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Selective information processing in neural networks is studied through computer simulations of Pavlovian
conditioning data. The model reproduces properties of blocking, inverted-U in learning as a function of
interstimulus interval, anticipatory conditioned responses, secondary reinforcement, attentional focusing by
conditioned motivational feedback, and limited capacity short-term memory processing. Conditioning
occurs from sensory to drive representations (conditioned reinforcer learning), from drive to sensory repre-
sentations (incentive motivational learning), and from sensory to motor representations (habit learning).
The conditionable pathways contain long-term memory traces that obey a non-Hebbian associative law. The
neural model embodies a solution to two key design problems of conditioning, the synchronization and
persistence problems. This model of vertebrate learning is compared with data and models of invertebrate
learning. Predictions derived from models of vertebrate learning are compared with data about invertebrate
learning, including data from Aplysia about facilitator neurons and data from Hermissenda about voltage-
dependent Ca2+ currents. A prediction is stated about classical conditioning in all species, called the
secondary conditioning alternative, and if confirmed would constitute an evolutionary invariant of learning.

I. Introduction: the Problem of Selective Information
Processing

An important problem for any information process-
ing system, whether biological or artificial, is that of
limited capacity. Amid the "blooming buzzing confu-
sion" of experience, it is necessary to be able to process
some events (the most significant) and ignore others,
perhaps unmasking events at a later time when their
significance changes with context. Hence we must
ask: How can a limited-capacity information process-
ing system that receives a constant stream of diverse
inputs be designed to selectively process those inputs
that are most significant to the objectives of the sys-
tem?

Classical, or Pavlovian, conditioning provides a good
simplified system for studying the selective informa-
tion processing problem. For this reason, it has been

an increasingly active area of recent study both by
neural modelers (for example, Refs. 1-8) and neuro-
physiologists (for example Refs. 9-12).

In particular, classical conditioning is subject to nu-
merous attentional modulations. An example is the
blocking paradigm (Fig. 1). The basic blocking para-
digm 13.14 (see also Refs. 15 and 16 for many variants) is
as follows. First, a neutral stimulus (CSJ, such as a
tone, is presented followed at a given time interval by
an unconditioned stimulus (US), such as electric
shock. The CS1-US pairing occurs several times until
a conditioned response (CR) is established to the CS1.
Then a series of trials is given in which CS1 and another
neutral stimulus (CS2), such as a light, are presented
simultaneously, followed at the same time interval by
the US. Finally, the CS2 is presented alone but not
reinforced. On these recall trials, no CR occurs in
response to the CS2. (Kamin found that blocking may
not occur if the CS1-CS2 combination is associated
with a different level of shock from that associated
with CS1 alone-a point to which we will return in Sec.
XIII.

In the blocking paradigm, the CS1 which is selective-
ly attended has more motivational significance than
the CS2 which is blocked. In this article, we use com-
puter simulations to show that the same kind of selec-
tive attention can explain some data on temporal order
effects in Pavlovian conditioning. For example, the~~h 
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Fig. 2. Experimental relationship between conditioned response
strength (measured by percentage of trials on which response oc-
curs) and interstimulus interval in the rabbit nictitating membrane
response. (From Sutton and Barto, 1981. Reprinted with permis-

sion from the American Psychological Association, Inc.)

reinforcer? How do the reinforcing properties of a
cue, whether primary (US) or secondary (CSt>, shift
the focus of attention toward its own processing?
How does the limited capacity of attentional resources
arise, so that a shift of attention toward one set of cues
(CS1 or US) can prevent other cues (CSz or CS) from
being attended? How does withdrawal of attention
from a cue prevent that cue from entering into new
conditioned relationships?

The present article provides a unified model, and
computer simulations, of the ISI inverted-U and atten-
tional blocking which is based on a neural model of how
reinforcement, motivation, and limited capacity atten-
tion interact during classical conditioning. The model
is a component of a conditioning theory that was origi-
nally developed to analyze classical and instrumental
conditioning data other than the ISI curve, many of
which are summarized by Grossberg.5.6.Z1 The present
article and that of Grossberg and Schmajuk8 initiate a
systematic program using quantitative computer sim-
ulations of conditioning phenomena to further develop
this theory. The neural network architectures of
these two articles combine four fundamental design
principles: associative synaptic modification; compe-
tition between sensory representations; resonant feed-
back between two or more network levels; and oppo-
nent processing. The first three of these principles,
and their implementation for the present application,
will now be discussed. The fourth will be discussed at
the end of this article in the context of related research.

II. Associative Synaptic Modification
Much attention has been paid recently by neural

modelers, machine learning theorists, and neurophysi-
ologists to rules for modifying connection strengths (or
synaptic weights). The nodes in our neural network
(and many others in the literature) may correspond
either to populations of neurons or to individual neu-
rons. In the former cases a connection between nodes

in an inverted-U manner on the time interval, or inter-
stimulus interval (ISI), between conditioned stimulus
(CS) and unconditioned stimulus, as shown in the
curve of Fig. 2. This curve is a composite of data on
the nictitating membrane response of the rabbit,17.18
where a conditioned eyeblink develops to a tone that
has been paired with a puff of air to the cornea. The
relationship between learning and ISI has also been
studied in many other classical conditioning para-
digms, such as salivation19 and shock avoidance.2o
The length of the optimal interstimulus interval varies
from one paradigm to another, and different measures
are used for the strength of the response, but the
qualitative relationship described in Fig. 2 holds in a
variety of cases. .

Our explanation of the curve of Fig. 2 is as follows.
For interstimulus intervals (ISIs) that are too short,
the CS and the US are processed nearly simultaneous-
ly. Since the US already has motivational significance
for the 'organism and the CS does not, the organism
selectively attends to the US and its processing of the
CS is inhibited. For ISIs that are of intermediate
length, this inhibition of CS processing by the US has
less effect because the strength of the CS's neural
representation can increase via a mechanism of short-
term memory reverberation before the US is present-
ed. For ISIs that are too long, the CS neural represen-
tation has decayed before the US is presented, because
of competition from other incoming stimuli or passive
decay.

In both blocking and the ISI effect, the stimulus of
the pair which is selectively attended is the one that
has more motivational significance. In the blocking
paradigm, a CS2 is blocked by a simultaneous CS1 that
has previously acquired reinforcing properties. In
the ISI paradigm, a CS is blocked by a US. The US
may be either a conditioned reinforcer, as is CS1 in the
blocking paradigm, or an unconditioned reinforcer,
such as shock or the taste of food.

Thus the ISI effect can be regarded as a variant of
blocking if one can understand how four types of pro-
cess work: How does the pairing of CS1 with US in the
first phase of the blocking experiment endow the CS1
cue with properties of a conditioned, or secondary,
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Blocking paradigm; the two stages of the experiment are
discussed in the text.



