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Abstract-Previous Inodels £if stereopsis have concentrated on the task of binocularly matching left and right eye
primith'es uniquely. A disparity smoothness constraint is often invoked to limit the number of possible matches. These
approaches neglect the fact that surface discontinuities are both abundant in natural eve!)'day scenes, and provide a
useful cue for scene segmentation. da Vinci stereopsis refers to the more general problern of dealing Ivith surface
discontinuities and their associated unmatched monocular regions }vithin binocular scenes. This study develops a
mathematical realization of a neural netlvork theory of biological vision, called FACADE theo!)', that sholvs holY
early cortical stereopsis processes are related to later cortical processes of three-dimensional surface representation.
The mathematical model demonstrates through computer simulation holY the visual cortex Inay generate three-
dilnensional boundary segmentations and use them to control filling-in of three-dimensional surface properties in
response to visual scenes. Model mechanisms correctly match disparate binocular regions while filling-in monocular
regions Ivith the correct depth within a binocularly viewed scene. This achievelnent required the introduction of a new
multiscale binocular filter for ;\'tereo matching }vhich clarifies holv cortical complex cells match image contours of like
contrast polarity, while pooling signals from opposite contrast polarities. The filter also suggests how false binocular
matches and unmatched monocular cues are automatically handled across multiple spatial scales. Pooling of signals
froln even- and odd-S)'lnmetric simple cells at complex cells helps to eliminate spurious activity peaks in matchable
signals. Later stages of cortical processing by the blob and interblob streams, including refined models of cooperative
boundary grouping and reciprocal stream interactions betlveen boundary and surface representations, are modeled to
provide a complete silnulation of the da Vinci stereopsis percept. @ 1997 Elsevier Science Ltd. All rights reserved.

Keywords-Binocular vision, Boundary contour system, da Vinci stereopsis, Depth perception, FACADE theory,
Feature contour system, Neur21l network, Stereopsis, Visual cortex.

(Brewster, 1856). Until recently, most computational
models of this binocular combination process have con-
centrated on solving the correspondence problem (Marr,
1980). This is the problem of binocularly matching iden-
tical regions from each eye's view into a single cyclo-
pean percept. Typical approaches employ a variety of
constraints to simplify this problem even further, one
example being the uniqueness principle of Marr (1980).
However, because the eyes are horizontally displaced
within the head and therefore receive different two-
dimensional images of the world, each eye typically
sees regions that are not registered by the other eye. In
pursuing the correspondence problem, many researchers
have neglected the fact that these unmatched monocular
regions are common. For example, when we view a par-
tially occluded surface, one eye typically registers more
of the farther surface than the other does. Our percept of
the farther surface is derived from an integration of the

1. INTRODUCTION

Scientists since the time of Euclid (1557) have noted that
"the pictures of bodies seen by both eyes are formed by
the union of two dissimilar pictures formed by each"
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binocularly viewed region with the monocular represen-
tation seen by one of the eyes. These "half-occluded"
(Belhumeur & Mumford, 1992; Anderson & Nakayama,
1994) regions are perceived at the correct depth and form
an integrated part of the three-dimensional percept.

Nakayama and Shimojo (1990) coined the term
da Vinci stereopsis to desclribe this phenomenon,
although da Vinci was certainly not the first to describe
it (Brewster, 1856). Galen unamlbiguously described this
phenomenon over 1500 years ago when he suggested
"Standing near a column, and !ihutting each of the eyes
in succession-when the right eye is shut, some of those
parts of the column which werc~ previously seen by the
right eye on the right side of the column, will not now be
seen by the left eye; and when the left eye is shut, some of
those parts which were formerly seen on the left side of
the column, will not now be seen by the right eye. But
when we, at the same time, open both eyes, both these
will be seen, for a greater part is concealed when we look
with either of the two eyes, than when we look with both
at the saine time" (Galen...1550/1968).

A more recent example of one such stimulus is pre-
sented in Figure I. Observers see the right eye view of
surface BD in depth although the region BC that lies
between the vertical lines Band C is registered mono-
cularly by only the right eye. This apparently innocuous
stimulus presents a serious challenge to models of three-
dimensional surface perception to explain how the mono-
cularly viewed region BC becomes attributed to the
correct depth.

da Vinci stereopsis is closl~ly related to the equi-
distance tendency, which has Ibeen studied extensively
by Gogel (1956, 1965, 1970). Gogel noted that a mono-
cularly viewed object in a binoc:ular scene seems to lie at
the same depth as the retinally most contiguous binocu-
larly viewed object. Gogel used a complex mirror
arrangement to ensure that one object in his visual
scene was presented monocularly while all others were
presented binocularly. Emmert (1881) had also reported
a comparable percept. He discovered that a monocular
afterimage appears to be locatl~d at whatever depth the
subject binocularly fixates.

A BC D A B ,C D

Left Eye View Right Eye View

FIGURE 1. An example da Vinci stereogram derived from viewing
a three-dimensional scene of a room. Regions AB and CD are

presented with positive (crclssed) ,disparity. Region BC is seen
monocularly (in the right eY4~ view only). This stereogram repre-
sents the retinal images impinging on an observer near an occlu-
sion in depth caused by a nlearer object (surface AB).

A second often overlooked aspect of the binocular
combination process is allelotropia. Allelotropia is the
phenomenon whereby a binocularly fused edge is formed
by deforming two disparate monocular images into a
single binocular one (Porta, 1593; Werner, 1937; von

Tschermak-Seysenegg, 1952; Kaufman, 1974). It is
more commonly referred to as displacement. A classical
example of this phenomenon occurs when the pattern
EF G is viewed through one eye and the pattern E FG
is viewed through the other eye. The letter F is seen
floating in depth at a location halfway between E and
G. Neither the left nor the right image of F occupied
this location. Thus the process of binoc1,ilar fusion
deforms the monocular representations of F into a
single binocular percept of F whose spatial location
differs from either of its monocular representations.

In a three-dimensional scene, objects at different
depths, and hence different retinal disparities, require
different amounts of displacement. Objects close to the
fixation plane (zero disparity) require very little deforma-
tion while nonfoveated objects closer to the observer
require much larger degrees of allelotropia. Hence dif-
ferent parts of the left and right eye views are deformed
by different amounts to form a single binocular percept
of the scene. In the da Vinci stereogram example
(Figure 1), the vertical boundaries of the nearer wall
(AB) are deformed to a larger degree than those of the
back wall (CD). With all these deformations going on,
one needs to explain how three-dimensional surface
representations form in a perceptually seamless fashion.

da Vinci stereopsis percepts also raise issues concern-
ing the role of occluding surfaces and eye-of-origin
information in depth perception. Nakayama and Shimojo
(1990) have developed da Vinci stereograms which show
that both sorts of information are used to form the final
percept. In particular, they described a stereogram in
which unpaired monocular dots, without any binocular
disparity, can generate a percept of a depthful occluding
surface. The present model incorporates both monocular
cells (and thus eye-of-origin information) and binocular
cells in its stereo matching circuit. It also includes mechan-
isms of figure-ground separation that govern the formation
of occluding surfaces in response to both three-
dimensional scenes, which do include disparity informa-
tion, and two-dimensional pictures, which do not.

More generally, the model describes how the earlier
processes of stereopsis work and interact with later pro-
cesses of three-dimensional boundary and surface per-
ception. It presents an account of these interactions that
includes a new multiscale binocular filter for stereo
matching of both unmatched monocular and matched
binocular stimuli. It shows how to design such a filter
so that its inputs to the boundary system are appropriately
designed to lead to effective three-dimensional boundary
and surface percepts.

In particular, this filter clarifies why the brain prefers
to binocularly match image contours with the same
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stereopsis, we needed to further develop the theory's
multiple-scale binocular filter to deal with the problems
of false matches and unmatched boundaries (Marr &

Poggio, 1976, 1979; Marc, 1980; Frisby & Pollard,
1991). This binocular filter then turned out to also be
competent to simulate recent results concerning the
uniqueness principle of classical stereopsis (McKee et
al., 1994), stereo suppression of monocular cues (McKee
et al., 1990; McKee & Harrad, 1993), and the contrast-
sensitive properties of dichoptic masking (McKee, 1993;
McKee et al., 1994). Anderson and Nakayama (1994)
have described related examples of contrast-sensitive
binocular matching. These data, which have not yet
been accounted for by other theories of stereopsis, are
simulated in McLoughlin and Grossberg (1997). The
present work hereby develops a previously unsuspected
link between da Vinci stereopsis and data concerning the
spatial range and contrast sensitivity of binocular match-
ing. It also develops a framework for analyzing the data
of Nakayama and Shimojo (1990) on da Vinci stereopsis,
who noted the importance of eye-of-origin information in
binocular vision. The monocular cells that are introduced
herein carry this type of information.

In a similar vein, Harris and Parker (1995) suggested
that bright and dark information were processed by inde-
pendent neural mechanisms. They measured the statistical
efficiency of stereo depth detection for subjects viewing
binocular random dot stimuli composed of dots of either
one or two polarities (half brighter and half darker than the
background). Subjects were approximately twice as good
at detecting stereo depth if both polarities were present.
They went on to show that it was contrast polarity that
was important by testing subjects with stimuli composed
of two sets of dots of the same polarity but different con-
trasts. Efficiency fell back to the same level as when one
set of dots was present. The binocular matching scheme
employed herein can account for these results, since
binocular matching as defined below is sensitive to direc-
tion-of-contrast. Like contrast dots match while opposite
contrast dots do not. By changing the polarity of half the
dots in the stimulus, less false matches are generated as
opposite polarity dots are not matched. On the other
hand, the cortical complex cells at which binocular
matching occurs summate matches of either polarity.
This also occurs in the model. Harris and Parker also
comment upon such a possibility when they state that
"although contrast polarity may be used to assist bino-
cular matching in a population of disparity-selective neu-
rons, the signal delivered by the output of such neurons
may reflect only the disparity values and may fail to
indicate which feature generated any particular disparity
value" (Harris & Parker, 1995, p. 810).

contrast polarity (Anderson & Nakayama, 1994; von
Helmholtz, 1910/1925), yet the complex cells at which
they are matched pool signals from opposite contrast
polarities (Hubel & Wiesel, 1965; Pollen et al., 1989).
Pooling signals from opposite contrast polarities enables
the brain to form object bolmdaries around objects whose
relative contrasts with their backgrounds reverse along
their perimeter (Grossberg, 1987a; Grossberg and
Mingolla, 1985b). Thus the new multiscale binocular
filter clarifies how the brain begins to reconcile con-
straints on binocular matching with constraints on the
formation of depthful object boundaries. After these
early monocular or binocular matches are made, compe-
titive and cooperative interactions within the boundary
system work to ensure that only the correct subset of
matches survive to form the three-dimensional boundary
and surface representations that are perceived. Recipro-
cal and hierarchical interactions between the boundary
and surface processing streams further ensure that their
final representations are mutually consistent, even
though the operations tha! lead to these representations
are computationally complementary. Along the way,
these processes compensate for allelotropia.

