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Abstract 
How do humans rapidly recognize a scene?  How can neural models capture this biological 
competence to achieve state-of-the-art scene classification? The ARTSCENE neural system 
classifies natural scene photographs by using multiple spatial scales to efficiently accumulate 
evidence for gist and texture. ARTSCENE embodies a coarse-to-fine Texture Size Ranking 
Principle whereby spatial attention processes multiple scales of scenic information, from global 
gist to local textures, to learn and recognize scenic properties. The model can incrementally learn 
and rapidly predict scene identity by gist information alone, and then accumulate learned 
evidence from scenic textures to refine this hypothesis. The model shows how texture-fitting 
allocations of spatial attention, called attentional shrouds, can facilitate scene recognition, 
particularly when they include a border of adjacent textures. Using grid gist plus three shroud 
textures on a benchmark photograph dataset, ARTSCENE discriminates 4 landscape scene 
categories (coast, forest, mountain and countryside) with up to 91.85% correct on a test set, 
outperforms alternative models in the literature which use biologically implausible computations, 
and outperforms component systems that use either gist or texture information alone.   
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1. Introduction 
Scene understanding is a hallmark of human natural vision and is a challenging goal for 

machine vision because a scene contains predictive information on multiple scales of processing. 
Computational models of scene understanding have attempted to identify scene signatures and 
use them for image classification. For example, Oliva & Torralba (2001) used spectral templates 
that correspond to global scene descriptors such as roughness, openness, and ruggedness. Fei-Fei 
& Perona (2005) decomposed a scene into local common luminance patches or textons. Bosch, 
Zisserman, & Muñoz (2006) applied the Scale-Invariant Feature Transform (SIFT: Lowe, 1999) 
to characterize a scene. Although successful in benchmark studies, these approaches often stress 
one representation over the others, either local or global, and many include computations that are 
non-local and implausible biologically. In contrast, Vogel, Schwaninger, Wallraven, & Bülthoff 
(2006) showed that human subjects did a better job in categorizing rivers/lakes and mountains 
when the presented images were globally blurred than locally scrambled, but conversely in 
categorizing coasts, forests and plains. In addition, intact images are always easier to identify 
than either of the manipulated ones. Such evidence indicates that neither global nor local 
information is more predictive than the other at all times, and that the brain makes use of scenic 
information from multiple scales for scene recognition.  

Scene understanding from multiple-scale gist and texture categories. The ARTSCENE 
model assumes that global information is quickly available before more local information is 
acquired using attentional focusing and scanning eye movements. This assumption is consistent 
with several studies in global-to-local visual processing (e.g., Navon, 1977; Schyns & Oliva, 
1994) and with the fact that human viewers can detect a named object in a scene within ~150ms 
that is less than the average fixation time (~300ms) (Potter, 1975). ARTSCENE furthermore 
proposes that global gist and local texture information are both computed using similar 
mechanisms, albeit at different spatial scales, and that selective attention to more local scales 
collects texture evidence to revise and refine a global gist prediction. 

The challenges of the model are thus to clarify what constitutes scene gist, where and 
what scale to attend next, how these statistical scenic measures are learned, and how to integrate 
gist and texture information to achieve state-of-the-art scene classification. In ARTSCENE, the 
gist of a scene is a learned category of its spatial layout of colors and orientations. Spatial 
attention is then sequentially drawn to the scene’s principal textures, in order of decreasing size, 
which are also categorized. Scene identity is predicted via a learned mapping from multiple-scale 
gist and texture category activations. 

ARTSCENE is one of an emerging family of Adaptive Resonance Theory, or ART, 
neural models that clarify how the visual system can strategically deploy attention and combine 
information from multiple scales to learn useful predictions about the world. ART is used 
because it models how the brain can rapidly and stably learn to categorize large non-stationary 
databases using incremental learning (Carpenter & Grossberg, 1991). Recent review articles 
summarize behavioral and neurobiological data that support all of the main ART predictions 
about how the brain does this (Grossberg, 2003b; Raizada & Grossberg, 2003).  

Since gist is just one of several textures in our treatment, ARTSCENE may be viewed as 
a generalization of the ARTEX (Grossberg & Williamson, 1999) and dARTEX texture classifier 
(Bhatt, Carpenter, & Grossberg, 2007). ARTSCENE also adapts heuristics of the ARTSCAN 
model of view-invariant object learning (Fazl, Grossberg, & Mingolla, 2009) by incorporating 
multiple views of a scene that are presumed to be derived from spatial attention shifts and 
scanning eye movements.  
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In the following sections, we first describe the image and annotation dataset used to test 
ARTSCENE. Then, the ARTSCENE system is defined mathematically and simulation results are 
presented. Finally, strengths and weaknesses of the current approach are discussed, as well as 
possible model extensions. 
 
2. The Image and Annotation Dataset 

2.1 The image dataset. ARTSCENE simulations ran on the natural image dataset 
from Oliva & Torralba (2001) that has also been used by other researchers (e.g., Fei-Fei & 
Perona, 2005; Bosch et al., 2006). The dataset contains 4 landscape scene categories including 
coast (360 images), forest (328 images), mountain (374 images), and countryside (410 images).  
All images are chromatic and of size 256x256 pixels. Figure 1 shows 8 exemplars in the dataset 
and illustrates the great variation within each scene category. 

 

 
Figure 1. Example images in the dataset. Each column is an image pair in the same 
category to illustrate within-class variation. 

2.2 The annotation dataset. To study how humans parse a scene into local 
elements, we make use of human annotations on the same image dataset, which are available 
from the LabelMe webpage (Russell, Torralba, Murphy, & Freeman, 2005). Although this 
annotation scheme embodies polygon coordinates and label names of local regions, it is not an 
error-free dataset for texture classification. The major issue is the poor segmentation. A related 
problem is that the label names are ambiguous if taken locally without a context. For example, a 
label ‘water’ can include a sky and mountains due to reflection (Figure 2a), and a label ‘rock’ 
can be confounded with clouds due to occlusion (Figure 2b). In addition, people tend to avoid 
tedious labeling in the cases of abundant occlusions or clutter (Figure 2c).  
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Figure 2. Red curves and blue spots circle labeled regions in human annotations. (a) water-
sky-mountain confusion due to reflection; (b) cloud-rock confusion due to ill-defined 
texture boundary; (c) leaf-cloud-sky confusion due to careless labeling. 

