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A neural model is described of how adaptively timed reinforcement learning occurs. The adaptive timing circuit is suggested to exist in the
hippocampus, and to involve convergence of dentate granule cells on CA3 pyramidal cells, and N-methyl-D-aspartate (NMDA) receptors. This
circuit forms part of a model neural system for the coordinated control of recognition learning, reinforcement learning, and motor learning,
whose properties clarify how an animal can learn to acquire a delayed reward. Behavioral and neural data are summarized in support of each
processing stage of the system. The relevant anatomical sites are in thalamus, neocortex, hippocampus, hypothalamus, amygdala and cerebellum.
Cerebellar influences on motor learning are distinguished from hippocampal influences on adaptive timing of reinforcement learning. The model
simulates how damage to the hippocampal formation disrupts adaptive timing, eliminates attentional blocking and causes symptoms of medial
temporal amnesia. Properties of learned expectations, attentional focussing, memory search and orienting reactions to novel events are used to
analyze the blocking and amnesia data. The model also suggests how normal acquisition of subcortical emotional conditioning can occur after
cortical ablation, even though extinction of emotional conditioning is retarded by cortical ablation. The model simulates how increasing the
duration of an unconditioned stimulus increases the amplitude of emotional conditioning, but does not change adaptive timing; and how an
increase in the intensity of a conditioned stimulus 'speeds up the clock', but an increase in the intensity of an unconditioned stimulus does not.
Computer simulations of the model fit parametric conditioning data, including a Weber law property and an inverted U property. Both primary
and secondary adaptively timed conditionings are simulated, as are data concerning conditioning using multiple interstimulus intervals (ISIs),
gradually or abruptly changing ISIs, partial reinforcement and multiple stimuli that lead to time-averaging of responses. Neurobiologically
testable predictions are made to facilitate further tests of the model.
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1. INTRODUCfION AND OVERVIEW these computer simulations use a single set of parame-
ters. Robustness of the model's properties is also
demonstrated using different sets of parameters. Sec-
tions 17-22 interpret the adaptive timing mechanism in
terms of interactions between dentate granule cells and
CA3 pyramidal cells in the hippocampus, notably at
NMDA receptors. Neurobiological data in support of
this hypothesis are summarized and new predictions
are made.

Part II, beginning with Section 23, shows how the..
spectral timing model may be embedded into a larger
neural system for the control of recognition learning,
reinforcement learning and motor learning. These sec-
tions also summarize behavioral and neural data in
support of each processing stage of this model system.
The relevant anatomical sites are in thalamus, neocor-
tex, hippocampus, hypothalamus, amygdala and cere-
bellum. The behavioral data include an explanation of
blocking in normal animals, elimination of blocking in
hippocampectomized animals, impairing timing in hip-
pocampectomized animals, medial temporal amnesia in
hippocampectomized animals, subcortical fear condi-
tioning and abnormal fear extinction in animals with
cortical lesions, and disruption of motor learning by
cerebellar lesions. Various of these data were reported
after the corresponding model stages were published.
Such data illustrate the predictive power of the theory.
No claim is made that all neural processes are mod-
elled in this system. Rather, the system is a lumped
model that attempts to provide a minimal representa-
tion of the processes that are rate-limiting in explaining
the targeted data bases. The present work may be
viewed as a step in the progressive unlumping of the
model to analyze ever finer neural processing stages.

This article contributes to the development of a
behavioral and neurobiological theory of learning and
memory. The theory describes how processes of learn-
ing, recognition, reinforcement and recall interact to
focus attention upon motivationally desired goals, to
generate appropriate actions towards these goals and
to regulate selective forgetting of environmental con-
tingencies that no longer predict behavioral success.
Recent contributions to the theory are found in refs.
85,91,93,94,118,119 and 149. Although derived from
postulates aimed at explaining vertebrate behavior, the
theory has also been applied to explain neurobiological
data concerning classical conditioning of the inverte-
brate Ap/ysia28. Other empirically supported predic-
tions and as-yet-untested predictions of the theory are
reviewed in refs. 36, 37 and 88. These models have also
been incorporated into the control architecture of freely
moving adaptive robots for use in technologys.6.

The present article further develops a part of the
theory, introduced in ref. 94, which analyzes how
recognition events control motivated behaviors that are
adaptively timed. Several different types of brain pro-
cesses organize the temporal unfolding of serial order
in behavior. The present model instantiates one type of
timing control, called spectral timing, and shows how it
can modulate the course of recognition learning, rein-
forcement learning, and the timed onset of a goal-ori-
ented action. The model's formal processing stages are
also compared with anatomical, neurophysiological and
biochemical data about several brain regions, notably
the hippocampal formation.

One of the main tasks of the present work is to
model how processes such as adaptive timing, rein-
forcement learning, attention and motor learning dif-
fer, yet are linked in the control of behavior. Thus the
exposition needs to describe several different types of
circuits that form part of a larger neural system. These
results were announced in ref. 92. Part I, Section 2,
summarizes data concerning timed learning of the rab-
bit nictitating membrane response and the pigeon FI
scallop. These data are used in Section 3 to suggest
how the model solves a problem called the Timing
Paradox. Section 4 describes the new spectral timing
model, and illustrates its processes with computer sim-
ulations. Sections 5-16 describe how the model ex-
plains some difficult parametric conditioning data, no-
tably data about secondary conditioning and the effects
of changing stimulus intensity, frequency, duration and
timing. These computer simulations show that the
model can replicate quantitative properties of data
from several types of conditioning experiments. All of

1.1. Timing the balance between exploration for noL'el
rewards and consummation of expected rewards

The spectral timing model clarifies the following
type of behavioral competence, which is stated in an
informal fashion to emphasize its familiarity in our
daily lives. Data which support and refine this discus-
sion are summarized throughout the article. Many goal
objects may be delayed subsequent to the actions that
elicit them, or the environmental events that signal
their subsequent arrival. Humans and many animal
species can learn to wait for the anticipated arrival of a
delayed goal object, even though i!s time of occurrence
can vary from situation to situation. Such behavioral
timing is important in the lives of animals which can
explore their environments for novel sources of gratifi-
cation. On the one hand, if an animal could not inhibit
its exploratory behavior, then it could starve to death
by restlessly moving from place to place, unable to
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remain in one place long enough to obtain food there,
On the other hand, if an animal inhibited its ex-

ploratory behavior for too long while waiting for an
expected source of food to materialize, then it could
starve to death if food is not, after all, forthcoming.