The present article develops these themes by providing
the first mathematically rigorous implementation of a
neural network theory of three-dimensional biological
vision and figure-ground separation, called FACADE
theory, that was introduced in Grossberg (1993, 1994,
1997) and used there to qualitatively explain a large
number of three-dimensional percepts, including
da Vinci stereopsis. The results of our implementation
were first reported in McLoughlin and Grossberg (1994).
FACADE theory acquires its name from the multiplexed
representations of Form-And-Color-And-DEpth that it
produces in response to both monocular and binocular
images. These FACADE representations, which are pro-
posed to occur in prestriate cortical area V 4, model how
the visual cortex generates boundary and surface repre-
sentations in response to visual scenes. A boundary
contour system (BCS) generates boundary segmentations
in response to visual cues from edges, textures, shading,
and stereo information. A feature contour system (FCS)
compensates for variable illumination conditions and
fills-in surface representations that combine properties
of brightness, color, depth and form. FACADE theory
models how the BCS and FCS are organized and interact
hierarchically and in parallel to generate three-
dimensional percepts of the world.

A detailed introduction to the theory and its explana-
tory scope is given in Grossberg (1994). Here it is reviewed
only enough to frame the new results. Although the math-
ematical realization described herein is potentially cap-
able of simulating all the results outlined in Grossberg
(1994, 1997), the percept of da Vinci stereopsis was
selected as an explanatory target because it presents a
formidable challenge to all theories of three-dimensional
vision. To provide a complete simulation of da Vinci

2. FACADE THEORY MACROCIRCUIT

The processing stages of FACADE theory are summar-
ized in Figure 2. Their functional role is briefly outlined
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below. BCS processing stages are displayed as boxes
with vertical lines that designate oriented responses.
FCS stages are shown as boxes with three pairs of circles
that denote opponent colors.

Monocular preprocessing of left eye (MPJ and right
eye (MPR) inputs by retina and lateral geniculate nucleus
(LGN) discounts the illuminant and generates parallel
signals to BCS and FCS via patl:lways I and 2, respec-
tively. Pathways I model monocular inputs to the inter-
blobs in striate area VI. They activate model simple cells
with oriented receptive fields that come in multiple sizes.
Pathways 2 model monocular inputs to the blobs in
striate area VI. They activate model blob cells that are
tuned to opponent colors.

Pathways 3 support binocular combination of simple
cell outputs at complex and complex end-stopped (or
hypercomplex) cells. These interactions generate popu-
lations of disparity-sensitive ceills that realize a size-
disparity correlation. In particular, complex cells with
larger receptive fields can binocularly fuse a broader
range of disparities than can celli; with smaller receptive
fields. Competition across disparity at each position and
among cells of a given size scale: sharpens complex cell
disparity tuning. Spatial competition (endstopping) and
orientational competition convert complex cell responses
into spatially and orientationally sharper responses at
hypercomplex cells.

Pathways 4 initiate long-ranJ~e horizontal grouping
and boundary completion of the hypercomplex cell out-
puts by bipole cells. This grouping process collects
together the outputs from all hypercomplex cells that
are sensitive to a given depth range and inputs them to

a shared set of bipole cells. The bipole cells, in turn, send
cooperative feedback signals back to these hyper-
complex cells. This feedback process binds together
cells of multiple sizes into a BCS copy that is sensitive
to a prescribed range of depths. In this way, each BCS

copy completes boundaries within a given depth range.
Multiple BCS copies are formed, each corresponding to
different (but possibly overlapping) depth ranges.

These multiple depth-selective BCS copies are used to
capture brightness and color signals within depth-
selective FCS surface representations. These surface repre-
sentations occur within monocular filling-in domains, or
ADOs, so called because they receive their brightness
and color signals from a single eye, and support depth-
selective filling-in of surface quality. A different mono-
cular FIDO corresponds to each binocular BCS copy,
although BCS copies that represent nearby depth ranges
may send convergent signals, albeit with possibly differ-
ent weights, to a single monocular ADO.

Surface capture is achieved by a suitably defined inter-
action of BCS signals and illuminant-discounted FCS
signals at the monocular FIDOs. The FCS signals reach
the monocular FIDOs via pathways 5. These pathways
carry out a one-to-many topographic registration of the
monocular FCS signals at all the monocular FIDOs.
Pathways 6 carry topographic BCS boundary signals
from each BCS copy to its FIDO. These boundary signals
selectively capture those FCS inputs from pathway 5 that
are spatially coincident and orientationally aligned with
the BCS boundaries. Other FCS inputs are suppressed by
the BCS-FCS interaction.

The captured FCS inputs, and only these, can trigger
diffusive filling-in of a surface representation on the
corresponding FIDOs. Because this filled-in surface is
activated by depth-selective BCS boundaries, it inherits
the same depth as these boundaries. Not every triggered
filling-in event can generate a surface representation.
Because activity spreads until it hits a boundary, only
surface regions that are surrounded by a connected
BCS boundary, or fine web of such boundaries, are effec-
tively filled-in. The diffusion of activity dissipates across
the FIDO otherwise.

These BCS boundaries and FCS surfaces are formed
by different, indeed complementary, processes. An
analysis shows that too many boundary and surface frag-
ments are formed as a result of the size-disparity correla-
tion and of the way in which monocular and zero-
disparity boundaries combine with nonzero disparity
boundaries. Somehow these extra boundaries and sur-
faces need to be pruned. Pruning is realized by the pro-
cess whereby the complementary boundary and surface
properties interact to achieve boundary-surface consis-
tency. Remarkably, many data about the perception of
occluding and occluded objects may be explained as con-
sequences of this pruning operation.

Boundary-surface consistency is achieved via path-
ways 7. Pathways 7 are activated by a contrast-sensitive
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of such boundaries. Pathways 10 also realize the asym-
metry between near and far through an operation that is
called boundary enrichment. It adds the boundaries of
near depths at the binocular FIDOs that represent larger
depths. These additional boundaries prevent occluding
objects from looking transparent by blocking filling-in
of their occluded objects behind them. It can now be
better seen how surface pruning and boundary enrich-
ment work together: if boundary enrichment occurred
without surface pruning, then the surfaces of occluding
objects would be represented at all depths. If surface
pruning occurred without boundary enrichment, then
occluded objects could fill-in behind their occluders.

The total filled-in surface representation across all
binocular FIDOs represents the visible percept. It is
called a FACADE representation because it combines
together, or multiplexes, properties of Form-And-

Color-And-DEpth.
The model processing stages are neurophysiologically

interpreted as follows (cf., de Yoe and van Essen, 1988).
Monocular MPL and MPR preprocessing models those
properties of retina and LGN that are required for present
purposes. The BCS models the interblob cortical stream
between cortical area VI and V4, while the FCS models
the blob stream. BCS simple, complex, hypercomplex
and bipole processing is proposed to occur in the inter-
blobs of VI and the interstripes of V2. The monocular
ADOs are proposed to occur in V2 thin stripes, or pos-
sibly VI blobs. The binocular FIDOs are proposed to
occur in area V 4. Bearing in mind that the BCS models
the interblob cortical stream and the FCS the blob stream,
the feedback signals between them clarify why the cells
of these parallel cortical streams can be sensitive to
shared combinations of features, despite their comple-
mentary functional roles.

3. MA THEM A TICAL DESCRIPTION OF
FACADE THEORY

The FACADE theory equations were simulated on a
SUN Sparc workstation and presented with a binocular
scene based on the da Vinci stereogram displayed in
Figure I. The processing stages are mathematically
described in a step by step manner and their responses
to the da Vinci stereopsis display are shown. These equa-
tions further develop the Boundary Contour System and
Feature Contour System equations introduced in
Grossberg and Mingolla (1985a, 1985b), Grossberg and
Todorovic (1988), Gove et al. (1995) and Grossberg et ai,
(1995), As noted below, the simulated properties are
robust, as many parameter choices yield similar results.

process that detects the contours of successfully filled-in
surface regions at the monocular FIDOs. These FCS-to-
BCS feedback signals excite the BCS boundaries
corresponding to their own positions and depths. The
boundaries that activated the successfully filled-in sur-
faces are hereby strengthened. The feedback signals also
inhibit redundant boundaries at their own positions and
larger depths. This inhibition from near-to-far is the first
example within the theory of ,; 'the asymmetry between

near and far". It is called boundary pruning. Boundary
pruning spares the closest surface representation that
successfully fills-in at a given set of positions.

Boundary pruning also removes redundant copies of
the boundaries of occluding objects. When the competi-
tion from these redundant occluding boundaries is
removed, the boundaries of partially occluded objects
can be amodally completed behind them on BCS copies
that represent larger depths. Moreover, when the redun-
dant occluding boundaries collapse, the redundant
surfaces that they momentarily supported at the mono-
cular FIDOs collapse. Occluding surfaces are hereby
seen to lie in front of occl-uded surfaces.

The surface representations that are generated at the
monocular FIDOs are depth-selective, but they do not
combine brightness and color signals from both eyes.
Binocular combination of brightness and color signals
takes place at the binocular FIDOs. Pathways 8 control
the one-to-many topographic registration of the mono-
cular FCS signals at all the binocular FIDOs, much as
pathways 5 did for the monocular FIDOs. These FCS
signals are binocularly matched at the binocular
FIDOs. Only the surviving matched signals can be used
for filling-in. These surviving matched signals are pruned
by inhibitory signals from pathways 9. These inhibitory
signals eliminate redundant FCS signals using the
contrast-sensitive signals from the monocular FIDO sur-
faces that survive the boundary-surface consistency
interactions of pathways 6 and 7. In particular, pathways
9 inhibit the FCS signals at their own positions and larger
depths. As a result, occluding objects cannot redundantly
fill-in surface representations at multiple depths. This is
the second instance in the theory of the asymmetry
between near and far. It is called surface pruning.