(b)
Fig. 3. Hebbian vs non-Hebbian associative rule: (a) In a Hebbian
associative rule, correlation of the cell activities Xi and Xj always
increases the long-term memory (L TM) trace, or synaptic strength,
Zij of the intervening pathway. (b) In our non-Hebbian associative
rule, correlation of a spatial pattern of cell activities Xi with a cell
activity X j enables the L TM traces Zij in the intervening pathways to

either increase or decrease to match the spatial pattern.

represents the average connection strength of a popu-
lation of pathways. In the latter case it describes the
strength of an individual synapse between neurons.

The modem era for analyzing neurophysiological
correlates of Pavlovian conditioning can be dated to
the well-known book of Hebb.l On p. 62, Hebb pro-
posed the famous Hebb postulate: "When the axon of
cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process
takes place in one or both cells such that A's efficiency,
as one of the cells firing B, is increased." The develop-
ment of neural network models of conditioning since
Hebb's work is discussed in detail by Levine.22 Brief-
ly, the hypothesis of an actual cellular growth process
has largely been supplanted by other neurophysiologi-
cal processes which could also alter synaptic efficacy.
Mechanisms proposed have included, for example,
correlated changes in the amounts of usable presynap-
tic transmitter substance and of postsynaptic protein
synthesis;23 changes in postsynaptic membrane recep-
tor protein;24 and changes in postsynaptic membrane
resistance.25 In this article we shall discuss the com-
putational properties of a particular synaptic modifi-
cation rule, without attempting to specify the bio-
chemical mechanism leading to that rule. All the
above biochemical mechanisms could generate such a
formal conditioning rule.

Many learning theorists, such as Pavlov, Guthrie,
Hull, and Hebb, have noted the importance of changes
in a contiguity trace, habit strength, or path connec-
tion as a function of learning. The book of Hebbl has
been an enduring source of qualitative inspiration for
such an associative rule, whereby synaptic efficacy
changes as a function of the correlation between pre-
synaptic and postsynaptic activities. Such condition-
ing rules are often called Hebbian rules, but we do not
use this term because Hebb's postulate alone provides
insufficient guidance for developing a quantitative
model. Hebb's pioneering contribution did not, for
example, suggest a quantitative framework or equa-
tion for specifying his postulate, and his qualitative
postulate, as stated above, leads to serious difficulties
when implemented formally. Indeed during the two
decades subsequent to Hebb's book, modelers often
used information theoretic algebraic operations to de-
fine an associative learning postulate. Gross-
berg23.26-28 pioneered the development of a quantita-
tive theory of associative pattern learning within a
real-time neural network. In such a network, pairing
of presynaptic and postsynaptic signals occurs but is
counteracted by other network effects so that Hebb's
postulate is not obeyed. These non-Hebbian associa-
tive rules have been used by other neural modelers29-33
and verified by recent mammalian neural data.lO.ll.34-
36

3(a)]. A different conditioning rule is needed, howev-
er, if one agrees that the unit of associative learning is a
spatial pattern of activity across a network of cells [Fig.
3(b)]. Then the correlation of this spatial pattern with
another cell's activity enables the set of pathways from
the network to the active cell to encode the entire
spatial pattern of activity into long-term memory
(L TM). In this situation, a conditioning rule is need-
ed that can encode both increases and decreases of
L TM strength as a function of the pairing of cell activi-
ties. The Hebb rule, in contrast, requires that only
increases in strength be caused by associative pairing.

In the simplest non-Hebbian associative rules, a
model synapse as in Fig. 3(b) has a synaptic efficacy z
that obeys a differential equation of the form

dz/dt = -Az + fl(X)f2(Y). I (1)

or of the form

The distinction between Hebbian and non-Hebbian
associative rules is illustrated in Fig. 3. The Hebb
postulate seems plausible if one assumes that the unit
of associative learning is a single cell's activity whose
correlation with another cell's activity can increase the
synaptic strength of a pathway between the cells [Fig.

dz/dt = [-Az + f2(Y»)f1(x), (2)

where dz/dt denotes the time rate of change of the
associative strength z, while x and yare the correlated
cell activities, parameter A is a (slow) decay rate, and h
and f2 are monotone nondecreasing, non-negative sig-
nal functions. Our equation therefore includes a Heb-
bian term h (X)f2<Y) that increases with correlated cell
activities, but Hebb's postulate is not obeyed because
of the counteracting memory decay term and because
of network interactions.

In the present simulations, we use Eq. (1), although
similar properties derive from Eq. (2) using our nu-
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Fig. 4. Two signal functions: either a ramp function R(x) or a
sigmoid function S(x) enables the network to suppress noise and
contrast enhance the input pattern before storing it in short-term

memory (STM).

merical parameters. If time is divided into discrete
intervals, the difference equation form of (1) is

z(t + 1) = (1 -A)z(t) + f,[x(t)]f2[y(t)]. (3)

The signal functions hand 12 can, for example, be
chosen linear above a threshold and zero below it (a
threshold-linear signal function) or linear within a
range but flat above and below it (a ramp or sigmoid
signal function). The effects of different choices of
signal functions on sensory pattern processing have
been classified mathematically, including the impor-
tant contrast enhancement and noise suppression
properties of sigmoid signal functions.37-39 The ramp
function of Fig. 4 was used in our simulations because
it has similar mathematical properties to the sigmoid
but is simpler to compute.

III. Alternative Explanations of the 151 Effect: the
Critical Role of the Conditioning Rule

Barto and Sutton4.4O have argued that associative
rules such as Eqs. (1) and (2) cannot account for the
conditioning data of Fig. 2. They contended that a
network with associative synapses should, to a first
approximation, have an optimal ISI of zero, because
cross correlation between two stimulus traces is stron-
gest when the two stimuli occur simultaneously. To
avoid this difficulty, other modelers41.42 introduced a
delay in the CS pathway that was equal to that of the
optimal ISI. Hence, if the ISI between CS and US
occurrences equaled the delay in the CS pathway, the
CS and US signals would actually arrive simultaneous-
ly at the associative synapse between their representa-
tions. Such a delay, however, has other implications
which are not easy to support. For one, delays within
individual neural pathways, or axons, are typically
very brief and cannot easily account for optimal ISIs
that ar'e hundreds of milliseconds long. More serious-
ly, such a delay would also delay the conditioned re-
sponse (CR) elicited in response to the CS by an equal
amount, and hence is incompatible with the fact that a
well-trained CR normally occurs earlier than the onset
time of the US (the so-called anticipatory CR).

The alternative model simulated here reproduces
both the ISI data and the anticipatory CR without
invoking a long delay in the CS pathway. Such a delay
is not needed to account for the ISI data, and moreover
it violates symmetry properties between CS and US
which are necessary for secondary conditioning to be
possible. The need for such CS-US symmetry or path
equivalence is discussed more fully in Refs. 2, 3, and 5.

