exception see Gutowski &
Chechile, 1.984), the mode1.in its present form is not sufficiently
general to predict other phenomena in the domain of decision
making under risk.

In this article we describe an alternative theory of decision
making under risk, one that we call affective balance theory. The
theory is best viewed as an application of a more general theory
of how cognitive and emotional processes interact (Grossberg,
1980, 1982a, 1984b, 1987). This general theory has been used
to explain phenomena in such diverse areas as perception, at-
tention, motivation, learning, and memory. Affective balance
theory uses psychophysiological mechanisms and processes1hat
have been derived from data analyses in these other areas to
build a dynamic description of the affective and cognitive events
that underlie risky judgment and choice. The theory clarifies
how context affects the processing of risky information and pro-
vides an explanation of a number of well -established phenom-
ena in risky decision making, including preference reversals;
The present work thus suggests how properties of decision mak-
ing under risk may be explained as manifestations of a process-
ing theory that was develOped to explain a quite different data
base. This linkage relates phenomena concerning human deci-
sion making under risk to human evoked potentials, neuro-
physiological and pharmacological substrates of behavior, ani-
mal discrimination learning, human memory and attentional
processing, and certain mental disorders. In particular, the ar-
guments developed herein apply the same mechanisms that
have previously been used to analyze such phenomena as hypo-
thalamic self-stimulation, secondary conditioning, asymptoti-
cally nonchalant avoidance behavior, conditioned emotional re-
sponses, superconditioning, analgesia, differential rewarding
effects of sudden versus gradual shocks, self-punitive behavior,
and learned helplessness (Grossberg, 1971, 1972a, 1972b), as
well as the partial reinforcement acquisition effect, behavioral
contrast, blocking and unblocking, schedule-induced polydip-
sia, rebound eating, intragastric drinking, hyPerphagic eating,
the Valenstein effect, and latent inhibition (Grossberg, 1975,
1982a, 1984b, 1987). Within the broader context of animal dis-
crimination learning and choice behavior, all of these phenom-
ena may be viewed as variants of decision making under risk.

Affective balance theory generates formal relationships that
have been posited by algebraic models of decision making under
risk in the form of emergent properties of real-time circuits that
have been used to analyze and Pledict a wide range of inter disci-
plinary psychophysiological data. In this sense, affective balance
theory "explains" these formal relationships. In so doing, as
an automatic consequence, it also explains the data that these
formal relationships have been used to fit. In addition, affective
balance theory predicts a number of other data-for example,
data concerning preference reversals (Section 10)-that cannot
easily be accounted for by a number of other theories, notably
prospect theory.

Rachlin, Logue, Gibbon, and Frankel (1986) have also real-
ized the importance of concepts about instrumental behavior
for understanding decision making under risk. These authors
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input signal to one cell site and T(t) is the output signal to the
next cell site, then the linear relationship

T= SR, (1)

where B is a positive constant, is the simplest law of unbiased
transmission. By Equation I, the outgoing signal is proportional
to the incoming signal, and the signal is relayed perfectly.

When the output signal T(t) is due to the release or inactiva-
tion of a chemical transmitter z(t) in response to the input signal
S(t), further consideration is necessary. How is a large and sus-
tained input S(t) prevented from depleting z(t) and thereby
causing a progressively smaller signal T(t)? In other words,
when T(t) is due to the release or inactivation of a transmitter,
the term B in EqUation I may not be constant. It may decrease
through time as z(t) is depleted, thereby reducing the sensitivity
of T(t) to S(t). In this situation, Equation I is replaced by the
equation

T=Sz. (2)
Our task is to analyze how z(t) approximates a constant B,

z ~ B, (3)

despite its depletion due to input 8.
Equation 2 says that transmitter z is released or inactivated

at a rate (proportional to) T in response to input 8. In other
words, z gates 8 to generate T, or T is caused by a mass action
interaction between 8 and z. By Equation 2, an increase in ei-
ther 8 or z can increase T, and no output signal T can be gener-
ated if either no input signal occurs (8 = 0) or no transmitter is
available (z = 0).

Equation 3 requires that the sensitivity of T to 8 be main-
tained through time. If both Equations 2 and 3 are simulta-
neously implemented, as in Equation I, then unbiased trans-
mission by a depletable chemical is achieved. Equation 1 means
that z(t) is replenished instantaneously, or at least at a rate that
is rapid relative to the rate of gated release or inactivation. In
our applications, the rate of accumulation is slow relative to the
rate of gated release or inactivation. In order to represent this
type of process, an algebraic equation is insufficient. A differ-
ential equation is needed. We use the simplest differential equa-
tion that is capable of reconciling Equations 2 and 3 when both
the accumulation and gating processes take place at a finite rate
relative to the rate with which the signal 8 can fluctuate. In this
situation, Equations 2 and 3 are not both exactly satisfied at any
one time. The process attempts to achieve unbiased transmis-
sion but can do so only approximately due to its finite reaction
rates. Such a slow-down of transmitter accumulation does not
reflect a system failure. It provides the basis for conditioning
properties of fundamental importance (Grossberg, 1 972a,
1972b, 1982a, 1987). Thus we view the slow rate of transmitter
accumulation as an evolutionary specialization that has per-
sisted due to its behavioral value. Here we suggest that it also
underlies several basic properties of decision making under risk.

The simplest differential equation capable of simultaneously
implementing Equations 2 and 3 is the following one (Gross-
berg,1972b):

applied algebraic form factors that have been developed to fit
instrumental data collected from animals to analyze human
data about decision making under risk. The present article de-
velops a real-time neural network model, rather than algebraic
form factors, and thereby provides a mechanistic analysis of de-
cision-making data in the same way that this model has else-
where suggested a mechanistic analysis of a large literature
about instrumental behavior.

The present theory does not attempt to characterize all of
the possible cognitive strategies that individuals may invoke.
Rather, it analyzes the effects of a chosen strategy on the affec-
tive values of the events to which an individual is exposed. In
particular, the theory analyzes the affective consequences of
strategies in which a subject compares pairs of events or state-
ments that are not necessarily explicitly grouped within the
stimulus materials. The cognitive context in which individual
events are embedded may alter the comparisons that a subject
makes to arrive at a preference order for these events. In Section
8, we note that the same preference order can sometimes emerge
from different sequences of pair-wise comparisons. This result
brings into a sharper fOCus those circumstances wherein prefer-
ence order does depend on the sequencing of event compari-
sons. In addition, in Section 12, we show how the cognitive con-
text with which a neutral event, such as a zero outcome, is com-
pared can endow the event with a positive or a negative affect,
depending on the comparisons afforded by the context. In Sec-
tion 13, we discuss how the cognitive context can influence, or
"frame," the set of outcomes that the subject will be inclined to
process, including the pair-wise comparisons that the subject
constructs from the stimulus materials.

Within affective balance theory, affective or emotional pro-
cessing is assumed to be regulated by an opponent process that
is called a gated dipole (Grossberg, 1972a, I 972b, I 984a,
1984b). Four main ingredients go into the design of a gated di-
pole: slowly accumulating chemical transmifters that are de-
signed to generate unbiased transductions of their inputs; oppo-
nent, or competitive, interactions 'between an on-channel and
an off-channel; phasic inputs that perturb the on-channel or the
off-channel through time; and a sustained, or tonic, arousal
level that equally perturbs both channels and thereby sets the
sensitivity of dipole outputs to phasic input fluctuations.

A number of other opponent processing models exist in the
literature. Jensen (1970, 1971) described qualitatively some of
the properties that a good theory of opponent processing should
have and applied these properties to the analysis of conditioning
data. Solomon and Corbit (1974) and Solomon (1980, 1982)
also used opponent processing ideas to analyze data about con-
ditioning and, more generally, affective processing. A compari-
son of the gated dipole opponent process and the type of oppo-
nent process described by Solomon and Corbit (1974) is given
in Section 5. We now summarize the gated dipole properties
that we will need.

2. Transmitter Gates: Unbiased
Transmitter-Modulated Signaling

The simplest rule whereby one nerve cell site can send unbi-
ased signals to another nerve cell site is as follows. If 8(t) is the

d
-z =A (B- Z) -CSzdt ' (4)
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5(t)
(FAST)

t

z (I)

(SLOW)

t

where A, B, and C are positive. In Equation 4, the notation
dldt z denotes the net production rate of z. Term A(B -z) says
that z accumulates at a rate A until it reaches the target level
B, as required by Equation 3. Term -CSz says that the loss of
transmitter per unit time due to gating is proportional to Sz,
as required by Equation 2. Henceforth we choose C = 1 for
notational simplicity. This amounts to rescaling the size of S.