 
3. The ARTSCENE System 

3.1 Overview. ARTSCENE consists of gist and texture subsystems (Figure 3). For 
gist, a 304-dimensional feature vector is constructed for each image (G in Equation 17), 
incorporating properties of orientations (O in Equation 15) and colors (C in Equation 16). A 
Default ARTMAP 2 classifier (Amis & Carpenter, 2007) learns recognition categories and an 
association between the gist category and its scene label. For texture, ARTSCENE identifies the 
largest labeled area (i.e., first principal texture) for each image and represents it by a 22-
dimensional texture feature vector (Tδ in Equation 27). Again, Default ARTMAP 2 learns a 
recognition category and an association between the category and its scene label. The same 
procedure is applied to the second and third largest labeled regions in each image. The output of 
the texture system is the average of three scenic prediction vectors mapped from categories of 
principal textures (Equation 28). The system output is the most active scene class in the average 
of both gist and texture prediction vectors (Equation 29).  

Complementary computing of boundaries and surfaces. As in the FACADE model 
(Grossberg, 1990, 1994), ARTSCENE computes both oriented boundary and unoriented surface 
color information. Boundaries and surfaces are defined in parallel processing streams by 
computationally complementary properties (Grossberg, 2000, 2003a, 2003b). In the brain, the 
boundary stream passes from LGN through V1 interblobs and V2 pale stripes to V4. The surface 
stream passes from LGN through V1 blobs and V2 thin stripes to V4. Boundaries pool signals 
from multiple achromatic and chromatic channels in order to define the strongest boundary 
signal possible. Pooling of signals from multiple detectors, including detectors with opposite 
contrast polarity, enables the boundaries of objects lying in front of textured backgrounds to be 
computed.  

Due to the pooling of opposite contrast polarities, boundaries cannot represent visible 
brightness and color properties. Boundaries are predicted to be amodal, or invisible, within the 
boundary processing stream. Visible percepts are processed within the surface stream, with the 
help of signals from the boundary stream. The surface stream segregates achromatic and 
chromatic signals in separate channels, and thereby defines the visible surface qualities that we 
see. The ARTSCENE model applies these properties to the problem of scene understanding. 
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Figure 3. (a) ARTSCENE training mode; (b) ARTSCENE testing mode. 
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3.2 Oriented boundary filtering. In ARTSCENE, multiple-scale oriented filtering 
is used to compute both gist and texture boundary properties. Such an early filtering computation 
can be achieved using a variety of possible kernels: Gabor functions (Gabor, 1946; Daugman, 
1980), differences of normalized offset oriented filters (Grossberg & Mingolla, 1985a, 1985b), 
log-Gabor functions (Field, 1987), differences of offset Gaussians (Young, 1987; Grossberg & 
Todorović, 1988), differences of offset differences of Gaussians (Parker & Hawken, 1988), 
Gaussian derivatives (Young, 1986), and a steerable pyramid (Simoncelli & Freeman, 1995). In 
ARTSCENE, oriented filtering is carried out by ON-cell and OFF-cell activities sampled through 
normalized differences of offset oriented Gaussians (Bhatt, Carpenter, & Grossberg, 2007): 

Stage 1. Color-to-Gray image transformation. In the brain, boundaries pool signals from 
multiple color channels (Grossberg, 1994) to compute the strongest boundary possible at each 
position. In ARTSCENE, the values of three RGB channels are averaged: 

                                                      

€ 

Ipq =
1
3
(Ipq

R + Ipq
G + Ipq

B ),                      (1) 

where p and q are pixel indices and 

€ 

Ipq
R , 

€ 

Ipq
G , 

€ 

Ipq
B  are, respectively, the image intensities of red, 

green and blue channels. 
Stage 2. Contrast normalization. This stage corresponds to early neural processing in the 

retina and lateral geniculate nucleus (LGN) that generates contrast signals using multiple-scales 
of antagonistic ON-cells (ON-center OFF-surround) and OFF-cells (OFF-center ON-surround) 
(Hubel & Wiesel, 1961; Grossberg & Hong, 2006; Bhatt, Carpenter, & Grossberg, 2007). An on-
center, 

€ 

Iij , off-surround, 

€ 

− Sijpq
g Ipq
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∑ , shunting network normalizes local luminance for contrast 

enhancement: 
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where 

€ 

xij
g   is the normalized activity of the cell at position (i, j) with scale g = 1, …, 4, the 

surround kernel 

€ 

Sijpq
g  is Gaussian: 
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and scale parameters (σs1, σs2, σs3, σs2) = (1, 4, 8, 12). The LGN ON-cell and OFF-cell output 
signals are 

        

€ 

Xij
g+ = [xij

g ]+                    (4) 
and             

        

€ 

Xij
g− = [−xij

g ]+,                     (5) 
where the signal function [x]+ = max(0,x) denotes half-rectification. 

Stage 3. Contrast-sensitive oriented filtering. The third stage models oriented simple 
cells in primary visual cortical area V1 (Hubel & Wiesel, 1959) that are bottom-up activated by 
LGN ON and OFF activities (Hubel & Wiesel, 1962) sampled through spatially elongated and 
offset Gaussian kernels (see Figure 4). Each receptive field of simple cells consists of ON- and 
OFF-subregions. The ON-subregions receive excitatory ON LGN signals and inhibitory OFF 
LGN signals, while the OFF-subregions have the converse relation to the LGN channels (Reid & 
Alonso, 1995; Hirsch, Alonso, Reid, & Martinez, 1998). In particular, model V1 simple cell 
activity

€ 

yijk
g  at position (i, j), orientation k, and scale g obeys the shunting equation: 
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where passive decay rate α = 1. In the excitatory term of Equation 6, LGN ON-cell activities 
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Xpq
g+  are sampled by an oriented spatially elongated and offset Gaussian kernel 
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Gpqijk
g+ . LGN OFF-

cell activities 
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Xpq
g− are sampled by a similar kernel 
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g− . The centers of kernels 
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are offset in mutually opposite directions from each simple cell’s centroid along an axis 
perpendicular to the simple cell’s direction of elongated sampling. In the inhibitory term of 
Equation 6, the same kernels sample an LGN channel complementary to the one in the excitatory 
term. The net activity of simple cells is thus a measure of image feature contrast in its preferred 
orientation.  