Thus an animal's survival may depend on its ability
to accurately time the delay of a goal object based
upon its previous experiences in a given situation. Such
an animal needs to balance between its exploratory
behavior which may discover novel sources of reward,
and its consummatory behavior which may acquire
expected sources of reward. To effectively control this
balance, the animal needs to be able to suppress its
exploratory behavior and focus its attention upon an
expected source of reward at around the time that the

expected delay transpires for acquiring the reward.
Concepts of attention, expectation, exploration, tim-

ing, novelty and reward have a long history in psy-

chology95,96,106,107,138.1SS.169. The present article con-
tributes to a mechanistic understanding of these con-
cepts by showing how rigorously defined neural net-
work models can be used to explain a range of behav-
ioral and neural data that have not yet been explained
either at all, or in a unified fashion, by alternative
means. No less important than data analyses per se is
the theoretical explication of new organizational prin-
ciples which clarify the environmental and computa-
tional problems that the models are designed to solve.

this sensory disconfirmation many times before the 2-s
delay has elapsed.

The central issue is: what spares the animal from
erroneously reacting to these expected non-occurrences
of food during the first 2 s as predictive failures? Why
does the animal not immediately become so frustrated
by the non-occurrence of food that it shifts its atten-
tional focus and releases exploratory behavior aimed at
finding food somewhere else? Alternatively, if the ani-
mal does wait, but food does not appear after the 2 s
have elapsed, why does the animal then react to the
unexpected non-occurrence of food by becoming frus-
trated, shifting its attention, and releasing exploratory
behavior?

Grossberg and Schmajuk94 argued that a primary
role of the timing mechanism is to inhibit, or gate, the
process whereby a disconfirmed expectation would oth-
erwise negatively reinforce previous consummatory be-
havior, shift attention and release exploratory behav-
ior. The process of registering sensory mismatches or
matches is not itself inhibited; if the food happened to
appear earlier than expected, the animal could still
perceive it and eat. Instead, the effects of these sensory
mismatches upon reinforcement, attention and explo-
ration are inhibited.

PART I. SPECTRAL TIMING

2. EXAMPLES OF SP~CTRAL TIMING: CONDITION-

ING THE NICTITATING MEMBRANE RESPONSE AND
THE FI SCALLOP

1.2. Distinguishing expected non-occurrences from unex-
pected non-occurrences: inhibiting the negative conse-
quences of expected non-occurrences

In this regard, an intuitive concept such as 'timing'
is insufficient to characterize the several functionally
distinct types of timing mechanisms that the brain uses
to organize ongoing behaviors. Spectral timing, in par-
ticular, calibrates the delay of a single behavioral act,
rather than the organization of a correctly timed and
speed-controlled sequence of acts, or the types of tim-
ing whereby circadian, ultradian, or motor rhythms are
organized. The types of task to which spectral timing
contributes may be motivated by the following exam-
ple, which we again describe in intuitive tenDS for
vividness. Suppose that an animal typically receives
food from a food magazine 2 s after pushing a lever,
and that the animal orients to the food magazine right
after pushing the lever. When the animal inspects the
food magazine, it perceives the non-occurrence of food
during the subsequent 2 s. These non-occurrences dis-
confirm the animal's sensory expectation that food will
appear in the magazine. Because the perceptual pro-
cessing cycle that processes this sensory infonnation
occurs at a much faster rate than 2 s, it can compute

A well-studied example of spectral timing is the
conditioning of the rabbit nictitating membrane re-
sponse. Rabbits, like many mammals, have a translu-
cent sheet of tissue called a 'nictitating membrane',
that acts as a third eyelid. The nictitating membrane
response, which extends this sheet across the eye, can
be classically conditioned. For example, a conditioned
stimulus, or CS, can be paired with noxious uncondi-
tioned stimulus, or US, such as a periorbital shock or
airpuff, that elicits membrane extension. Smith'S3 stud-
ied the effect of manipulating the time lag between CS
onset and US onset. This lag is called the interstimulus
interval, or ISI. The CS was a 50-ms tone and the US
was a 50-ms electric shock. The ISI values were 125,
250, 500 and 1,000 ms. The fact that conditioning
occurred at ISIs much larger than the CS duration
implies that an internal trace of the CS is stored in
short term memory (STM) subsequent to CS offset.
Because an internal CS trace is needed to bridge the
ISI gap between CS offset and US onset, such a
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Fig. 2. Computer simulation of Weber law propeny and invened U
in learning as a function of ISI. The output signal functions R(t) =
Ljf(xj)YjZi are plotted on a test trial, in response to the CS alone,
subsequent to 10 prior learning trials with CS-US separated by
different ISIs. Successive curves from left to right were generated by
ISIs of 0 (the lowest amplitude curve), 125, 250, 500 and 1,000
ms using a US duration of 50 ms and an /u~ intensity of 10 units.