As in the case of the monocular FIDOs, the FCS
signals to the binocular FIDOs can initiate filling-in
only where they are spatially coincident and orientation-
ally aligned with BCS boundaries. These boundaries are
carried by pathways 10. These BCS-to-FCS pathways
carry out depth-selective surface capture of the binocu-
larly matched FCS signals from pathways 8 after they are
pruned by inhibition from pathways 9.

The boundary signals along pathways 10 selectively
capture those FCS signals that: (a) survive within-depth
binocular FCS matching (pathw;lYS 8) and across-depth
FCS inhibition (pathways 9); (b) are spatially coincident
and orientationally aligned with the BCS boundaries; and
(c) are surrounded by a connected boundary or fine web

3.1. Input to the System

Input to the model consists of two views of the environ-
ment corresponding to the left and right eye inputs. These
images for the da Vinci stereogram are displayed side by



1588 S. Grossberg and N. P. McLoughlin

, nonpositive. Then eqn (1) can be rewritten in the Conn

d
diV = -aV + (U -V)gEXCIT -(V + L)gINHIB (2)

where a = glNHIB is a constant decay rate, U = EEXCIT and
L = IE1NHIBI.

Left eye view

(0)

Right eye view

(b)

(c)

FIGURE 3. (a) Left and (b) right t~ye views of the da Vinci stereo-
gram presented to the system. Note the monocularly viewed
region containing the left-hand edge of the window and part of

the far wall in the right eye vie'N. (c) j~ schematic of the three-
dimensional percept produced by fu~;ing the da Vinci stereo-
gram, as modeled in the text. Note that the side walls (dotted
lines) are not perceived and are adde'~ only for clarification of
the relative depths. The picture frarne defines the plane of

fixation (zero disparity).

4.1. LGN ON and OFF Channels

The first processing level consists of a center-surround
interaction corresponding to the ON and OFF channels of
the retina and lateral geniculate body (Schiller, 1992).
Within this implementation, the on-center off-surround
(ON) cells, and the off-center on-surround (Off) cells
discount the illuminant and are sensitive to the ratio con-
trast of the local image region spanned by each cell's
receptive field. The responses of the ON and OFF
channels to the left and right da Vinci image views are
half-wave rectified to generate outputs to both the BCS
and the FCS.

Speaking mathematically, inputs I ij are first processed
by both ON cell activities X;J and OFF cell activities Xi}
of cells centered on position ij. Each cell receives a
Gaussian weighted sum of inputs (C) from a central
region and an opponent Gaussian weighted sum of
inputs (S) from the surround:

¥= -(X)Xi) +(U) -X;J)C) -(Xi) +L)S) (3)side in Figure 3(a) and (b). The right eye view contains
a region that is occluded in the left eye view. To be
ecologically plausible, the occluded region must be
relatively thin. The full three-dimensional layout is pre-
sented schematically in Figure 3(c). In the left eye's
view, the near wall occludes part of the far wall. The
model fixates the background which is therefore

displayed.

such that

(6)

and

4. CELL MEMBRANE EQUATIONS

Each model neuron was typically modeled as a single
voltage compartment in which the membrane potential,
V(t), was given by

dV(t)C. -= -(V(t) -ELEAK)gLEAKm dt

-(V(t) -EEXCrr )gEXCrr(t)

-(V(t) -E1NHIB)gINHIB(t) (1)

where the parameters E represent reversal potentials,
gLEAK is a constant leakage conductance, and the time-
varying conductances gEXCIT(t} and gINHIB(t) represent the
total inputs to the cell (Hodgkin, 1'~64; Grossberg, 1973).
Transient afterhyperpolarization terms (AHP) were not
incorporated since all groupings were allowed to reach
steady state. The capacitance tenn, Cm was set equal to 1
by rescaling time t. The leakage reversal potential ELEAK
was set equal to 0 by shifting the definition of V(t). With
this convention, the inhibitory reversal potential E1NHIB is

In eqns (3) and (4), the center and surround are defined
by Gaussian kernels:

C. = ~ Cpqli+p,i+q and 5] = ~ 5pqI;+PJ+q (5)
(p,q) (p,q)

where -P < p,q < P. In addition, CX I is a decay para-
meter (10); U I bounds the upper limit of cell activity (1); LI
bounds the lower limit of cell activity (I); I ij is the input at
location ij;A1 andA2 are scale constants for the center and
surround kernels (1,1.03361); (Ic and (Is are the standard
deviations of the center and surround Gaussians (0.5,
1.5); and P defines the size of the center and surround (4).

At equilibrium, the ON and OFF activities converge to
the self-nonnalizing equilibrium activities:

L UICpqli+p,j+q -LISpqli+p,j+q
xij = (P.q) (8)

al + L (Cpq+Spq)Ii+p,j+q
(P.q)
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and
Dipole Cells C=====:X==~=:> I./ 

\--
2 U,Spqli+p.j+q -L,Cpqli+p.j+q

--(P.q) (9)x.. -IJ ,
<XI + L. (Cpq + Spq)/i+p.j+q

(P.q)

The difference of these ON and OFF activities is com-
puted to generate the LGN output signals (Grossberg,
1987b, 1994; Grossberg et al., 1995; Pessoa et al., 1995):

Higher-or(
I~ ~~~~":;~:~:. Cells -

I O,ienlalional competition

Higher-Order
~ HypercompJex Cells

Orienlational competilion

X.T = [ X.T -X.-:- ] +

IJ IJ IJ Hypercomple. Cells

S{)atial competition

::::=:>

jc::> Complex Cells I
(10)

I~and Simple Cell,

X - [ -+ ]+ ..-x.. -x..
I} -!/ !/

FIGURE 4. Schematic of a single-scale BCS model, adapted from

Grossberg et al. (1995). The simple, complex cell. and hyper-
complex stages are often referred to as the Static Oriented Con-
trast filter (SOC filter), while the subsequent levels, including
their feedback pathways, are commonly referred to as the
Static Oriented Competitive Cooperative loop (SOCC loop).

(11)=

These signals depend on the Difference-of-Oaussians
C -S, but are also sensitive to the net contrast (C -S)
(C + S)-I of the local image region spanned by the
kernels. This operation may be interpreted as occurring
in either LON or in VI.

4.2. Oriented Simple Cells

The first stage of the BCS (Figure 4) is composed of
elongated contrast detectors that model simple cells in
cortical area VI (Hubel & Wiesel, 1965). Simple cells
come in a variety of sizes, or spa.tial scales. In the current
implementation, two spatial scales were implemented for
each orientation. To reduce the complexity of this simu-
lation, cells sensitive to either of two orientations were
investigated: horizontal and vertical. Both the ON and
the OFF channel information from LON was processed
by these simple cells.

Corresponding to each orientation and spatial scale are
pairs of simple cells sensitive to two opposite contrast
polarities: one for light/dark contrasts (SiA) and one for
dark/light contrasts (S~) Pooling of both contrast
polarities occurs at the next level of BCS processing,
the complex cells, by summing the half-wave rectified
responses of both polarities for each orientation and
location.

Simple cells come with even-symmetric and odd-
symmetric receptive fields. A new functional role for
even-symmetric and odd-symmetric simple cells was
identified through the analysis of a problem with edge
localization that results from convolving ON and OFF

LGN output signals with simple cell receptive fields. For
example, at a dark/light vertical edge, dark/light verti-
cally oriented simple cells have their peak in the center of
the edge. However, light/dark vertical oriented cells
respond to this input pattern with two smaller peaks,
one on either side of the luminance border. An example
of this phenomenon is shown in Figure 5, along with the
input pattern, the LGN ON and OFF responses, and the
simple oriented detectors responses. This input pattern
represents a one-dimensional horizontal slice through the
right eye view presented in Figure 3. The final frame of
Figure 5 displays the results of summing the half-wave
rectified outputs of oppositely polarized simple cells.
Three peaks are registered at each edge. Without further
processing, these extra peaks could cause problems in the
binocular disparity-matching process.

This problem is solved by pooling responses from odd-
symmetric and even-symmetric simple cells at the com-
plex cell level. As illustrated in Figure 6, pooling
responses of both odd and even symmetric simple cells
of both contrast polarities solves the triple peak problem
for both light/dark and dark/light boundaries, thereby
achieving good boundary localization while removing
spurious peaks in the disparity-matching process. Pollen
and his colleagues have previously reported on the
coexistence of cells with even and odd symmetric recep-
tive fields in the cat visual cortex (Pollen et al., 1985;
Pollen & Ronner, 1981, 1982). The present analysis sug-
gests a new functional reason for the coexistence of even-
symmetric and odd-symmetric simple cells.

Even and odd symmetric simple cell receptive fields
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In eqns (12) and (13), S lj1d + is the positive-polarity

odd-symmetric simple cell response at location ij and
orientation k; S ijken+ is the positive-polarity even-sym-.. I II d S odd - d S even- metnc simp e ce response; an ijk an ijk
define the negative-polarity simple cell responses. In
eqns (14) and (15), A is a scale constant (I); T determines
the periodicity of the simple cell (scale I: even = 11", odd
= 211"; scale 2: even = 11", odd = 311"); S 1 and S2 define the
size of the simple cell input field (4, 6); Upk and Uqk define
the standard deviations of the x and y dimensions of
simple cell input field for orientation k [scale I: vertical
(up = 2, Uq = 1.5); horizontal (up = 1.5, Uq = 2); scale 2:
vertical (up = 2.5, Uq = 2); horizontal (up = 2, Uq = 2.5)].