The oriented, elongated, and spatially offset kernels 

€ 

Gpqijk
g+  and 

€ 

Gpqijk
g−  in Equation 6 are: 
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with offset vector 

€ 

(mk,nk ) = (sin πk
4
, cosπk

4
) ,  short-axis variance (σv1, σv2, σv3, σv4) = (1/4, 1, 2, 

3), and long-axis variance (σh1, σh2, σh3, σh4) = (3/4, 3, 6, 9). 
The outputs from model simple cells of opposite contrast polarity are half-rectified activities 
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Yijk
g+ = [yijk
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and              

     Yijk
g− = [−yijk
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where y[ ]+ = max(y,0).  
Stage 4. Contrast-insensitive oriented filtering. This stage models oriented, contrast-

polarity insensitive, and phase-insensitive V1 complex cells by pooling outputs from oriented 
simple cells of opposite contrast polarities (Hubel & Wiesel, 1959; Hubel & Wiesel, 1962): 

     

€ 

zijk
g =Yijk

g+ +Yijk
g− .                           (11) 

Thus, model complex cells respond to oriented energy of either polarity. 
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Figure 4. (a) Odd-symmetric filters used to model V1 simple neurons; (b) corresponding 
filter responses to the coast image in Figure 5. 

Stage 5. Orientation competition at the same position. Contrast between orientations at 
the same pixel position is enhanced by a shunting on-center off-surround network across 
orientation at each position: 
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where the on-center kernel   
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−  are 1D Gaussians: 
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with σ + = 0.5 and σ −  = 1.  
3.3 Surface color statistics. Color-pooled boundary information such as edge 

orientation computed in Section 3.2 is not the only feature informative for scene identification. 
Surface properties such as luminance or color are also useful cues for scene classification (e.g. 
Szummer & Picard, 1998; Vailaya, Figueiredo, & Jain, 2001; Bosch, Zisserman, & Muñoz, 
2006; Vogel & Schiele, 2007). As noted above, the FACADE model (Grossberg, 1990, 1994) 
explains that boundary and surface properties are complementary (Grossberg, 2000) and interact 
to generate representations of brightness, color, depth, texture, and form. Consistent with this 
view, Oliva & Schyns (2000) conducted psychophysical experiments and confirmed that subjects 
bring color into play when it is a diagnostic scene attribute. They showed that reaction time (RT) 
decreases for normally colored displays and increases for abnormally colored ones when 
compared to the luminance-only condition in the (canyon, forest, coastline, desert) scene 
classification task. Color is thus part of the ARTSCENE feature vectors. 
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In the computer vision literature, color histogram is a well-established feature for both 
object and scene recognition (e.g. Swain & Ballard, 1991; Szummer & Picard, 1998; Vailaya & 
Zhang, 1998; Vogel & Schiele, 2007). It is often constructed from the Red/Green/Blue (RGB) 
color space, the Hue/Saturation/Value (HSV) color space (Smith, 1978), the Ohta color space 
(Ohta, Kanade, & Sakai, 1980), or the Hue/Saturation/Intensity (HSI) color space (Keim & 
Kriegel, 1995). Other alternative color representations include color coherence vectors that 
further divide each bin in a color histogram into coherent and non-coherent pixels, based on 
whether or not a pixel is part of a large similarly-colored region (Pass, Zabih, & Miller, 1997), 
color correlograms that compute the spatial correlation of pairs of colors as a function of the 
distance between pixels (Huang, Kumar, Mitra, Zhu, & Zabih, 1997), and color concentric 
circles of Scale-Invariant Feature Transform (SIFT) (Bosch, Zisserman, & Muñoz, 2006). 

In ARTSCENE, the mean RGB values, rather than color histograms, are computed to 
represent both gist and texture surface properties. These 3-dimensional color quantities are a 
direct generalization of the 1-dimensional brightness value crucial for texture classification in 
ARTEX (Grossberg & Williamson, 1999). Although this color-coding scheme is much 
compressed than color histograms, both representations yielded to comparable results in the 
ARTSCENE model behavior and final classification performance.  

3.4 Gist feature vector. In ARTSCENE, the gist of a scene is defined and 
recognized as a global texture category. Previous studies have proposed a variety of perceptual 
dimensions to compute scene gist, such as mean depth, openness, expansion, degree of 
navigability, level of camouflage, degree of movement, and temperature (Oliva & Torralba, 
2001; Greene & Oliva, 2006). In ARTSCENE, gist is computed using more basic properties that 
underlie general visual perception and categorization. Specifically, we propose that the brain 
learns and predicts regular scenic patterns via mechanisms of texture categorization operating at 
large scales for early rapid scene identification, as suggested by Renninger & Malik (2004). One 
such example would be the dominant orientation; that is, the visually most compelling 
orientation perceived by humans from natural textures (Picard & Gorkani, 1994) or city/suburb 
scenes (Gorkani & Picard, 1994). For example, the dominant energy is often horizontal in a coast 
scene due to the horizon and waves, vertical in a forest scene because of tall trees, and diagonal 
in a mountain scene due to ridges.  

ARTSCENE assumes that boundary, surface, and spatial information is combined to 
represent scene gist. To compute this composite of boundary, surface, and spatial information, 
boundary and surface information is filtered within 16 evenly spaced local surface patches π (see 
Figure 5). Each of the 16 patches is characterized by the average values of four orientation 
contrasts at four different scales, yielding a 16-dimensional orientation vector, in addition to the 
average values of three RGB channels, yielding a 3-dimensional color vector. Mathematically, 
the components of the 16-dimensional orientation vector and 3-dimensional color feature vector 
of a surface patch π are: 

       

€ 

Ok
πg =

1
|π |

Zijk
g

( i, j )∈π
∑                        (15) 

and 
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Cπω =
1
|π |

Ipq
ω

( p,q )∈π
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where the four orientations k = 1, 2, 3, 4; the scales g=1, 2, 3, 4; the colors ω = R, G, B; and |π| 
specifies the number of pixels in region π. The final gist feature vector G is a concatenation of 19 
normalized 

€ 

Ok
πg  and 

€ 

Cπω  values across all 16 surface patches π: 
    

    

  

€ 

G = ( Ok
πg

O


πg )
=1...4
∑

, Cπω

Cπν

ν ={R ,G,B}
∑

: k =1,2,3,4;ω = R,G,B;π =1,...,16).         (17) 

                               
 In all, the gist vector G has 304 dimensions: a 19-dimentional orientation-and-color feature 
vector in each of 16 surface patches: (19×16=304). 

a b 

  
Figure 5. (a) The 4x4 partition used for the grid gist representation; (b) annotated regions 
in the LabelMe database used for texture representation. Compared with the three largest 
regions – ‘sea water’, ‘sky’ and ‘mountain’, labels named ‘houses occluded’ and ‘quay’ are 
relatively obscure. 

