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Abstract—A neural network model of multiple-scale binocular fusion and rivalry in visual cortex is described
and simulated on the computer. The model consists of three parts: a distributed spatial representation of binocular
input patterns among simple cells that are organized into ocular dominance columns; an adaptive filter from
simple cells to complex cells; and a nonlinear on-center off-surround shunting feedback network that joins
together the complex cells. This data structure generates complex cell receptive fields which multiplex input
position, orientation, spatial frequency, positional disparity, and orientational disparity, and which are insensitive
to direction-of-contrast in the image. Multiple copies of this circuit are replicated in the model using receptive
fields of different sizes. Within each such circuit, the simple cell and complex cell receptive field sizes covary.
Together these circuits define a self-similar multiple-scale network. The self-similarity property across spatial
scales enables the network to exhibit a size-disparity correlation, whereby simultaneous binocular fusion and
rivalry can occur among the spatial scales corresponding to a given retinal region. It is shown that a laminar
organization of the model interactions among the complex cells gives rise to conceptually simple growth rules
for intercellular connections. The output patterns of the model complex cells are designed to feed into the model
hypercomplex cells at the first competitive stage of a Boundary Contour System network, where they trigger a
process of multiple-scale emergent binocular boundary segmentation. The modeling results are compared with
psychophysical data about binocular fusion and rivalry, as well as with the cepstrum stereo model of Yeshurun
and Schwartz. The results indicate that analogous self-similar multiple-scale neural networks may be used to
carry out data fusion of many other types of spatially organized data structures.

Keywords—Neural network, Binocular vision, Visual cortex, Data fusion, Multiplexing, Binocular rivalry,
Computational map, Complex cells, Ocular dominance columns, Self-similarity, Size-disparity correlation,

nonlinear feedback network.

1. STEREO IMAGE MULTIPLEXING BY
THE COMPLEX CELL CORTICAL MAP

Neural networks are often designed as nonlinear fil-
ters that multiplex several different types of infor-
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mation into a spatial map. They can thereby generate
compressed codes capable of reacting selectively to
combinations of external environmental conditions.
The complex cells in the striate visual cortex form
such a map. Individual complex cells in this map
selectively fire in response to a prescribed range of
values of an image contrast’s position, orientation,
spatial frequency, stereo positional disparity, and
stereo orientational disparity, yet are chromatically
broad-band and insensitive to direction-of-contrast
(DeValois, Albrecht, & Thorell, 1982; Poggio, Mot-
ter, Squatrito, & Trotter, 1985; Shinkman & Bruce,
1977; Thorell, DeValois, & Albrecht, 1984; von der
Heydt, Hanny, & Diirsteler, 1981).

These filter properties take on functional meaning
as part of a neural network model of cortical visual
processing, called the Boundary Contour System
(Grossberg & Mingolla, 1985a, 1985b), wherein cor-
tical complex cells play the role of broad-band
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FIGURE 1. Small patches of left (L) and right (R) eye retinas
project to contiguous regions of visual cortex whereln a set
of oriented receptive fields, or local contrast detectors, se-
lectively react to oriented retinal contrasts. Such a complete
set of oriented L and R detectors corresponding to a pair of
retinal patches is called a hypercolumn (Hubel & Wiesel,
1977).

boundary detectors. The present work describes
computer simulations, announced in Grossberg and
Marshall (1987), which clarify how the complex cell
filter helps the Boundary Contour System to gen-
erate an emergent boundary segmentation that se-
lects, regularizes, and completes binocularly con-
sistent image data, while suppressing binocularly
inconsistent image data (Grossberg, 1987a, 1987b,
1988a), including noise (Grossberg & Mingolla,
1987a). In technological applications, these proper-
ties of the complex cell filter are of interest in prob-
lems of multidimensional data fusion.

2. THE CORTICAL HYPERCOLUMN MAP

The model suggests how spatially distributed com-
binations of featural data at a processing level F; of
cortical simple cells interact with a level F; of cortical
complex cells via an adaptive filter in such a way that
the individual cells at F, multiplex the types of in-
. formation for which cortical complex cells are selec-
tive. In order to accomplish this data compression,
level F is modeled as a spatial map, in particular the
spatial map whereby cortical simple cells are ar-
ranged into cortical modules called hypercolumns
(Hubel & Wiesel, 1977). Each hypercolumn (Figure
1) brings together image data from two small cor-
responding regions of the left and right retinas. The
retinal image data are filtered by the time they reach
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the hypercolumn stage into a topographically orga-
nized array of oriented filters, or receptive fields.
Each hypercolumn contains a complete set of ori-
ented filters from each eye. The hypercolumns are
fit together in a spatial map in which image data from
each eye form columns, called ocular dominance col-
umns (Figure 2). Traversal of an ocular dominance
column leads to a gradual change of retinal positional
coordinates and of the preferred orientation of re-
ceptive field responsiveness.

Figure 3 schematizes how a scenic edge is con-
verted into a pattern of activation across the simple
cells of the model’s hypercolumn map. Distinct com-
binations of edge positions and orientations on the
two retinas are converted into distinct activation pat-
terns across the hypercolumn map. Thus level F, of
the model encodes important scenic parameters as
distributed activation patterns across a spatially or-
ganized data structure.

3. A SELF-SIMILAR MULTIPLE-SCALE
COMPETITIVE LEARNING SYSTEM

The network that converts distributed activation pat-
terns ‘across level F) into multiplexed responses of
individual cells at level F; is a variant of a competitive
learning model. Competitive learning models were
developed through an interaction between Gross-
berg (1972, 1976) and von der Malsburg (1973), lead-
ing to several versions of the model, as well as math-
ematical results and computer simulations that formed
the foundation for subsequent contributions (Amari
& Takeuchi, 1978; Bienenstock, Cooper & Munro,
1982; Carpenter & Grossberg, 1987a, 1987b, 1988;
Cohen & Grossberg, 1986, 1987; Grossberg & Ku-
perstein, 1986; Kohonen, 1982, 1984; Linsker, 1986a,

FIGURE 2. Hypercolumns in visual cortex are joined together
sequentially to form ocular dominance columns. Here the
black (white) bands represent sequential arrays of hyper-
columns from different eyes. (Reprinted with permission from
Hubel and Wiesel, 1979.)
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1986b, 1986¢c; Rumelhart & Zipser, 1985; Singer,"

1983; Willshaw & von der Malsburg, 1976). An his-
torical discussion of the development of competitive
learning models is provided in Grossberg (1987c,
1988a).