0.0)

O.O.S
0.02

O.OlS
0.01

O.OOS

0.03

0.025

0.02

0.015:
0.01'

-0.005
-c ..p",
100 ,_v 200 50 100

(e) (f)

FIGURE 5. One-dimensional slices through the activity caused
by the right eye view of the da Vinci stelreogram for: (a) the input;
(b) the ON channel; (c) the OFF chann,el; (d) the odd symmetric

light/dark oriented simple cells of size 1; (e) the odd symmetric
dark/light oriented simple cells of sizE~ 1; (f) the result of sum-
ming the dark/light and light/dark simple cell responses. Note the

triple peaks evident in (f). (Within each plot the horizontal axis
represents space while the lIer1ical axis measures activity

strength).

l~~ 200

centered at location ij of orientation k were defined using
the even and odd Gabor kernels:

[ ] + d+/- odd +/- odd -/+
.sij'f = L SpqkXi-p,j-q -L SpqkXi+p,j+q

Cp,q) Cp,q)

(12)
and

..even +/-
':>ijk

[ , evenx +l-= L Spqk i-p,j-q

(p,q)

4.3. Complex Cells

The complex cell level contains the first binocularly acti-
vated cells of the model. For definiteness, we assume that
the da Vinci display is viewed in such a way that only
crossed, zero disparity, and monocular cell pools are
activated. To understand how binocular matching occurs
in the presence of half-occluded regions, it was noted by
Grossberg (1994) that the binocular filter needs to realize
a type of size-disparity correlation (Richards & Kaye,

1974; Tyler, 1975, 1983; Kulikowski, 1978; Schor &
Tyler, 1981; Schor & Wood. 1983; Schor et al., 1984)
whereby cells with larger receptive field sizes, or spatial
scales, can binocularly fuse a larger range of binocular
disparities than can cells with smaller receptive field
sizes. Hence, larger cells can fuse a range of both small
and large disparities. This hypothesis is in contrast to
alternative approaches (e.g., Marr & Poggio, 1979)
wherein large spatial scale cells code only large
disparities and each spatial scale can fuse only a limited
range of disparities. Julesz and Schumer (1978) reviewed
psychophysical data that are inconsistent with the Marr-
Poggio model, but which support the FACADE theory
conception. This scheme can explain how binocular
percepts are binocularly fused at a larger spatial scale,
but rivalrous at a smaller spatial scale (Julesz & Miller,

1975; Kulikowski, 1978) since the large spatial scale can
fuse a larger disparity range than the smaller spatial
scale.

The binocular filter contains a number of new compu-
tational features. Each spatial scale is composed of dis-
tinct cell pools, with each pool coding a different
disparity, or connected range of disparities. Although
each simple cell is sensitive to just one contrast polarity,
complex cells typically pool signals from opposite con-
trast polarities. Sandwiched between these properties, the
binocular matching process that occurs within the sim-
ple-to-complex cell filter facilitates binocular matching
of contours with the same contrast polarity. These prbp-
erties are achieved using the filter described in Figure 7.
Here, outputs from like-polarity simple cells first
undergo excitatory matching, whereas opposite polarity
matches inhibit each other. Net signals are half-wave

(13)

[ ( 2 2)2m 1 L L
Sodd =A sin(- )exp -_2 _2 + (12pqk T opt qk (14)

and

[ ( 2 2)2llk 1 P qSe"%D=ACOS( - )exp -- 2 2+~ pq T (Jpk qk (15)

with [x] + =max(O,x). -51 sp, qS51 (Scale I) and

-52 sp, q S 52 (Scale 2).
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horizontally shifted left and right eye simple cells.
These inputs are weighted so that each cell fires maxi-
mally to a boundary presented at a given disparity. It is
assumed that the monocular weights which define the
binocular receptive field of the complex cell, are pruned

during d~velopment so that different complex cells code
distinct disparities. Grunewald and Grossberg (1997)
have simulated how this process of disparity tuning

may self-organize during development to create the bino-
cular cell interactions that were introduced in the present
research. In the present simulations, these kernels are

one-dimensional, since physiological results suggest
that disparity-tuned cells are sensitive to horizontal dis-
parity and are suppressed by even small amounts of ver-
tical disparity (e.g., one arc-minute or so: Poggio, 1984;
but see also Gonzalez et al., 1993). When a complex cell
receives its ideal pattern of cortical activity from the
simple cell level, it registers a high pattern match and
is strongly activated. As the cortical pattern is changed
from its ideal input (for example, by introducing more or

rectified and pooled across polarities at a target complex
cell. Each complex cell receives this sort of input from
both even and odd symmetric simple cell receptive fields.
As a result, like-contrast polarity boundaries may be
binocularly fused while opposite-contrast polarity
boundaries are mutually rivalrous. This circuit helps to
explain the difficulty that obsenrers experience in fusing
correlated random dot patterns of opposite polarity (von

Helmholtz, 1910/1925; Anderson & Nakayama, 1994;
Harris & Parker, 1995) without contradicting the fact
that complex cells respond to both polarities.

Adding half-wave rectified outputs of oppositely
polarized simple cells at complex cells has the net effect
that the complex cells full-wave rectify the input image.
This hypothesis has become commonplace in models of
texture segregation (Grossber!~ & Mingolla, 1985b;
Chubb & Sperling, 1989; Suttt~r et al., 1989). Here it
emerges as a consequence of biltlocular matching.

The disparity tuning of the complex cells is obtained in
two ways. First, each cell recc~ives activity from two
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FIGURE 7. Binocular simple-to-complex cell disparity filter:
(a) each cell matches a like polarity pair of odd and even recep-
tive fields. After matching, opposite polarity matched pairs
inhibit each other and the res,ult is half-wave rectified. This
ensures that the complex cell will fire strongly to matches of
either polarity. Finally the matched eVE~n and odd donations are
summed. (b) An equivalent circuit with full-wave rectification.

less horizontal disparity), the cell registers a less perfect
match and is not as strongly activated.

Inhibitory interactions between the complex cells
represent the second mechanism by which they achieve
disparity tuning (Figure 8). These inhibitory interactions
suppress false binocular matches as well as the mono-
cular representations that occur within binocularly fused
regions. The developmental principle that cells that fire
together wire together is implemented to help explain
how the wiring pattern of these inhibitory connections
develops. In particular, only cells that receive input from
a common simple cell compete. There is a nice temporal
correlation between the development of ocular domi-
nance columns, the pruning of horizontal excitatory
and inhibitory connections, and the onset of stereopsis
in the monkey visual cortex (Shimojo et al., 1986;

Schatz, 1992; Katz & Callaway, 1992; Lowel &
Singer, 1992). We postulate that this pruning of connec-
tions results in selective inhibitory connections between
cells which share a common simple cell input. In other
words, cells that responded to a common input prior to
the onset of stereopsis stay wired together in an inhibi-
tory manner.

Additional evidence for such suppressive interactions
come from the psychophysical studies of McKee and
colleagues (McKee et al., 1990; McKee & Harrad,
1993) which found that monocular positional informa-
tion is corrupted if a disparate stimulus is presented to the
other eye. They suggest "a kind of local competition
among neural units serving the same retinal location.
The neural units with a strong response...inhibit the
neurons with a weak response" (McKee & Harrad,
1993, p. 1646). These inhibitory interactions are gener-
ated only when a cell is sufficiently active (over its firing
threshold). This property correlates with the idea of there
being a fusion threshold, which has recently gained
considerable support from the work of McKee and col-
leagues (McKee, 1993; McKee et al., 1994) on dichoptic
masking, and from the work of Liu et al. (1992) on
stereopsis at low contrast. In both cases, binocular
fusion was found to be contrast-sensitive. The binocular
matching process of the current model is also contrast-
sensitive. A complex cell must exceed its firing threshold
if it is to be registered by the subsequent processing
stages. When a complex cell exceeds its firing threshold,
it engages the inhibitory interactions described above to
kill off all weaker matches.

The competition between cells coding different
disparities at each position enables FACADE theory to
circumvent the uniqueness principle of classical stereopsis
algorithms. The uniqueness principle, simply stated, is
the idea that each point in the left view of a stereogram
can have one and only one match in the right view.
A recent study by McKee et al. (1994) suggests that
in certain circumstances the uniqueness principle is
indeed violated. These data, among others, have been
simulated using the present model (McLoughlin &

Grossberg, 1995, 1997).
In the current simulation, the smaller spatial scale con-

tains four separate disparity-sensitive pools of cells. One
pool corresponds to zero disparity (dispOO), another pool
to the disparity of the far wall and window (dispOl),
another to an intermediate disparity (disp02), and the
final cell pool to the disparity of the near surface
(disp03). The larger spatial scale contains five pools of
disparity tuned cells. The first four groups are tuned to
the same disparities as the smaller scale (displO, displl,
disp12, disp13). The final pool is tuned to a larger dis-
parity than that of the near wall (disp14).

Poggio et al. (1988) have proposed that disparity selec-
tivity is pooled into six groups of cells. Tuned excitatory
(TO) and tuned inhibitory (TI) cells, which respond
sharply to stimuli at zero disparity (in excitatory and
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(a) Monocular Inputs

(b)
FIGURE 8. Inhibition occurs only between cells that attempt to code the same input. This principle has been called "inhibition along line-

of-sight". (a) Keplerian schematic of this matching process. Left and right eye inputs are represented as black and white bars and are

projected along hypothetical input Ilines representing their various binocular and monocular combinations. Zero disparity is delineated
by the broken horizontal line. Monocular left eye complex cells are displayed as filled (black) circles, monocular right eye complex cells
are displayed as unfilled (whiite) circ:les, and binocular complex cells are displayed as striped (black and white) circles. Cells at locations
2-5 attempt to encode the irn:oming signals as monocular events. (Zero disparity binocular complex cells also present at these locations
are omitted for clarity.) Cells at loci!tion 1 and locations 6-8, attempt to encode the incoming signals at various binocular disparities.

Inhibition occurs between alii cells residing on the common input lines: left input,; left input2; right input,; and right input2. This figure

oversimplifies the problem of binoc ular matching, however, as it neglects cells other than those at locations 1-8 which also attempt to
encode the inputs. (b) A more cornplete description of the selection process. Cells are active at each possible binocular disparity

(including zero disparity) along the input signal lines. These additional cells, not present in (a), receive strong input from one eye,
with little or no input from thle other, and need to be suppressed. Cross-disparity inhibition occurs between all cells that receive input
from the same input line ancj help~; to localize the complex cells response in depth. This includes the monocular complex cells (the

completely filled and unfilled circles). Within-disparity inhibition occurs within each complex cell pool and helps to localize the complex
cells response to inputs within a given disparity plane.

& Voight, 1988) and psychophysical evidence from
adaptation studies in humans (Stevenson et al., 1992)
suggest that there may. in fact, be a continuum of pools
in these species.