We also tested another gist representation in which the only sub-area π was the whole 
image. In this case, the 19-dimensional feature vector G was a global average of different 
orientations and colors. To distinguish these two gist implementations in the later discussion, we 
call grid gist the representation with spatial partition, and frame gist the one without. The 
performance difference between the grid gist and frame gist representations can be attributed to 
the availability of spatially formatted boundary and surface features in one but not the other. 

3.5 Attended texture feature vectors: Texture size ranking principle. A 
texture is a nearly homogeneous surface exhibiting certain statistical regularities, such as a clear 
sky, a piece of grass, or a body of rippled water. A texture itself can be a strong indicator of 
scene identity. For instance, a big white patch of rocks is very likely part of a snowy mountain. 
Other textures, such as the sky, are shared across several scene categories and not very 
predictive. A challenge for an efficient scene classifier is to discover and learn scene-specific 
texture categories. 

Attentionally modulated learning of principle textures. We have found that principal 
textures, defined and ordered by their relative size in the visual field, are informative regions for 
landscape scene identification. We call this coarse-to-fine strategy the texture size ranking 
principle. In particular, it is sufficient to combine texture information from the three largest 
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annotated regions in an image to achieve good scene recognition. These texture measures highly 
correlate with scene identity, and the correlation strength is proportional to the texture size (see 
Section 4, Table 1). Moreover, on average, three principal textures together constitute 92.7% of 
the total area of a landscape image in the dataset that we studied, and appear much more salient 
than small objects and textures, as illustrated in Figure 5. Attention shifts thus have a 92.7% 
likelihood of falling within these regions during free viewing.  

We thus hypothesize that humans deploy spatial attention and make eye movements onto 
these principle textures for later elaborate scene identification, and that the search order tends to 
be from large textures to small textures for most efficient evidence accumulation. It is named 
texture size ranking principle and implemented algorithmically in ARTSCENE by sequentially 
processing one principal texture in an image at a time during learning, recognition, and evidence 
accumulation. For example, in Figure 5, ARTSCENE scans in sequence through the regions of 
“sea water”, “sky”, and “mountain” in the order of their relative size. 

In ARTSCENE, spatial attention defines an information window that masks out 
information outside the window. Bhatt, Carpenter, & Grossberg (2007) and Fazl, Grossberg, & 
Mingolla (2009) have shown how an attentional spotlight (e.g. Eriksen & Yeh, 1985; Moran & 
Desimone, 1985; Posner & Petersen, 1990; LaBerge, 1995) can spread into a form-fitting shroud 
of spatial attention (Tyler & Kontsevich, 1995) that selects an entire textured region, while 
down-regulating other scenic regions. We assume that such a shroud selects the texture-specific 
filtered quantities that comprise a texture feature vector. Several types of experiments, including 
studies of change blindness (Simons & Levin, 1997; Rensink, 2000) and scene perception 
(Schyns & Oliva, 1994), have indicated that not all scenic information is available in a glimpse, 
and scene gist mainly delivers coarsely coded information (Bar, 2004). In the same spirit, we 
construct the scene gist in Equation 17 by averaging orientations and colors over the regions π, 
which implicitly leaves out the fine-scale image content.  

Bounding box attentional windows. We compare results using region-fitting attentional 
shrouds with a simpler attentional window, δ, that is defined to be the minimum bounding box of 
a principal texture (box textures in Figure 6). The 2D spatial extents of δ range from min(xk) to 
max(xk) in the x direction and from min(yk) to max(yk) in the y direction, where (xk, yk) are 
polygon vertices of the chosen texture in the LabelMe database (see Figure 5b and Section 2.2). 
This approach relaxes the need for perfect texture segmentation and is commonly used for object 
recognition in real scenes (Everingham, Zisserman, Williams, & Van Gool, 2006). Our 
simulations show (see Section 4) that ARTSCENE classification works well with this 
segmentation scheme. In particular, a 16-dimensional orientation vector and 3-dimensional color 
feature vector for region δ are defined by: 
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|δ |

Zijk
g

( i, j )∈δ
∑                       (18) 

and 
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Cδω =
1
|δ |

Ipq
ω

( p,q )∈π
∑ ,                (19) 

where the four orientations k = 1, 2, 3, 4; the scales g=1, 2, 3, 4; the colors ω = R, G, B; 
and |δ| specifies the number of pixels in region δ.  

In addition to orientation and color, we also incorporate spatial factors—notably, the 
region area, Aδ, and the region centroid (

€ 

Px
δ ,

€ 

Py
δ )—into the texture feature vector. Since the 

polygon vertex coordinates from the LabelMe database, (xk, yk), specify boundary pixels rather 
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than surface pixels of a region (see Section 2.2 and Figure 2), we derive these quantities from the 
following equations, instead of image moments (Pratt, 2007): 

€ 

Aδ =|δ |= (max
k
xk −mink xk )(maxk yk −mink yk ),   (20) 

€ 

Px
δ = (max

k
xk +min

k
xk ) /2,     (21) 

and 

€ 

Py
δ = (max

k
yk +min

k
yk ) /2.     (22) 

The rationale here is to discriminate visually similar textures using ecological constraints in a 
scene. For example, a clear blue sky is hardly distinguishable from a surface of stationary water 
if taken out of context. In this case, the texture centroid (

€ 

Px
δ ,

€ 

Py
δ ) in a scene is informative 

because the sky often occupies the upper visual field, whereas water usually occurs in the lower 
field. As for the texture area Aδ, the same texture may occupy different portions of a scene, 
depending upon the scene category. For instance, the sky tends to be large in both ‘coast’ and 
‘countryside’ scenes, but small in a ‘forest’ due to tree occlusion. We envisage these distinctions 
as being part of the spatial information available to the brain when studying a scene. 

Surface-fitting attentional shrouds. To better understand the learning and recognition 
effects of attentional focusing on surfaces in space, we also implement the attentional window, δ, 
in the form of an annotated principal texture with or without a fringe (see shroud and pure 
textures in Figure 6, respectively), and contrasts the abovementioned bounding box approach 
(box textures in Figure 6). In other words, an attentional shroud is used to demarcate object 
surfaces. The concept of such a shroud was introduced by Tyler & Kontsevich (1995), who used 
it to explain how a surface map morphs to account for momentarily available depth cues during 
3D vision.  