(Reprinted from Grossberg and Schmajuk 01 with permission.)

paradigm is called trace conditioning, to distinguish it
from the delay conditioning paradigm wherein the CS
and US overlap in time.

Smith1S3 found that the conditioned response, mea-
sured as percentage of responses and response ampli-
tude, was determined by both ISI and US intensity,
whereas response onset rate and peak time were deter-
mined by the ISI essentially independently of US in-
tensity. An increase in the mean of the peak response
time correlated with an increase in the variance of the
response curve, for each ISI (Fig. 1). Grossberg and
Schmajuk94 called this the Weber law property after its
similarity to psychophysical ratio scales observed in
vision and audition. This similarity had also been ob-
served and commented upon by Gibbon60 in a discus-
sion of scalar timing theory.

Fig. 2 summarizes a computer simulation by Gross-
berg and Schmajuk94 of the Weber law property. The
data and computer simulation in Figs. 1 and 2 clarify
why this type of timing is called spectral timing. These
curves show how the peak behavioral and model re-
sponses scale with the ISI. Below it is shown how this
property emerges as a population response from an
ensemble of model cells that react to the CS and US
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input at different rates. The set of rates defines a
spectrnm of activations that is densely distributed across
all finite ISIs up to some maximum. The model shows
how learning can enhance the activations of those cells
whose response rates are best tuned to the experienced
set of ISIs. Thus the ability of the model to scale so
well with the behavioral response depends on its use of
a cell population whose innate reaction rates may be
sampled by learning to match the ISI.

Another example of spectral timing arises in appeti-
tive instrumental conditioning with a fixed delay to
reward in both rats127.144 and pigeons145. In these ex-
periments, animals were rewarded for the first lever
press (in rats) or key peck (in pigeons) that occurred a
fIXed time after a signal was presented (Fig. 3). A
characteristic pattern of response evolves: the animal
withholds responding for a time, and then responds at
an increasing rate. On test trials, the CS remains on for
a long interval relative to the delay at which the US is
normally presented, but no US occurs. Then the ani-
mal's response rate rises, before gradually falling. Ex-
amples of pigeon data are shown in Fig. 4.

These two different timed measures of response-
nictitating membrane (NM) topography and fIXed delay
response rate-are obtained in different paradigms,
yet they exhibit many common properties, including
covariance of ISI with peak time and peak breadth.
This kind of temporal covariation has been obser.ed in
many other paradigms, including signalled avoidance
paradigms and differential reinforcement of long la-
tency response (DRL) paradigms. These effects and
others are reviewed in ref. 61.
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Fig. I. Conditioning data from a nictitating membrane learning
paradigm. Mean topography of nictitating membrane response after
learning trial 10 with a 50-ms CS, ISIs of 125, 250, 500 and 1,000 ms,
and different (I, 2, 4 MA) intensities of the shock US in each

subsequent panel. (Reprinted from SmithlS) with permission.)
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TRAINING TRIAL 3. THE TIMING PARADOX AND A SOLUTION

cs ~ L
I---ISI~

rLus

TESTING TRIAL

cs
-1 1 I--ISI~

us

Fig. 3. A schematic of the training regimen in fixed-interval delay
paradigm employed in the experiments summarized in Fig. 4. After
the conditioned stimulus was turned on, the first key peck after a
certain interval was rewarded. During testing trials, the conditioned
stimulus was turned on and remained on for an interval far longer
than the expected delay, so that the subjects' behavior at delays

greater than the expected ISI could be Quantified.

A variety of models may at the outset be imagined
wherein the individual cells of a population differ by
some parameter. The parameter could, for example, be
the delay in a delay line through which each cell
activates an output signal. Such a delay line model
does not, however, easily generate the Weber law
property or other data properties summarized and
simulated in Sections 5-16.

The Weber law property of a spectral timing model
provides a way for an animal to distinguish between
the expected and unexpected non-occurrences that
were discussed in Section 1, without losing the capacity
to time its conditioned responses. The Timing paradox
described in this section clarifies why this is a non-triv-
ial problem. The Timing paradox comprises the follow-
ing, apparently contradictory, pair of constraints. On
the one hand, in response to any fIXed choice of
conditionable ISI, the learned response delay approxi-
mates the ISI and thereby enables the animal to pre-
pare appropriate responses for when they are most
needed. Thus a model of adaptive timing needs to
accurately discriminate between individual temporal
delays. On the other hand, expected non-occurrences
throughout the ISI should not be treated as predictive
failures. Thus the inhibitory signal that prevents this
from happening must be distributed throughout the
ISI. How can a timing model both be sharply enough
tuned to precisely learn the IS I, yet be broadly enough
tuned to inhibit orienting responses throughout the
entire ISI interval?

A spectral timing model reconciles the two require-
ments of accurate optimal temporal delay and tempo-
rally distributed activation via the Weber law property
(Fig. 2). According to this property, the breadth of the
model's temporal response scales with its peak time.Consequently the onset of " the CS causes the immedi-

ate initiation of an output signal which is sustained
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z
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Fig. 4. Data on pigeon key pecking in a fixed-interval delay condition. All animals were trained to respond to two different conditioned stimuli,
one visual and one auditory, each of which predicted reward for the first key peck after a fIXed interval. For the animals in the group whose
behavior is summarized in the graph on the left,lhe tone signalled availability of reward after a 15 second delay and the light signalled
availability of reward after a 30-s delay. For animals in the group whose behavior is summarized in the graph on the right, the tone signalled
availability of reward after a 30-s delay and the light signalled availability of reward after a 15-s delay. The times at which each response curve
peaks correspond closely with the times at which each key peck is of maximal value. Also, within each stimulus modality, subjects' responses

exhibit a covariation of peak time and peak breadth, as in the Weber law property shown in Figs. 1 and 2.
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As illustrated in Section 2, the model is tested by
simulating data from reinforcement learning experi-
ments, notably classical conditioning experiments. Each
sensory event is therefore called a conditioned stimu-
lus, or CS. The i1h sensory event is denoted by CS;.
Event CS; activates a popufation of cells that is called
the i1h sensory representation Sj (Fig. 5). Another
population of cells, called a drive representation D,
receives a combination of sensory, reinforcement and
homeostatic (or drive) stimuli. Reinforcement learning,
emotional reactions and motivational decisions are
controlled by D71. In particular, a reinforcing event,
such as an unconditioned stimulus, or US, is capable of
activating D.