In a competitive learning model, normalized input
patterns across level F, pass through an adaptive filter
to a level F,, whose design includes competitive in-
teractions among its cell populations. Level F; con-
trast-enhances, or compresses, the signal pattern that
it receives through the filter. Thus the activation pat-
tern thatis instated across F; is spatially more focused
than its generative signal pattern. Only those F; cells
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FIGURE 3. Translation of scenic contour information into
spatial patterns of activity: (a) Overlapping like-oriented re-
ceptive fields generate a spatial pattern of activity at left-
monocular representations in response to a left-monocularly
viewed scenic edge. The figure portrays a view from above
of cortical ocular dominance columns for the left (L) and
right (R) eyes, and portrays Increased cell activation with
darker areas. (b)~(d) Binocular inputs due to a scenic edge
viewed by the two eyes at Increasing positional disparities
create distinct, expanding activity patterns across the ocular
dominance columns. Here bar heights code activities. (e)
Binocular viewing can cause an orientational disparity that
is coded by a positional shift in the activity pattern caused
by the left eye relative to that caused by the right eye. This
shift Is perpendicular to the shift caused by positional dis-
parity, which separates activity patterns caused by the two
eyes in a horizontal rather than a vertical direction. (Re-
printed with permission from Grossberg, 1987b.)
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FIGURE 4. Visual signals broadly distributed across simple
cells within the hypercolumn layer F, input to a layer F, of
complex cells via feedforward on-center off-surround shunt-
ing interactions. Feedback on-center off-surround shunting
interactions transform broad activations at F, into sharp, mul-
tiplexed activations at F,. The Gaussian band-widths of the
feedforward excitation and inhibition and the feedback in-
hibition covary with the spatial scale of the oriented receptive
fields of the simple cells. See text for additional details.

which survive the competition with sufficiently pos-
itive activities can trigger associative pattern learning
within the vectors of adaptive weights, or long-term
memory traces, that sent them signals through the
adaptive filter. Our model of the complex cell filter
is a competitive learning system whose input level
F, is modeled after the cortical hypercolumn map
(Figure 4).

In order to support effective binocular processing
by the Boundary Contour System, this competitive
learning system needs to be designed with a multiple
scale filter whose receptive fields come in several
sizes that are related to each other by properties of
self-similarity. A variant of such a self-similar mul-
tiple-scale competitive learning system is the masking
field model, which was developed to explain prop-
erties of visual object recognition and speech rec-
ognition (Cohen & Grossberg, 1986, 1987; Cohen,
Grossberg, & Stork, 1987; Grossberg, 1982). The
remainder of this article focuses upon key self-similar
multiple-scale aspects of the problem, rather than
the learning aspects: Sections 4-8 motivate the type
of self-similar multiple-scale processing that we sug-
gest for stereopsis and depth perception processing.
Section 9 begins a self-contained description of the
model and computer simulations.

4. SIMPLE, COMPLEX, AND
HYPERCOMPLEX CELL FILTERS OF THE
BOUNDARY CONTOUR SYSTEM

The Boundary Contour System (BCS) was originally
used to explain a large body of monocular visual data
(Cohen & Grossberg, 1984; Grossberg & Mingolla,
1985a, 1985b; Grossberg & Todorovié, 1988). Since
its introduction, a variety of subsequent perceptual
and neural data have provided additional support for
the theory (see Grossberg, 1987a for a summary).
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Several laboratories have tested the theory with pos-
itive results (e.g., Eskew, 1987; Graham, 1988; Ken-
nedy, in press; Meyer & Dougherty, 1987; Todd &
Akerstrom, 1987). It was also shown that the mon-
ocular theory may be embedded in a self-consistent
fashion into a theory of binocular vision (Grossberg,
1987b).

Figure 5 schematizes the first four stages of fil-
tering postulated by the monocular theory. The bi-
nocular theory preserves the qualitative properties
of this filter, but substantially refines its description.
In the first stage, pairs of simple cells sensitive to
similar positions, orientations, and spatial frequen-
cies, but opposite directions-of-contrast, rectify their
output signals before adding them to form the input
to a complex cell. Such acomplex cell is thus sensitive
to position, orientation, and spatial frequency, but
insensitive to direction-of-contrast. This model of how
rectified outputs from simple cells summate to acti-
vate complex cells has subsequently been partially
supported by cortical data of Spitzer and Hochstein
(1985).

The complex cells, in turn, are postulated to ac-
tivate a subsequent filter whose interactions carry
out two different types of spatially short-range com-
petitive interaction, which give rise to two types of
hypercomplex cells at successive processing stages of
the BCS. Graham (1988) has recently provided ad-

TO COOPERATION
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ditional evidence that a pair of hierarchically organ-
ized oriented filters, separated by a rectification stage,
are engaged by textured images. At the first stage
of the second filter, each complex cell activates an
on-center off-surround interaction among like-ori-
ented cells (Figure 5). In other words, each complex
cell excites the hypercomplex cells of like-orientation
corresponding to the same position at the next pro-
cessing stage, but inhibits the hypercomplex cells of
like-orientation that occur at nearby positions. These
lateral inhibitory, or competitive, interactions carry
out an operation of end stopping (Hubel & Wiesel,
1965; Orban, Kato, & Bishop, 1979) that gives rise
to the hypercomplex receptive field properties at the
first competitive stage of the model (Figure 5).

The second competitive stage of the BCS model
executes a push—pull competition within each posi-
tion between cells of different orientational prefer-
ence, with the greatest inhibition occurring between
perpendicular orientations. This competitive inter-
action gives rise to a type of higher-order hypercom-
plex cell receptive field (Grossberg, 1988b; Hubel &
Wiesel, 1965).

Using these properties, we review those data and
issues described in Grossberg (1987b) which most
vividly motivate how to extend the monocular circuit
of Figure 5 to a multiple-scale self-similar binocular
circuit.
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FIGURE 5. Early stages of BCS processing: At each position there exist simple cells with elongated receptive fields of various
sizes which are sensitive to orientation, amount-of-contrast, and direction-of-contrast. Pairs of such simple cells sensitive to
like orientation but opposite directions-of-contrast (lower dashed box) input to complex cells that are sensitive to orientation
and amount-of-contrast but not to direction-of-contrast (white ellipses). The complex cells, in turn, excite {ike-oriented hyper-
complex cells corresponding to the same position and inhibit like-oriented cells corresponding to nearby positions using the
first competitive stage. At the second competitive stage (upper dashed boxes), higher-order hypercomplex cells corresponding
to the same position but different orientations inhibit each other via a push-pull competitive interaction. (Reprinted with

permission from Grossberg, 1987a.)
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FIGURE 6. (a) The Kaufman stereogram Induces a percept of a square in depth even while the perpendicular line patterns are
rivalrous. (b) The Kulikowski stereograms illustrate the action of multiple spatial-frequency-sensitive scales during simulta-
neous fusion and rivalry: Sinusoidal gratings in antiphase can be fused to yleld a percept of a grating in depth. Bar gratings
in antiphase yield a percept of depth even though their edges are rivalrous.