Fazl, Grossberg, & Mingolla (2009) and Bhatt, Carpenter, & Grossberg (2007) further 
developed the shroud concept to predict how an attentional shroud can control learning of view-
invariant object categories, as well as texture categories. For computational simplicity, 
ARTSCENE replaces attentional shroud dynamics that are simulated in Fazl et al. (2009) with 
the algorithmically pre-segmented surface regions that define principal textures. ARTSCENE 
learns statistical measures of each such surface region, as well as the region area, Aδ, and the 
region centroid (

€ 

Px
δ ,

€ 

Py
δ ) of a principal texture (Press, Teukolsky, Vetterling, & Flannery, 2007): 

         

€ 

Aδ =|δ |= 1
2

(xkyk+1 − xk+1yk )
k= 0

N−1

∑ ,     (23) 

€ 

Px
δ =

1
6Aδ

(xk
k= 0

N−1

∑ + xk+1)(xkyk+1 − xk+1yk ),    (24) 

and 

€ 

Py
δ =

1
6Aδ

(yk
k= 0

N−1

∑ + yk+1)(xkyk+1 − xk+1yk ),    (25) 

where (xN, yN) = (x0, y0), coordinates (xk, yk) are polygon vertices used to define a region in the 
LabelMe database (see Figure 6a), and N is the number of such vertices for a certain region label.  
In the simulations of shroud textures, we first obtain the centroid of a principal texture, 
(

€ 

Px
δ ,

€ 

Py
δ )OLD, via Equations 24 and 25, and extend the shroud boundary by scaling the distance 

between the centroid and each vertex (xk, yk)OLD: 

€ 

(xk, yk )NEW =1.3 ⋅ (xk, yk )OLD − (Px
δ , Py

δ )OLD[ ].    (26) 
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The new region area and centroid are then computed via Equations 23-25. 
It should be noted that Equations 20-22 are special cases of Equations 23-25 if (xk, yk) are 

the four corners of a region bounding box. Here we use different equations to highlight the 
geometric differences between these two implementations of the attentional window. The final 
22-dimensional texture feature vector 

€ 

Tδ  is a concatenation of normalized 

€ 

Cωb
δ , 

€ 

Ogk
δ , 

€ 

Px
δ , 

€ 

Py
δ  and 

€ 

Aδ  values: 

                 

€ 

Tδ = ( Cb
δω

Cb
δω

ω ,b
∑

, Ok
δg

Ok
δg

k=1..4
∑

, Px
δ

256
,
Py
δ

256
, Aδ

2562
).        (27) 

If the attentional window, δ, are bounding boxes of principal textures, we call the selected 
regions box textures to distinguish them from pure textures that are the exact polygons from the 
LableMe database, and shroud textures that are the extended regions that surround pure textures. 
 

 
Figure 6. Examples of three different texture representations. From top to bottom are the 
sky in a coast, the sea in a coast, and the sky in a mountain scene. From left to right are the 
well-segmented pure textures, the fringy shroud textures, and the minimum bounding box 
textures (see Section 3.5 for details). 

 3.6 Default ARTMAP 2 classifier. Default ARTMAP 2 (Amis & Carpenter, 2007), 
the latest version of the ARTMAP classifier family, was used in ARTSCENE to learn gist and 
texture categories wj from feature vectors f (see Appendix Equations A1-A3, and A12), where f 
= G for gist features (Equation 17) and f = Tδ for texture features (Equation 27). ARTMAP also 
learns the associations Wjk between these categories and scene labels K to compute prediction 
vectors 

€ 

ψk , both for gist predictions 

€ 

ψk
G  and texture predictions 

€ 

ψk
Tδ  from region δ (Equations 

A4, A9 and A21).  
 ARTMAP illustrates how humans can incrementally and stably learn to categorize items in 
an ever-changing world by matching bottom-up inputs and top-down expectations (Carpenter & 
Grossberg, 1991). In Default ARTMAP 2, the only free parameter is the baseline vigilance 

€ 

ρ , 
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which controls how general the learned categories will be (Appendix Equations A5, A8, and 
A10). Low 

€ 

ρ  causes learning of abstract and general categories, whereas high 

€ 

ρ  enables 
concrete and sharp discriminations to be learned. 

Although Default ARTMAP 2 is trained using winner-take-all activation of category 
nodes, it can also generate distributed predictions of class likelihood (

€ 

ψk  in Equation A21), 
which enables the model to achieve hierarchical information fusion and cognitive rule discovery 
(Carpenter, Martens, & Ogas, 2005). In ARTSCENE, we collect such distributed predictions 
from Default ARTMAP 2 modules across scales for more general model averaging. 
Mathematically, the final prediction vector 

€ 

ψk
T  from the texture system is: 

                       

€ 

ψk
T ≡

1
3

ψk
Tδ

δ =1

3

∑ ,                                                      (28) 

where k specifies the scene class and  vectors 

€ 

ψk
Tδ  are the scenic predictions generated by each 

principal texture δ. Together with the gist prediction vector 

€ 

ψk
G , the final output of ARTSCENE 

is the scene class label K* that is the most active scene node: 
  K* = argmax

k=1, ..., 4
ψ k

G +ψ k
T( ),             (29) 

with the corresponding class label K to which K* is associated during supervised learning trials. 
 
4. Simulation Results 

To evaluate model performance and robustness on all 1472 images, we ran simulations 
100 times based on different training-testing splits. For each simulation, three quarters of the 
images were randomly chosen for training, and the remaining quarter was used for testing. The 
baseline vigilance 

€ 

ρ  was set to 0.8 for both training and testing. This value achieved the optimal 
validation performance in a parametric study of 

€ 

ρ  ranging from 0 to 0.9 with a spacing of 0.1. In 
fact, the ARTSCENE performance was qualitatively unchanged as a function of 

€ 

ρ . In Table 1 
and Table 2, model categorization performance is summarized by mean, standard deviation, 
median, and range of overall percentage correct over these 100 simulations.  