As in Grossberg (1994), cells sensitive to horizontal
boundaries are projected in parallel to all disparity-
sensitive pools of cells in order to help complete con-
nected boundaries. Strictly monocular cells were not
incorporated into the Grossberg (1994) model, which
distinguished nonzero disparity cells (for computing hor-
izontal disparities) from near-zero disparity cells (for
registering horizontal and monocularly viewed features).
The present extension of the model posits monocular
cells that are distinct from near-zero disparity cells.
Separate pools of left and right eye monocular units
represent unfused monocular stimuli. Unfused monocu-
lar stimuli may be grouped with fused binocular stimuli
at any depth plane, hence the need for distinct monocular
cell pools. These monocular cell pool activities (monLO.
monRO) and (monLl, monRl) are topographically added
to each of the binocular disparity-sensitive cell pools

inhibitory fashions), near (NE) and far (FA) cells, which
respond to crossed and uncrossf:d disparities of relatively
large magnitude in an excitato~y manner, and tuned near
(TN) and tuned far (TF) cells, 'which respond to smaller
crossed and uncrossed disparities in an excitatory
manner. Both TO and TI cells have sharper tuning func-
tions than the other cell pools, NE and FA cells having
the most shallow falloff. Richards (1971) had previously
predicted the existence of such pools based on clinical
studies of humans.

The disparity-tuned filter of the model is consistent
with Poggio's physiological results on pooling. The dis-
tribution of disparity cells within the filter is biased
towards zero disparity. In other words, the disparity dif-
ference between each pool increases from dispOO to
dispOl, and so on. This increase in distance between
pools translates into a shallowc~r falloff for pools tuned
to larger disparities. This filter does, however, make use
of more pools than Poggio li:sts. More cell pools are
required to ensure that the fused surfaces are represented
correctly. Physiological evidence from the cat (LeVay

"9. ~
';o¥.J' Disp +3~ross-Disparity InhibitionDisp +2 ' ,.r ~ T ~ Within-Disparity InhibitionDisp+1 of -\-:t . Disp 0

Mon Left 1 Mon Right
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FIGURE 9. Output of the disparity filter lor the large spatial scale:
(a) No vertical boundaries are represented in the disp14 cell pool.
(b) The near surface boundary representation (AB) resides in the
disp13 cell pool. (c) No vertical boundaries are fused within the
disp12 cell pool. (d) The right-hand side of the far wall and win-
dow are represented in disp11. (e) The picture frame is correctly
fused at zero disparity in the disp10 cell pool. (f) No vertical
monocular boundaries remain unfused in the left eye monocular
cell pool. (g) Finally, the left-hand side of the far window passes
through the disparity filter without being suppressed. It is repre-
sented in the monocular right eye cell pool.

boundaries of the far wall and window [Figure 9(d)]. The
left-hand side of the window is presented monocularly
due to occlusion and so is registered in the monocular
right (MonRl) cell pool [Figure 9(g)]. Finally the vertical
boundaries of the background are fused at zero disparity
(displO) in Figure 9(e), and the monocular left (MonLl)
vertical cell pool is silent [Figure 9(f)].

Figure 10 presents the outputs of the small spatial
scale's disparity filter obtained after processing the
da Vinci stereogram. Only four disparity selective
pools exist within this spatial scale. Due to the size-
disparity correlation, the small spatial scale is not
capable of fusing surfaces present at disparities greater
than dispO3. This restriction introduces the possibility of
a surface being fused within a large spatial scale's disparity
filter while remaining outside the fusional range of smaller
spatial scales. If this phenomenon were to occur, one
would expect either a fuzziness at the boundaries of the
large disparity surface or a combination of rivalry and
fusion at the same spatial location (Grossberg, 1 987b,
1994). Both phenomena have been reported for suitable
stimuli (McKee, personal communication; Kulikowski,

1978).
However, in the case of the da Vinci stereogram, the

nearest surface is within the fusional range of the
small spatial scale and is represented at the same dispar-
ity as in the large spatial scale [dispO3, Figure IO(a)]. As
in the large spatial scale, no vertical boundaries are regis-
tered in the monocular left [MonLO, Figure laCe)] or
dispO2 cell pools [Figure IO(b)]. Vertical boundaries of
the far wall and window are represented at dispO 1 [Figure
IO(c)], the background is registered at dispOO
[Figure IO(d)], and the right-hand side of the window
is represented in the monocular right cell pool

[Figure IO(f)].

(dispOO-disp14) in a scale-specific manner. This conver-
gence of signal pathways occurs between the disparity
filter and model hypercomplex cells. McKee and Harrad
(1993) have shown that subjects are unable to access
monocular information when it is part of a fused bino-
cular percept. They named this phenomenon "fusional
suppression", since the fusional process appears to sup-
press the monocular representations, as in the current
model.

Figure 9 summarizes the output of the large spatial
scale disparity filter after processing the da Vinci stereo-
gram. The vertically and horizontally tuned cell activity
profiles are displayed together to aid in comprehension.
The large spatial scale does an excellent job of segment-
ing the scene into its relative depth planes. The cell pool
tuned to the largest disparity (disp14) remains inactivated
[Figure 9(a)]. No vertical boundaries are fused at this
depth. Disp 13 cells fuse the vertical boundaries of the
near lefthand surface [Figure 9(b)]. In so doing, they
suppress all false matches associated with these bound-
aries within the large spatial scak~ via mutual complex
cell inhibition. Hence, no vertical boundaries corre-
sponding to the near surface are registered in Figure
9(a), or in Figure 9(c)-(g). The next disparity-sensitive
vertically oriented cell pool, disp12, is also inactive
[Figure 9(c)]. Once again no surfaces exist within this
depth plane of the stimulus. Disp 11 cells fuse the vertical

(s) (b)

[

(d) (e) (f)

FIGURE 10. Output of the disparity filter for the small spatial
scale. (a) As In the larger scale, the disparity sensitive disp03
cell pool fuses the near surface (AB). (b) No vertical boundaries
are fused at disp02. (c) The disp01 representation once again
codes the right-hand side of the far wall and window. (d) The
picture frame is fused at zero disparity, namely dispOO. (e) No

vertical boundaries from the left eye are unfused. (f) Additionally,
as in the larger spatial scale, the left-hand side of the far window
is unfused and represented in the monocular right eye cell pool.
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binocular step edge presented at disparity d. Thus

~d/even ~d/even
",odd/even -i,j+r,k Wodd/even -i,j+I,k

(19)YY drk -
R ' dlk -

L
'\:"" ~d/even '\:"" s?~d/even
L I.}+r,k L 1.}+I,k

r=1 1=1

where as in eqns (8)-(13)

c.odd/even +
"ijk

The dynamics of the complex cell stage are defined
mathematically as follows:

dcijkd
d(= -a2Cijkd + (U2 -Cijkd)Mijkd

-(Cijkd +~) }:: h(Ci(j+p)ke)Di<i+p)kde (16)
(p,e)

In eqn (16), a2 is the decay rate (0.01); U2 bounds a cell's
maximum activity (1); M ijk.' defines the simple-to-
complex cell filter (defined below); L2 bounds the
cell's minimum activity (1); ~h(Ci<i+p)e) is the total
inhibitory signal from cells that receive the same
simple cell (SijV inputs tuned to disparity e. The signal
function h is a half-wave rectified analog signal with
threshold r e:

..odd/even -
;)ijk

h(C;jk..) =

and

X.:I"-IJ -

with

J..=IJ

, N
0.0 if j < 2

1.0 if j ~ ~
2

Tenns Xi} in eqn (20) are defined similarly. Finally, the
inhibitory connections Di(i+p)kde between complex cells
of the same spatial scale that are tuned to different
disparities were implemented as follows:

Di(i+p)kde = Adeexp( -JJ.de(P +sde)1 for d:#: e (23)

and

Di<i+p)kdd = Add[exp( -p.~p2) -exp( -p.~p1] (24)

In eqns (23) and (24), Ad. corresponds to a scale para-
meter for the strength of inhibition between disparity d
and disparity e (see Table 1-2) p.d. is the spatial para-
meter that determines the width of the inhibitory
gaussian between cells coding disparities d and e (see

In eqn (18), M ijkd is the total input to the complex cell
centered on location ij, of orientation k, and tuned to
disparity d; Wd(l~~rd are weighting functions corre-
sponding to disparity d, distance (llr), and orientation
k;~~en+l- is the even symrnl:tric simple cell input of
positive or negative polarity at :location ij and orientation
k; Sij1d+l- is the corresponding odd-symmetric simple
cell input; L, R correspond to the size of the simple cell
input fields in the left and right eye (scale 1, L: 20, R: 20;
scale 2, L: 28, R: 28). By eqn (18), complex cells that
receive input from disparity d pools of opposite-polarity
simple cells will not be activatelj, while those that receive
input from disparity d pools of like-polarity simple cells
will be strongly activated. .82 == 15.

In the current implementation, the disparate monocu-
lar weights wdft1r)k and WdUi~)k in eqn (18) are set propor-
tional to the strength of the simple cell responses to a

TABLE 1

All tables demonstrate new binocular interactions introduced in

Grossberg (1994). Scale values Ado for scale 1

Amon

Ao

AI

Az

AJ

Cijke -r e Cijke > r e
(17)

0 otherwise

Term DiV+p)kde in eqn (16) represents the inhibitory con-
nections between the cells thaI: code disparity e and the
cells thaJ code disparity_d. These are assumed to be

pruned by adaptive inhibitory learning during develop-
ment so that only cells that receive a common input are
connected. In particular, DiV+p)kde :#: Difj+p)kedo

The simple-to-complex cell filter combines simple cell
output signals in the following way:
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TABl.E2
Scale values Ade for scale 2

Amon Ao AI A2 Aa A4

Amon

Ao
A,
A2

A3
A4

TABl.E 3
Shift parameters Sde for scale 1

5monL

5monR

50

51

52

53

-
0
0

+1
+2
+5

TABLE 4
Shift parameters sde for scale 2

SmonL SmonR So Sj 52 53 54

5monL

5monR

50

51

52

53

54

-
0
0

+1
+2
+5
+7

4.4. Hypercomplex Cells: Spatial Competition

The rectified output from each complex cell pool excites
a like-oriented hypercomplex cell corresponding to its
location and inhibits like-oriented hypercomplex cells
corresponding to nearby locations. This spatial inhibition
occurs in a center-surround manner between cells coding
the same scale, disparity and orientation. It models the
end stopping process, whereby hypercomplex cell recep-
tive fields are derived from interacting complex cell out-
put signals (Hubel and Wiesel, 1965; Orban et al., 1979).