The argument of Barto and Sutton was incomplete
because their model did not incorporate certain net-
work factors that are crucial to the model described
here. These factors include the role of attention in
regulating the conditioning rate, the role of reinforcing
signals in shifting the focus of attention toward moti-
vationally salient cues, and the role of inhibition be-
tween sensory representations in carrying out atten-
tion shifts by reallocating limited capacity short-term
memory resources. Indeed, Barto and Sutton them-
selves s.tated (Ref. 40, p. 232): "The model clearly

does not address higher order modulatory influences
such as those produced by attentional or stimulus sa-
lience factors."

Because the Sutton-Barto model-and the more re-
cent, related model of Blazis et aU-did not incorpo-
rate attentional factors, their explanation of IS I effects
and blocking relied on a particular law of synaptic
modification that differs from ours. In their condi-
tioning law, presynaptic activity is correlated with
change in postsynaptic activity, rather than with post-
synaptic activity itself. Other neural and psychologi-
cal models which utilize some variant of this law are
frequent (see, for example, Refs. 43-48). Grossberg5
reviews a variety of context-sensitive conditioning
data that such models have so far been unable to
explain, primarily because of their lack of network
mechanisms such as limited capacity competition and
modulation of attention by motivational feedback.
For example, Mackintosh44 has stated that his own
model cannot account for the fact that a more salient
stimulus can block a less salient one but not vice versa,
a fact that is easily explained by our model (see Sec.
VII).

To understand our model, let us review the qualita-
tive development2,3,5,6 of the type of network shown
schematically in Fig. 5. In addition to using condi-
tionable synapses to encode associations in long-term
memory (LTM), such a network uses modulatory
mechanisms that were derived from three simple pos-
tulates: that CS-US associations can develop without
catastrophic crosstalk even if the time lag separating
the two stimuli is variable across trials; that the more
we practice a task, the better we can learn it (practice
makes perfect), other things being equal; and that
freely attended inspection of multiple cues with differ-
ent reinforcing properties does not, in itself, extinguish
the reinforcing properties of these cues. Our review
will provide just enough detail to define the model and
explain the computer simulations. Extensive discus-
sions of model derivations and of the large interdisci-
plinary data base clarifed by the model are found in the
original articles.
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Fig. 5. Schematic conditioning circuit: Conditioned stimuli (CSJ
activate sensory representations (SCSi) which compete among them-
selves for limited capacity short-term memory activation and stor-
age. The activated SCSi elicit conditionable signals to drive repre-
sentations and motor command representations. Learning from an
SCSi to a drive representation D is called conditioned reinforcer
learning. Learning from D to an SCSi is called incentive motivation-
allearning. Signals from D to SCSi are elicited when the combina-
tion of external sensory plus internal drive inputs is sufficiently
large. In the simulations reported herein, the drive level is assumed

to be large and constant.

IV. Review: the Synchronization and Persistence
Problems of Classical (:onditioning

Grossberg (Ref. 2, pp. 227-237) posed the problem,
called the synchronization problem, of how CS-US
associations can develop in a stable fashion in spite of
the variability of time lag between CS and US on
successive learning trials. In previous work,49.5O each
elementary sensory representation or motor command
was interpreted mathematically as a spatial pattern of
activation across a network of cell populations. If
activity at a population coding a CS was followed re-
peatedly by the same US, the L TM traces activated by
the CS population could cumulatively learn the spatial
pattern corresponding to that US. However, if the CS
was followed at different time intervals by two or more
events, among which only a single US occurred, the
CS-activated L TM traces would not learn the spatial
pattern corresponding to the US. Instead, they would
learn a mixture of the spatial patterns corresponding
to all the events which occurred when the CS was
active, whether meaningful to the organism or not.
Such a mixture would typically encode little useful
information about the environment and would cer-
tainly not resemble the US pattern.

Thus the synchronization problem brought into fo-
cus two related problems of fundamental importance:
How does an organism know how to distinguish signifi-
cant events for encoding in L TM among all the irrele-
vant environmental fluctuations that never cease to
occur? How are conditioning systems designed to be
capable of stably operating in continuous, or real, time,
despite the fact that meaningful events, such as novel
events or USs, occur at irregular and discrete time
intervals?

Analysis of the synchronization problem led to the
proposal that populations of cells, called D for drive
representations, exist that are separate from the senso-
ry representations of particular stimuli but are related
to particular drives and emotions. Later workers have
called such a drive representation an "emotion
node"51.52 or an "adaptive critic element."53 These
drive nodes are not drive reduction areas but are areas
analogous to loci in emotional regions of the brain,
such as the hypothalamus, where mechanisms of con-
ditioning, reinforcement, homeostasis, and competi-
tion interact to select pathways for conditioned rein-
forcer learning and attentional feedback. (See Refs. 5
and 6 for further discussion of this concept.) A food
US, for example, unconditionally activates the D pop-
ulation corresponding to the hunger drive if the hunger
drive level is sufficiently high. Repeated pairing of a
CS with a food US thus causes pairing of stimulation of
the CS sensory representation, which we denote by
Scs, with that of the D representation for the hunger
drive, which we denote by DH. If the Scs -+ DH synap-
ses are assumed to be modifiable according to an asso-
ciative rule, the pairing Scs -+ DH can become
strengthened, so that eventually the CS by itself will be
able to activate the drive representation DH and there-
by becomes a conditioned, or secondary, reinforcer for
food. Once a neutral CS (call it CSJ has been condi-

tioned, it can be used as a US to reinforce responses to
another CS (call it CS2) in a later experiment. Thus,
after the SCSI -DH synapses have been strengthened,
repeated presentation of CS2 followed by CS1 can, in
turn, strengthen the associative SCS2 -DH synapses.

Further study revealed that S -D conditioning
must be supplemented by D -S conditioning. This
became apparent through the definition and analysis
of the persistence problem of classical conditioning.3

In Fig. 6(b), the cues CS1 and CS2 have previously
been conditioned to responses CR1 and CR2. Re-
sponses CR1 and CR2 are assumed to be motivationally
incompatible, such as eating and sex. A catastrophic
problem could occur in an improperly designed learn-
ing circuit if CS1 and CS2 were then alternately
scanned in rapid succession. If only one of the cues
had previously been conditioned to a response, no dif-
ficulty would occur [Fig. 6(a)]. However, if both cues
were already conditioned and if classical conditioning
were merely a feed forward process which associatively
links cues with simultaneously active responses, rapid
cross conditioning from CS1 to CR2 and CS2 to CR1
could occur. This example identifies the core issue:
When many cues are processed in parallel, and some of
the cues are already conditioned to motivationally in-
compatible responses, why are these associations not
quickly degraded by cross conditioning? How can the
ubiquity of parallel cue processing be reconciled with
the persistence of learned meanings?