S. BINOCULAR FUSION AND RIVALRY:
THE KAUFMAN STEREOGRAM

The phenomena of binocular fusion and rivalry often
occur simultaneously during the viewing of stereo-
grams. The Kaufman (1974) stereogram (Figure 6a)
illustrates several key points. When the two images
are viewed through a stereoscope, a single fused
square is seen in depth relative to the background.
Superimposed upon the continuous percept of a square
in depth is a rivalrous percept involving the oblique,
mutually perpendicular lines. At any given moment,
an observer can perceive either a 45° line or a 135°
line at a given position, but not both. The percept
switches intermittently between these mutually per-
pendicular lines.

Grossberg (1987b) traced this type of competition
to the competition between perpendicular orienta-
tions that takes place at each position of the second
competitive stage (Figure 5). In order for image data
from both eyes to compete at the second competitive
stage, the second competitive stage must be binoc-
ular. Thus data from both eyes are joined together
no later than the second competitive stage, using the
spatial map afforded by the ocular dominance col-
umns in striate visual cortex to enable such eye-de-
pendent, position-dependent, and orientation-de-
pendent competition to occur.

6. BINOCULAR FUSION AND RIVALRY:
THE KULIKOWSKI STEREOGRAM AND
SPATIAL FREQUENCY DEPENDENCE
OF STEREOPSIS

A second type of binocular rivalry is exemplified by
the percepts seen in response to the Kulikowski (1978)
stereograms (Figure 6b). During binocular viewing,

subjects can fuse the two spatially blurred pictures.
They perceive the fused image continuously in depth
relative to the fused images of the two frames. Sub-
jects experience a more complex percept when they
view the stereogram composed from out-of-phase
sharp bars. As in the case of the viewing of blurred
bars, a fused form-in-depth is again perceived con-
tinuously. However, superimposed upon the fused
percept of form-in-depth is a percept of binocu-
lar rivalry. The spatially out-of-phase edges of the
bars in the left and right images are rivalrous and
appear to pop alternately into and out of conscious
perception.

This percept of simultaneous fusion and rivalry
illustrates the operation of multiple spatial scales:
The lower spatial frequency components of the two
images can be binocularly fused into a continuously
seen percept in depth at the same time that the high
spatial frequency edges are seen to be rivalrous. Thus,
the high spatial frequency scales that process the edges
cannot fuse these high spatial frequency image prop-
erties at the same disparity at which the low spatial
frequency scales can fuse the low spatial frequency
contents of the two images. Such spatial frequency
dependence of the effective disparity range for ster-
eopsis, also called the size-disparity correlation, has
been further studied by Richards and Kaye (1974),
Schor and Wood (1983), and Schor, Wood, and Ogawa
(1984). In contrast, the frames surrounding both im-
ages can be fused by all spatial scales because the
frames can be spatially aligned with respect to both
eyes. Thus, the Kulikowski stereogram provides vis-
ible evidence of the classical fact (Julesz, 1971) that
a relative depth percept can be generated if different
parts of two images are fused by different combi-
nations of binocular spatial scales.

The relative depth percept that is generated by
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the Kaufman stereogram (Figure 6a) can also be ana-
lyzed from this perspective. As described by Gross-
berg and Mingolla (1985a, 1985b), the formation of
an emergent boundary segmentation around the il-
lusory square region is initiated in the BCS by end-
cuts induced at the second competitive stage by the
image corners at which the oblique line-ends of the
square join its surround. Due to the horizontal dis-
parity of the left and right images with respect to the
image frame, not all spatial scales can form fused
images from which to generate these emergent end-
cut boundaries. In contrast, the scenic edges that
frame the pair of images can have zero disparity with
respect to each other and can thus form fused bound-
ary responses within all spatial scales. The selective
activation of a subset of scales by the disparate image
figures provides the basis for a relative depth differ-
ence of the figure with respect to the ground.

The Kaufman and Kulikowski stereograms illus-
trate that there exists an interaction between the sce-
nic properties that can be fused within a given spatial
scale and the emergent boundary segmentations that
can be generated by that scale. This scale-specific
interaction between binocular fusion and emergent
boundary segmentation may be used to explain many
of the striking data reported by Mayhew and Frisby
(1976) and Frisby and Mayhew (1978) on rivalrous
texture stereograms.

7. ANALYSIS OF SPATIAL-FREQUENCY
DEPENDENT FUSION AND RIVALRY:
RECONCILING BINOCULAR
DEFORMABILITY WITH
BINOCULAR ACUITY

In the Kaufman stereogram, perpendicular scenic
edges that excite the two eyes at the same positions
are rivalrous, thereby implicating the second com-
petitive stage of the BCS (Figure 5). In the Kuli-
kowski stereogram, parallel scenic edges that excite
the two eyes at disparate positions are rivalrous. This
is the type of competition that occurs at the first
competitive stage of the BCS (Figure 5). The rivalry
between the spatially disparate vertical edges of the
Kulikowski stereogram is initiated when the first
competitive stage causes spatially disparate, parallel
orientations to compete at that copy of the second
competitive stage which receives inputs from simple
cells with small receptive fields.

Why does the first competitive stage not cause
rivalry to occur between spatially disparate pairs of
monocular images in all spatial scales? How can some
spatial scales binocularly fuse images at the same
disparity that at other spatial scales leads to binocular
rivalry? Grossberg (1987b) suggested that spatially
disparate pairs of monocular images that can be fused
within a given scale both input to the on-center of
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the scale’s first competitive stage (Figure 7a). In con-
trast, spatially disparate pairs of monocular images
that are rivalrous within a given spatial scale compete
via the off-surrounds of that scale’s first competitive
stage (Figure 7b).