Each hypercomplex cell activity Yijkd also receives
feedback from the final stage of the cooperative grouping
network (called the SOCC Loop) and has a baseline or
tonic activity level T. Hypercomplex cell dynamics are
defined by

dYookd-!L= -a4Yikd+(U4-Yikd)C4
dt

-(Yijkd + L4)E4 + T + g(Oijkd) (28)

The center C4 and surround signals E4 are defined as
follows:

C4 = L cI>hvCi+h,j+v,k,d
(h,v)

with

-AeXp
[-~ (~

)]<I>hv -~ -

L exp[ -! ( h2+V2

)](h, v) 2 -;;r-

(29)

and

E4= ~ EhvCi+h,i+v,k,d
(h, v)

with

below); Sde detennines the shift in the center of the
Gaussian between disparity d and disparity e (see
Tables 3-4). Add is the scale parameter for the spatial
inhibition kernel D;pkdd; .ud detennines the width of the
excitatory center for the within disparity interaction; and
.ud detennines the width of the inhibitory surround for the
within disparity interaction. For scale 1: .udmon = 0.075,
.ude = 0.05, .u,none = 0.075; (d E {mon,O, 1 }).ud = 0.015,
.ud = 0.5; (d E {2, 3}).ud = 0.005, .ud = 0.5. For scale
2:scale 2: .udmon = 0.075, .ude = 0.05, .umone = 0.075; (d E
{mon,O,1 }).ud = 0.015,.ud = 0.5; (d E {2, 3, 4}).ud =
0.005, .ud = 0.5.

Cells sensitive to horizontal boundaries are spatially
sharpened using the following on-center off-surround
network:

dc'Ok ,
-t-= -(X3Cijk + (U3 -Cijk) L. CiU+p)MiU+p)k

p

(25) Ehv= (30)-(L3+Cijk) L EiU+p)MiU+p)k
p

The Gaussian center Cij and surround Eij kernels are
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c [ 1( r-k )2 ]Cs = L CkrYijrd with Ckr = ~xp -:2 ~
r

(33)

where -P'; ~ h, v ~ P'; (scale 1) and -~ ~ h, v ~ ~

(scale 2).
In eqn (28), CX4 is the decay parameter (0.1); U4 and

-Lot are the upper and lower bounds of hypercomplex
cell activity (1, -, 1); T is the tonic activity of the cell

(0.0000189); g(O;jkd) is the fet~dback activity from the
SOCC loop, where g(x) = Gx, with G a scale constant
(I). In eqns (29) and (30), Cijkd is the complex cell
activity at location ij, orientation k and disparity d; P';
and ~ define the size of the spatial interaction for scale 1
and scale 2, respectively (4, 4); A and B are scale con-
stants (1,1); and O'c and O's are the standard deviations of
the center and surround Gaussians (scale 1: 0.15, 1; scale
2: 0.15, I). Solving eqn (28) at equilibrium and half-
wave rectifying the result yields the steady-state hyper-
complex cell output signal:

and

Yijkd

+

L (U4cf>hl' -L4Ehv)Ci+hJ+v;k,d + T + g(OijkdJ
(h,vr -=

CX4+ (Il>lrv +E/rv)Ci+Ir,j+I"k,d
(h,v)

(31)

Nijkd =

(35)

4.6. Cooperative Bipole Cells

Outputs from the second hypercomplex cell stage are fed
into a long-range cooperative boundary completion pro-
cess which is responsible for the long-range grouping
capabilities of the BCS (Figure 4). The long-range
cooperation cells that receive this input are called bipole
cells, so called because their receptive field is composed
of two oriented lobes. Each lobe receives input from a
range of orientations and positions along the oriented
axis of the lobe. If both bipole lobes (or the cell itself)
receive large enough inputs, the cell will fire. This
restriction ensures that bipole cells do not extend bound-
aries beyond line ends unless there is evidence for such a
linkage, for example from a second aligned line end.
Bipole cells hereby behave like statistical AND gates.
Bipole cell outputs are fed back to the hypercomplex
cells to initiate boundary completion. The existence of
bipole cells was predicted (Grossberg, 1984; Cohen &
Grossberg, 1984) at around the time von der Heydt et al.
(1984) reported analogous cell properties in monkey
visual area V2.

Bipole cells receive inputs from all cells coding the
same relative depth from the observer across all hyper-
complex cell spatial scales. These converging signals

4.5. Hypercomplex Cells: Orientational Competition

The next stage of hypercomplex cells compete across
orientation at each position, with the greatest inhibition
occurring between cells that code perpendicular orienta-
tions. This competition is a push-pull opponent process
whereby, if one orientation is excited (or inhibited), then
the cell coding the perpendicular orientation at the same
spatial location is inhibited (or excited by disinhibition).
Spatial competition causes vertically tuned cells just
beyond the end of a thin vertical line to be inhibited.
Horizontally tuned hypercomplex cells that code the
same spatial position are then disinhibited by orienta-
tional competition. This mechanism of completing line
ends, called endcutting, helps to explain, for example,
how illusory contours can be formed perpendicular, or
oblique, to line ends (Grossberg & Mingolla, 1985b).
Such endcuts may be grouped together by subsequent
stages of the SOCC loop to form an illusory contour,
as in the Ehrenstein illusion; see Gove et al. (1995) for
a simulation. Cross-orientation inhibition occurs
between vertically and horizontally tuned cells in the
present simulations. These cells also receive feedback
from the monocular FIDOs (Figure 2, pathways 7).

These properties of hypercornplex cell activities nijkd
were modeled as follows:

dllijkd
T= -aSllijkd+(US-nijkd)CS

-(Ilijkd + Ls)Es -2. F(Vijke) (32)
e~d

(34)
In eqn (32), O:s is the decay parameter (I); Us and -Ls
are the upper and lower bounds of hypercomplex cell

activity (I, -I); F(Vijke) corresponds to the FCS to BCS
inhibitory feedback pathways where F(x) = Fx, with Fa
scale constant (10). In eqns (33) and (34), Y ijkd is the
hypercomplex cell output (31) from the first competitive
stage at location ij, orientation k and disparity d; c and s
are scale constants of the center and surround Gaussians
(I, 1.5); Uc and Us are the standard deviations of the
center and surround Gaussians (scale I: 0.5,0.75; scale
2: 0.5, 0.75); and rand k denote orientation indices (r E
to, I}, k E to, I }). Solving at equilibrium and half-wave
rectifying the result yields the steady-state higher-order
hypercomplex cell output signal:
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(b) (c)(a)

tuned cells of disp4, disp3, disp2, displ, and dispO,
respectively. These profiles represent BCS activity
before the SOCC loop or monocular FIDOs provide feed-
back.

Each bipole cell, except those which code the largest
disparity (dispI4), receives input from both spatial scales
as follows:

dZijkd b b b b~= -Zijkd+h[g(Asl +Asv+g(Bsl + Bs2) + Nijkd]

(36)

In eqn (36), g(x) bounds each lobe's activity as follows:

o(x) = ~x]+-~

(d) (e)

FIGURE 11. Open loop response of the bipole cells. (a) The
dispO4 representation contains only the monocularly viewed
left-hand side of the far window. No completely enclosed sur-
faces exist at this depth plane. (b) The m~ar surface (AB) is repre-
sented by a completely enclosed bclundary structure. This
completely enclosed structure traps filling-in signals within the

monocular FCS filling-in domains associated with this depth. (c)
Once again no completely enclosed surfaces exist at dispO2. (d)
The window remains the only enclosed surface at dispO1 since
the left-hand side of the far wall is currE!ntly only represented at
dispO3. The window will neverthe~ss trap filled-in signals within
the monocular FCS filling-in domains associated with dispO1. (e)
Finally the picture frame represents a completed structure within

the zero disparity dispOO bipole cell pool.

Ab= ~ «N;+p,j+q,rd-N;+p,j+q,Rd)[Z;jkr]+) (39)
(p,q,r)

and

Bb = L «Ni+p,j+q.rd -Ni+p,j+q,Rd)[ -Zijkr] +)
(p.q.r)

transform the multiple-scale BCS computations into
multiple-depth BCS computations. This transformation
enables each BCS copy to use all the available evidence
to compute the most accurately positioned boundaries
possible within its depth range. The resultant depth-
sensitive BCS copies control the filling-in of FCS
surfaces at the corresponding relative depths from the
observer.

The bipole cells implemented here refine the tradi-
tional bipole. Firstly, they receive input from multiple
spatial scales. In the current simulation, each pool of
bipole cells, except that which codes the largest disparity
(dispI4), sums inputs from both spatial scales. In addi-
tion, perpendicular hypercomplex cells inhibit each
bipole cell receptive field. This cross-orientation compe-
tition realizes the property of spatial impenetrability
(Grossberg, 1987a; Grossberg & Mingolla, 1987) that
helps to prevent boundaries from being colinearly com-
pleted over regions that contain mutually perpendicular
boundaries, or other nonparallel orientations.

Another innovation is direct input from hypercomplex
cells at the location of the bipole cell itself. This term
allows bipole cells that receive input from their own
location and at least one lobe to trigger outputs, while
still preventing boundaries from completing outwards.
As a result, the ends of lines can receive feedback from
the bipole cells. Gove et al. (1995) and Grossberg et al.
(1995) simulate related uses of this refined bipole cell.

Figure 11(a)-(e) shows the open loop response of the
bipole cell stage for both the horizontal and vertically

(40)

where -p~ :5 p. q :5 p~ (scale I), and -p~ :5 p, q:5 p~

(scale 2).
In eqn (36), Zijkd is the bipole cell activity at position ij,

orientation k, and disparity d. In eqn (37), D is a para-
meter of the lobe activity squashing function (0.1). In eqn
(38), r is the firing threshold of the bipole cells (d e {O, I,
2, 3 }, r = 1; d = 4, r = .5}. In eqns (39) and (40), N ijkd is
the activity of the hypercomplex cells in eqn (35) and
orientation R is perpendicular to orientation r. Terms Zijkr
and -Zijkr define the lobes of the bipole cell receptive
field (see below); p~ and p~ define the size of the input
fields of the bipole cells for each spatial scale (5, 5); r E
{O, I} determines the orientation tuning of the cell; and
[x]+ denotes half-wave rectification. The central input
term N ijkd in eqns (39) and (40) ensures that the ends of
lines also strongly activate bipole cells.