Various authors have invoked representations anal-
ogous to drive representations. Bower et al. have called
them emotion nodes22.23 and Barto et al.s have called
them adaptive critic elements. During conditioning,
presentation of a CS; before a US causes activation of
s; followed by activation of D. Such pairing causes
strengthening of the adaptive weight, or long term
memory trace, in the modifiable synapses from Sj to D.
This learning event converts CS; into a conditioned
reinforcer. Conditioned reinforcers hereby acquire the
power to activate D via the conditioning process.

In the START model, reinforcement learniJIg in
S; -+ D pathways is supplemented by a parallel learning
process that is concerned with adaptive timing. As
shown in Fig. 5, both of these learning processes out-
put to D, which in turn inhibits a population of cells
called the orienting subsystem. The orienting subsys-
tem is denoted by A because it is a source of non-
specific arousal signals that are capable of initiating
frustrative emotional reactions, attention shifts and
orienting responses (see Part II). The inhibitory path-
way from D to A is the gate that prevents these events
from occurring in response to expected disconfirma-
tions (Section 1).

Fig.S. A START model that combines a spectral timing module with
a reinforcement learning network to achieve adaptively timed rein-

forcement learning and inhibition of the orienting subsystem.

throughout the entire ISI, but the peak output of the
signal is accurately located at the expected arrival time
of the US.

A solution of the Timing paradox is achieved by
assuming that the output of the spectral timing model
obeys the Weber law property, and that a neural circuit
exists which processes this output to carry out two
different functions along two different pathways. One
pathway is used to inhibit the expression of a predictive
failure, as shown in Fig. 5. By virtue of the Weber law
property, this inhibition occurs throughout the ISI in-
terval. The second pathway is used to excite, or ener-
gize, adaptively timed responding, as in Figs. 5 and 30
below. This property uses the fact that spectrally timed
activations peak at the ISI. These pathways will be
characterized with increasing precision in Section 4
and Part II.

4. START: A UNIFIED MODEL OF ADAPTIVE TIMING
AND CONDITIONED REINFORCER LEARNING

4.1. Limited capacity short tenn memory
The 'sensory representations Sj compete for a lim-

ited capacity, or finite total amount, of activation.
Winning populations are said to be stored in short
term memory, or STM. The competition is carried out
by an on-center off-surround interaction among the
populations Sj. The property of STM storage is achieved
by using recurrent, or feedback, pathways among the
populations. A tendency to select winning populations
is achieved by using membrane equations, or shunting
interactions, to define each population's activation,
and a proper choice of feedback signals between popu-
lations1s.s1. Expressed mathematically," each CS, acti-

The new adaptive timing model will now be defined.
It combines Spectral Timing mechanisms with mecha-
nisms from Adaptive Resonance Theory (see Part II).
Hence it is called the START model. The START
model builds upon a previous model of reinfqrcement
learning whose processing stages are compared with
behavioral and neural data below. Here we provide just
enough exposition to define the model and to compare
its emergent properties with these data.
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vates an STM representation Sj whose activity Sj obeys
the shunting on-center off-surround competitive feed-
back equation:

(b)
d

"d/Sj= -aASj+/3A(l-Sj)(/;(t) +/s(S;»

-'YASiLfs(Sk).
k..i

(1)

In (1), lj(t) is the input that is turned on by presenta-
tion of CSj. Term -aASj describes passive decay of

activity Sj. Term (3 A(l -SjXlj(t) + f s(Sj» describes the
excitatory effect on Sj of the input lj(t) and the
feedback signal f s(Sj) from population Sj to itself.

Activity Sj can continue to grow until it reaches the
excitatory saturation point, which is scaled to equal 1
in (1). Term -'YASjEk~jfs(Sk) describes inhibition of

Sj by competitive signals fS(Sk) from the off-surround
of populations k.;. i. Fig. 6 summarizes a computer

simulation of how a brief CSt gives rise to a sustained

(c) (d)
Fig. 7. Four possible feedback signal functions f for STM storage by
equation (2): a: threshold-linear signal; b: sigmoid signal; c: binary

signal; d: threshoid-jump-linear signal.

STM activation S" which is partially inhibited by com-
petition from So's activation in response to a US. The
signal function f s may be chosen to have any of the
fonns depicted in Fig. 7 without qualitatively altering
model properties. In this article, the simple rectifica-
tion function

+
f(w)=(w-JLJ =max(w-JL,O) (2)

of Fig. 7a is used, except in equation (8) below, which
uses a sigmoid signal function as in Fig. Th.