Term A(B -z) may be physically instantiated in more than
one way. For example, a passive accumulation of z may occur
onto unoccupied sites whose total number is B. Alternatively,
transmitter precursors may actively be produced at a rate AB,
but feedback inhibition via term-Az ()ftransmitter z onto an
intermediate stage of production may reduce the net produc-
tion level to A(B -z). Without such feedback inhibition, trans-
mitter production would continue unabated until the cell rup-
tured.

In response to a constant signal of size S, Equation 4 implies
that the transmitter z approaches the equilibrium value OVERSHOOT

AB
A+S. (5)z=

T(t)
(FAST-SLOW)

t

In other words, larger signals 8 deactivate more transmitter. On
the other hand, the output signal that is generated by an input
8 does not equal z. The output signal is equal to T = 8z, due to
Equation 2.

Figure I describes how the output T reacts to changes in the
size of the input 8. A rapid increase in 8 from 80 to 8. elicits a
slow decrease in z. Multiplication of the graphs of 8(t) and z(t)
shows that a rapid increase in 8 generates a rapid increase in T
followed by a slow decrease, or habituation, of Tto an interme-
diate level. In a similar way, a rapid decrease in 8 from 8. to 80
generates a rapid decrease in T followed by a slow increase, or
habituation, to an intermediate level. In all, rapid increases and
decreases in the input 8 generate overshoots and undershoots in
the output T due to the slow rate of reaction, or habituation, of
the transmitter as it seeks to generate unbiased signals. These
habituative reactions are fundamental to many of the explana-
tions given by our theory.

Figure 1. Reaction of output signal T and transmitter gate z to changes
in input S. (The output T is the product of a fast process S and slow
process z. Overshoots and undershoots in T are caused by z's slow habit-
uation to fast changes in S.)

3. Gated Dipoles: Tonically Aroused Transmitter Gates
in Opponent Processes

Figure 2 describes one of the basic properties of a gated di-
pole. In such an opponent procesS, a phasicipput (1) can elicit
a sustained on-response, whereas offset of the input can elicit a
transient off-rebound, or temporal contrast effect. These prop-
erties are explained as follows.

The left-hand series of stages in Figure 2 represents the on-
channel, and the right-hand series of stages represents the off-
channel. Both channels receive an equal arousal input, denoted
by I, that is constant through time. The arousal input energizes
the antagonistic rebound that occurs after the on-input shuts
off. The on-input, denoted by J, is delivered only to the on-chan-
nel. Input J is switched from zero to a positive level and held at
that level long enough for gate equilibration to occur. Then J is
shut off.

Inputs I and J are added by the activity (or potential) x,(t).
Activity x,(t) responds quickly to input fluctuations, relative to

the reaction rate of the network's slow transmitter gates. The
graph of Xt(t) has ~e same form as the top graph in Figure I: a
rapid switch from a lower positive activity to a higher positive
activity, followed qy a rapid return to the lower level. The activ-
ity Xt(t) generates an output signalf(xt(t)) in its pathway that
again has the form of a double-switch between two positive val-
ues. The output signalf(x.(t)) is gated by a slow transmitter Zt(t)
that accumulates and is inactivated from the square synapse in
the on-channel. Figure I describes the effect of this slow gate on
the input to the n~xt stage. Consequently, activity X3(t) follows
an overshoot-habituation-undershoot-habituation sequence
throuih time. Th,n X3(t) relays an output signal of the same
form to xs(t). Activity xs(t) also receives an inhibitory signal
from X4(t). To determine what happens next, we consider the
dynamics of the off-channel.

The off-channel receives only the constant tonic input I.
Hence X2(t) and the slow gate Z2(t) in the off-channel square
synapses are constant through time. The activity X4(t) is there-
fore also constant through time. For definiteness, we make the
simplest assumption that corresponding stages in the on-chan-
nel and the off-c~nel possess the same parameters. Because
the arousal input J to both channels is also equal, the size of X4
equals the baseline activity level of X3(t). This is not always true,
but its violation is easy to analyze after the symmetric case is
und.erstood.

We can now detcrmine the reactions of activity Xs(t) through
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SUSTAINED
ON -RE:SPONSE:

Ot~~

TRANSIENT
OFF-RESPONSE

s! = /(l +JJ and the total signal in the off-channel be S2 =
/(l + h), where lis the baseline level of arousal that perturbs
bOth channels and/is a function that transforms these inputs
into signals.. In general, / is a nonnegative and m9notone in-
creasing funcnonsuch that](O) = O. Assume that J1.> h, and
hence thatS!> $2. As in Equation 4, let the transmitter in the
on-channel,z!, satisfy the equation

OFF~
x

~

x

-~

~
.X6X.

--+

xa x4

Z1' .z2

oj- and the transmitter in the off-channel, Z2, satisfy the t;Quation

X::i
X4r--".

(7)

X2b
Assume that the inputs SI and S2 are present .for a sufficient
amount of time so thatzland Z2 ~uilibrate,or habituate, to Sl
and S2' At ~uilibrium, d/dt Z. = d/dt Z2 = O. Thus, by
Equations 6 and 7

X1Q x-:.ff'-2

Jt-dY
~
A+S,

ZI = (8)
and

~
A+Sz

(9)Z2 =
II

By Equation 2, the gated signal in the on.,channel is thent
Figure 2. Example of a ~ted dipole. (A sustained habituating on-re-
sponse [top left] and a transient off-rebound [top right] are elicited in
response to onset and offset, respectively, of a phasic input J [bottom
left] when tonic arousal I [bottom center] and opponent processing [di-
agonal pathways] supplement the slow ~ting actions [square synapses].
See text for details.)

ABS.T. = SIZ. =A+-s;'

and the gated signal in the off-channel is

ABS2
~..

T2= S2Z2 = {II}

After the two channels compete, the net activity in theon-chan-
nel is

xs=T1-T2

= SIZI -S2Zi

= A2B(SI -S2)
(A + SJ(A +S2)

time. Because the signals from X3(t) and X4(t) subtract before
perturbing xs(t), and their baseline activities are the same, the
baseline activity of xs(t) equals zero. Activity xs(t) thus over-
shoots and undershoots a zero baseline when the input J is
turned on and off. By contrast, activitY X6(t) responds in an 0p-
posite way from xs(t) because X3 excites Xs and inhibits X6,
whereasx4 inhibits Xs and excites X6.

The final assumption is that the output signals caused byac-
tivities xs(t) and X6(t) are rectified: Outputs are generated only
if these activities exceed a nonnegative threshold. As a result,
the on-channel generates a sustained output signal while the
inputJ is on. This output signal habituates as the gate ZI(t)
slowly equilibrates to the input. By contrast, the off-channel
generates a transient off-response, or antagonistic rebound, ar.:
ter the input J shuts off.

Note that this on-activit,y is positive becauseSI> S2. By con-
trast,the off-activity is negative because X6 = -Xs (Figure 2).
After the thresholds act, the on-output is positive whereas the
off-output equals zero.

In order to understand how off-rebounds occur, eliminate the
inputs J I and h. The inputs to each channel then both equal I.
However, the transmitters ZI and Z2 are assumed to change
slowly, so that Equations 8 and 9 are approximately valid for
sometime interval after the offset ofJ1 andJ2. The gated signals
during this interval are then approXimately

4. Mathematical Properties Leading to
Antagonistic Rebound

We now describe the simplest formulas that can instantiate
Figure 2 in order to set the stage for our computations about
risky decision making. Let the total signal in the on-channel be

~
A+S1

Tl = f(I)ZI = (13)



NEURAL DYNAMICS OF DECISION MAKING UNDER RISK 305

and a

Tz = f(I)zz = ~
A+Sz

(14)

After competition, the net off-rebound is

ABf(I)(8) -82)X6 = f(I)z2 -f(I)z) = (A + 8J(A + 82)' (15)

which is positive, whereas the net on-response is Xs = -X6 <
O. Owing to the output threshold, an antagonistic rebound, or
contrast effect, occurs.

The rebound is transient because the transmitters ZI and Z2
both equilibrate in response to I and approach levels AB(A +
I)-I. As a result, X6 approaches zero. Thus the competition be-
tween on-channel and off-channel eventually shuts off both
channels when they receive equal inputs for a sufficient amount
of time for equilibration to occur.

a+ t>

~_./~~~ Figure 3. The opponent process model of Solomon (1982), in which

overshoots and undershoots are caused by an excitatory process a and

an inhibitory process b that both change at a similar rate such that b

lags behind a and neither a nor b separately exhibits overshoots or un-

dershoots.

the maximutp size of the a process should sometimes, but not
always, exceed the maximum size of the b process, or why the b
process is delayed in time relative to the a process by just the
right amount to produce an overshoot and an undershoot. The
hypothesis that slowly habituating, tonically aroused, transmit-
ter gate~ exist in an opponent anatomy provides simple answers
to all of these questions and implies other properties that enable
the gated dipole model to organize data about decision making
under risk.