This hypothesis suggests several conclusions. The
input cells to the first competitive stage must be bi-
nocular, so that spatially disparate pairs of monoc-
ular images can both input through them to the on-
center of the first competitive stage, as in Figure 7a.
Grossberg (1987a) identified these cells with complex
cells in area 17 of the striate cortex. Complex cells
are, in fact, well known to be binocular (Hubel &
Wiesel, 1977; Poggio, Motter, Squatrito, & Trotter,
1985). Thus, the hypercomplex cells at the first and
second competitive stages are binocular because their
inputs from the complex cells are already binocular.
Figure 6 suggests that there exist disparities at which
low spatial frequency scales can fuse pairs of mon-
ocular image elements at their complex cell level but
high spatial frequency scales cannot. As a result,
there exist disparities at which complex cells tuned
to low spatial frequencies can excite the on-center
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FIGURE 7. Initial processing stages leading to fusion or ri-
valry: (a) Spatially disparate monocular images from left (L)
and right (R) eyes activate a shared population of complex
cells, which in turn activate a “fused” locus of cells within
an on-center of the second competitive stage. (b) Ata smalter
spatial scale, the same monocular images may activate spa-
tially disjoint sets of complex cells, which input to off-sur-
rounds at the second competitive stage, thereby initiating
rivairy between the images. (Reprinted with permission from
Grossberg, 1987b.)
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of the corresponding second competitive stage (Fig-
ure 7a) but complex cells tuned to high spatial fre-
quencies generate mutually inhibitory signals to the
second competitive stage (Figure 7b). Figure 7 pro-
vides a pictorial way to understand how some spatial
scales can fuse images that other spatial scales can-
not, and how subsequent BCS mechanisms can in-
hibit binocularly discordant boundary signals within
those spatial scales that are incapable of fusion.
Figure 7 also indicates how another important
property of binocular space may be realized. In order
to fuse pairs of monocular images that are spatially
disparate, the binocular space must be deformable:
two images must be deformed into one image, much
as in the phenomenon of displacement, or allelotropia
(von Tschermak-Seysenegg, 1952; Werner, 1937). In
this phenomenon, when a pattern AB C is viewed
through one eye and a pattern A BC is viewed through
the other eye, the letter B can be seen in depth at a
position halfway between A and C. Deformability
implies that there exists a certain degree of positional
uncertainty at the early stages of binocular process-
ing, in particular at the simple cell stage where bi-
nocular scenic information is spatially distributed
across the cortical hypercolumn map (Figure 3). The
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FIGURE 8. Early stages of spatial-frequency sensitivity are
represented by covariation of receptive-field size with the
spatial pattern of activity generated by cells of this size across
F,: Large receptive fields generate more spatially distributed
patterns (a) than small receptive fields (b). Bar height rep-
resents activity at each cell position, as in Figure 3b~d, in
response to an image edge. (Reprinted with permission from
Grossberg, 1987b.)
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final binocular percept is, however, positionally
sharp. A serious challenge to theories of binocular
form perception is to reconcile the property of po-
sitional uncertainty, whereby deformability may per-
mit binocular fusion, with the high degree of acuity
that characterizes the final binocular percept.

One factor in our theory that contributes to an
explanation is the manner in which individual com-
plex cells in level F, multiplex distributed activation
patterns across the level F; of simple cells. Because
these F; activation patterns occur across interleaved
ocular dominance columns, the multiplexed F, re-
sponses fuse together left eye and right eye cortical
representations that are positionally disparate (Fig-
ure 7a). A second factor is the manner, described in
Grossberg (1987b), in which the CC Loop of the
Boundary Contour System selects a globally consis-
tent binocular boundary segmentation from the total
pattern of complex cell signals within each spatial
scale, while sharpening and completing the repre-
sentation via its context-sensitive cooperative—com-
petitive feedback interactions as it rapidly ap-
proaches an equilibrium configuration.

Having motivated the functional role played by
the size-disparity correlation in setting up the com-
putation of simultaneous fusion and rivalry across
multiple spatial scales, we now describe how this
correlation may be achieved by imposing the prop-
erty of self-similarity among the several spatial
scales.

8. SELF-SIMILAR SPATIAL SCALES
AND THE CORTICAL
MAGNIFICATION FACTOR

Let us assume, as in Figure 3, that the spatial dis-
persion of activation across the cortical hypercolumn
map in response to localized image features covaries
with the size of the simple cell receptive fields. Then
larger simple cell receptive fields generate more
broadly distributed activation patterns than smaller
receptive fields, as in Figure 8. Assume that several
different receptive field sizes exist. For simplicity of
exposition, let each size be segregated into different,
but topographically registered, layers within level F;,
such that each layer is organized into a hypercolumn
map. Cells with larger receptive fields receive inputs
from a larger retinal area than cells with smaller re-
ceptive fields. A layered organization of simple cells
according to receptive field size provides one way to
design a multiple-scale network of receptive fields,
because cells in different layers can receive different
amounts of receptive field scatter, or input fan-in. It
is well-known that the amount of receptive field scat-
ter increases with retinal eccentricity, according to
the cortical magnification factor (Hubel & Wiesel,
1977). The same type of variable receptive field scat-
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ter may provide a mechanism for achieving spatial
frequency sensitivity across the several scale-specific
layers that are posited to exist in the cortex corre-
sponding to each retinal position.

Given a spatial organization of simple cells into
hypercolumn maps with multiple layers of differently
sized receptive fields, the total activation pattern across
F, represents such image properties as monocular
position, orientation, binocular positional disparity,
binocular orientational disparity, and spatial fre-
quency. Our task is to understand how these distrib-
uted activation patterns across level F; are converted
into selective tuning curves for all these factors within
individual cells of F;, in such a way as to generate
the size-disparity correlation described in Section 6.

The key hypothesis is that the input fan-in that
controls the size of a simple cell’s receptive field
covaries with the output fan-out whereby a simple
cell activates complex cells. In other words, the
amount of spatial uncertainty that gives rise to the
receptive field of a simple cell induces a correspond-
ing degree of spatial uncertainty in the outputs trig-
gered by that receptive field. Thus the input fan-in
at complex cells which receive inputs from large sim-
ple cell receptive fields is larger than the input fan-
in at complex cells which receive inputs from small
simple cell receptive fields.

We call this hypothesis the self-similarity hypoth-
esis. Self-similarity in the present model means that
a cell’s size and its input and output apparatus scale
up or down together. This property clarifies how a
cell type can be generated in multiple sizes across a
neural network by parametrically exciting a single
growth-control variable that controls the cells’ over-
all sizes. From an information theoretical viewpoint,
the self-similarity property enables a match to be
established between the degree of spatial uncertainty
of a cell’s input and the degree of spatial uncertainty
of the cell’s output. This concept has been useful in
a number of other neural network applications. For
example, see Cohen and Grossberg (1986, 1987) for
an application of multiple-scale self-similar networks
in the self-organization of pattern recognition codes,
Daugman (1985) and Watson and Ahumada (1987)
for an application in the modelling of simple cell
receptive fields, and Grossberg (1969, 1982, p. 590)
for other applications of this idea.

The self-similarity hypothesis permits the func-
tional properties depicted in Figures 7 and 8 to be
mechanistically realized: Larger simple cell receptive
fields (Figure 8a) can fuse together more disparate
monocular images (Figure 7a) than can smaller re-
ceptive fields (Figures 8b and 7b). Thus the size-
disparity correlation is a consequence of three prop-
erties of the model: (a) organization of simple cells
into scale-selective hypercolumn maps; (b) self-sim-
ilarity of simple cell input and output fields; and (c)
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organization of complex cell outputs into scale-
selective and orientation-selective on-center off-
surround networks (first competitive stage) that
are designed to sharply contrast-enhance their input
patterns.