11

(0) 4.2. Drive representation
The computer simulations reported herein use only

a single drive representation D. Explanations of data
arising from competing drive representations are dis-
cus~ed in GrossbergS3.s5. The activity D of the drive
representation D obeys the equation

10

(b)

d
(3)

In (3), tem1 -aDD describes the passive decay of

activity D. Tem1 {3DEjfD(Sj)Cj describes the total exci-
tatory effect of all the sensory representations Sj on D.
In this tem1, the signal function f D is chosen as in (2),
and Cj is the adaptive weight, or long tem1 memory

(L TM) trace, in the pathway from the sensory repre-
sentation Sj of CSj to the drive representation D. This
LTM trace is denoted by Cj because its size measures
how well Sj can activate D, and thus how CSj (i ~ 1)
has become a conditioned reinforcer through learning.
Because Cj multiplies fD(Sj), a large activation of Sj
will have a negligible effect on D if Cj is small, and a
large effect on D if Cj is large. Coefficient Co is set

equal to a large value from the sta~ because it enables
the US to activate D via its sensory representation so.
Tem1 'YDR describes the total output of the spectral
timing circuit to D. Output R is defined in (11).

(c)

(d)

Fig. 6. In a START model, STM storage of a brief CS is achieved by
positive feedback within the sensory representation s. CS attenua-
tion by the US is dynamically controlled by the strength of recurrent
inhibitory signals. a: input II activated by CSI; b: input 10 activated
by US; c: STM activation of CS1 sensory representation; d: STM

activation of US sensory representation.
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51 I J===~~ =
(0)

Sol if t I

(b)

with a population of cell sites whose members
react at a spectrum of rates 'j' Neural populations

whose elements are distributed along a temporal or

spatial parameter are familiar throughout the
nervous system. Two examples are populations of
spinal cord cells that obey the size principle97,98, and
the spatial frequency-tuned cells of the visual
cortex 109,130,134-137,140,152,171,172,177.

The spectral activities Xjj that are associated with
drive representation D and activated by sensory repre-
sentation Sj obey the equation

D
d
dtXij = rj( -Xii + (1 -Xij)!x( Si»)' (5)

where Ix satisfies (2). By (1) and (5), presentation of
CSj to Sj via an input Ij generates an output signal
I x(Sj) that activates the local potentials Xjj of all cell
sites in the target population. The potentials .\" jj re-
spond at rates proportional to r j' j = 1, 2,. .., n. These

potentials activate the next processing stage via signals

(c)

N

H
Xii

) -H.[(Xii -cSH'+Xii
/J

(6)(d)

Fig. 8. Behavior of the Now Print module of the START model after
many conditioning trials. a: activation of the sensory representation
5. by the CS; b: activation of the sensory representation 50 by the
US; c: the resultant activation D of the drive representation D; d:

the res~tant Now Print signal N.

Signal f(x;j) is a sigmoid function of activity X;j' Fig.
9a shows the activation spectrum f(X;ft) that arises
from presentation of CS; to s; via input I; in (1). using
a choice of rate parameters 'j in (5) which range from
10 (fast) to 0.0025 (slow). The method by which the
simulations were performed is described in the Ap-

pendix.

Fig. 8c summarizes a computer simulation in which
the activity D responds to CS and US signals after 50
conditioning trials. Fig. 8a,b summarizes the corre-
sponding STM traces S I of the CS and So of the US,

respectively.
4.5. Habituatire transmitter spectrum

Each spectral activation signal f(Xij) interacts with
a habituative chemical transmitter Yij via the equation

4.3. Conditioned reinforcement
The adaptive weight C; that calibrates conditioned

reinforcement obeys a gated learning law69:
d
d/Y;j = ay(l -Y;j) -/3yf(x;j)Y;j (7)

(4)
According to equation (7), the amount of neurotrans-
mitter Yij accumulates to a constant target levell, via
term ay(1 -Yij)' and is inactivated, or habituates, due
to a mass action interaction with signal [(Xii)' via term
-/3).!(Xij)Yij' The different rates rj at which each Xii
is activated causes the corresponding Yij to become
habituated at different rates. The family of curves
Yij(t), j = 1, 2,..., n, is called a habituation spectrum.

The signal functions !(Xij(t» in Fig, 9a generate the
habituation spectrum of Yij(t) cu~es in Fig. 9b.

Learning by C! is turned on and off by the signal Sj
from Sj' which thus acts like a learning gate, or modu-
lator. Once turned on, Cj performs a time-average of
activity at the drive representation D via the signal
!c(D), which is chosen as in (2). Activity Cj cannot
exceed the finite value 1, due to the shunting term
1 -Cjo The value of Cj can both increase and decrease
during the course of learning. The remaining equations
of the model describe the adaptive timin~ process.

4.6. Gated signal spectrum
Each signal [(Xii) interacts with Yii via mass action.

This process is also called gating of [(Xii) by Yii to

4.4. Activation spectrum
The START model is said to control 'spectral' tim-

ing because each drive representation D is associated



12

transmitter regulating steps46, such as transmitter pro-
duction (term a,,), feedback inhibition by an interme-
diate or final stage of production on a former stage
(term -a"Y;j)' and mass action transmitter inactiva-
tion (term -fJ,,!(Xj)Y;j). Alternatively, they can be
described as the voltage drop across an RC circuit, or
the current flow through an appropriately constructed
transistor circuit. These properties are sufficient to
explain the article's targeted data, so finer transmitter
processes, such as transmitter mobilization effects, are
not considered herein.

fll

(0)

t

(b)

4.7. Spectral learning law
Learning of spectral timing obeys a gated steepest

descent equation

(c) d
d/z;j = az!(x;j)Y;j(-Z;j + N) (8)

(d)

J _-_/l~""'",, ' .. ..

..