In the current implementation, the lobes of the bipole
cell receptive field obey the Gaussian weighting operator
used by Gove et al. (1995):

h Zijkr =Zsgn[i]exp[T g + T k + T r] (41)

were

Tg= -(~+pr (42)

2og

(~ -tan -1(ilj)) 2

T
Tk = 2a:t

0"" D + [X] + (31)

whereas the threshold r in h[x] ensures that both lobes
must be active before the bipole cell fires; namely,

h[x] = [x -r] + (38)

Terms A~l' A~2 and B~I' B~2 in eqn (36) correspond to the
summed inputs from each bipole cell's two lobes for each
spatial scale. They are defined generically as follows:
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and ( r1l"
Tr = T -tan -I(ilj) )2

2a2r
(44)

where C, and S, are defined as follows:

C, = L Chl,Ui+h,j+I"k,d
(h,I')

ChV=Aexp[- ~(~) (50)

E7 = L EhvUi+h,j+v,k,d
(h,v)

[ I ( h2 + V2
)]E",,=Bexp -'2 ~ (51)

where -~ :S h, v:S ~ (scale I), and -Pi :S h, :S P2

(scale 2).
In eqn (49), 0 ijkd is the activity of the hypercomplex

cell at position ij, orientation k and disparity d; <X7 is the
decay parameter (0.1); and U7 and -L7 are the upper and
lower bounds of hypercomplex cell activity (I, -I). In
eqns (50) and (51), U ijkd is the hypercomplex cell activity
from the previous feedback stage at location ij, orienta-
tion k and disparity d; Pi and P2 define the size of the
spatial interaction for scale 1 and scale 2, respectively (4,
4); A and B are scale constants (1, I); and (Jc and (Js are
the standard deviations of the center and surround
Gaussians (0.15, 1). Solving at equilibrium and half-
wave rectifying yields the output

In eqns (41)-(44), Z is a scale constant (I); p determines
the peak of the Gaussian term T g ( -2.5); (J g' (J k and (J r
are the standard deviations of the T g' T k and T r Gaussian
terms (1,0.15,0.15); and Tdetermines the shape of the
lobes (2).

Bipole cells can support boundary grouping and com-
pletion within a band of orientations, some of which
receive weaker support from image contrasts than others.
Competitive interactions help to remove this uncertainty.
Orientational and spatial competition are applied to the
outputs of the bipole cells as they are fed back to the first
hypercomplex cell stage. This feedback pathway mirrors
the competitive stages of the feedforward path. Positive
feedback from the bipole cells goes back to hyper-
complex cells that code the same disparity and position,
across all scales (see Figure 2, pathways 4). These feed-
back operations are defined as follows.

Cross-orientation competition is achieved using a
membrane equation:

dU;jkd~= -a6U;jkd + (U6 -U;jkd)C6 -(U;jkd + L6)E6

(45)

where

c [ l ( r-k )C6 = L CkrZijrd with Ckr = ~xp -2: -;;;-
r (46)

and

(52)

(47)

In eqn (45), Zlijkd is the activity of the hypercomplex cell
at position ij, orientation k and disparity d; a6 is the decay
parameter (I); and U6 and -L6 are the upper and lower
bounds of hypercomplex cell activity (1, -I). In eqns
(46) and (47), Zijkd is the bipole cell activity at location
ij, orientation k and disparity d; c and s are scale con-
stants (1, 1.5); Uc and Us are the standard deviations of the
center and surround Gaussians (scale I: 0.5, 0.75; scale 2:
0.5,0.75); and rand k denote orientation (r E {O, I}, k E
to, I }). Solving at equilibrium and half-wave rectifying
yields the output:

4.7. Output of the BCS

After several (typically no more than three) iterations
through the BCS feedback pathways, the activities of
the SOCC loop cells converge. The boundary segmenta-
tions that are created in this way have no color or bright-
ness qualities, since the complex cells pool signals from
simple cells of opposite contrast polarity. The filling-in
process within the FCS creates visible surface percepts,
including the visible percepts of single dots and lines,
which are processed as small surface regions. The BCS
organizes these FCS filling-in events by topographically
interacting with the FCS filling-in domains, or FIDOs, as
in Figure 2. The BCS --FCS signals play two roles. (1)
They activate filling-in within FIDOS whose FCS inputs
are topographically aligned with a BCS boundary, and
suppress other FCS inputs. In this capacity, they are

(48)

Spatial competition then occurs in a center-surround
manner between cells coding the same relative depth
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called filling-in generators. (2) They act as baniers to
filling-in and thereby create surface regions within
which filling-in is restricted. In this capacity, they are
called filling-in barriers (Grossberg, 1987b, 1994).

These simultaneous equations were solved at equilibrium
using the Yl2M matrix inversion package ofZlatev et al.
(1981).

and

dr.~-it = -cxsri}d + (Us -rj]d )Cs- -(rj}d + 4)£S- (58)

where

-P<p, q<P,
(53)

ci = L. CpqFj:t+P.i+q.d
(P.q)

and

~= -MmF;}d+
dt

I (F p~d -FiN )'l';qijd + Xi}d
(p,q) EN

with

(54)

where diffusion occurs with respect to nearest neighbor
cells N= {(i,j -I), (i,j + I), (i +. I,j), (i -I,}')}, and
boundaries attenuate the diffusion permeability coeffi-
cients as follows:

and

(61)
+ , F:!:

E; = L Epq ;+p,j+q,d

(p,q)

with

xi~ + L F p~d 'I';qijd
F+ -(p,q)ENijd -

Mm + """ 'I'm..
L. pqlJd

(p,q)EN

andand

Xi# + 2. F p~d 'l';qijd
-(p,q)ENFijd =

M m + ' 'l'm..
L. pqrJd

(p,q)EN

l: UgCpqFi+p,j+q,d -LgEpqFi+p,j+q,d
-(p,q)

r,od=IJ ag + l: (Cpq+Epq)Fi+p,j+q,d

(p,q)

(64)(56)

4.9. Output Signals from the Monocular FIDOS

Output signals from FCS to BCS are generated only from
successfully filled-in regions within the monocular
FIDOS, since only these regions can generate contrast-
sensitive output signals. An on-center off-surround net-
work suppresses uniformly filled-in regions so that only
spatial contrasts within each FIDO are passed on for
further processing:

drit + (U + )C + ( + L E + (~ = -a8rijd + 8 -rijd 8 -rijd + 8) 8 57)

4.8. Monocular FIDOS: Surface Capture and

Filling-In

The projections from the binocular BCS segmentations
to the monocular FIDOs generate filling-in (see Figure 2,
pathway 6) by selecting those monocular FCS signals
(transmitted along pathways 5 in Figure 2) that are
spatially coincident with the binocular BCS boundaries,
while suppressing those that are not. They thereby selec-
tively capture FCS brightness or color signals at different
depth planes to initiate depthful surface completion.
Boundary outputs also create resistive barriers to this
diffusive process. Filling-in obeys the following

equations:

In eqns (53)-(55), Fi~ is the filled-in activity and output
signal at position ij and disparity d of the ON FIDO; FiN
is the filled-in activity at position ij and disparity d of the
OFF FIDO; Mm is a decay (0.1); Xi~ is the ON channel
output from the monocular preprocessing stage; XiN is
parameter the OFF channel output from the monocular
preprocessing stage; K is a parameter of the boundary
squashing function 'lr~~ijd (1); t5 is a spread-scale para-
meter (100,000); and E is a blocldng scale parameter
(1000). At equilibrium, each Fijd was computed as the
solution of a set of simultaneous equations:

In eqns (57) and (58), rit and ri]d are the activity of ON
and OFF monocular FIDO cells at position ij and dis-
parity d; as is a decay parameter (0.01); and Us and Ls
are upper and lower bounds on the FCS cells activity
(I, 1). In eqns (59)-(62), F ijd is the output (56) of the
corresponding monocular FIDO filling-in stage; C and E
are scale parameters (0.0398, 0.0181); P determines the
size of the spatial interaction (7); and Uc and Us are
the standard deviations for the center and surround
Gaussians (2, 3). At equilibrium, the ON and OFF
activities converge to

2 USCpqFi~P,j+q,d -LsEpqFi~p,j+q,d
+ (p,q)rijd = + (63)

as + 2 (Cpq + Epq)Fi+p,j+q,d
(p,q)
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These monocular FIDO outputs were then subtracted and
rectified to generate double opponent output signals:

vertical: up = 2.5, Uq = 2; horizontal: up = 2, Uq =

2.5).
Figure 12(a)-(d) show the simulated output of the

monocular ON and OFF left and right eye FIDOs in
response to the da Vinci stereopsis display. ON and
OFF activities are graphed together in each figure. No
activity is registered in the FlDOs corresponding to
disp04. Figure 12(a) displays the ON and OFF activities
associated with the near surface which is registered in the
FIDOs corresponding to dispO3. The left eye's represen-
tation differs slightly from that of the right. This is due to
a difference in the filling-in signal strength associated
with the left edge of the window. Figure 12(b) displays
the monocular FCS outputs for depth plane 2. Although
no connected figures were present within the BCS dispO2
representation, a small filled-in signal is trapped by one
or two of the nonconnected boundaries. This spurious
noise, which is dependent on the parameters of the
FCS filling-in process, does not cause any subsequent
problems for the FACADE segmentation. Figure 12(c)
displays the monocular FlOO outputs for the far wall and
window. Although the far wall does not form a connected
figure within the monocular FCS, ON and OFF signals
are registered for the right-hand wall. This is a property
of the FCS flow parameters and is eliminated by the
subsequent stages of the FIDO processing. Finally,
Figure 12(d) displays the ON and OFF FlOO representa-
tion of the background. A small amount of noise is also
seen in both displays.