6. The Psychophysics of Risk: Short-Term Memory and
Long-Term Memory Interactions

The final set of assumptions of the affective balance theory
may be thought of as describing the psychophysics of risk. More
specifically, these assumptions describe how events, notably
probabilistically experienced events, are transformed and en-
coded. Although the resulting algebraic properties of these as-
sumptions are quite similar to those adopted by other theories
of decision making under risk (see below for a comparison with
prospect theory), the rationale for these assumptions is quite
distinct. The properties here are based on analyses of how envi-
ronmental events are coded into internal representations in or-
der to solve inevitable dilemmas posed by a fluctuating and un-
certain environment. As a result, the theory provides a dy-
namic, rather than static or formal, description of the
psychophysics of risk. Further, the theory strengthens the ratio-
nale for these assumptions by extending the data base that moti-
vates these assumptions beyond group choice data from studies
of risky decision making. In .the following paragraphs, we
briefly summarize the main processing ideas about the psycho-

5. Comparison With the Solomon and Corbit Opponent
Process Model

The antagonistic rebound in the off-channel of a gated dipole
is energized by an undershoot of the dipole's on-activity func-
tion X3 (Figure 2). In a gated dipole, such an undershoot is due
to habituation of the transmitter gate within the on-channel.
Overshoots and undershoots have also been hypothesized to ex-
ist in alternative models of opponent processing, but the proper-
ties have not been traced to the action of a slowly habituating
transmitter gate. For example, Solomon and Corbit (1974) and
Solomon (1980, 1982) described a model of opponent process-
ing in which overshoots and undershoots occur. These authors
ascribed the overshoots and undershoots to the subtraction of
two opponent processes that both evolve according to similar
time scales (Figure 3). Neither process, in itself, undergoes an
overshoot or an undershoot. Instead, overshoots and under-
shoots are derived from the assumption that the off-process be-
gins to build up only after the on-process is initiated. The model
assumes, in addition, that "the second component, the b pro-
cess, is aroused via the arousal of a" (Solomon & Corbit, 1974,
p. 126). Neither assumption is made in a gated dipole opponent
process, wherein the slow habituation of the transmitter gate
within the on-channel generates an overshoot and an under-
shoot within that channel. Consequently, in a gated dipole,
opponent processing per se between the on-channel and the off-
channel generates the antagonistic rebound within the off-chan-
nel without necessitating the hypothesis that on-channel activa-
tion triggers a delayed off-channel activation.

The hypotheses of the Solomon and Corbit model may be
challenged on several fronts. The hypothesis of delayed activa-
tion of the off-channel by the on-channel seems problematic
when one asks how a direct activation of the off-channel can
cause a delayed activation of the on-channel. Solomon and Cor-
bit did not raise this question. Indeed, they did not separate
the on- and off-components into two topographically distinct
output pathways. More generally, their opponent process is not
defined by a dynamical model. Instead, their components were
chosen to fit the data in different experimental paradigms. For
example, the Solomon and Corbit model does not explain why
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POSITIVE AROUSAL NEGATIVE
DRIVE INPUT DRIVE
INPUT INPUT

Figure 4. A cognitive-emotional interaction between cognitive, or cue,
representations and a gated dipole opponent process, called a drive rep-
resentation, that synthesizes reinforcing signals, internal drive inputs,
and an arousal baseline into an affective response. (This response gener-
ates incentive motivational feedback signals to the cue representations
and can thereby cause a shift in attention toward motivationally salient
information. Signals from cue representations to drive representations
are multiplied by long-term memory [LTM] traces that encode the con-
ditioned reinforcing values of the cue representation. Unconditioned
reinforcers can also activate the drive representation. [From "Process-
ing of Expected and Unexpected Events During Conditioning and At-
tention: A Psychophysical Theory" by S. Grossberg, 1982, Psychologi-
cal Reviell{ 89, p. 551. Copyright 1982 by the American Psychological
Association, Inc. Reprinted by permission.])

physics of risk that motivate our computations of risky deci-
sions. We do not redevelop these processing ideas here but refer
the reader to the original sources. Our summary is intended to
provide meaning to the computations, which themselves form
the core of the present contribution.

The analysis of how probability information has an impact
on risky decisions begins with the observation that the storage
of individual events and their associated affective values in
short-term memory is positively related to the frequency or
probability of occurrence. This property follows from two in-
teracting effects, one long term and the other short term. The
long-term effect concerns the greater influence of familiar
events than of unfamiliar events on tuning of the long-term
memory traces that regulate coding of an event in short-term
memory (Grossberg, 1980; Grossberg & Stone, 1986). Other
things being equal, a better match of an event with the pattern-
ing of long-term memory traces leads to enhanced activation in
short-term memory of the event's internal representation.
Thus, to the extent that the chosen high-probability events are
more familiar than the chosen low-probability events, the short-
term memory activity of an event will tend to be an increasing
function of its prior probability. However, the total effect of
probability is more complicated, especially when both low-
probability and high-probability events are equally familiar.

This is because the short-term effect of probability also in-
fluences the action of cognitive expectancies. In particular, low-
probability events tend to be more unexpected than high-p~ob-
ability events. They can therefore trigger a more complete reset
of prior short-term memory, thereby facilitating their own pref-
erential loading into short-term memory (Grossberg, 1982b,
1987). The net effect of this short-term effect is often that the
ratio of the short-term memory activity of a low-probability
event to that of a high-probability event is greater than the ratio
of their respective probabilities. Ifwe assume that the "decision
weight" associated with a probabilistic event is the average
short-term memory activity across events with that particular
probability, then we are led to the assumption that low-proba-
bility events will be overweighted relative to high-probability
events.

Our analysis of how value or utility information affects risky
decision making begins with the observation that all neural sig-
nal functions must be bounded. Consequently, the value func-
tion will be chosen to be slower-than-linear or negatively accel-
erated at large values of both positively and negatively valenced
events. It has, moreover, been shown mathematically that the
simplest bounded function capable of transducing neural activ-
ities into signals, without amplifying noise, is an S-shaped, or
sigmoid, function (Grossberg, 1973, 1983; Grossberg & Levine,
1975). Using this sigmoid function as a starting point, the value
function is computed as follows for gains and losses. It is as-
sumed that the value, or affective magnitude, of a gain is a func-
tion of the on-response to that event, whereas the value of a loss
of a given magnitude is a function of the antagonistic rebound
that occurs in response to the removal of a positive event of that
magnitude. If we divide Equation 15 by Equation 12, we see
that the size of the antagonistic rebound relative to the on-re-
sponse is simply f(I)/A, which is a function only of A and I.
More specifically, the antagonistic rebound is larger than the on-
response whenever f(I) is larger than A. Because this inequality

ordinarily holds in individuals capable oflearned avoidance be-
havior (Grossberg, 1972b), we are led to conclude that the over-
all value function is not symmetric but rather is usually steeper
for losses than gains. This analysis leads to the interesting and
testable implication that certain underaroused individuals, for
whom I is pathologically small, may show the opposite pattern
(Grossberg, 1984a, 1984b).

The final psychophysical issue concerns how probability and
outcome information combine or interact. In Grossberg's the-
ory of cognitive-emotional interactions, activation of an event's
short-term memory representation elicits signals from this rep-
resentation to the gated dipole opponent processes where emo-
tional reactions are generated (Figure 4). Before these signals
can reach the gated dipoles, they are multiplied, or gated, by
long-term memory traces that encode the conditioned rein-
forcer values of the event. These gated signals then activate the
on-channel or the off-channel of their target dipoles (Grossberg,
1972b, 1987), thereby leading to emotional reactions and moti-
vational signals. In other words, the net affective activity associ-
ated with an event of a given probability is the product of the
(expectancy-modulated) short-term memory strength of that
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event and the affective value of that event as read out of long-
term memory into short-term memory.

In order to facilitate comparisons with other theories of deci-
sion making under risk, we provide a more formal summary of
the main psychophysical properties of the theory. The theory
assumes that each (affectively meaningful) dipole input, J+ and
J-, is the product of two factors. The first factor, which we de-
note by f(x), is a signal readout from the short-term memory
representation x of each event. The second factor, z+(x) or z-(x),
is a long-term memory trace that encodes the conditioned rein-
forcing value, positive or negative, of an event. For positively
valenced events the signal to the on-channel may then be ex-
pressed as

f(x}

x
ACTIVITY OF A CUE

RE PRESENTATION(a)

z+(x)

NEGATIVELY
CUES

J+(x) = f(x)z+(x) (16)

due to the gating of the short-term memory signalf(x) by the
long-term memory trace z+(x). Similarly, the gated signal of a
negatively valenced event to the off-channel may be expressed
as

II POSITIVELY VALENCED
CUES

-z-{x)J-(x) = f(x)z-(x). (17)

The theory assumes that the function f(x) is characterized by
the psychometric property termed subproportionalit~ because
the ratio of the expectancy-modulated short-term memory ac-
tivity of a low-probability event to that of a high-probability
event is ordinarily greater than the ratio of their respective
probabilities (Figure 5a). Finally, the functions z+(x) and z-(x)
are S-shaped about the origin (or status quo), with the long-
term memory (LTM) trace z-(x) of negatively valenced events
steeper than the LTM trace z+(x) for positively valenced events
(Figure 5b) due to the antagonistic rebound properties cited
above.