' .
: : t

R

(e)

Fig. 9. Spectral timing properties of a START model. The CS\ and
US stimuli, were of intensity 10 for 0.05 time units and 0 otherwise.
The onsets of CS\ and USl, respectively, are denoted in the figures
by dotted vertical lines. The time difference between them of 0.5
time units is the ISI on the trial in question. a: the CS-activated
spectrum f 1j(t) = f(x \j(t »; b: the habituating transmitter gates
Ylj(t). c: the singly gated spectrum g\ (t)=f(XI (t»Y\j(t). d: the
doubly gated spectrum h\j(t)=f(xlj(t~)Ylj(t)Z\j(t) arising after 5
trials. e: the corresponding output signal R(t). Simulations were
performed as described in the Appendix, with parameters and signal
functions given by 'Y=0.2, a,,-1.0, /3y-125.0, a,=1.0, 8=0.0,
£ = 0.02, aE = 240.0, aA = 1.2, /3A -120.0, 'YA = 12.0, aD -120.0, /3D
= 120.0, 'YD = 0.0, fD(S) = [S -0.05]+, ac = 0.5, /3c -25.0, fc(D)=

[D-0.05]+, fA(A)=[A -0.1]+, Fx(A)-[A -0.7]+, rj -10.125/
(0.0125 + j); and the intensities of the CS and US inputs Ii in (I)

equal 2.

where N is the Now Print signal of (9). Each long term

memory (L TM) trace Z ij in (8) is activated by its own
sampling signal gij = f(Xij)Yij' The sampling signal gij

turns on, or gates, the learning process, and causes Zij
to approach N during the sampling interval at a rate
proportional to gij. The attraction of Zij to N is called
steepest descent. Thus (8) is an example of learning by
gated steepest descent. Each Z ij changes by an amount
that reflects the degree to which the curves gift) and
N(t) have simultaneously large values through time. If
gij is large when N is large, then Zij increases in size.
If gij is large when N is small, then Zij decreases in
size. As in equation (4), Zij can either increase or
decrease as a result of learning.

Associative learning by gated steepest descent was
incorporated into neural network models in Gross-
berg69 and is the learning law that was used to intro-
duce adaptive resonance theory77.78. An associative
learning law of this form was subsequently used by
Levy et al. to model their data on hippocampal
LTP'2o.121. SingerlS' has also used such a law to model
his experiments on adaptive tuning of visual cortical
cells during the visual critical period. These experi-
ments support the adaptive res()nance theory predic-
tions77.78 that both hippocampal LTP and feature de-
tector tuning in visual cortex should obey such a learn-

ing law.

4.8. Now Print signal
A transiently active Now Print signal N modulates

the learning process of (8). The signal N may be
activated either by a US or by a CS that has already
become a conditioned reinforcer. Both the US and a
conditioned reinforcer CS can activate the drive repre-

yield a net signal gjj that is equal to f(xjj)Yjj' Each
gated signal gift) = f(Xj}t)Yj}t) has a different rate

of growth and decay, thereby generating the gated
signal spectrum shown in Fig. 9c. In these curves, each
function gift) is a unimodal function of time, where
function gift) achieves its maximum value Mjj at time
I:j, Tjj is an increasing function of j, and Mjj is a

decreasing function of j.
These laws for the dynamics of a chemical transmit-

ter were described in Grossberg67.68. They capture the
simplest first-order properties of a number of known
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sentation D, as shown in (3). We assume that the Now
Print signal N is turned on by sufficiently large and
rapid increments in the activity D of D. The transient
signal N is derived from the sustained activity D by
the action of a slow inhibitory interneuron (Fig. 10).
The transformation from sustained activity D to tran-
sient activity N can be realized mathematically by the
function

11: I : I: I: I: I
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N= [fc(D) -E-E]+, (9)
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In (9), E is the activity of an inhibitory interneuron
that time-averages !c(D), as in equation

;11

Zij

hij

t

d
d(E = aE( -E + fc(D»), (10)

before inhibiting the direct excitatory signal !c(D).
Equation (9) means that N = 0 if !c(D) -E:$ E, and
N = !c(D) -E -E if !c(D) -E > E. Figs. 8d and lOc

illustrate how N responds to increments in D. An
important property of N is that it increases in ampli-
tude, but not significantly in duration, in response to

larger inputs !c(D).

(b) (8)
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Fig. II. Selective learning within different spectral populations at a
fixed ISI = 0.5 time units. Each three-image panel from a to f

represents the gated signal g\j(t) (top), long term memory trace
Z\j(t) (middle), and doubly gated signal h\j(t)= gl/(t)Zlj(t) (bot-
tom), at a different value of j. In a, j = I; in b, j = 17; in c, j = 33; in
d, j = 49; in e, j = 65; in (0, j = 81. The same parameters as in Fig. 9

were used.

(0)

D

As noted above, the time interval between CS onset
and US onset is called the interstimulus interval, or
ISI. Using the spectral learning law (8)-(10), the indi-
vidual L TM traces differ in their ability to learn at
different values of the ISI. This is the basis of the
network's timing properties. Fig. 11 illustrates how 6
different L TM traces z Ij' i = 1,. ..,6, learn during this

simulated learning experiment. The CS and US are
paired during 4 learning trials, after which the CS is
presented alone on a single performance trial. In this
computer simulation, the CS input lcs(t) remained on
for a duration of 0.05 time units on each learning trial.
The US input I us(t) was presented after an ISI of 0.5
time units and remained on for 0.05 time units. The
upper panel in each part of the figure depicts the gated
signal function KIft) with rj chosen at progressively
slower rates. The middle panel plots the corresponding
LTM trace ZIj(t).

(b)

(c)

Fig. 10. Generation of a Now Print signal. a: the output of a drive
representation D is converted into a Now Print signal N by passing
this output through a fast excitatory pathway and a slower inhibitory
pathway, whose signals converge at N. b: simulation of the activity D
of D in response to two successive inputs, with the first response
larger. c: activity N of N scales with the size of the increment in D.