9. NEURAL NETWORK MODEL:
TRANSFORMING DISTRIBUTED
YPERCOLUMN ACTIVATION PATTERNS
INTO MULTIPLEXED ACTIVITY PEAKS

We simulated the responses of complex cells with
different receptive field sizes to image edges regis-
tered with different binocular disparities. In partic-
ular, we analyzed the responses of hypercolumns or-
ganized into a 1-dimensional array of alternating left
and right ocular dominance slabs. The simple cells
within these ocular dominance slabs respond to an
image contrast by forming two interleaved activity
profiles, one for each eye. We modeled four oriented

‘mask sizes by varying the width of the activity profiles

across the hypercolumns, as in Figure 8. We modeled
positional disparity by varying the relative positions
of the left- and right-eye activity patterns, as in Fig-
ures 3b—d.

The network model is summarized pictorially in
Figure 4. Signals were transmitted from the simple
cells in level F, to a level F, of binocular complex
cells via a set of feedforward excitatory on-center
and inhibitory off-surround connections whose
strength is a Gaussian function of intercellular dis-
tance, with a small random factor added to break
the spatial symmetry of the Gaussian. Each complex
cell in level F, received inputs from both left and
right ocular dominance slabs. The sum of the bottom-
up inputs activated target complex cells via mul-
tiplicative, or shunting, interactions (Grossberg,
1982).

Within level F,, cells interacted via a distance-
dependent on-center off-surround feedback net-
work. Each cell inhibited its neighbors via synapses
whose strength decreased as a Gaussian function of
intercellular distance. The sum of inhibitory signals
received by each complex cell triggered shunting in-
hibition of the target cell’s activity. Each complex
cell also generated an autocatalytic excitatory feed-
back signal. Both the excitatory and inhibitory feed-
back signals emitted by each cell were generated as
a faster-than-linear (in particular, a polynomial)
function of the cell’s activity, in order to sharpen the
pattern of F, activation caused by the input pattern
received from F,.

10. LEVEL F, ACTIVATION PATTERN:
MULTIPLE SCALES AND DISPARITIES

Such a combination of feedforward and feedback
network interactions generates the desired fusion and
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rivalry behavior within a robust parameter range.
Figure 9 schematizes the activation patterns across
the simple cells of level F; that are defined within
four different spatial scales. Each row depicts the
activation patterns within a single scale. Successive
columns depict the effect of increasing the positional
disparity of the left and right eye images of the edge
that was registered by the simple cells. These acti-
vation patterns were chosen to generate the output
patterns from level F, to level F;,. They were defined
as follows.

Let xg; be the activity at the ith cell population v
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of scale § in level F,. Let cells with even index i
correspond to the input of one eye, and cells with
odd index i correspond to the input of the other eye.
Let

if { is even
X = (1)

X, (#) if i is odd

where —36 = i = 36. In (1), parameter D is the
disparity of the two images. In Figure 9, D = 0, 1,
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FIGURE 9. Activity patterns used as input for Figures 11-18. Bar heights code each input cell’s activity level x;. Each row
indicates the input patterns at a single spatial scale S, with disparity D increasing across the row. Note that the total amount
of activity in all cells within each pattern is constant; this approximates the ettect of a feedforward on-center off-surround

shunting network.
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2,3,4incolumns 1, 2, 3, 4, 5, respectively. Function
Xs(i) is a Gaussian function of distance that is par-
ameterized as follows. Let

) = i ~vgil
Xs(i) = N, ¢ )
for all i such that e™*s" = .02, and = 0 otherwise.
In (2), the spatial scale S = 0, 1, 2, 3; the spatial
decay rate

In 6
v, = F forS =1, 2, 3; 3)
o forS§ =0

and the normalization factor
Ng = 2 {es' s e=" > 02}, (4)
k

This normalization term approximates the effect of
a shunting on-center off-surround network; see sub-
sequent discussion. The algebraic normalization in
(2) was used for simplicity.

11. LEVEL F, NONLINEAR FEEDBACK
NETWORK: BALANCED AND
NORMALIZED GAUSSIAN GRADIENTS

Let yg; be the activity of the jth cell population vy
of scale § in level F,. These activities are assumed
to form an on-center off-surround network undergo-
ing shunting feedforward and feedback interactions,
as defined by the system

d
EYS, = —ay;, + (B - YS,)(F.(s;) + B.(s;))
~ (v + ¥ )F§ + BEY). (9)

In (5), term F§}) is the total feedforward signal from
level F, to vg;, B§) is the total excitatory feedback
signal from level F; to vg;, F§;) is the total inhibitory
feedforward signal from level F, to vg;, and B(S,‘) is
the total inhibitory feedback signal from level F, to
Us,.

Extensive computer simulations have demon-
strated that both excitatory feedforward signals
F§}) and inhibitory feedforward signals F{;) are
needed to prevent a variety of anomalies from oc-
curring in the responses of F; cells as the spatial scalc
S and disparity D parameters are varied. Some of
these anomalies are reported below. Such a feed-
forward on-center off-surround anatomy is also needed
to solve the fundamental noise-saturation dilemma
(Grossberg, 1982, 1988c); that is, to enable F, to self-
tune, and thereby self-normalize, its responses to
F, — F, signals as parameters such as § and D are
varied. Were this not accomplished, different param-
eter choices could generate widely different activa-
tion levels in the responses of F; cells to signals from
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F,. The feedback signals B and B’ are, however,
chosen to be nonlinear in order to carry out basic
operations such as noise suppression and contrast
enhancement. These nonlinear feedback signals would
respond to such highly variable activation levels in
ways that do not generate the design competence
being sought.
All the signals are discrete convolutions:

F = 3 g(xs)FY), (6)
F' = 2 g(xa)FS), )
B = ¢ 2 h(ys)BS), (8)
k
and
BS) = ¥ ) h(ys)BS;). 9)
k

In (6) and (7), the feedforward signal function was
chosen to be threshold-linear:

8(xs,) = max(xs, 0). (10

In (8) and (9), the feedback signal function was cho-
sen to be faster-than-linear-above-threshold:

h(ys) = [max(yg — 8, 0)]* 11

All the spatial connections defined in (6)-(9) were
chosen to vary as a Gaussian function of distance.
In addition, it was assumed that synaptic conservation
obtains; namely, that the total connection strength
to each cell within each scale is the same (Cohen &
Grossberg, 1986, 1987). It was also assumed that the
feedforward and feedback excitatory coefficients
F{;) and B{;) are influenced by small random fluc-
tuations of their otherwise Gaussian spatial distri-
bution. These random terms enable input patterns
of different disparity D but the same scale S to ac-
tivate different cells vg; even if all such input patterns
are symmetrically distributed in space with respect
to one another. In a multiple scale network such as
a masking field (Cohen & Grossberg, 1986, 1987),
the change in spatial scale of the total activation pat-
tern across level F, as D increases can itself cause
selection of different cells in level F;.