(b)

Figure 5. Relationship of dynamic neural processes to algebraic psycho-
physical processes: (a) A sigmoid signal function helps to achieve sub-
proportionality, as does the modulation of short-term memory by
matching with learned expectations; (b) the long-term memory traces
z+(x) and z-(x), which input to, and learn from, the positive and nega-
tive channels, respectively, of an affective gated dipole, derive their shape
from direct on-reactions to inputs as well as antagonistic rebound off-
reactions to changes in these inputs.

erally underweighted. More specifically, the theory assumes a
property called subcertainty so that

7r(P) + 7r(1 -P) < 1 (18)

for all 0 < P < 1. Prospect theory also assumes the property of
sub proportionality that was discussed earlier. Mathematically,
subproportionality can be expressed as

~<~ (19)
7r(P) 7r(Pr)

for all 0 < r < 1. That is, for a fixed ratio of probabilities, the
ratio of decision weights is closer to unity for small probabilities
than for large probabilities. A weighting function that meets
these criteria is shown in Figure 6b.

The third psychophysical assumption is an integration rule
that describes how probability and event value information
combine. Prospect theory assumes that this integration rule is
multiplicative, so that the net contribution of an event of a par-
ticular probability to the overall value of an alternative is
1T(P)V(X).

On comparing the psychometric assumptions of affective bal-
ance theory and prospect theory, we find three obvious points
of correspondence. First, the value function, v(x), in prospect
theory and the long-term memory functions, z+(x) and z-(x), in
affective balance theory both represent the positive or negative
value associated with previously experienced events. Moreover,

7. Comparison With Prospect Theory

We now compare the psychophysical properties assumed in
affective balance theory with the psychophysical assumptions of
prospect theory (Kahnernan & Tversky, 1979). This summary
does not provide a complete characterization o{ prospect the-
ory, but rather focuses on the assumptions of that theory that
govern the psychophysics of risk.

The first psychophysical assumption of prospect theory in-
volves a scale, v (x), that describes how an event x is transformed
into a subjective value. The theory assumes that the value func-
tion is normally concave for positive change& in status or gains
but is normally convex for negative changes or losses. That is,
the marginal value of both gains and losses generally decreases
with larger magnitudes. The theory further assumes that the
value function for losses is generally steeper than the value func-
tion for gains. A hypothetical value function that meets these
criteria is shown in Figure 6a.

The second psychophysical assumption involves a scale, 1I"(P),
that describes how a probability P is transformed into a deci-
sion weight that calibrates the relative impact of an event with
a particular probability on the overall value of a risky alterna-
tive. The theory naturally assumes that the weighting function,
1I"(P), is a monotonically increasing function of P with 11"(0) = 0
and 11"( 1) = 1. In addition, it is assumed that small probabilities
are generally overweighted but that large probabilities are gen-
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V~~lU E v(x) these inputs, thereby rationalizing a comparison between the
value function v(x) of prospect theory and the difference z+
(x) -z-(x) of the LTM traces. However, the gated dipole oppo-
nent process often does not merely subtract the z+(x) and z-(x)
LTM functions. These deviations from additivity are, moreover,
a principal source of the gated dipole's ability to explain diffi-
cult data about affectively charged behaviors.

LOSSES GAINS
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(b)
Figure 6. Psychometric functions of prospect theory: (a) a hypothetical
value function v(x); (b) a hypothetical weighting function 1r(p).

these functions are psychometrically similar, because both v(x)
and r(x) are assumed to be sigmoidal but steeper for negative
than for positive events. Second, the decision weight function,
..-(P), in prospect theory and the short-term memory function,
f(x), in affective balance theory both represent the relative
strength of an event with a particular probability in active mem-
ory. These functions also are characterized by similar psycho-
metric properties such as subproportionality. Third, the inte-
gration rule, 11"(p)v(x), in prospect theory and the gating law,
J(x) = f(x)z(x), in affective balance theory both assert that
probability and event value information combine multiplica-
tively.

These three points of correspondence illustrate our assertion
that the psychophysical properties of affective balance theory
are similar to those of other prominent theories of decision
making under risk. In addition, affective balance theory pro-
vides a description of the information-processing dynamics
that underlie these psychophysical properties. In particular, the
short-term memory function f(x) simultaneously reads out
J+(x) = f(x)z+(x) and J-(x) = f(x)z-(x) into the opponent pro-
cess of the gated dipole. This opponent process sometimes gen-
erates the net reaction J+(x) -J-(x) = f(x)[z+(x) -z-(x)] to

8. The Temporal Unfolding of Risky Judgments:
Generating an Affective Context

We now illustrate how different temporal sequences of event
comparisons control the affective values of these events. First
we consider a temporal sequence used to judge the value of a
two-outcome regular alternative. Then we consider two differ-
ent event sequences that may occur under conditions of risky

.,
choice and show how both sequences can generate the same
preference order.

We first observe that judgments of a two-outcome regular al-
ternative may initially be unorderly (i.e., not monotonic in the
outcome and probability variables) and require considerable
practice before stabilizing (Anderson & Shanteau, 1970). The
model assumes that this transition or learning phase includes
development of a stable adaptation level against which alterna-
tives may be evaluated or processed. Although no precise as-
sumptions are maclie about the adaptation level, Jo, it is as-
sumed that Jo is a function of the previous inputs and that it
perturbs both channels equally. This assumpion may be relaxed
when the average magnitudes of previous positive and negative
inputs are not approximately equal.

The theory assumes that the judgment process begins by set-
ting the adaptation level at Jo. Instatement of Jo drives the trans-
mitter levels in eaoh channel of the dipole to levels Zo = AB/
[A + f(l + Jo)]. (Henceforth we assume for simplicity that Jo is
absorbed into the aJousallevel I and that the theory is operating
in the linear range off:f(w) = w.) After the channels adapt, it
is assumed that attention is directed to the current alternative
aj. The positive and negative inputs to the on-channel and off-
channel are then Jj+ and Jj-, respectively. However, the trans-
mitter levels change slowly so that the levels Zo are maintained
(approximately) for an interval after Jj+ and Jj- are presented.
After transmitter gating and opponent processing, the dipole
on-response to aj is given by

rj 1 (I + Jj+)zo -(I + Jj-)zo
1 zo(Jj + -J i-)' (20)

I

The theory assumes that a linear judgment function maps
this affective response onto an overt response. Under this as-
sumption, the overt response, Rj, is

Rj = k(Jj+ -Jj-), (21)

where k > 0 is a proportionality constant. Henceforth we as-
sume k = 1 for simplicity and describe rj and Rj interchangeably.
Hence, the theory predicts that the affective response to a risky
alternative is proportional to the difference between the affec-
tively charged inputs that correspond to attended events. Such
differences provide one basis for calling the present formulation
affective balance theory.
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We now turn to the temporal structure of the events that are
assumed to influence gated dipole dynamics under conditions
of risky choice. Two temporal sequences of event comparisons
are considered: "between-dimension, within-alternative" com-
parisons and "within-dimension, between-alternative" com-
parisons (Payne, 1980). Conditions under which both se-
quences yield the same preference order are described.

In a "between-dimension, within-alternative" comparison,
both events within one experimentally grouped pair are first
processed before both events in the other experimentally
grouped pair are processed. In these experiments, each event in
a pair has a manifest affective value of opposite sign; for exam-
ple, one event represents a possible gain and the other event
represents a possible loss. In a "within-dimension, between al-
ternative" comparison, one event within each experimentally
grouped pair is processed before it is compared with the event of
corresponding manifest value in the other pair. Then the other
events in each pair are compared. In the "between-dimension,
within-alternative" comparison the decision maker initially
samples or attends to one of the alternatives. This sampling
causes a net response to that alternative. (In Appendix A we
show that choice is independent of which alternative is sampled
first.) It is assumed that attention is focused on the first alterna-
tive for a sufficient amount of time for the transmitter levels in
each channel to habituate, or adapt, to the positive and negative
inputs from this alternative. It is assumed that attention next
shifts to the second alternative. This attentional shift causes a
second net response that is also the result of competition be-
tween the gated inputs of the alternative. Because the transmit-
ter levels are slowly varying in time, the inputs of the second
alternative are gated by levels that are a function of the inputs
of the first alternative. Thus the first alternative establishes an
affective context in which the second alternative is evaluated.