All parameters were as in Fig. 9.
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4.9. Doubly gated signal spectrum
The lower panel plots the twice-.gated signal h /}t)

= !(x/}t»y/}t)z/j(t). Each twice-gated signal func-

tion hjj(t) registers how well the timing of CS and US
is learned and read-out by the ilh processing channel.
In Fig. lId, where the once-gated signal g /j(t) peaks at
approximately the ISI of 0.5 time units, the LTM trace
Z /ft) shows the maximum learning. The twice-gated
signal h/j(t) also shows a maximal enhancement due to
learning, and exhibits a peak of activation at approxi-
mately 0.5 time units after onset of the CS on each
trial. This behavior is also generated on the fifth trial,
during which only the CS is presented.

can occur. In primary conditioning, a conditioned stim-
ulus CSI is paired with an unconditioned stimulus US
until CS I becomes a conditioned reinforcer. In sec-

ondary conditioning, another conditioned stimulus CS2
is paired with CS I until it, too, gains reinforcing prop-
erties. Various experiments have shown that the condi-
tioned response to CS2 can be adaptively timed63.112.
Indeed, Gormezano and Kehoe63 claimed that, in their
experimental paradigm, 'first- and second-order condi-
tioning follow the same laws' (p. 314), although they
also acknowledged that some variables may differen-
tially effect first-order and second-order conditioning
in other paradigms.

Adaptively timed secondary conditioning could eas-
ily erase the effects of adaptively timed primary condi-
tioning in the following way. In order for CSI to act as
a conditioned reinforcer, CSI must gain control of the
pathway along which the US activates its reinforcing
properties. Suppose that CSI activated its sensory rep-
resentation Sl via an input (/cs,) pathway and that US
expressed its reinforcing properties via an input (Ius)
pathway. Also suppose that conditioned reinforcer
learning enabled CSI to activate Ius. Thereafter, pre.
sentation of CSI would simultaneously activate both
the Ics, pathway and the Ius pathway. This coactiva-
tion would create new learning trials for CSI with a
zero ISI. In other words CSI could self-print a spec-
trum with zero ISI due to CSI-CSI pairing via the Ics
and conditioned Ius pathway. Thus, as CSI became a
conditioned reinforcer, it could undermine the timing
that it learned through CSI-US pairing during primary
conditioning. Such self-printing could, for example,
occur on secondary conditioning trials when a CS2 is
followed by a conditioned reinforcer CSI.

4.10. Output signal
The output of the network is the sum of the twice-

gated signals h jt) from all the spectral components
corresponding to all the CS;. Thus

R = L!(x;j)Y;jZ;jO

;,j
(11)

The output signal computes the cumulative learned
reaction of the whole population to the input pattern.
Fig. ge shows the function R derived from the hjj
shown in Fig. 9d. A comparison of Fig. 9c-e illustrate
how the output R(t) generates an accurately timed
response from the cumulative partial learning of all the
cell sites in the population spectrum. The once-gated
signals gift) in Fig. 90 are biased towards early times.
The twice-gated signals hjft) in Fig. 9d are biased
towards the ISI, but many signals peak at other times.
The output R(t) combines these partial views into a
cumulative response that peaks at the ISI.

5. THE PROBLEM OF SELF-PRINTING DURING
ADAPTIVEL Y llMED SECONDARY CONDITIONING

6. SIMULATIONS OF SECONDARY CONDITIONING

The START model overcomes the self-printing
problem with its use of a transient Now Print signal N,
as in (9). During primary conditioning, onset of the US
causes a brief output burst from N. During secondary
conditioning, onset of the conditioned reinforcer CSI
also causes a brief output burst from N. However, the
spectrum activated by CSI takes awhile to build up, so
essentially all of its activities X;j and sampling signals
!(X;j)Y;j are very small during the brief interval when
N is large (Fig. lOa,c). By the spectral learning law (8),
negligible self-printing occurs. The main effect of the
s~lf-printing that does occuristoreduc~ ~v~ryspectral
L TM trace z Ij in (8) by a fIXed proportion of its value,
thus scaling down the size of R(t) without changing the
timing of its peak.

The START model overcomes 4 types of problems
whose solution is needed to explain behavioral and
neural data about adaptively timed conditioning. These
are the problems of (1) self-printing during adaptively
timed secondary conditioning, (2) asymmetric effects of
increasing CS or US intensity on timed responding, (3)
different effects of US duration on timing than on
reinforcement, and (4) combinatorial explosion of net-
work pathways. These problems and their solution by
the START model are described below, along with
supportive data. Problems (1), (3) and (4) were not
solved by the Grossberg and Schmajuk94 model.

A major problem for any model of adaptive timing is
to explain how adaptively timed secondary conditioning
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Fig. 12a depicts the model output R(t) when the
Now Print threshold £. in (9) is set to a high enough
level to guarantee that no self-printing or secondary
conditioning occur. Here CS\ never activates a Now
Print signal. Fig. 12b shows the output when £. is set
lower, thus allowing secondary conditioning and some
self-printing to occur. Correct timing still obtains.

Fig. 13 shows how the model behaves during sec-
ondary conditioning. The left hand half of each panel
shows the output of the model in response to the
primary conditioned stimulus CS\, and the right hand
half of each panel shows the model output in response
to the secondary conditioned stimulus CS2. The peak
time arising from the presentation of CS2 occurs near
the expected time of arrival of CS \, rather than the
expected time of the US. This property is consistent
with the environment that a model or animal experi-
ences, since the subject never sees CS2 paired with the
primal US, but rather sees it paired as a predictor of
CS" which serves as a CR in this context.