The above paradigm identifies the persistence prob-
lem, which is also occasionally called the turkey-love
fiasco, to dramatize the absurd world to which it would
lead if not actively prevented. During an otherwise
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Fig. 7. Augmentation of STM activation at a sensory representa-
tion Scs by feedback signaling through the pathway Scs -+ D -+ Scs.
In response to the sensory input (a) received by Scs. the STM
activation profile before learning is schematized in (b). After learn-
ing within the Scs -+ D -+ Scs pathway takes place. the initial
activation remains as in (b). However, as the feedback signals are
registered, the STM activation of Scs can be greatly amplified and

prolonged. as schematized in (c).

r» EAT SEX

Fig. 6. Persistence problem of classical conditioning: (a) a CS j can
be quickly associated with the CRj of a distinct CSj (b) when each of
the conditioned stimuli CSl and CS2 is already conditioned to a

distinct conditioned response CRl and CR2. respectively, at the
beginning of an experiment, alternative scanning of CSl and CS2
does not always cause rapid cross conditioning ofCSl to CR2 and CS2
to CRl, as is clear by consideration of the absurd consequence

depicted in (c) that would arise after dining with one's lover.

uneventful turkey dinner with one's lover, suppose
that one alternately looks at lover and turkey, where
lover is associated with sexual responses (among oth-
ers) and turkey is associated with eating responses.
Why do we not come away from dinner wanting to eat
our lover and have sex with turkeys? That we do not
illustrates that the persistence of learned meanings
can endure despite the fact that sensory cues which are
processed in parallel often control motivationally in-
compatible responses. Further discussion of the per-
sistence problem is provided in Ref. 8.

The solution of the persistence problem offered in
Ref. 3 led to explanations of a wide variety of difficult
conditioning data, including blocking, unblocking, la-
tent inhibition, overshadowing on a single trial, and.the 

enhanced short-term memory (STM) encoding of
novel cues.3.5.21 More generally, this solution suggest-
ed how incentive motivational feedback due to condi-
tionable D -+ S pathways could shift an organism's
sensory attentional focus to process preferentially re-
inforcing cues and other motivationally salient cues.
That is, conditioning in S -+ D pathways endows a
sensory cue with conditioned reinforcer, or secondary
reinforcing, properties. Conditioning in D -+ S path-
ways endows a sensory cue with incentive motivational
properties. A sensory cue which possesses a large
conditioned S -+ D -+ S feedback pathway can quickly
augment the STM activity of its sensory representa-
tion (Fig. 7). In other words, reinforcing cues can draw

attention to themselves via self-generated incentive
motivational feedback signals.

V. Competition Between Sensory Representations:
Limited Capacity Short-Term Memory Activity

The sensory representations which emit conditioned
reinforcer signals and receive incentive motivational
signals also compete among themselves for a limited
capacity STM resource. The ubiquitous occurrence of
limited capacity STM was traced3.38.54 to a more basic
processing requirement: the ability of cell networks to
process spatially distributed input patterns without
irreparably distorting these input patterns due to ei-
ther internal noise or saturation effects. This noise-
saturation dilemma can be prevented by an on-center
off-surround anatomy through which the cells interact
via mass action (or shunting) laws (Fig. 8). Within a
robust parameter range, the off-surround competition
of such a network interaction implies that the total
suprathreshold activation of the network tends to be
conserved, and thus that the network has a limited
capacity.

When a shunting on-center off-surround network is
also designed to accomplish STM storage, its on-center
off-surround interactions are recurrent, or feedback,
interactions in which the nodes excite themselves and
inhibit other nodes via feedback pathways [Fig. 8(b)].
In addition to its noise-saturation and limited capacity
properties, such a recurrent on-center off-surround
network contrast enhances an input pattern before
storing the contrast-enhanced activation pattern
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Fig. 9. Schematic of STM activation at zero ISI: (a) simultaneous
onset of CS and US; (b) rapid amplification of Sus by Sus --+ D -+
Sus feedback signals enables Sus to quickly inhibit the Scs represen-

tation.

(b)
Fig. 8. Noise-saturation dilemma is solved by mass action on-
center off-surround networks. (a) A feed forward, or nonrecurrent,
network with inputs Ii activating and inhibiting STM activities xi.
(b) In a feedback, or recurrent, network excitatory and inhibitory

signals are distributed among the network cells.

blocking and the ISI effect. To explain the inverted -U
as a function of ISI, consider first a CS and a US that
are simultaneously presented. Each of these sensory
cues will initially receive less STM activity than either
one presented separately, due to the competition that
they elicit for limited capacity STM resources. The
US can nonetheless quickly activate a strong Bus -+ D
-+ Bus feedback pathway. Delivery of this large posi-
tive feedback signal to Bus signifies that the US is a
motivationally important cue. Due to this large feed-
back signal, the STM activity of the sensory represen-
tation Bus is amplified as attention is drawn to Bus
(Fig. 9). As a result of competition for STM resources
[Fig. 8(b)], the sensory representation Scs of the CS is
quickly inhibited before it can elicit significant condi-
tioning in the Scs -+ D conditioned reinforcer pathway
or the D -+ Scs incentive motivational pathway (Fig.9).

In contrast, suppose that CS onset precedes US on-
set by a duration sufficient to enable the CS to gener-
ate, in the absence of US competition, a fully devel-
oped STM activation of its sensory representation Scs
(Fig. 10). When the US then does occur, it must from
the outset compete for STM activity with an active Scs
representation. The initial activation of S us therefore
proceeds less vigorously than during simultaneous CS-
US presentation. Consequently, the activation of the
feedback loop Sus -+ D -+ Bus also builds up more
slowly. Throughout the time interval when the S us is
activating the Sus -+ D -+ Bus feedback pathway,
growing competition from Sus to Scs begins to devel-
op. However, the Scs is also sending the Sus large
competitive signals during this interval due to its large
STM activity when the US is presented. All these

which emerges across the cells in STM (also called
working memory). Thus one must distinguish be-
tween the input pattern and the more focal STM activ-
ity pattern that it generates. Attention is paid to
those sensory representations whose cells receive a
positive level of stored STM activity.

When incentive motivational feedback signals form
part of the total input pattern to the sensory represen-
tations (Fig. 7), these signals can bias the competition
for STM activity toward motivationally salient cues.
Due to the limited capacity of STM, primary and
secondary reinforcers can draw attention to them-
selves via their strong conditioned S -D -S feed-
back loops. To initiate such an attention shift, such
cues must first start to be processed due to their senso-
ry properties. After sensory processing is initiated, it
can activate the learned reinforcing S -D and moti-
vating D -S pathways of the cues, and can thereby
help to direct the ultimate allocation of sensory and
attentional resources.

Once attention shifts away from a sensory represen-
ation, its activity can become subthreshold. In both
Eqs. (1) and (2), a subthreshold activity x or y prevents
new growth of associative strength. In particular, if h
(x) = 0 in Eq. (2), then dz/dt = 0, so that no associative
change whatsoever can occur. Iff2 (y) = OinEq. (1) or
(2), then dz/dt ~ 0, so that no increase of associative
strength can occur.