To see how such an affective context influences judgments,
we compute the on-activity '. due to the first alternative and the
on-activity '2 due to the second alternative. To accomplish this,
denote by Z I + the habituated transmitter level in response to J 1+

and by ZI- the habituated transmitter level in response to it-.
It follows, as in Equations 8 and 9, that

(27)+ +
'2=t(I+J2 )Zl -(I+J2-)ZI-.

By Equations 22,123, and 27,

'2 = C(P -E + F), (28)
where

D = (A + IXJ2+ -J2-),

E = I(J1+ -J1-),
(29)

(30)
and

F=J1-J2+-J1+J2-. (31)

We assume that the decision maker senses the difference be-
tween the affective responses '. and'2 and prefers the larger one.
In this very limited sense, we assume that the decision maker
attempts to "maximize" subjective value. Thus, letting ~ =
'1 -'2, the first alternative is chosen if ~ > 0 and the second
alternative is chosen if ~ < O. Subtracting Equation 28 from
Equation 25 yields

~ = G[(J1+ -J.-) -(J2+ -J2-)]

+ C(J1+ J2- -J1- J2+), (32)

where

(22)
AB+- +

ZI -A+/+J1

and

(23)
ABZt- = A +I+Jt-

Thus the on-response r \ to the inputs J I + and J \- is

G = (A + I)C. (33)

The preceding analysis considers the situation in which indi-
viduals engage in "between-dimension, within-alternative"
processing, where the first alternative establishes the affective
context in which the inputs of the second alternative are evalu-
ated. When decision makers utilize a "within-dimension, be-
tween-alternative" processing strategy, the sampling sequence
first focuses attention on one of the inputs of the first alternative
and then shifts attention to the input of the second alternative
with the same affective sign. For example, attention may be first
focused on the positive input of the first alternative and then
shifted to the positive input of the second alternative. Subse-
quently, attention is focused on the other input of the first alter-
native and then shifted to the corresponding input of the second
alternative.

In these circumstances, the theory assumes that two contexts
are established: a positive context in which the positive input of
the second alternative is evaluated, and a negative context in
which the negative input of the second alternative is evaluated.
This computation is instantiated as follows. Denote the positive
responses as '1+ and '2+ and their difference as ~+ = '1+ -'2+.
Because '1+ is the first term of Equation 24 and '2+ is the first
term of Equation 27, this difference is simply

L\+ = H(Ji+ -J2+) (34)
rt=(I+Jt+)Zt+-(I+Jt-)Zt-. (24)

As in Equation 12, Equation 24 may be rewritten in the form
where

AB
I AA A + 1+ J1+' (35)

Denote the negative responses as '.- and '2- and their difference
as ~- = '1- -'2-' Because '.- is the second term of Equation
24 and '2- is the second term of Equation 27, this difference is

simply

1T=

'I =AC(J1+-J1-), (25)
where

(26)

~- = K(J1- -J2-)In order to compute '2, we let transmitter levels z 1 + and z 1- gate
the inputs h + and h- of the second alternative. Thus where
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-ABK= A+I+Ji-O (37)

Finally, we assume that preference is determined by the differ-
ence between 11+ and 11-. Subtracting Equation 36 from Equa-
tion 34 yields

11+ -11- = H(Ji+ -J2+) -K(Ji- -J2-). (38)

By Equations 35, 37, and 38,

11+ -11- = G[(Ji+ -Ji-) -(J2+ -J2-)]

+ C(Ji+ J2- -Ji- J2+). (39)

Because Equations 39 and 32 are identical, it follows that pref-
erence is independent of the decision maker's processing
strategy.

We believe that the mechanism that stores the value ~ + for

later comparison with 11- in Equation 38 may not be the same
as the mechanism that compares '1 with '2 in Equation 32. In
particular; 11+ may be stored and later read out by a perceptual
mechanism, much as a subject can discriminate and remember
the intensity of an affectively charged event, such as a shock. In
contrast, comparison of, 1 and '2 can be accomplished directly
within a gated dipole.

puts. That is, preference reversals do not occur when the sign
of the differences is consistent with the sign of the ratios. Prefer-
ence reversals occur in favor of the riskier alternative only when
both alternatives are viewed as negative. Preference reversals
occur in favor of the conservative alternative only when both
alternatives are viewed as positive.

Together, these results illustrate how the theory predicts that
individuals will tend to take risks when a situation is unfavor-
able but tend to be conservative when a situation is favorable.
This result is a generalization of the Kahneman and Tversky
reflection effect (Section 1). The reflection effect involves
choices between risky and riskless alternatives. Our result ap-
plies not only to that case (Section 12) but also to choices be-
tween pairs of ri~ky alternatives. This generalization is possible
because the dynamics of affective choice described qerein reveal
properties that are not captured by the formal axioms of pros-
pect theory.

The following constraint limits the generality of our analysis.
The theory assumes that responses to risky alternatives are due
only to the manner in which perceptually driven cognitive pro-
cesses elicit different affective reactions. Dearly this assumption
is not always justified. Certain individuals, such as professional
decision analysts, may base their judgments and choices on
overt mathematical computations. In these cases, the preceding
predictions do not hold because responses are then a function
only of the results of the computations. However, the failures of
expected value theory and expected utility theory demonstrate
that a computation ally based approach to decision making un-
der risk is often the exception rather than the rule.

9. Risk Aversion and Preference Reversals

Evaluation of Equation 32 provides some important insights.
Consistent with Equation 21, let us call the difference of the
inputs of the ithalternative, Jj+ -Jj-, the value of the ith alter-
native. From Equation 32, we see that choice is not simply a
function of the difference of the values of the alternatives. In-
stead, choice also depends on the cross-product, J 1 + J 2- -

J.- J 2+, and hence on the ratios of the inputs., To illustrate this
property, assume that the values of the alternatives are equal or
that J. + -J 1- = J 2+ -J 2-. Under this assumption,

D. = C(J1+ J2- -J1- J2+). (40)

From this expression, it is clear that ~ ~ 0 if and only if
J1+/J1- ~ h+/J2-. By extension, if the difference between the
values of the alternatives is small, then choice is primarily deter-
mined by the cross-product, or ratio, terms of Equation 32.

The implications of this property represent a break with pre-
vious models, because it is possible to choose the second al-
ternative (~ < 0) even if the first alternative has higher value
(J.+ -J1- > .12+ -J2-). Another implication is that choice be-
tween equally valued alternatives should not be random, but
rather should be determined by the ratios of the inputs. In Ap-
pendix B, we prove the following consequences of this property.

10. Preference Reversal Experiments Demonstrating
Interaction Between Hedonic Sign and Risk Aversion

In the following section, we summarize a key result from a
pair of experiments that have tested the risk-aversion and risk-
attraction properties of preference reversals postulated by
affective balance theory. For a detailed discussion of experimen-
tal procedures and related results, see Gutowski (1984) and Gu-
towski and Chechile (1986). The general format for these exper-
iments was a computerized card tournament during which sub-
jects played a modified version of the game called "red-dog"
(Epstein, 1977) and gained or lost points that were later ex-
changed for money. Each alternative consisted of a red-dog
hand and a specification of the number of points that could be
won or lost. In order to motivate careful judgments, the Mar-
schak bidding technique was employed (Becker, DeGroot, &
Marschak, 1964). Both judgment and choice experiments were
carried out to provide a stringent criterion for the occurrence
of a preference reversal. Judgment and choice trials were inter-
laced in order to avoid confounding effects due to motivational
or attentional shifts.

On each trial of the judgment experiment, a subject first
judged the value of the current alternative and then estimated
the chance of winning. Subsequently, a random number was
generated and if the number was less than the judged value, the
hand was played and points were gained or lost depending on
whether the subject won the hand. If the random number was
less than the judged value, the subj~ct earned that (random)
number of points. This procedure was used because it provided

Risk Aversion and Risk Attraction

The riskier of two equally valued alternatives is chosen when
both alternatives are viewed as negative, whereas the less risky
alternative is chosen when both are viewed as positive.