Table 1 summarizes the predictive power of principal textures and compares the 
performance difference among three texture representations. Individual principal textures 
correlate with scene identity and thereby their classification performances are all better than 
chance (25%). However, such correlation declines as the texture size decreases (one-tailed 
pairwise t-test, p < 0.01). This trend is also reflected in the reduced gain when we incrementally 
combine smaller and smaller principal textures to make a better inference (one-tailed pairwise t-
test, p < 0.01). Table 1 also shows that box and shroud textures lead to comparable results and 
carry more scenic information than pure textures. All simulations using box and shroud textures 
resulted in better classification performances than ones using pure textures (one-tailed pairwise t-
test, p<0.01). The marginal effect presumably comes from the interface information between two 
adjacent textures. For example, a water texture alone may suggest coast as well as countryside. 
However, water and sand together form a higher-order texture – beach – that is only associated 
with coast. Built upon these diagnostic local regions, ARTSCENE averages the prediction 
vectors from three principal textures in a scene to be the output of the texture system (see 
Equation 28). 
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Table 1. Predictive power of principal textures in different representations. Pure textures 
refer to principal textures originally annotated in the LableMe database. Shroud textures 
are computed by extending the boundaries of pure textures to incorporate texture 
interfaces. Box textures are derived from the minimum bounding boxes of pure textures 
(see Figure 6 and Section 3.5 for details). Abbreviations: Std = standard deviation; Min = 
minimum; Med = median; Max = maximum. 

 

Table 2. Categorization performance of gist and texture integration. Grid gist refers to the 
gist with 4x4 spatial partition and frame gist is the one without it (see Section 3.4 for 
details). Abbreviations: Std = standard deviation; Min = minimum; Med = median; Max = 
maximum. 

Table 2 summarizes how well gist predicts a scene and how much the texture information 
improves this prediction. Here the comparison between gist and gist-plus-texture performances 
quantitatively simulates how the subsequent spatial attention shifts, possibly supported by eye 
movements in vivo, would enable sequential scrutiny of local textures and thereby refine the 
hypothesis of scene identity inferred from the global gist in the first glimpse. For all simulations, 
the predictive power of frame gist is notably worse than grid gist in terms of classification rate 

 Pure textures 
 Mean±STD  

Min-Med-Max 

Shroud textures 
 Mean±STD  

Min-Med-Max 

Box textures 
 Mean±STD  

Min-Med-Max 
1st texture  →   Scene 71.39±2.32% 

66.30-71.47-77.17% 
74.60±1.97% 

68.48-74.46-78.80% 
74.80±2.18% 

69.02-75.00-79.62% 
2nd texture →  Scene 62.32±2.45% 

56.79-62.23-67.93% 
66.31±2.64% 

59.51-66.30-72.01% 
67.49±2.40% 

61.41-67.39-73.64% 
3rd texture →  Scene 55.20±2.57% 

50.00-55.16-62.77% 
59.80±2.10% 

55.16-60.05-64.95% 
61.80±2.29% 

56.79-61.68-66.30% 
1st + 2nd textures  
→  Scene 

78.88±1.94% 
75.27-78.80-84.24% 

81.77±1.80% 
77.17-81.52-86.41% 

81.33±2.09% 
76.90-81.25-86.41% 

1st + 2nd + 3rd textures  
→  Scene 

81.08±1.73% 
76.90-81.25-84.78% 

83.05±1.78% 
79.08-82.88-86.96% 

83.14±1.57% 
79.62-83.15-86.96% 

 Frame gist 
 Mean±Std  

Min-Med-Max 

Grid gist 
 Mean±Std  

Min-Med-Max 
Gist →  Scene 77.14±2.15% 

70.38-77.17-82.07% 
85.08±1.72% 

80.98-85.05-90.22% 
Gist + 3 pure textures →  Scene 
 

82.13±1.96% 
75.82-82.07-87.50% 

85.74±1.64% 
80.43-85.60-91.03% 

Gist + 3 shroud textures →  Scene 
 

82.43±1.93% 
78.26-81.93-87.50% 

86.60±1.54% 
82.88-86.41-91.85% 

Gist + 3 box textures →  Scene 
    

82.54±1.84% 
77.99-82.34-86.96% 

86.55±1.64% 
82.07-86.68-91.58% 
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because global averaging omits local statistics and under-represents an image. However, the 
performance boost after gist-texture integration (one-tailed pairwise t-test, p < 0.01) is more 
pronounced for frame gist than grid gist, which agrees with the notion that active vision helps to 
minimize expectation uncertainty especially when gist is less sure of scene identity.  Note that 
box and shroud textures again lead to comparable results and the performance advantage of using 
box or shroud textures over pure textures is less marked after gist-texture integration. It is 
because the information of texture interfaces is available not only through box and shroud 
textures but also through gist by definition (see Section 3.4). Finally, for all texture 
representations, the grid gist-plus-texture predictions outperform predictions from either grid gist 
or textures alone (one-tailed pairwise t-test, p < 0.01).  

To understand where misclassification happens, we constructed Table 3 that breaks down 
overall performance into its component categorical performances from 100 simulations using 
grid gist plus three shroud textures on different testing sets. Table 3 is the confusion matrix in 
which each row represents a ground-truth class, each column represents a predicted class, and 
each cell reports the proportion of a predicted scene label on all testing images from a given 
scene class. Therefore, the diagonal terms are the percentages of correctly classified images, and 
the off-diagonal terms are the percentages of misclassified images. The first and second numbers 
in each table cell are the results from gist-alone and gist-plus-texture predictions, respectively. 
They separately simulate human scene recognition before and after attention to principal 
textures. In Table 3, the second number in a cell is greater than the first one for all diagonal cells 
but vice versa for most off-diagonal cells. This indicates that the gist-plus-texture predictions are 
generally better than gist-alone predictions, and confirms the functional benefit of attention to 
principal textures, notably attentional shrouds, in scene recognition.  
 

Table 3. Confusion matrix before and after attentional shifts to three principal textures. 
The first and second numbers in each table cell are the prediction performances using gist 
and gist-plus-texture, respectively. Each row is a ground-truth category and each column is 
a predicted category. See Section 4 for detailed discussion. 

ARTSCENE tends to misclassifies ‘coast’ as ‘countryside’, ‘forest’ as ‘mountain’, 
‘mountain’ as ‘countryside’, and ‘countryside’ as ‘coast’. A post-hoc image examination reveals 
that the confusion between ‘forest’ and ‘mountain’ comes mostly from the co-occurrence of trees 
and mountains, and the confusion between ‘countryside’ and the other three categories is due to 
the loose definition of ‘countryside’. We can gain better insight into these confusions from 
Figure 7 which shows some misclassified images in the best simulation. Significantly, these 
images are also ambiguous to humans and the model well captures that ambiguity. 