VI. Effects of 151 on Conditioning: Inverted-U
These mechanisms are sufficient to describe the re-

lationship which we claim to exist between attentional
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Fig. 10 Schematic of STM activation at positive ISI: (a) CS is
presented before US onset; (b) large Scs activation prior to US onset
enables the Scs to drive learning during the sampling interval after

US onset before the Sus can inhibit the Scs.

seen to be mechanistically similar to simultaneous pre-
sentation of a CS and a US. Simultaneous CS-US
presentation in an ISI paradigm prevents conditioning
to the CS due to a combination of large Bus -.D -.Bus
feedback and Bus -.Scs competition which quickly
drives the activity of Scs below threshold. After CSt
becomes a conditioned reinforcer in a blocking para-
digm, simultaneous presentation of CSt and CS2 pre-
vents conditioning to CS2 due to a combination of large
SCSI feedback and SCSI -.SCS2 competition which
quickly drives the activity of SCS2 below threshold.

In summary, our explanation of secondary condi-
tioning enables us to show how suppression of CS
conditioning during zero ISI and the blocking of a CS
by a US can both be caused by the same mechanisms.
The existence of anticipatory CRs is also easily ex-
plained within the network of Fig. 5. The pathways S
-D,D -.S, and S -.R do not create significant delays
in the network. The times needed for STM activities
to grow, for the competition between sensory represen-
tations to take effect, and for the firing thresholds in D
-.S pathways to be exceeded by S -.D reinforcing
inputs are the rate-limiting times within the network.
As the L TM traces within the S -.D, D -.S, S -.R
pathways grow larger, the STM activity of Scs can
grow more quickly and can more quickly and strongly
read out a CR via the S -.R pathway, thereby leading
to an anticipatory CR.

The unified explanation of ISI, blocking, and antici-
patory CRs depends critically on the manner in which
attention can be shifted by conditioned S -.D -.S
feedback. Attentional factors are particularly impor-
tant for a thorough understanding of blocking. Mack-
intosh44 has, for example, stated that his own model
cannot account for the fact that a more salient stimulus
can block a less salient one, but not vice versa. Since
our model of blocking is based on a limited capacity
competitive interaction between stimulus representa-
tions, it can easily account for this fact. A similar
argument suggests how overshadowing occurs;l6 that
is, how a more intense stimulus can dominate learning
when it is presented with a less intense stimulus. Any
factor which enables the sensory representation of a
cue to better compete for limited capacity STM re-
sources increases its chance to emit effective learning
signals to the drive and motor representations of the
network.

VIII. Quantitative Model

The networks that we have simulated are depicted in
Fig. 11. The network of Fig. 11 includes on-center off-
surround competition between sensory representa-
tions for two CSs (with activities XII and X2J and a
single US (with activity X3J, all projecting to the same
drive representation D with activity y via conditioned
reinforcer pathways with L TM strengths ZII, Z2I, and
Z31, respectively. In Fig. 5, the drive representation D
projects back to the same sensory representations via
incentive motivational pathways that possess their
own L TM strengths. The sensory representations
also project via conditionable sensory-motor pathways

factors conspire to enable the SCS to remain intensely
active for a time interval after US onset. Throughout
this time interval, large sampling signals in the SCS -0-
D pathway and the D -0- Scs pathway enable the L TM
traces in these pathways to grow.

Finally, suppose that the CS occurs so long before
the US that Scs is already inactive before the drive
representation D gets activated by the US. Then no
conditioning can occur within the Scs -0- D pathway
and the D -0- Bus pathway, so that the CS does not
acquire reinforcing or motivating properties.

These considerations suggest how incentive motiva-
tional feedback from a drive representation D can give
rise to the ISI inverted-U. In other words, the ISI
effect is a consequence of the feedback mechanisms
which identify a US sensory cue as a motivationally
salient, and therefore differentially attended, event.
The argument above can now be readily applied to
stimulus-response, or S-R, conditioning (Fig. 5). An
inverted-U in S-R conditioning is also explained if the
conditioning rate is a function of Scs activity, as it is in
the associative Eqs. (1) and (2).

VII. Effects of ISI on Conditioning: Blocking, Secondary
Conditioning, Anticipatory CRs, Overshadowing

One remark now suffices to relate our explanation of
the ISI inverted-U to phenomena of attentional block-
ing and secondary conditioning. In the above expla-
nation, simply replace CS by CSz and US by CS1. In a
typical blocking experiment, CS1 is paired with a US
until conditioning enables CS1 to control a strong feed-
back pathway SCSI -0- D -0- SCSI. Such conditioning
operationally defines CS1 as a secondary, or condition-
ed, reinforcer that can draw attention to itself. Later
simultaneous presentation of CS1 and CSz can now be
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Fig. 12. Plot of CR acquisition speed as a function of ISI. This
speed was computed by the formula 100 X (number of time units per

trial)/(number of time units to first CR).DRIVE INPUT

Fig. 11. Simulated network. Each sensory representation pos-
sesses two stages with STM activities XiI and xi2, respectively. A CS
or US input activates its corresponding XiI. Activation of Xii gener-
ates unconditionable signals to Xi2 and conditioned reinforcer signals
to D, whose activity is denoted by y. Conditionable incentive moti-
vational feedback signals from D activate the second stage potentials
xi2, which then deliver feedback signals to Xii. Motor learning is
elicited by sensory-motor signals from the Xi2 to the motor command
representations. Long-term memory traces are designated by semi-

disks at the ends of conditionable pathways.

trials to the first conditioned response. To generate
this figure, a conditioned response was said to occur if
the STM trace y of D was activated by the CS represen-
tation XII in the absence of the US.

The curve of Fig. 12 shows that the speed of CR
acquisition relates to ISI in a manner that is qualita-
tively compatible with the experimental data of Gor-
mezano and his co-workersI7.18 on the nictitating mem-
brane response. For ISIs of 1 time unit or less, the
competition from the US representation X31 prevented
the CS activity Xu from staying above the threshold in
the Scs -D pathway long enough while y at D was
being activated by the US for the associative strength
Zll to increase appreciably. At long ISIs, the decay of
the STM trace XII prevented Zll from sensing the later
large values of y at D.