These qualitative constraints are quantitatively re-
alized as follows. Let

n RS
N, exp[ - f§(i = j)]
Fg) = if exp[-f{'( - ] >5 x 107° (12)
0 otherwise
and

By = F), (13)
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where

Ny = 2 {exp[ - fEG - j)):

exp[— 7 - j)] > 5 x 1073}, (14)

Term Nj; is independent of j because of the isotropy
of the field of integers over which it is computed.

By (13), the feedforward and feedback inhibitory
signals share a common set of inhibitory interneu-
rons. This is not assumed about the feedforward and
feedback excitatory interneurons. The on-center of
the feedforward excitatory interneurons increases in
width with the scale S in order to generate the size-
disparity correlation (Section 6). In addition, the ex-
citatory on-center needs to include more than one
cell population in order to be able to binocularly fuse
disparities D that are greater than zero. On the other
hand, the outcome of the feedback competition within
F, must be able to choose a narrow focus of cell
activity across all fusable combinations of S and D.
Thus the spatial distribution of excitatory feedback
signals B§;) was chosen more narrowly than that of
the excitatory feedforward coefficient F{}. The lat-
ter coefficients were chosen as follows.

First, a Gaussian gradient of coefficients was de-
fined and was perturbed randomly by a small amount.
This it was normalized to attain the same total con-
nection strength to the cell as did the unrandomized
gradient. Thus let

P, exp[ - "0 = )]

o= if exp[—f$'( - )] > 5 x 10% (15)
0 otherwise
where
P,=1+ 012R, ~ 1) (16)

and R;;is chosen pseudo-randomly within the interval
[0, 1). The coefficients f§’ thus form a slightly per-
turbed Gaussian distribution. In order to normalize
these connection strengths, we need to first define
the excitatory feedback coefficients. Let

P, exp[ - b (k - j)]
b§) = if exp[—b{"(k — /)] >S5 x 107> (17)
0 otherwise

where P, is defined as in (16). Now define

vfs)
1:(:) = —'l+ (18)
YR+ 2 bk
! m
and
vh(*)
BY) = =77 (19)
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In some of our computer simulations, we chose
b{") = in (17) to illustrate how a sharply fused F,
response could be elicited across all scales S. We also
studied the case in which b{") = f{*)in (15) and (17)
so as to illustrate what would happen to fusion if the
feedforward and feedback excitatory signals shared
a common set of interneurons.

12. LAMINAR ORGANIZATION OF
NETWORK INTERACTIONS

Connections such as thosc defined in (6)-(19) can
naturally be generated by a laminar organization of
model cortical columns (Rakic, 1988). As illustrated
in Figure 10, the feedforward signals from F, to F,
are registered in two distinct layers of a model col-
umn (Figure 10a). One layer contains excitatory
feedforward interneurons, the other inhibitory feed-
forward interneurons. Both sets of interneurons send
pathways to the target cells v, (Figures 10b and 10c)
which are segregated in their own layer. These in-
terneurons give rise to the terms F§;) and F§;’, re-
spectively. The target cells vg; send topographically
organized positive feedback signals to the layer of
inhibitory interneurons (Figure 10d). Thus these in-
hibitory interneurons are accessed both by feedfor-
ward and feedback pathways, as in (13). The cells
vg; also project to a layer containing a separate pop-
ulation of excitatory interneurons (Figure 10d), which
give rise to the excitatory feedback signals B§;) (Fig-
ure 10e). It is assumed that all interneurons respond
rapidly and approximately linearly to their inputs, at
least relative to the slower reaction rates and more
pronounced shunting effects that take place within
the populations vg;.

13. NETWORK RESPONSE TO
FEEDFORWARD SIGNALS:
COEXISTENCE OF MULTIPLE SCALES
AND STM NORMALIZATION

In order to understand the network feedback dy-
namics, it is instructive to first shut off the feedback
signals in (15)—that is, set B§) = B§;) = 0—and to
study the network’s responses to the feedforward
signals F§ and F§;) as the scale § and disparity D
are varied.

Figure 11 depicts the equilibrium activities

BFY) — yFY

R 20
Y9 T ¥ FO ¥ FY) @9

of F, cells in response to the feedforward input signals
from F) that are derived from the activation patterns
depicted in Figure 9. The solid curves represent the
ys, as functions of j. Each curve corresponds to a
different choice of S (across rows) and D (across
columns). The dotted curves are proportional to the
Fgf), and the dashed curves are proportional to the
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FIGURE 10. Laminar organization of level F,. (a) Input connections map topographically from F, and ramify in two laminae of
F.. (b) Cells In the Inhibitory lamina project feedforward connections to a broad range of nearby F, target cells v, forming a
broad off-surround. (c) Cells In the excitatory lamina project feedforward connections to a range of nearby F, target cells v,
forming a narrow on-center. Bandwidths of the distance-dependent connection strengths in (b) and (c) vary according to the
scale parameter S. (d) Feedback connections from F; cells project back both to the inhibitory lamina and to a separate excitatory
lamina. (e) The separate excitatory lamlna projects reciprocal connections In a topographically sharp manner back to F,. Thus,
there exist two feedback loops in the network: between F, cells and inhibitory Interneurons, and between F, cells and interneurons
in the separate excitatory lamina. The inhibitory interneurons serve both the feedforward and feedback pathways, but the
excitatory interneurons which receive input from F, are feedforward-only. Section 16 describes the results of applying the input
to a variant of this architecture, in which the feedforward and feedback excitatory laminae are merged into a single lamina

which receives both feedforward and feedback input and which projects back to F, as in (c).

F§;). Within each row, the scales of the F{" and
F{) functions were chosen to fit their graphs on the
ys; graphs. The parameters are provided in Table 1.
Three main trends are evident in Figure 11 as S is
increased in successive rows:

1. The smallest disparity D = Dj at which a graph

ys; becomes bimodal increases with S.

The graphs ys; become broader as S increases.

3. The maximal values of all graphs yg; are approx-
imately equal.

i

14. NETWORK RESPONSE TO
FEEDFORWARD AND FEEDBACK
SIGNALS: COEXISTENCE OF SIZE-
DISPARITY CORRELATION AND

MAXIMAL STM COMPRESSION

Figure 12 depicts the equilibrium activities yg; in re-
sponse to the same input patterns when the full sys-

tem (5) of feedforward and feedback signals is op-
erative. The solid curves represent the functions yy;.
The dotted curves are proportional to the functions
F{ + BS!, and the dashed curves are proportional
to the functions F§;) + B{). Three main trends are
evident in Figure 12:

1. The size-disparity correlation obtains. Note that
fusion persists in scale § = 0 (row 1) until disparity
D =1, in scale § = 1 (row 2) until disparity
D = 2,in scale § = 2 (row 3) until disparity
D = 3, and in scale S = 3 (row 4) until disparity
D = 4.