R.Td = [ r.-:l-
d -r':" d] + and R.:"d - [r':"d -r.-:l- d] + (65)IJ IJ IJ IJ -IJ IJ

The monocular FillO output signals act by inhibiting the
hypercomplex cell activities of more distant boundaries
in eqn (32). By reorganizing boundaries, and the surfaces
that they contain, in a near-to-far manner, FCS-to-BCS
feedback shows how filling-in of' surface properties can
also occur in a near-to-far manner. In the current imple-
mentation, the nearest depth plane was filled in first. Any
negative feedback arising from the monocular FIDOs
was fed back into the BCS representations of more
distant surfaces. Each SOCC loop was again allowed to
converge in response to the new boundary configuration
before filling-in of the next-to-nearest depth plane
occurred. This process was continued until all the

depth representations equilibrated.
In order to map the unoriented FillO activities onto

oriented hypercomplex cell activities, they were first pro-
cessed by -oriented filters. -The total signal from each
position ij, orientation k and disparity d is defined by:

bodd + bodd - beven + beven- Vijkd = ijkd + ijkd + ijkd + ijkd
(66)

where

bodd+l-
ijkd

dl+
(67)

[ ]+ even +/- even -1+

= L Bpqk Ri-p,j-q,d --LBpqk Ri+p,j+q,d

(p,q) (p,q)

(68)

bcvco+l-
ijkd

[ ( 2 2 2llK 1 L+!L

B~t =AISin( T )exp -:2 (J~k (J~k (69)

and

(70)

with -S.sp,qSS.(scale1),and -S2Sp,qSS2

(scale 2).
In eqns (67) and (68), R;~ is the FCS ON cell response

at position ij and disparity d, and R;Jd is the FCS OFF cell
response; see eqn (65). In eqns (69) and (70), A. and A2
are scale constants (1, 1); T determines the periodicity of
the cell (scale 1: even T = 7r, odd = 27r; scale 2: even =
7r, odd = 37r); SI and S2 define the size of the hypercom-
pie x cells input field (4, 6); O'pk and O'qk define the standard
deviations of the x- and y-dimensions of the hypercom-
plex cell input field for orientation k (scale 1: vertical: O'p
= 2, O'q = 1.5; horizontal: O'p = 1.5. O'q = 2. Scale 2:

4.10. The Binocular FIDOS: FACADE Representation

The binocular FIDOs represent the final level of surface
processing in the FACADE model, as in Figure 2. Their
filled-in representations multiplex properties of surface
form, color, depth, orientation, position, and brightness.
Grossberg (1994) has compared these receptive field pro-
files with analogous neurophysiological data from extra-
striate area V 4 (Zeki, 1983a, 1983b; Desimone et al.,
1985). In the da Vinci stereogram percept, the monocu-
larly viewed region BC in Figure 1 has its surface proper-
ties filled-in within the same depth-selective FIDO as the
binocularly fused boundaries of region CD.

Figure 13(a)-(c) displays the final output of the
FACADE model. Figure 13(a) displays the FACADE
representation of the near surface which is correctly filled
in within the FIDOs that correspond to disparity 3. Figure
13(b) displays the FACADE representation of the filled-
in surfaces at disparity 1. Both the window and the far
wall are represented at this disparity. Finally Figure 13(c)
represents the background which is correctly rendered as
a filled-in surface at zero disparity. The FCS representa-
tions associated with disparities 2 and 4 contain ganz-
felds of activity as no connected regions exist at these

depths.
Several factors make this result possible. Perhaps the

most important one is boundary enrichment. If the
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FIGURE 13. Final outputs from the FACADE model.The dispO4
and dispO2 representations are not displayed. Since no con-
nected regions exist within these depth planes, the dispO4 and
dispO2 representations resemble ganzfelds. (a) The near surface
AB is filled-in with its surface properties at dispO3. (b) The far wall
and window is filled-il1l within the dispO1 syncytia. (c) The picture
frame and backgrounl:l are filled.in with their surface properties
at disparity 0 (dispOO).

III :1(d)

FIGURE 12. Outputs from the monocular ON and OFF left and
right eye FIDOs. DispO4 is not represented as no output signals
were generated at that disparity. (al The near surface (AB) is
represented within the outputs of ttle dispO3 FIDOs. (b) Some
spurious noise occurs within the outputs of the dispO2 FIDOs.
This noise is caused when feature signal are trapped within BCS
boundary signals. This system noise does not cause any pro-
blems for the binocular FIDOs because monocular FCS signals
are binocularly matched before visitlle filling-in occurs. (c) The
far window is clearly represented in the outputs of the left and
right eye FIDOs. We can also see some feature signal trapped by
the right-hand side of the far wall. (cI) The window frame is cor-
rectly represented in the outputs of !the ON and OFF monocular
FIDOs. Again a small amount of noise is registered within the

outputs of the dispOO FIDOs.

The binocular FIDOs receive their FCS inputs from
both the left and right eye monocular ADOs and the
monocular preprocessing stage. Input from the pre-
processing stage is excitatory, while surface pruning
inhibitory signals are produced by the monocular
ADOs. Both excitatory and inhibitory signals are bino-
cularly matched via the following membrane equations
before they trigger filling-in:

binocular boundary at B were processed only as part of
the connected region AB, then, as in Figure 14(a), there
would be nothing to stop the surface properties of region
BD from filling-in behind AB, since BD does not possess
a connected boundary. FACADE theory remedies this
problem by asserting that the boundaries corresponding
to nearer objects are added to the boundaries correspond-
ing to farther objects at the binocular FIDOs. As a result,
region BD is surrounded by a connected boundary and its
surface properties do not spill out, as shown in Figure
14(b). This restriction upon I'CS filling-in does not,
however, prevent BCS boundaries from being amodally
completed behind occluding figures (Grossberg, 1994).

B ~ D

I ,
Unconnected Region Filling-in of connected

Regions

(a) (b)

FIGURE 14. Filling-in produces visible percepts only within con-
nected regions. (a) When a region is not fully connected, the
featural signal can flow out. (b) Only a fully connected region
can trap the FCS signal and produce a visible percept.
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and

E+ XL+ +XR+ E - XL- XR-ijd = ijd ijd' lid = lid + lid (73)

These simultaneous equations were also solved using the
Yl2M matrix inversion package.

(76)

5. PARAMETER ROBUSTNESS

As in any complex modeling endeavor, the FACADE
simulation contains many parameters. The complexity
of such a model is evaluated, not in terms of the number
of its parameters, but in terms of how many processing
stages it includes, what perceptual principles are realized
by these stages, how much empirical evidence supports
each stage, and how robustly the parameters that define
each stage generate that stage's desirable qualitative

properties. Grossberg (1994, 1997) summarized percep-
tual principles and data to argue that each stage is
needed. The present refinements further develop these
stages. Most of the parameters defining these stages
were hand-set to produce realistic looking receptive
field profiles; for example, the parameters defining the
ON and OFF center-surround receptive fields. A wide
variety of parameter choices reproduced similar
responses. A decision to implement only near (positive)
disparity sensitive complex cells, along with zero dis-
parity and monocular complex cells, was taken as the
simulated scene contains only near surfaces when the
model fixates the image frame. This decision, along
with the choice of the explicit disparities that were
coded, set our binocular combination parameters.

The binocular filter is perhaps the most parameter-
sensitive aspect of the model; however, an appropriate
set of matching parameters can be learned (Grunewald &
Grossberg, 1997). The parameters involved in the final
stages of the model are also valid within wide ranges of

parameters. Important parameters involved in this pro-
cess include T, the tonic activity of the hypercomplex
cells in eqn (28), which must be set to be greater than
zero for the endstopping process to have its desired
effect, and r in eqn (38), which if incorrectly set can
allow contours to complete outward from line ends in
an unrealistic manner. The parameters chosen in both
the monocular and binocular FCS simulations were
also robust. In fact, as Figure 12 shows, this choice of
parameters allowed spurious BCS activity to trap minor
quantities of FCS signal. As the binocular FIDOs remove
this noise, we did not deem it necessary to search for
more ideal parameter settings. A wide range of values
exist that produce comparable responses. If, however,
parameters 0, K and E from eqns (55) and (78) are set to
extreme values, for example to zero, filling-in can be
stopped altogether or allowed to pass through BCS
boundaries without any obstruction.

(77)

J)}, and

In eqns (76)-(78), O~ is the filled-in value at position ij
and disparity d of the ON FIDO; Oi]d is the colTesponding
OFF value; Mb is a decay parameter (0.1); ai~ in eqn (76)
is the ON channel filling-in signal; ai~ in eqn (77) is the
OFF channel signal; K in eqn (78) is a parameter of the
boundary squashing function '¥~qijd (I), () is a spread
scale parameter (10,000), and E is a blocking scale para-
meter (100).

At equilibrium, each Oij is computed as the solution of
a set of simultaneous equations:

a.T + L n~d'lr;qijd
lid

)EN (p,q+- "'" b
nijd -Mb + L 'lr pqijd

(p,q)E,V

These signals trigger filling-in of binocular FIDOs just as
in the monocular FCS filling-in process [eqns (53) and
(54)] stage. The diffusive spread of activity is defined by
the following equations:

where N = {(ij -1),(ij + 1),(i + Ij),(i -
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6. GENERAL DISCUSSION

The present article develops the first rigorous imple-
mentation of the three-dimensional FACADE model
and shows how it can combine binocularly fused and
monocularly unfused boundaries within the BCS to
generate a three-dimensional surface representation of
the visual scene within the FCS. The addition of bound-
aries from monocular to binocular cell pools suggests
how monocularly viewed regions might be incorporated
into a global three-dimensional percept. However, if this
is the case, then why do we not see double images
corresponding to the monocular representations of
binocularly fused boundaries? Our answer is that the
activities within the monocular, zero disparity, and non-
zero-disparity cell pools that are used to form the final
percept are emergent properties of the boundary seg-
mentation process. Cell pools interact in a competitive
manner to ensure that false or weak matches are sup-
pressed whenever possible. Thi.5 inhibition is assumed
to be between cells that attempt to code the same inputs
and is tuned developmentally such that cells that fire
together (or to the same input pattern) wire together (in

an inhibitory manner).
The model includes a new multiscale simple-to-

complex cell filter that reconciles the need to binocularly
match left and right eye images of the same contrast
polarity with the equally important need to form bound-
aries around objects whose relative contrasts with their
backgrounds reverse along their perimeter. The model
also notes how pooling inputs from even and odd sym-
metric simple cells at complex cells eliminates some
spurious binocular matches.

Perhaps the most important general contribution of
the model is its rigorous exposition of how early
mechanisms of stereo matching interact with the later

mechanisms of three-dimensional boundary segmenta-
tion and surface representation that lead to visual per-
cepts. This link clarifies how percepts of occluding and
occluded objects may form in response to both three-
dimensional scenes and two-dimensional pictures, and
how visual illusions may be generated by the same
mechanisms that produce our emergent percepts of the

real world.
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