Truth\Predicted Coast Forest Mountain Countryside 
Coast 79.94% 

81.72% 
0.55% 
0.55% 

1.02% 
0.55% 

18.49% 
17.17% 

Forest 0% 
0% 

87.83% 
89.27% 

7.52% 
5.88% 

4.65% 
4.85% 

Mountain 0.62% 
0.37% 

1.19% 
1.72% 

88.33% 
89.25% 

9.86% 
8.66% 

Countryside 9.26% 
8.86% 

1.86% 
2.47% 

4.47% 
2.35% 

84.41% 
86.32% 
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Figure 7. Misclassified testing images in the ARTSCENE best simulation. Countryside 
images are misclassified as coasts in the first column, as forests in the second column, and 
as mountains in the third column. Coast images are misclassified as countrysides in the last 
column. Note that these images are intrinsically ambiguous to categorize. 
 
5. Discussion and Conclusions 

In Table 2, the most favorable ARTSCENE representation scheme is the combination of 
grid gist plus three shroud textures. It leads to the best mean classification rate, 86.60%, as well 
as the best peak performance for the four landscape scene classification of 91.85%, which is 
around 1.5% higher than the best benchmark in the literature—namely, the peak performance of 
90.28% in Bosch, Zisserman, & Muñoz (2006)—using the same image dataset. This represents a 
reduction in error of 16.15%. The performance fluctuation in 100 simulations of the same 
scheme is in part due to the known dependence of ARTMAP learning on input presentation order, 
and in part due to the different degrees of exposure to ambiguous instances during learning (see 
Figure 7 for example images).  
 These results derive from efficient deployment of attention on locally-computed multi-
scale boundary and surface information that has proved to be necessary for explaining a wide 
range of other visual phenomena (Grossberg & Swaminathan, 2004; Cao & Grossberg, 2005; 
Grossberg & Yazdanbakhsh, 2005; Grossberg & Hong, 2006; Grossberg, Kuhlmann, & Mingolla, 
2007; Bhatt, Carpenter, & Grossberg, 2007; Fazl, Grossberg, & Mingolla, 2009). ARTSCENE 
hereby further develops the idea of integrating global and local information for scene recognition, 
which is put forwarded by Vogel et al. (2006).  In their computational study, scene gist was 
represented by spatial envelope (Oliva & Torralba, 2001), and region-based scene semantics 
were represented by a 10x10 grid of texture layout that required supervised texture learning and 
classification. They found a mean classification rate of 52% for simulations using gist alone but 
and of 73.6% using both gist and region-based semantics. Their results were obtained on a 
different dataset consisting of five landscape scene categories (coasts, forests, mountains, plains, 
and rivers/lakes). Our results and theirs together illustrate why a state-of-the-art scene classifier 
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needs to take into account information from multiple scales including both global gist and local 
textures. Our results also expand the growing number of studies showing a useful role for 
attentional shrouds in object, texture, and scene learning and recognition (Bhatt, Carpenter, & 
Grossberg, 2007; Fazl, Grossberg, & Mingolla, 2009). 

For learning, we use ARTMAP classifiers because they are capable of fast, incremental, 
stable learning of recognition categories and predictions in response to non-stationary data 
streams, and can automatically discover the proper degree of category generalization in response 
to changing environmental statistics. As noted above, all the major predictions of ART since its 
introduction in Grossberg (1976a, 1976b) have received increasing support from psychological, 
neuropsychological, and neuroanatomical data over the years (Grossberg, 2003b; Raizada & 
Grossberg, 2003). The use of ART as a gist and texture classifier is thus compatible with a 
biological account of scene understanding.  

Compared with scene classifiers that use either fixed gist templates or texture vocabulary, 
one strength of ARTSCENE is that it can adaptively update its internal category representations 
for all scenic predictors across scales, including multiple textures and gist, which is critical for 
on-line use. A human-predefined gist or texture vocabulary often demands significant human 
labor in search of common elements in the image dataset, as in the models of Oliva & Torralba 
(2001) and Vogel & Schiele (2007). Although the search can be replaced by machine learning 
schemes (Fei-Fei & Perona, 2005; Bosch, Zisserman, & Muñoz, 2006), such vocabularies often 
require rebuilding from scratch to learn a new instance due to the use of batch learning schemes 
such as k-means. In these approaches, even if the vocabulary construction is replaced by 
incremental learning, the scene decomposition in terms of the new vocabulary and subsequent 
processes still need to be re-calculated for every image due to the vocabulary update. In addition, 
the distributed predictions in ARTMAP allow ARTSCENE to naturally perform multi-category 
classification and information integration across scales. In contrast to the use of the Support 
Vector Machine (SVM) in Vogel et al. (2006) and Vogel & Schiele (2007) to carry out pairwise 
comparisons of scene likelihoods, ARTSCENE is free from combinatorial explosion when more 
scene categories are introduced into the task.  

A weakness of the current implementation is the use of LableMe polygon coordinates 
(see Section 2.2 and 3.5). However, simulations in Table 2 show that both box and fringy shroud 
textures yield slightly better mean performance than human segmentations (i.e., pure textures). 
These results suggest that perfect texture segmentation is not needed to achieve good 
performance on scene classification. This opens the possibility in future studies of replacing 
LableMe with machine segmentations wherein principal textures along with their areas and 
centroids are still well-defined (see Equations 20-25). 

Another possible extension of the model is to include an object system to learn 
associations between salient learned object categories (see Fazl, Grossberg, & Mingolla, 2009) 
and scene labels (see reviews in Bar, 2004). Since our model framework is essentially a mixture 
of experts, the system can generalize to accommodate more scenic predictors, including coherent 
objects. Such a generalization is now being pursued. 
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Appendix – Default ARTMAP 2 (Amis & Carpenter, 2007): 
 The Default ARTMAP2 algorithm specifies two modes of operation: Training and testing. 
The untrained ARTMAP network begins with a pool of uncommitted category nodes that are not 
bound to any class label. As learning progresses, nodes from this pool are recruited, or 
committed, to encode feature patterns for learned categories (See Equation A11) in the training 
procedure below). Thus, the population of committed category nodes grows with learning, and 
its size C is determined by task demands. In all simulations presented in this article, the training 
procedure was repeated 3 times for the same training set to stabilize learning and consolidate 
feature categories. Different numbers of repetitions can be used and lead to qualitatively 
unchanged model behavior. For testing, a feature is compared to each learned feature category 
(Equation A16) and activates the category nodes in proportion to its similarity with those 
categories (Equations A19 and A20). The distributed output predictions are then computed by 
the learned mapping from feature category activations to class labels (Equation A21). 
 