Preference Reversal

Preference reversals occasionally occur but only when ratios
of the inputs are not congruent with the differences of the in-
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Table I
Preference Reversal Rates in Favor of the Riskier and Less
Risky Alternative as a Function of the
Hedonic Sign of the Alternatives

Hedonic sign of the alternatives

Judged inequality Unfavorable Favorable

VI< V2

VI> V2

0.100
0.528

0.679
0.000

Note. VI is the judged value of the less risky alternative, and V2 is the
judged value of the riskier alternative.

risky alternatives are strongly related to the hedonic sign of the
alternatives. For unfavorable alternatives, the preference rever-
sal rate in favor of the riskier alternative was 0.528, whereas the
preference reversal rate in favor of the less risky alternative was
only 0.100. This difference is statistically reliable, x2( 1) = 4.80,
p < .05. For favorable alternatives, the preference reversal rate
in favor of the riskier alternative was 0.000, whereas the reversal
rate in favor of the less risky alternative was 0.679. This differ-
ence is also statistically reliable, x2( 1) = 7.18, p < .01. Moreover,
the preference reversal rates in favor of the riskier alternative
are greater for unfavorable than for favorable alternatives,
x2(1) = 14.56,p < .01. In contrast, the preference reversal rates
in favor of the less risky alternative are greater for favorable than
for unfavorable alternatives, x2(1) = 11.63, p < .01.

In summary, these results show that the preference reversal
phenomenon is a highly structured effect reflecting a willing-
ness to accept risk under unfavorable circumstances and a cor-
responding unwillingness to accept risk under favorable cir-
cumstances. This data pattern is implied by Equation 32. It pro-
vides strong support for affective balance theory, because it is a
natural consequence of the theory's mechanisms of opponent
processing. Such data also challenge other theories of decision
making under risk. Subsequent sections describe other impor-
tant data properties that can naturally be derived from the
theory.

explicit motivation to give judgments that were exactly equal to
the perceived value of an alternative.

On each trial of the choice experiment, subjects were pre-
sented with pairs of risky alternatives and asked to indicate
which they preferred. On each trial, a subject first indicated the
alternative he or she preferred to play and then estimated the
chances of winning the chosen hand. After this estimate was
recorded, the hand was played and feedback was provided as to
the number of points gained or lost. The overall choice set was
composed of two groups in which either expected value and the
probability of winning were held constant or expected value was
held constant but the probability of winning was varied. Many
of these pairs of alternatives were chosen to fulfill a property
called natural risk ordering. The notation Ai = (ai+, Pi, ai-)
designates an ith alternative in which an amount ai+ can be
gained with probability Pi and an amount ai- can be lost with
probability I -Pi. A pair of risky alternatives, AI = (al+' PI,
ai-) and A2 = (al+' P2, a2-), is termed naturally risk ordered

withAl riskier than A2 if and only if PI::; P2and ai-::; a2- and
one of these inequalities is strict. For example, the pair AI =
(30, 1/3, -10) andA2 = (50, 1/3, -20) is naturally risk ordered
because PI = P2 and al- > a2-. In contrast, the pair AI =(50,
1/6, -10) andA2 = (10,2/3, -20) is not naturally risk ordered
because PI < P2 but al- > a2-' For such pairs of alternatives,
the risk-aversion and risk-attraction properties of preference re-
versals proposed by the model can be evaluated even when psy-
chometric judgments of risk are not available.

~jfferences in the values of a particular pair of alternatives
were assumed only if one of the alternatives was judged to be
greater than or equal to the other alternative in each replication
and if that inequality was strict in at least two of the replica-
tions. Preference, as indicated by the choice measure, was as-
sumed only if one of the alternatives was always selected over
the other alternative. Otherwise, indifference was assumed in
regard to preference or differences in subjective value. Similar
criteria were imposed to determine whether a particular alter-
native was hedonically positive, neutral, or negative. The as-
sumption of hedonic neutrality (i.e., subjective value equal to
0) was rejected only if, for each replication, an alternative was
judged to be greater than 0 or judged to be less than O.

The primary results from these experiments are shown in
Table 1, which gives the preferen~e reversal rates as a function
of hedonic sign and the judged relation between the values of
the riskier and less risky alternative. These data demonstrate
that preference reversals in favor of both the riskier and less

11. Gambler's Fallacy: Cognitive-Emotional
Dissociation or Partial Reward Effect

The gambler's fallacy is a frequently discussed phenomenon
(Cohen, 1981; Diaconis&Freedman, 1981;Skyrms, 1981) that
vividly illustrates how decision making under risk may be sensi-
tive to contextual effects generated by a sequence of positive
and/or negative outcomes. In general, the gambler's fallacy in-
volves a shift in the amount of risk that a decision maker will
accept after a homogeneous sequence oflosses (or gains) relative
to the amount of risk that will be accepted after a mixed se-
quence that involves both losses and gains. For example, a rou-
lette player betting on colors might bet $10 on black after four
consecutive losses, whereas he or she might bet only $5 after a
sequence of two wins and two losses.

Explanations of the gambler's fallacy often assume that indi-
viduals do not appreciate the inherent variability of random
processes and, thus, inappropriately shift their subjective prob-
abilities after a homogeneous sequence of outcomes (Tversky &
Kahneman, 1974). Affective balance theory offers two (experi-
mentally testable) alternative explanations of this phenomenon.
The first account is based on a dissociation between long-lasting
emotional habituation and cognitive-emotional learning. The
second account is based on the antagonistic rebound effects due
to disconfirmation of cognitive expectancies. The two accounts
are not mutually exclusive in the sense that each may apply to
different classes of individuals.

The first account implicates slow recovery from transmitter
habituation as a primary mechanism, and a dissociation of
transmitter habitJlation from cognitive-emotional, or condi-
tioned reinforcer, conditioning as a secondary mechanism. This
analysis assumes that each win or loss can significantly deplete
the transmitter gate of the corresponding on-channel or off-
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r(M) ~ AB(J+ -J-)
A+I (45)

whereas after a sequence of losses N,

r(N) ~ AB[J+ ~ (~-I + g(N)] , (46)

where g(N) codes the extra c6nditioned reinforcer negativity
due to N. In this situation, the gambler's fallacy fails to hold.

A comparison of these two cases suggests that a persistent
emotional desensitization in the absence of cognitive-emotional
learning leads to the gambler's fallacy, whereas cognitive-emo-
tionallearning accompanied by rapid emotional recovery does
not. It remains to cbnsider the case in which transmitter habitu-
ation does persist but conditioned reinforcer learning also re-
scales the inputs (J+, J-). In the simplest realization of this in-
teraction,

AB(J+ -J-)r(M) = (47)
A +.J+g(M)'

whereas

channel, respectively, and that the transmitters recover at a slow
rate from these losses. A sequence of wins or losses may conse-
quently cause a cumulative habituation that acts as an affective
baseline for subsequent decisions. When such a sequence is ho-
mogeneous (e.g., involves all negative outcomes), then the
transmitter gate in the off-channel can habituate significantly
more than that in the on-channel. When a sequence is mixed
(e.g., involves equal numbers of positive and negative out-
comes), then the transmitter gates in both the on-channel and
the off-channel can habituate significantly. In particular, denote
by M a mixed sequence and by N a sequence of losses. A natural
outcome of cumulative habituation is that the depletion of the
transmitter in the negative channel can be greater after a se-
quence of losses than after a mixed sequence. Similarly, the de-
pletion of transmitter in the positive channel can be less after a
sequence of losses than after a mixed sequence. Formally, we
may express these relationships as

z+(M) < z+(N) and z-(M) > z-(N). (41)

Suppose, moreover, that these sustained habituative effects
can occur without altering the conditioned reinforcer pr~ies
of the bets. In other words, the decision maker codes the event
in terms of odds or other computations but does not learn from
previous emotional consequences of these computations. Then
the inputs J+ and J- that a bet generates at the gated dipole do
not change over time, but the sensitivity of the dipole to these
emotionally changed inputs does change through time.

Under these conditions, the gambler's fallacy occurs if the de-
cision maker continues to bet based on an affective "intuition."
This is true because the on-response r(N) to the same inputs
(J+, J-) after a sequence of losses N is greater than the on-re-
sponse r(M) to (J+, J-) after a mixed sequence M of wins and
losses. Consequently, a shift toward larger bets can occur after
more losses are experienced under these conditions.

Formally, the gambler's fallacy occurs when

r(N) > r(M), (42)

where r(p) is the on-response to sequence P. Given Equation
41 and the hypothesis of no conditioned reinforcer learning,
Equation 42 follows from the formulas

r(N) = (I + J+)z+(N) -(I + J-)z-(N) (43)

and
r(M) = (I + J+)z+(M) -(I + J-)z-(M). (44)

In summary, a dissociation between emotional adaptation and
cognitive-emotional conditioning can lead to the gambler's fal-

lacy.
We now contrast this result with two examples that illustrate

how conditioned reinforcer learning at cognitive-emotional
synapses can counteract the tendency to succumb to the gam-
bler's fallacy. First, consider the situation in which the gated
dipole quickly overcomes its transmitter habituation but a cu-
mulative record of past wins and losses is encoded within the
conditioned reinforcer long-term memory traces (Figure 4). In
particular, assume that a series of wins tends to augment J+,
whereas a series of losses tends to augment J-. Then after a
mixed sequence M, these long-term memory increments may
(approximately) balance out, so that

r(N) = AB(I + J+) -AB(I + J- + C(N)g(N) (48)
A + I A + 1+ g(N) .