In Fig. 13; the STM activities of Scs, Bus, and D (XII,
X31, and y) and the LTM trace Zll of the Scs -D
pathway are plotted in real time given a choice of ISI =
6 that led to good learning in Fig. 12. Although the US
[Fig. 13(b)] suppressed the Xu variable [Fig. 13(a)]
after activating the y variable [Fig. 13(c)], the LTM
trace Zll correlated positive XII and y values well
enough to achieve an S-shaped cumulative learning
curve across trials [Fig. 13(d)]. As the LTM trace Zll
grew, the CS elicited a progressively larger STM reac-
tion XII across trials due to the increasing size of the
positive feedback signal which it generated in the Scs
-D -Scs pathway [Fig. 13(a)]. This reduced the
STM activity X31 of the US [Fig. 13(b)] due to competi-
tion between CS and US sensory representations.
Such a small decrement in the sensory activity of Bus
during conditioning is an, as yet, untested prediction of
the model. Figure 14 plots the asymptotic, or maxi-
mal, value of Zll as a function of IS I. An inverted-U
function obtained even after many learning trials.

Figure 15 illustrates a computer simulation of a
blocking experiment using the same parameters. The
STM activities of the CSI and CSz representations (XII
and XZI) and the L TM traces of the Scs -D pathway
(Zll and zzJ were plotted in real time. Pairing of CSI
with a delayed US enabled the L TM trace Zll to
achieve a classical S-shaped learning curve [Fig. 15( c)].
After CSI became a conditioned reinforcer, it en-
hanced its own STM storage via XII by generating a

to representations of motor commands. Figure 11
describes a variant of Fig. 5 (Refs. 3 and 5) in which the
sensory representations are divided into two succes-
sive stages. The activity XiI of the ith first stage can
activate conditioned reinforcer pathways, whereas the
activity Xi2 of the ith second stage receives conditioned
incentive motivational pathways from D. The Xi210ci,
in turn, project back to the XiI, t4ereby closing the S-+
D -+ S feedback loop, and also project forward to the
motor representations.

An additional mechanism was used to regulate STM
decay of the sensory representations of CSs and USs.
Short-term memory can be weakened through time
due to habituation, competition from other incoming
stimuli, and nonspecific gain changes that occur, for
example, when attention shifts to a different modality.
(See Refs. 8 and 55-58 for theories and simulations
incorporating some of these effects.) These multiple
influences on STM decay are replaced here by a simple
rule which suffices for our present purposes. We as-
sume that the self-excitatory feedback term that main-
tains STM storage is multiplied by a factor that equals! 

for a short time after the initiation of STM activation
and decays exponentially thereafter. The self-excita-
tion term is also supplemented by feedback due to Xi2,
so that STM decay is slower for motivationally signifi-
cant stimuli.

IX. Computer Simulation Results

Figures 12-14 show some representative computer
simulations of the ISI effects using the network in Fig.
11. Various measures of the strength of conditioning
were plotted against the ISI, all other parameters be-
ing equal. The first measure is the speed of CR acqui-
sition, as indicated by the reciprocal of the number of
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Fig. 14. Plot of maximal Zll over twenty paired trials as a function
of ISI.
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Fig. 13. Acquisition of CS1 -CR conditioning at a favorable
ISI(=6): (a) plot of CS1 activity XII through time over five trials
during which CS1 is paired with US; (b) plot of US activity X31
through time over five trials; (c) plot of D activity y through time
over five trials; As CS1 becomes a conditioned reinforcer. it activates
y before the US occurs; (d) plot of CS1 -+ D LTM trace ZII over

twenty trials during which CS1 is paired with US.

large SCSI '-+ D '-+ SCSI feedback signal [Fig. 15(a)]. As
a result, when CSI and CS2 were simultaneously pre-
sented, the STM activity X21 of SCS2 [Fig. 15(b)] was
suppressed by competition from XII. Consequently,
the LTM trace Z21 [Fig. 15(d)] could not grow, and the
CS2 could not learn to elicit a CR.

X. Comparison with Invertebrate Learning: an II
Evolutionary Invariant of Associative Learning?

Much discussion has recently focused on the rela-
tionships which may exist between vertebrate and in-
vertebrate learning circuits to identify possible evolu-
tionary invariants of associative learning. Hawkins
and Kandel59 have described neural data and a condi-
tioning model based on studies of the invertebrate
Aplysia. We compare their model with the model that
we have here used to simulate mammalian learning
data.

The Hawkins and Kandel59 model was described
from data reported in Refs. 60 and 61. These data
suggested that each US activates a facilitator neuron
that influences each pathway activated by a CS. Only
when a CS and a US can simultaneously activate a CS
pathway and a facilitator neuron can the L TM trace in
the CS pathway grow.

The functional similarity between a facilitator neu-
ron and aD -..S incentive.motivational pathway (Fig.
5) was used in Ref. 59 to suggest a possible explanation
of secondary conditioning and blocking much like our
OWD.2,3,5 The existence of a conditionable pathway
from the CS to the facilitator neuron was postulated
that is analogous to the S -..D conditioned reinforcer
pathway. This scheme was suggested as a possible
model of secondary conditioning and blocking in Aply-
sia as well as higher organisms.

Despite these qualitative similarities between the
two models, the model suggested in Ref. 59 cannot
explain either secondary conditioning or blocking and
is inconsistent with the data reported in Ref. 60. The
analysis leading to these conclusions is provided below.
In addition, we state an organizational principle, called
the secondary conditioning alternative, that is consis-
tent with these data, and that is predicted to hold
across all species, both vertebrate and invertebrate.62
If confirmed, the alternative would constitute an evo-
lutionary invariant of associative learning.

The hypothesis that a facilitator neuron mediates
conditioning in Aplysia was based on data which
showed that "the US produces substantially more fa-
cilitation of the synaptic potential from the sensory
neuron to a motor neuron than if the US is not paired
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62 that an anatomical difference may exist between the
conditioning circuits of certain invertebrates and ver-
tebrates, and that this difference would influence the
ability of different species to undergo secondary condi-
tioning and to experience motivationally biased atten-
tion shifts. The following statement summarizes this
possible difference in circuitry in a way that can be
tested across all species.

The Secondary Conditioning Alternative: Either a
neural system is incapable of secondary conditioning,
or a CS will cause increased total firing of its facilitator
neuron (read D -+- S pathway) as CS-US pairing con-
tinues.

The secondary conditioning alternative suggests
that a modest modification of an invertebrate condi-
tioning circuit, namely, adding on a conditionable S-+-
D pathway, can permit the circuit to undergo second-
ary conditioning.

..so ..
I II I~

CSt. Illon US CSt .CS2. Illon US CS2.noU5

ZZI

6, (d)

, .., , ., , .., , , , , , , , , , , , ,t

25 sa ..
I II I L-.J

CS', th.n US CSI -CS2,th.nUS CS2,noUS

Fig. 15, Blocking simulation: in (a)-(d), the ISI = 6 between CSt

and US onset. Five trials of CSt-US pairing are followed by five
trials of (CSI + CS2)-US pairing. Then CS2 is presented alone for
one trial: (a) Activity %11 of SCSI through time; (b) activity %21 ofScs2
through time; (c) L TM trace Ztt from SCSI to D through time; (d)
L TM trace z21 from SCS2 to D through time. Conditioning of Z2t is

blocked by prior conditioning of Zit.