2. Although the curves yg in Figure 11 become
broader as § increases, the curves yg; in Figure 12
remain maximally compressed no matter how §
is chosen. Thus the network as a whole resolves
the design tension between increasing the spatial
width of F, — F, signals as § increases so as to
generate the basis for the size-disparity correla-
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FIGURE 11. Results of applying input patterns of Figure 9 to a purely feedforward architecture (In which the feedback pathways
of Figure 10d are eliminated). The abscissa of each graph represents spatial position across F,. Solid curves, plotted as a
function of cell position J, represent the activity levels y; of all the cells across F,. Dotted and dashed curves represent the
relative shapes of the total excitatory input and the total inhibitory input to each cell across F,, respectively. Each column of
the figure represents the response of F, to input patterns at a single disparity D € {0, 1, 2, 3, 4}, wherein each row represents
the response of the F, subnetwork at a single spatial scale S € {0, 1, 2, 3} to input patterns of the corresponding spatial scale.

tion, yet generating highly compressed STM re-
sponse patterns that subserve receptive fields that
are sharply tuned to disparity at all spatial scales.
3. The maximal values of all graphs yy; are approx-

imately equal.

Consider, in particular, the curves y,; in row 2 of
Figure 12. In the first column, the activity of only a
single population of complex cells survives the feed-
back competition. Other complex cells are either at
rest, such as those too far from the input activity to
receive any bottom-up excitation, or are hyperpo-

larized due to inhibition from the single active cell
population. Image features that are coded by an ac-
tivity pattern distributed across many cells in Fy, and
by a broadly distributed feedforward response of F,
in Figure 11, are coded in a compact, multiplexed
fashion by the activity of a single F, cell population.

In successive columns, disparity is increased by
pulling apart the left and right input patterns. These
input patterns remain coded by a single-cell peak of
activity in F, until disparity D = 3 is reached. At
disparity D = 3, the complex cells which receive the
most input are so far apart that the combination of
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TABLE 1
Parameters Used In Simulations

All the simulations are run to ¢t = 40, by which time equilibrium has been
reached. The following parameters are common to all the simulations:

a=01 Bg=1, vy = 0.1,
3 =006, v =100, p = 893
The matrix below describes the parameters that varied across simulations.
Figure ¢ ¥ £ b§! Jis
11 0 0 2!2-8 X 10—4 —_ 213—3 X 10—5
12 156 60 2'2-S x 10°* © 27%°S x 10°°
13 0 0 2" x 10°* — 22 x 10-°
14 156 60 2" x 10-* © 22 x 10
15 126 60 2'2-% x 107¢ 2%-% x 10-* 23S x 10
16 780000 300000 2'3-°5 x 10°¢ ®© 2®-S x 10°°
17¢ 156 60 23S x 10-* © 235 x 10°°
18¢ 156 60 2" x 10 o 2% x 10°°
@ Define BY; as in equations (12) and (13), but then let all Fi,) = 0.

broad lateral inhibition and narrowly focused posi-
tive feedback causes the F; activity pattern to split
into two sharp peaks, each of which rcpresents the
input pattern at a single eye. The outputs of the two
peaks can then compete subsequently within the BCS
(Figure 7b), thereby giving rise to a rivalrous percept
(Grossberg, 1987b).

Each column in Figure 12 shows the F, response
of several scales at a fixed disparity. In column 4,
for example, the smaller scales, S = O and § = 1,
show a double peak response to the image input
features, whereas the larger scales, S = 2and § =
3, respond with only a single fused peak of activity.
Such a comparison illustrates how fusion and rivalry
can coexist simultaneously at different scales within
the visual system. When the disparity between the
left and right input patterns responding to an image
feature is sufficiently small for a particular scale, a
narrow peak of fused activity can exclusively code
the image feature at that scale. But at other scales,
the same disparity may cause a double peak of ac-
tivity to emerge, whence the two peaks can then
compete rivalrously within the BCS.

These results illustrate how compressed multi-
plexed representations of abstract multiple-scale in-
formation can emerge from the nonlinear interac-
tions of a neural network. The architectural details
of these networks, being quite general, promise to
clarify how such representations arise in a variety of
neural systems. In particular, the properties of self-
similar scaling that propagates through the network’s
several levels, and of balanced excitatory and inhib-

itory signals at each level, are robust design con- .

straints for multiple-scale networks.

In the subsequent sections, we demonstrate that
the aforementioned properties are not all obtained
if any of the system’s major interactions is climi-
nated. In particular, Section 15 illustratcs a break-

down if the F; — F; interactions do not preserve the
multiscale character of the F; simple cell receptive
fields. Section 16 illustrates a breakdown if the F, —
F, excitatory feedback signals are not more narrowly
distributed than the F, — F, excitatory feedforward
signals. Section 17 notes a breakdown that occurs if
there are imbalances between the relative strengths
or distributions of the feedforward and feedback in-
puts to each cell. Section 18 illustrates a breakdown
if the F; — F, excitatory feedforward signals are not
balanced by inhibitory feedforward signals. Taken
together, these examples show that the design con-
straints embodied in system (5) all contribute to gen-
erating the size-disparity correlation within a net-
work of sharply tuned complex cells.

15. BREAKDOWN OF SIZE-DISPARITY
CORRELATION WHEN A SINGLE F, - F,
SPATIAL SCALE 1S USED

Figures 13 and 14 illustrate that the size-disparity
correlation is lost when the feedforward Gaussian
connections from level F, to level F, are chosen to
be independent of the scale S (see Table 1). Figure
13 depicts the equilibrium responses of level F, to
feedforward signals, as in (20), and Figure 14 depicts
the equilibrium responses of the full system (5).
Note that all scales S generate bimodal responses
at the same disparity D = 3 in Figure 14. Figure 13
shows that this breakdown is not due entirely to a
lack of differentiation among the scales S in the feed-
forward responses yg; in (20). In particular, the curves
yo;j and y,; in Figure 13 tend to become bimodal at
disparity D = 2, whereas the curves y,; and y;; tend
to become bimodal as disparity D = 3. The break-
down of this scale-specific tendency in Figure 14 is
due to the fact that the scale of the inhibitory feed-
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FIGURE 12. Response of the full (feedforward and feedback) network to the input patterns of Figure 9. The solid curves again
represent the activity levels y of cells across F,. Here the activation patterns exhibit much sharper peaks than those of Figure
11, due to the nonlinear feedback interactions illustrated schematically by Figure 10d and 10e. The organization of these peaks
as a function of disparity (D) and scale (S) exhibits the size-disparity correlation.

back signals B’ does not vary with S. The single
scale of the inhibitory feedback signals prevents the
feedforward activations from generating a scale-spe-
cific size-disparity correlation.