Term -C(N)g(N)[A + I + g(N)]-1 in Equation 48 expresses
the negative conditioned reinforcer learning that can compen-
sate for the transmitter habituation terms g(M) and g(N). A
large value of C(N) can prevent the gambler's fallacy from oc-

curring.
What factors can control C(N), apart from a simple gain con-

trol bias that favors learning over habituation? The answer to
this question leads to a second explanation of the gambler's fal-
lacy. A factor of special interest concerns the role of cognitive
expectancies in modulating affective reactions. In addition to
the direct effects of a win or a loss on habituation of the corre-
sponding transmitter and conditioned reinforcer learning, dis-
confirmation of an expectancy can cause an antagonistic re-
bound (Grossberg, 1980, 1987).

Suppose, for definiteness, that the decision maker expects a
win. Then a win causes a direct activation of the on-channel.
On the other hand, a loss can activate the off-channel both di-
rectly and indirectly. The direct effect is due to the loss itself.
The indirect effect is due to the off-rebound caused by discon-
firmation of the expected win. Consequently, unexpected losses
can be more punishing than expected losses and can cause more
negative conditioned reinforcer learning. In Equation 48, such
an effect can cause a large value of C(N) and can thereby pre-
vent the gambler's fallacy from occurring. This analysis as-
sumes that the decision maker acts with an expectation of win-
ning on every trial. Such a pattern of expectations works against
persistent gambling after a long run of losses.

Expectations can, however, shift as a function of the temporal
patterning of past wins and losses. Such a hypothesis has been
used to suggest an explanation of the partial reinforcement ac-
quisition effect (Grossberg 1975, 1982b). In this analysis, expec-
tations shift with the pattern of wins and losses, and both direct
and indirect (antagonistic rebound) effects can amplify the
affective charge of an unexpected event. In the classical partial

~



NEURAL DYNAMICS OF DECIsION MAKING UNrj)E~ RISK 313

reinforcement paradigm, animals eventually run faster to par-
tiallyreinforced (mixed sequence) goals than they do to contin-
uously reinforced (positive sequence) goals. If we replace the
positive sequence by a negative sequence, then we arrive atan
analog of the g!tmbler's fallacy. In this analog, continuous losses
(the N sequence) ma:y generate1esS negative affect than a combi-
nation of Wins and losses (the M sequence). Such an effect is
due to several interacting factors. An enhanced negative a:trect,
or frUStration, can be generated by losses on mixed trials, be-
cause mixed trials tend to support the maintenance ofm expec-
tation to Win. This enhanced negative affect may be condi-
tioned, iorexample, to situational cues, thereby creating a
groWing baseline of enhanced negativity in the M condition.. As
in the animal moderof partial reinforcement, such a gambler's
fallacy develops most effectively if the reinforcement probabili-
ties are initially shaped to generate expectations capable of
maintaining such performance.

In summary, the gambler's fallacy may follow either from an
abnormal dissociation of cognitive-emotional learning from a
persistent emotional habituation or from a reinforcement
schedule that sets up the types of correlations between expec-
tancy-modulated antagonistic rebounds and cognitive-emo-
tionallearning that support the partial reinforcement acquisi-
tion effect,

wherein a decision I maker initially samples or attends to the
riskless alternative. Heuristically, we may think of the riskless
alternative as forming a reference point or adaptation level
against which the risky alternative is compared or evaluated. It
is assumed that attention is focused on the riskless alternative
for a sufficient amount of time for the transmitter levels in the
perturbed channel to adapt to the input from the riskless alter-
native. As attention SWitches to the riskyalternauve, two effects
occur that combine to determine the net respon.se to the risky
alternative. ThefirsteffeCi is anantagoDistic rebound Withinthe
affective gated dipole. This rebound may occur when the subject
SWitches from the input due to the riskless alternative to the
input due to th~risky alternative. Such a ..rebound en.codes the
affective residue due to a disconmmation of the riskless alterna-
tive in order to evaluate the risky alternative. The second effect
is a direct affective response to the inputs from the risky alterna-
tive. The net response to the risky alternative is then the sum of
these two effects.

Let '. be the response to the riskless alternative, '1 be the
antagoDisti~ rebound,an.d '2 be$e reSP9nse to th~ input of the
risky alternative. We may express the net response to a riskless
alternative that offers a sure gain as

'I = AKJ1+ (49)
where

AB
1(==

: (A + 1)(A +/+J1+).
!

Equation 49 is just Equation 25 with J.- = O. The antagonistic
rebound that occurs in response to attention shift to the risky
alternative is (approximately)

(50)12. Choice Between Riskless and Risky Alt~rnatives

We next describe some event groupings that may underlie the
choice between a riskless alternative and a riskyalternatiye.
Suppose, for example, that the riskless alternative is

A. A sure Win of$500,
'1 = -IKJ,+. (51)

After transmitter habituation occurs in response to the riskless
alternative, the direct response to the inputsJl+ andJl- of the
risky alternative is

and that the risky alternative is

B, A 3/4 probability of winning $800 and a 1/4 probability oflos.,
ing$400.

In itself, the riskless alternative does not contain a source of
negative affect. On the other hand, a choice of Alternative B
implies the renunciation of Alternative A and with it the possi-
bility 0.£ a sure win. Em~ding a sure win into a context of
other possibilities may thus create a source of ne~tiveaffect.

Expressed in another way, a riskless alternative does not, in
itself, involve a comparison between pairs of outcomes in the
way that a risky alternative does. The subje~ must create a
grouping of outcomes that includes the riskless alternative in
order to generate a preference order. Such a grouping may, or
may not, be based entirely on outcomes that are presented ex-
plicitlyby the experimentalist or more generally by the external
environment. In particular, if the subject generates a preference
order based on pair-wise comparisons, then a second outcome
must be found for comparison with the riskless alternative. One
possible outcome, which is not explicitly presented as part of
Alternatives A and B, is the denial, or &sconfirmation, of the
riskless alternative if the risky alternative is accepted.

In the subsequent paragraphs, we consider the preference or-
der generated by two possible event groupings. In the first
grouping, the disconfirmation of the riskless alternative is in-
cluded. In the second grouping, it is not. Consider a situation

: +--+-+
r2=K[(A+I)(J2 -J2 )-'J1 J2 ~IJ1]. (52)

Due to the antagonistic rebound {Equation 51), the net affect
due to disconfirmation of the riskless alternative and instate-
ment of the risky altemativeis

,f+'2 =K[(A + I)(J2+ -J2-)-,. Jt+ J2- -,. 2IJt+].

(53)

As in Section 8, we assume that the decision maker senses or
computes the difference ~+ = r1 -(rt + r2) between these two
net responses. By Equations 49 through 53,

~+ = L[J1 + t (J2+ -J2-)] + K(J1+ J2- +.IJ1+} (54)

where
L = (A + I)K. (55)

A similar analysis maybe conducted for a situation where the
riskless alternative involves a loss. Under these circumstances,
the difference between the two net responses is

A- = L[(J2- t J2 +)- J1-I- K(J1- J2+ + IJ1-). (56)



314 STEPHEN GROSSBERG AND WILLIAM E. GuroWSKI

One special case of particular importance involves a choice
between a riskless alternative and a risky alternative offering
only outcomes that are null or of the same sign as the riskless
alternative. Assume that only positive or null outcomes are pos-
sible; that is,

J2+ ~ J2- = o. (57)

In this case, the response to the riskless alternative and the an-
tagonistic rebound are as expressed in Equations 49 and 51,
respectively. The response to the inpu~ from the risky alterna-
tive is

$4000 may be represented as an input with conditioned rein-
forcer value appropriate to $4000 rapidly alternating with an
offset of that input (20% chance of winning nothing). Where
such rapid switching occurs, the subject creates an implicit con-
flict situation by generating off-rebounds to the positively va-
lenced response. It is worth considering whether some subjects
encode the 80%-20% contingency by just partially switching off
the positively valenced signal, and thereby weakening the off-
rebounds that compete with the positively valenced reaction be-
fore generating a net dipole output.

In the second sequence of comparisons that we will consider,
the subject first adapts to the riskless alternative and then
switches to the risky alternative without processing the discon-
firmation that rej~on of the riskless alternative could imply.
All of the above co~putations are the same, except there is no
longer an antagonistic rebound r1. Then Equation 54 is re-
placed by

'2 = K«A + I)J2+ -IJ1+).