XI. Properties of an Invertebrate Conditioning Model
Hawkins and Kandel (Ref. 59, p. 385) suggested that

blocking is due to the postulated property that "the
output of the facilitator neurons decreases when they
are stimulated continuously." Thus after a CS1 is
paired with a US on a number of trials, subsequent
presentation of a compound stimulus CS1 + CSz with a
US would not condition CS2 because the facilitator
neuron could not fire adequately. Unfortunately, this
explanation is incompatible with the phenomenon of
unblocking, which is the counterpoint to blocking in
vertebrates, as well as with the phenomenon of second-
ary conditioning.

This hypothesis cannot explain unblocking for the
following reason. Blocking of a CS2 occurs if a com-
pound stimulus CS1 + CSz occurs prior to the same US
that was paired with CS1. However, unblockingofCS2
is observed if a compound cue CS1 + CS2 occurs prior
to either a less or more intense US than did the previ-
ous CS1 (Refs. 13 and 14); that is, in these conditions,
the CS2 can become conditioned to the subsequent US.
If the facilitator neuron is fatigued by the previous US,
it cannot enable a CS2 which occurs prior to a different
US to become conditioned for the same reason that it
cannot allow such a CS2 to become conditioned if it
occurs prior to the same US.

Secondary conditioning cannot be explained for a
similar reason. After a CS1 becomes well enough con-
ditioned to act as a US, it cannot activate the facilitator
neuron during a subsequent time interval because the
facilitator neuron has become depressed due to previ-
ous activation by the US. Consequently, pairing a CS2
with the conditioned reinforcer CS1 does not enable
the CS2 to become conditioned, and secondary condi-
tioning does not occur.

XII. Modulation of Conditioning by a Ca2+ Current
Confirmation of the secondary conditioning alterna-

tive would provide an example of an evolutionary in-
variant of associative learning, while clarifying the role
that variations and specializations of anatomical cir-
cuitry may play in endowing some species with a more

with activity in the sensory neuron" (Ref. 59, p. 379).
However, Hawkins et al. (Ref. 60, p. 403) reported that
"paired presentation of the CS and the US produced
no more total activation of the facilitators than did
unpaired presentation." These Aplysia data are in-
consistent with the existence of a conditionable path-
way from the CS to the facilitator neuron, and the
circuits derived directly from the data in Refs. 60 and
61 did not contain such a pathway.

To reconcile these Aplysia experiments with data
about vertebrate conditioning, it was suggested in Ref.
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that a US uses its facilitator neuron to activate a Ca2+
current which acts directly on the presynaptic termi-
nals of a CS-activated pathway without postsynaptic
mediation. A special feature of the relatively simple
Aplysia circuitry may clarify the absence of a postsyn-
aptic influence on presynaptic conditioning in this
organism. In this Aplysia circuit, direct prewired
pathways exist between sensory and motor neurons.
Only a modest number of sensory pathways converge
on each motor neuron. A postsynaptic influence on
presynaptic conditioning is not functionally mandated
in this type of simple circuit. A postsynaptic influence
becomes more useful if a large number of neurons
converge on each target cell. In such a circuit, aD -S
pathway which acted presynaptically would have to
send a separate signal to every sensory pathway con-
verging on a target cell. It seems to be much simpler,
other things being equal, to send a single D -S path-
way to the target cell and to let the target cell commu-
nicate a postsynaptic learning signal-possibly in the
form of a Ca2+ current-to all the synaptic terminals
which converge on it.

In some learning situations it is, in principle, impos-
sible to use exclusively presynaptic conditioning
mechanisms. For example, to self-organize a spatial
map from one sensory field to another, postsynaptic
competition mediates the learning at interfield synap-
ses.28.31.32.55.56.71-74 A number of model circuits for
mammalian adaptive sensory-motor control have also
been proposed in which a presynaptic modulatory sig-
nal, such as a Ca2+ current, regulates a postsynaptic-
to-presynaptic learning signal}5 Thus the anatomies
of specialized learning circuits may vary widely across
neural systems and species, but the associative rules,
such as Eqs. (1) and (2), and their biochemical sub-
strates may be much more universal.

XIII. Gated Dipole Opponent Processing and Adaptive
Resonance Cognitive Processing

The qualitative arguments and quantitative com-
puter simulations reported herein show how blocking,
overshadowing, nonzero optimal ISI, anticipatory con-
ditioned responses, secondary reinforcement, atten-
tional focusing by conditioned motivational feedback,
and limited capacity short-term memory processing
can be explained as emergent properties of a neural
network model of Pavlovian conditioning. This mod-
el uses a type ot associative learning law for which
neurophysiological data have recently been report-
ed,10--12.34-36 thereby providing direct support for an
early prediction of neural network theory.26.28.49.50

The interactive circuitry of the model, as in Figs. 5
and 11, is just as important as its microscopic cellular
laws for explaining these data and their mutual rela-
tionships. In particular, the nonlinear positive feed-
back interactions between the model's distinct net-
work levels-the sensory representations S and drive
representations D-and the competitive interactions
within each level,S and D, respectively, constitute the
first adaptive resonance theory (ART) circuit to have
been modeled.3 or simplicity, the present article has

sophisticated repertoire of conditionable skills than
others. Evolutionary invariants of associative learn-
ing have also been identified on the more microscopic
level of biochemical learning mechanisms. For exam-
pIe, Alkon and his colleagues have studied the anato-
my, physiology, and biochemistry of an associative
learning circuit in the nudibranch mollusc Hermis-
senda crassicornis.63-70 These experiments have
identified postsynaptic membrane channels that me-
diate an association which is learned by Hermissenda
when light (the CS) and rotation (the US) are paired.68
The Hermissenda data thus support the existence of
an associative rule, such as Eq. (1) or (2), wherein both
presynaptic and postsynaptic influences are required
during the learning process. In this learning situation,
a sustained voltage-dependent inward Ca2+ current
inactivates an outward K+ current, thereby causing
enhanced depolarization of the cell membrane and
further inward flow of Ca2+. In addition, the level of
Ca2+ -dependent phosphorylation of specific cell pro-
teins changes only in the cells of conditioned animals.
Vertebrate conditioning studies are reviewed in Ref. 69
in which a voltage-dependent inward Ca2+ current is
again implicated as a mediator of more long-lasting
cellular changes due to learning.