16. BREAKDOWN OF RECEPTIVE FIELDS
SHARPLY TUNED TO DISPARITY WHEN
A SINGLE SCALE OF EXCITATORY
INTERNEURONS IS USED

Figure 15 shows that the sharply tuned responses of
ys;in Figure 12 are lost when the excitatory feedback

signals are not more narrowly distributed than the
cxcitatory feedforward signals. In Figure 15, both
the excitatory feedforward signals and the excita-
tory feedback signals use the same set of excitatory
interneurons.

17. DISINHIBITORY STANDING WAVES
WHEN FEEDFORWARD AND FEEDBACK
SIGNALS ARE UNBALANCED

If the F; cells receive much more feedback input than
feedforward input, then their responses become
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FIGURE 13. Response of a feedforward network similar to that of Figure 11, except that the spatial bandwidths ot the output
projections of the Interneurons in Figure 10b and 10c Is constant across all rows, instead of varying with the scale parameter

S. Row S = 1 here Is identical to row S = 1 of Figure 11.

dominated by spurious peaks of activation and are
only marginally related to the F; input signals. This
behavior is illustrated by Figure 16, in which full
activation peaks appear far from the central region
of F, — F, excitation. The autocatalytic feedback
pathway (Figures 10d—e) magnifies small perturba-
tions in cell activity due to disinhibition or noise and
overwhelms the signals elicited by visual inputs.
Pathology can also occur if the inhibitory feedback
coefficients are not broadly enough distributed across
the network relative to the feedforward excitatory
coefficients. Then the equilibrium STM pattern can

display a standing wave of multiple excitatory peaks
due to propagation of disinhibition by the excitatory
feedback signals. This anomaly is prevented by the
constraint that the inhibitory feedback signals use
the same interneurons as the inhibitory feedforward
signals, as in (13), just so long as the inhibitory coef-
ficients are sufficiently large relative to the excitatory
coefficients. The same problem can occur by choos-
ing the size of the inhibitory feedback signals too
weak relative to the size of the excitatory feedback
signals, even if the inhibitory feedforward and feed-
back signals have the same spatial distribution.
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FIGURE 14. Response of network when single-scale feedback interactions are added to the single-scale feedforward interactions

of Figure 13.

18. BREAKDOWN OF SIZE-DISPARITY
CORRELATION WHEN F, - F,
EXCITATORY FEEDFORWARD SIGNALS
ARE NOT BALANCED BY INHIBITORY
FEEDFORWARD SIGNALS

Figure 17 shows that removal of the inhibitory feed-
forward signal F{;’ that balances the excitatory feed-
forward signal Fé,—*) in (5) can destroy the network’s
self-normalization property, and thereby undermine
the size-disparity correlation. In Figure 18, F(s,_) is
again equal to zero and, in addition, only a single
scale is used. A more serious breakdown into an
array of disinhibitory peaks is caused.

19. COMPARISON WITH THE CEPSTRUM
MODEL OF DISPARITY DETECTION

Yeshurun and Schwartz (1987) have employed the
cepstrum operator (Bogert, Healy, & Tukey, 1963)
in an ingenious fashion to generate a neurally based
model of binocular disparity detection. As in Figure
2, the inputs to their model are activation patterns
distributed across the spatial map of ocular domi-
nance columns, which parse left eye.(L) and right
eye (R) input patterns into thin contiguous strips.
The cepstrum operator is the power spectrum of the
logarithm of the power spectrum. In their applica-
tion, the operator is applied to an image registered
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FIGURE 15. Response of network when both excitatory sublaminae are collapsed into a single excitatory lamina. See text and
Figure 10 caption for more details. Even though excitatory feedback interactions are present, the degree of sharpness of the
ys output curves (solid curves) is limited by the fan-out of the output projections of the excitatory interneurons (Figure 10c).

by both eyes that is distributed across an (L, R) pair
of ocular dominance columns. Yeshurun and Schwartz
(1987) demonstrated that the power spectrum of the
operator is then sharply concentrated at a spatial
location in (L, R) coordinates. This location changes
as the disparity between the left eye and right eye
images is varied.

The present model shares some common features
with the Yeshurun and Schwartz (1987) model. Its
computations are also based upon the ocular domi-
nance column map as a data structure, and its F
outputs code disparity in terms of the changing lo-

cations of a maximally activated cell population. Thus
the present model provides a real-time neural net-
work realization of the type of encoding that the
cepstrum operator generates through formal alge-
braic operations.

20. THE MULTIPLEXED FACADE
REPRESENTATION

The present model also enjoys conceptual advan-
tages over the cepstrum model. For one, the re-
sponses at the level F; do not represent only binocular
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FIGURE 16. Breakdown of network response when feedback signals are too strong relative to feedforward signals. The teedback
overwhelms the response of celis across F; near the periphery of the F, input, leading to the formation of additional activity

peaks at increasingly distal positions.

positional disparity. The cell responses also multiplex
such properties as retinal position and spatial fre-
quency, and may readily be generalized (as indicated
in Figures 2, 4, 5, 7, and 8) to encode such additional
properties as orientation, orientational disparity, and
insensitivity to direction-of-contrast. In addition, the
cells in level F, are part of a larger neural network
model, called the Boundary Contour System (Gross-
berg, 1987a, 1987b; Grossberg & Mingolla, 1985a,
1985b). The properties of the BCS have been used
to expain how level F, responses are used to generate
multiple-scale 3-D boundary segmentations capable
of simultaneous binocular fusion and rivalry at a sin-

gle position of perceptual space (Grossberg, 1987b).
Such BCS representations, in turn, interact with a
Feature Contour System (FCS) wherein they organ-
ize a multiplexed representation of surface form and
color in a manner that compensates for variable il-
lumination conditions (Grossberg, 1987b, 1988d;
Grossberg & Todorovié, 1988).

Thus the present results gain additional signifi-
cance by forming part of a larger neural network
whose BCS-FCS interactions suggest how monocular
and binocular images may be transformed into a mul-
tiplexed representation of Form-And-Color-And-
DEpth. Such a multiplexed FACADE representa-
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FIGURE 17. Feedforward pathway from F, to inhibitory interneurons (Figure 10a) Is eliminated. Despite the absence of feed-
forward inhibition, a diagonal trend of the disparity D = Ds at which the curves y5; become bimodal is present, but the size-
disparity correlation Is Imperfect. In this case D,, D,, D,, D, are equal to 2, 2, 3, 5, respectively. The imperfect diagonal trend
indicates that the response of the network is partlally sensitive to both disparity and spatial scale.
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FIGURE 18. As in Figure 17, feedforward inhibition Is eliminated. In addition, only the single scale S = 1 Is used throughout.
All other parameters are unchanged. A serles of spurious disinhibitory peaks is caused by the resultant imbalances between
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tion may prove to be equally useful for the analysis
of biological vision and the design of a general-pur-
pose preattentive vision machine for technological
applications.
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