Hence, the net response to the risky alternative is

(58)

r1 + r2 = K[(A + I)J2+ -2IJ1+] (59)

so that the difference between the two net responses is

Llo+ =L[J1+-J2+] +K1J1+. (60)

If only negative or null outcomes are possible, then this differ-
ence is

~ -= L[J2- -J\-] -KIJ\-. (61)

~+ = L[J 1+ -(J2+ -J2-)] + J1+ J2- (62)

and Equation 60 is replaced by

~ + = L[J1+ -J2+]. (63)

When Equation 63 is used to explain why Alternative A is pre-
ferred to Alternative B, the psychophysical properties of the
Kahneman and Tversky axioms (Section 7) bear the full burden
of the explanation.

A similar type of contextual effect occurs if a positive riskless
alternative is compared sequentially with the positive and nega-
tive events of a risky alternative. Then each of the comparisons
may generate antagonistic rebounds due to the fact that the risk-
less alternative defines an adaptation level for evaluating both
risky events.

In summary, this section illustrates how the additional affec-
tive values that are generated by contextually induced compari-
sons may explain certain properties of decision making under
risk without invoking all of the Kahneman and Tversky
axioms.

The implications of this analysis are applicable to two impor-
tant phenomena that have been discovered during the develop-
ment of prospect theory. Consider the following problems (from
Tversky & Kahneman, 1981):

Which of the following alternatives do you prefer?

Problem 1
A. A sure win of $3000.
B. An 80% chance to win $4000.

Problem 2
C. A sure loss of$3000.
D. An 80% chance to lose $4000.

When presented with these problems, the majority of indi-
viduals prefer A to Band D to C. That is, individuals tend to
be risk averse when gains are involved but risk taking when
losses are involved. The previous computation accounts for this
effect as the net effect of two types off actors: affective antagonis-
tic rebounds that occur when sure events are contextually dis-
confirmed, and affective reactions to risky events based on prior
affective adaptations. Suppose, for example, in Problem 1, that
attention is shifted from the riskless alternative to the risky al-
ternative. The rebound is negative, thereby decreasing the net
response to the risky alternative. Consequently, the riskless al-
ternative will be chosen unless'2 is considerably larger than '.;
that is, the risk-averse alternative is preferred where gains are
involved. In the second problem, the rebound due to an atten-
tion shift from the riskless alternative is positive, which in-
creases the net response to the risky alternative. As a result, the
risky alternative will be chosen unless '2 is considerably smaller
than '1; that is, the risk-taking alternative is preferred where
losses are involved.

We consider it possible that some subjects may affectively
evaluate a risky alternatiye by switching rapidly between its two
possible interpretations. For example, an 80% chance to win

13. Framing Effect

Next, consider the following problems (from Tversky & Kah-
neman, 1981) that illustrate the framing effect.

Problem 3
Imagine that the United States is preparing for the outbreak of an un-
usual Asian disease, which is expected to kill 600 people. Two alterna-
tive programs to combat the disease have been proposed. Assume that
the exact scientific estimate of the consequences are as follows:

If Program A is adopted, 200 people will be saved.
If Program B is adopted, there is a 1/3 probability that 600 people
will be saved, and a 2/3 probability that no people will be saved.

Problem 4
Given the same cover story as in Problem 3, a different formulation of
the net effects of the alternative programs is:

If Program C is adopted, 400 people will die.
If Program D is adopted, there is a 1/3 probability that nobody will
die, and 2/3 probability that 600 people will die.

When presented with these problems the majority of individ-
uals prefer A to B $d D to C. That is, individuals tend to be
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cision-making phenomena that have previously been interpret-
able only using formal axioms, such as those of prospect theory.
This analysis clarifies how cognitive strategies may generate
affective contexts for evaluating riskless and risky alternatives.
In so doing, it provides an explanation of why individuals often
do not act to maximize subjective value, even in simple situa-
tions where cognitive complexity is minimal, despite the fact
that the mechanisms that prevent maximization have manifest
adaptive functions. These mechanisms are not designed to
maximize subjective value. Rather, they are designed to control
the emotional processes that regulate reinforcement, incentive
motivation, and affectively modulated attention shifts.

Many phenomena still lie outside the scope of the theory as
presently formulated, if only because it has used only the most
rudimentary ideas from the cognitive-emotional theory of
which it is an application. The present results establish a bridge
to that general theory and indicate how affective balance theory
may be developed on a principled basis as increasingly complex
situations are analyzed. In particular, the present results dem-
onstrate that psychophysiological data and theory may now be
profitably applied to the domain of decision making under risk.
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Appendix A

Relative Preference Independent of Sampling Order

Consider a choice between two alternatives al and a2. Let rij
denote the response to the ith alternative when aj is sampled
first. If al is sampled first, then after transmitter habituation
takes place,

(A8)

and
'22 = AK2(J2+ -J2-), (A9)

(Ai) where

(AIO)
(A2)ZI-= (A + 1+ J1-)'

and When attention is then switched to ai, the response, 712, is
'II = AKI(JI+ -JI-), (A3)

where '.2 = K2[(A + I)(J.+ -J.-
-I(J2+ -J2-)

+J1+h--J1-J2+]. (All)

The difference A(2) = '22 -'12 in these responses is

~(2) = K2[(A + I)«J2+ -J2-) -(Jt+ -Jt-»

+ J2+ J)- -J2- J)+]. (AI2)

Term .1(1) compares the relative reaction to a2 after al. Term
.1(2) compares the relative reaction to a2 before at. By Equations
A6 and A 12, these terms differ only in their positive coefficients
K\ and K2. Thus .1(1) is positive (negative) if and only if .1(2)
is positive (negative). Hence the same relative preference exists
independent of sampling order.

K = AB(J1+ -J1-)
( A4

)1 (A+I+J1-XA+I+J1-).

When attention is then switched to °2, the response, '2\, is based
on the habituated values in Equations Ai and A2. Thus
'21 = K1[(A + IXJ2+ -J2-) -I(J\+ -JI-)

+ J2+ J\- -JI+ J2-)]. (AS)
The difference ,l(I) = '21 -'II in these responses is

1:1(1) = K1[(A + IX(J2+ -J2-) -(J1+ -J1-»

+ J2+ J1- -J2- JI+]. (A6)
If a2 is sampled first, then

(A7)

Appendix B

Risk Aversion, Risk Attraction, and Preference Reversal

D2,:l(I) < 0; (B2)

that is, if az is preferred over a. (11(.) > 0) even though a. has
greater value than az (Dz < 0); or if al is preferred over az
(11(1) < 0) even though az has greater value than a. (Dz > 0).

By Equation A6,

,:l(I) = Ki[(A + I)D2 + Ji-(J2- + Di + D2)

-J2-(J1- + DJ]

= K1[(A + 1+ J1-)D2 + (Ji- -J2-)D1]. (B3)

Because A +1 +11-> 0 and 1.- -lz- <0,

,:l(I) > 0 if D1 < 0 and D2 > 0, (B4)
whereas

A(l) < 0 if Dl > 0 and D2 < O.

The difference tl(l) may be positive or negative if

DID2> O.

(B5)

Consider a choice between two equally valued alternatives al
anda2' LetD = JI+ -JI- = J2+ -h-. Assume that a2 is riskier
than al so that J 1- < J2-. Without loss of generality, assume
that al is sampled first. Then by Equation A6,

~(I) = KI[J2+ JI- -J2- J1+]

= K1[(J2- + D).JI- -J2-(J1- + D)]

= D(J1- -h-). (BI)

Therefore, ~(I) < 0 if and only if D > 0, because JI- -J2- < O.
This result demonstrates that the less risky alternative is chosen
(~(I) < 0) only if the positive input is greater than the negative
input (D > 0). That is, the less risky alternative of two equally
valued alternatives is chosen only if the alternatives are favor-
able.

Consider a choice between two alternatives that are not equal
in value. LetJI+ -JI- = DI andJ2+ -J2- = DI +D2' Assume
that a2 is riskier than ai, so thatJ 1- < J2-. Let ~(I) = r21 -rll,
as in Appendix A. A preference reversal is said to occur if (B6)



318 STEPHEN GROSSBERG AND WILLIAM E. GuroWSKI

In the case of Equation B7, the preference reversal favors the
less risky alternative a. only if the alternatives are favorable
(D. > 0). In the case of Equation B8, the preference reversal
favors the riskier alternative a2 only if the alternatives are un-
favorable (D1 < 0).

A preference reversal does not occur in either of the cases in
Equation B4 or Equation B5. A preference reversal can occur
only if Equation B6 holds. By Equations B3 and B6, two possi-
ble cases obtain: Either

~(I)<O,D1>O,D2>O (B7)
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(B8)A(I) > 0, D1 < 0, D2 < O.