These experiments support and significantly refine
a prediction23.26 (see also Ref. 71, Chap. 3) whose goal
was to biochemically interpret the associative rules (1)
and (2). The prediction was based on a comparison of
these associative rules, which were derived from mam-
malian conditioning data, with the fragmentary bio-
chemical evidence that was available in the 1960s.
The prediction suggested that an inward Ca2+ current
is synergetic with an inward Na+ current during asso-
ciative learning. This prediction was based on an
analysis which suggested that an inward ionic current,
other than Na+, was needed which could act synergeti-
cally with the inward Na+ current and the outward K+
current that were well known to occur during cell depo-
larization. A functional analysis suggested that this
extra ionic current should be able to accumulate intra-
cellularly and thereby trigger more permanent associa-
tive changes. Based on what was known in the 1960s
about biochemical regulation by synergetic ionic cur-
rents, an inward Ca2+ current was selected as the most
likely candidate for the predicted current, and an in-
crease in an inward Na+ current was identified as a
likely synergist. A decrease in an outward K+ current
can also augment cell depolarization, however, and
that possibility is the one which conditioning models
and recent data have supported.

This early prediction illustrates a convergence of
models for vertebrate and invertebrate associative
learning that has recently emerged, and highlights the
way in which conditioning models, vertebrate behav-
ioral studies, and invertebrate biochemical studies can
complement and strengthen each other during their
shared search for evolutionary invariants.

Not all studies of invertebrate conditioning have
identified a postsynaptic influence on the site of adap-
tive biochemical change. Aplysia data60.61 suggest
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tance in the preparation of the manuscript and illus-
trations.

Appendix: Simulated Equations and Parameters

The computer simulations reported in this paper are
based on the network depicted in Fig. 11. The STM
variables (XiI, Xi2, and y) and LTM variables (ZiV are
intuitively described in Sec. VIII.

The equations for XiI describe an on-center off-sur-
round network undergoing mass action, or shunting,
feedback interactions. In particular, XiI obeys an
equation of the form

ddtXil = -AXil + (B -xiJlil -xilJil' (AI)

i = 1, 2, 3. In Eq. (AI), the term -AXil represents
passive decay of STM. The constant B is the maxi-
mum possible activity of each variable XiI. If B is
interpreted as the number of sites (cells or membrane
patches) capable of being excited, B -XiI represents
the number of inactive sites that can be excited, where-
as XiI represents the number of active sites that can be
inhibited. Terms IiI and Jil are the total excitatory
and inhibitory inputs, respectively, that influence XiI.
The term (B -XiV IiI says that inactive sites are
activated by IiI via mass action. The term -XiI Jil says
that active sites are inhibited by Jil via mass action.

The total excitatory input is a sum of an external CS
or UCS activated signal, plus a positive feedback signal
from XiI to itself, plus a positive feedback signal from
Xi2 to XiI. All feedback signal functions in the simula-
tions are ramp functions (Fig. 4), which are the sim-
plest type of sigmoid signal functions. A ramp func-
tion is defined in terms of parameters a and fJ by

{O' X :5 a, }R(x; a,fJ) = X -a, a < X :5 fl. .(A2)

fJ -a, fJ < x

Parameter a is the threshold and parameter fJ is the
saturation point of the signal function. When possibly
distinct sets ai,fJi of parameters are used, we write

Ri(x) = R(x;ai,fJi) (A3)

for simplicity.
We assume, in addition, that the positive feedback

signal from XiI to itself triggers a process of habituation
that steadily attenuates the net size of the feedback
signal. For simplicity, we model this habituative pro-
cess as an exponentially decaying function of time,
rather than as a habituating transmitter gate. Thus

Ii! = Ii + C[R! (zit> + R2 (zi2») exp(-D[t -Ti -E]+), (A4)

where C, D, E, ai"Bi are positive constants, Ii is the ith
externally activated input, Ti is the onset time of Ii
after each input presentation, and [w]+ = max (CIJ,O).

The total inhibitory input Jil is a sum of inhibitory
feedback signals activated by the other activities XjI.
Thus

omitted a number of circuit interactions that are not
necessary to treat the data simulated herein, but that
playa major role in the modeling of other conditioning
phenomena.

This paper does not, for example, analyze opponent
positive and negative drive representations. A model
of positive and negative opponent interactions, called
a gated dipole model,58.3.5.21 was developed to explain
how termination of a negative or aversive stimulus,
such as an electric shock, can be positively reinforcing.
The property that the sudden termination of a nega-
tive input can generate an internal positive reaction is
called a temporal contrast or antagonistic rebound
effect.

Many conditioning theorists4.4o.43.44.46 have modeled
such contrast phenomena in terms of single synapse
whose associative strength is a function of the change
in the activity of that synapse's postsynaptic cell.
Such a learning rule cannot, however, account for sev-
eral important sets of data; for example, the amount of
positive reinforcement associated with shock termina-
tion depends on the shock's duration; cutting shock
level in half can be less reinforcing than shutting off a
shock of half the size; a sudden increase in shock can be
more punishing than a gradual increase; and reinforce-
ment is an inverted-U function of arousal. All these
phenomena can be explained in terms of emergent
properties of a gated dipole circuit.58.21

Although the use of a gated dipole circuit to build up
a drive representation expands the explanatory range
of a conditioning theory, many conditioning data can-
not be explained without the inclusion of cognitive
mechanisms, notably the attentional and orienting
mechanisms that regulate the learning of sensory and
cognitive codes and expectations.56.76 Conditioning
data were in fact, a primary source of design con-
straints leading to the discovery of adaptive resonance
theory.5.21 Such an expanded conditioning theory can
be viewed as an adaptive resonance theory in which
two specialized types of ART circuit interact: a senso-
ry-cognitive circuit and a cognitive-reinforcement cir-
cuit. In this expanded theory, which represents a
computational synthesis of sensory, cognitive, learn-
ing, reinforcement, and homeostatic mechanisms, a
very large body of conditioning data-including such
subtle phenomena as unblocking and dishabituation
due to novel cues-has been analyzed and predict-
ed.5.8.21.77.78 This paper and Ref. 8 together begin a
new phase in the development of this conditioning
theory by initiating a systematic program of paramet-
ric computer simulations whose goal is to explain finer
quantitative details of behavioral conditioning data
and of the functional anatomy and dynamics of their
generative brain regions.
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x exp(-D[t -Tj -E]+I- Fxjl LRI(XjJ,

j"j
(A6)

i = 1, 2, 3.
We assume that each activity Xii reads out a signal

GRl(XiV toward the drive representationD, where G, is
a positive constant. This signal is gated by the L TM
trace Zit before the net L TM-gated signal influences D.
The drive representationD is activated only if the total
input due to all Xii exceeds a threshold (X3. Thus we let

~Y=-HY+KR3 [ tGRI(.rjJZjl ] .(A7)
/-1

Simultaneous signals from XiI and yare needed to
activate xi2. The signal from y is gated by an L TM
trace, which is assumed for simplicity to equal zil due
to the fact that XiI and Xi2 are both activated at similar
times during the conditioning process. We also as-
sume, for simplicity, that these inputs do not drive Xi2
into its saturation range. In all, we let

(AS)

i = 1,2,3.
Finally, each LTM trace corresponding to a CS is

assumed to obey a law such as Eq. (1):
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