 Training, with Distributed Next-Input Test: 
1.  The M-dimensional feature vector f = (f1, f2, ..., fM) represents the activities of input ON cells. 
It causes the corresponding OFF cells to attain the values 
                    fc = 1 - f.                                       (A1) 
The total 2M-dimensional input vector  
                   F ≡ ( f, fc )                                                    (A2) 
is said to be complement coded.  The L1 norm of F is normalized at the value M. 
2. Set initial values: Assign 1 to the mapping wij from feature vector Fi in the vector 

€ 

F = (F1, F2, ..., F2M ) to category j for all i = 1,...,2M and j = 1,...,C. Assign 0 to the mapping Wjk 
from category j to output class label k. Assign 1 to the number of committed category nodes C. 
3. Select the first input vector F. Associate it with the output class label K. 
4. Set learned weights for the newly committed category j = C:  
                      wC = F,                                          (A3) 
 and 
                      WCK = 1.                        (A4) 
5. Set vigilance ρ to its baseline value 

€ 

ρ  = 0.8:  
                       

€ 

ρ = ρ .                         (A5) 
6. Reset all category activities:  
                        y = 0.            (A6) 
7. Select the next input vector from the training set in randomized order. Associate it with the 
output class label K. Do this recursively until the last input of the last training epoch is presented. 
8. Calculate feature-to-category matching signals Tj for committed category nodes j = 1,...,C 
using the choice-by-difference signal function (Carpenter, 1997):  
              

€ 

Tj = F∧w j + (1−α) M − w j( ).           (A7) 
In Equation (A7), ∧ denotes the fuzzy intersection:  (F ∧ wj)k  =  min( Fk, wik ),  | . | denotes the 
L1

 norm, (wj)i  = wij is the learned weight vector for category j, and parameter α = 0.01 specifies 
the preference for more local categories when more than one coded category equally matches the 
input feature vector.  
9. Search order:  Sort the committed coding nodes with Tj > αM in order of Tj values from max 
to min. 
10. Search for a category J that meets the matching criterion and predicts the correct output class 
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label K, as follows: 
 (a) Code:  For the next sorted =category (j = J) that meets the matching criterion:    

                 

€ 

F∧wJ
M

≥ ρ
 

 
 

 

 
 ,                            (A8) 

set yJ = 1 and yk = 0, k ≠ J (winner-take-all). 
(b) Output class prediction: 

              

€ 

ψk = y jW jk
j=1

C

∑ =WJk .          (A9) 

(c) Correction prediction: If the active code J predicts the output class label K (ψK = WJK  = 
1), go to Step (12) (learning). 

(d) Match tracking: If the active code J fails to predict the correct output class (ψK = 0), 
raise the vigilance to: 

                

€ 

ρ =
F∧wJ
M

+ ε,                   (A10) 

where the match tracking parameter ε = -0.001. Term ε permits the system to code inconsistent 
cases, where two identical training set inputs are associated with different outcomes (Carpenter, 
Milenova, & Noeske, 1998), which is common in human annotated databases. Return to Step 
(10a) and continue the memory search. 
11. After unsuccessfully searching the sorted list, increase C by 1 (add a committed node): 
            C = C + 1.                    (A11) 
Return to Step (4).  
12. Learning: Update coding weights:   
       

€ 

wJ
new = β(F∧wJ

old ) + (1−β)wJ
old ,      (A12) 

where β is the learning rate and 

€ 

wJ
old  is the previously learned weight vector for category j. In the 

present simulations, the choice β = 1 ensured fast learning.  
13. Distributed next-input test:  verify that the input makes the correct prediction with distributed 
coding: 

(a) Make prediction:  Generate an output class prediction K* for the current training input 
F using distributed activation, as prescribed for testing (compare with Equation 29):  
       K* = arg maxk ψk.                  (A13) 

(b) Correct prediction:  If distributed activation predicts class label K, return to Step (5) 
(next input). 

   (c) Match tracking:  If distributed activation fails to predict the correct output class label         
(K* ≠ K), raise the vigilance:  

       

€ 

ρ =
F∧wJ
M

+ ε.         (A14) 

Return to Step (10a) (continue search).  
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 Default ARTMAP Testing (Distributed Code): 
1. Complement code M-dimensional test set feature vectors f to produce 2M-dimensional input 
vectors F ≡ ( f, fc ). 
2. Select the next input vector F from the testing set in randomized order. Associate it with the 
output label K. 
3. Reset the category activities:  
                          y = 0.          (A15) 
4. Calculate feature-to-category matching signals Tj  for committed category nodes  j = 1,...,C: 
              

€ 

Tj = F∧w j + (1−α) M − w j( ),      (A16)  
where parameter α = 0.01, as during training.  
5. Define Λ as the set of indices of categories satisfying the matching criterion Tλ > αM: 
            Λ = { λ = 1,...,C: Tλ > αM },                                               (A17) 
and Λ' as the set of indices of categories perfectly matching the input:  
            Λ' = { λ = 1,...,C: Tλ = M } = { λ = 1,...,C: wj = F }.                            (A18) 
6. Increased Gradient (IG) CAM Rule: The Increased Gradient (IG) CAM rule contrast-enhances 
the input differences in the distributed category code (Carpenter, 1997; Carpenter, Milenova, & 
Noeske, 1998): 
 (a) The point box case occurs when at least one category exactly encodes the input. The 
activities yj of such categories are then uniform: If Λ' ≠ φ (i.e., wj = F for some j), set  

            

€ 

y j =
1
′ Λ 
                    (A19) 

for each j ∈ Λ'. 
 (b) In cases other than a point box code, a distributed category activation is computed for 
categories satisfying the match criterion: 

                    

€ 

y j =

1
M −Tj

 

 
 

 

 
 

p

1
M −Tλ

 

 
 

 

 
 

p

λ∈Λ

∑
              (A20) 

for each j ∈ Λ, where the power law parameter p = 1 determines the amount of code contrast 
enhancement. As p increases, the category activation increasingly resembles a winner-take-all 
code in that only the category with highest bottom-up signal survives.  
7. Calculate distributed output class predictions:  

                        

€ 

ψk = y jW jk
j=1

C

∑ .                      (A21) 

8. Until the last test input, return to Step (2). 
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