CS,
Timed Output Signal

Cs;
Timed Output Signal

ISI, = 0.25.
1S12 = 0.25

151, = 0.50.
1512 = 025

151, = 025.
1S12 = 050RI .

l: !L.
.t

151, = 050.
1S12 = 050

t t

Fig. 13. START model output R(t) during secondary conditioning
with varying ISIs between the first and second CSt and between the
second CS and the US using the parameters of Fig. 9. Notation ISI t
below denotes the ISI between CS. and US, and ISI2 denotes the
ISI between CSz and CSt. On each learning trial either CS.-US or
CSz-CSt occur, but not CS2-CSt-US. The curves are drawn with
CS.-US pairings in the left column and CS2-CS. pairings in the
right column. The vertical bars occur at successive 0.25 time unit
intervals: a, b, ISI. = 0.25, ISI2 = 0.25; c, d, ISI! = 0.5, ISI2 = 0.25; e,

f, ISI. = 0.25, ISI2 = 0.5; g, h, ISI. = 0.5, ISI2 = 0.5.

7. THE ASYMMETRY BElWEEN CS AND US PRO-
CESSING IN TIMING CONTROL

Although CS1 can attain properties of a conditioned
reinforcer through CSt-US pairing, this does not imply
that all the functional properties of a conditioned

(a)

reinforcer and an unconditioned stimulus are inter-
changeable. In fact, increasing the intensity of a condi-
tioned reinforcer CSt can 'speed up the clock'121.127.176,
whereas increasing the intensity of a primary US can
increase the amplitude of conditioned response, but
does not change its timinglS3.

The fact that parametric changes of CS and US may
cause different effects on adaptive timing places con-
straints on possible mechanisms of how adaptive timing
is learned during secondary conditioning. Although the
CS acquires reinforcing properties of a US when it
becomes a conditioned reinforcer, it may not acquire
all of its timing properties. Our proposed solution of
the self-printing problem suggests how different re-
sponses may be caused by an increase in CS intensity
or US intensity. This explanation holds even if the CS1
and US sensory representations SI and so' respectively,
each send signals along the same types of pathways to
the drive representation and the adaptive timing cir-
cuit: The explanatioffissummarized below;

An increase in CSt intensity causes an increase in
the amplitude of input II(t) in (1). The larger input
causes a larger peak amplitude of activi.ty SI in (l),and
a larger signal f x(SI) in (5). By (5), the rate with which

(b)
Fig. 12. The effect of self-printing upon the output of the model. a: a
large threshold E in the Now Print signal abolishes self-printing and
secondary conditioning. It generates the lower output R(t). b: a
smaller threshold allows secondary conditioning and self-printing

without a loss of timing. It generates the larger output R(t).



16

duration coexist with emotional conditioning proper-
ties that do increase significantly with US duration?

An answer can be given using properties of drive
representations D. The activation D of a drive repre-
sentation by a US does persist longer when the US
duration is increased, and does thereby increase the
strength of emotional conditioning at the s -0 D
synapses that are modelled by equations (3) and (4);
see ref. 73, Section 4 and ref. 81 for further discussion
of this property. This sustained activation D of a drive
representation gives rise to a transient Now Print sig-
nal N at a different processing stage-a transient
detector-that is downstream from D itself, as dis-
played in Figs. 5 and 10. Thus D and N represent
responses of 'sustained cells' and 'transient cells'-a
distinction familiar from visual perception-which here
instantiate different functional properties of emotional
conditioning and conditioning of adaptive timing, re-
spectively. The parametric data properties summarized
in Sections 6-8 illustrate that the processes of emo-
tional conditioning and adaptive timing, although
linked, are not the same. They also support the START
model's proposal of how these processes interact.

9. THE PROBLEM OF COMBINATORIAL EXPLOSION
STIMULUS VERSUS DRIVE SPECTRA

a spectral activation x Ij reacts to signal f x(S I) equals
rfl + fx(SI». Thus an increase in CSI intensity speeds

up the processing of all spectral activations .f Ij' Be-
cause CSI is a conditioned reinforcer, some of its LTM
traces Z Ij are non-zero. Thus the total output R in (11)
peaks at an earlier time, and causes the total output D
from D in (3) to also peak at an earlier time.

In contrast, a primary reinforcer such as a US does
not generate a significant output R(t) from the spec-
tral timing circuit, even if it is allowed to generate a
large signal f x(So) to the adaptive timing circuit in (5).
This is true because a large US generates a signal
f x(So) to the spectral activations in (5) at the same time
that it generates a large signal f D(SO) to D in (3) and a
large Now Print signal N in (8). Thus a US creates the
conditions of a 'zero ISI experiment' for purposes of
spectral learning. AIl the LTM traces ZOj in (8) there-
fore remain very small in response to any number of
US representations. An increase in US amplitude thus
cannot cause speed-up of the output R(t) in (11),
because this output remains approximately zero in
response to any US intensity. In summary, the same
mechanism that explains how the self-printing problem
is avoided also explains why an increase in CS inten-
sity, but not US intensity, speeds up the conditioned

response.
The primary effect of an increase in US intensity is

to increase the amplitude of the signal f D(SO) in (3) to
the drive representation D. This causes an increase in
the amplitude of D and thus an increase in the amp ii-
tude of the conditioned response that is modulated by
D. This explanation of how a US increases the ampli-
tude of the conditioned response also holds if the US
sends no signal f x(So) directly to the adaptive timing
circuit. See Grossberg and Schmajuk94 for a further
discussion of this issue.

8. DIFFERENT EFFECTS OF US DURATION ON EMO-
TIONAL CONDITIONING AND ADAPTIVE TIMING:
SUSTAINED AND TRANSIENT RESPONSES

The existence of a transient Now Print signal N
plays a central role in our explanations of how to avoid
self-printing during secondary conditioning, and of dif-
ferent effects of CS and US intensity on learned tim-
ing. Another type of data lends support to the hypothe-
sis that the activity D and the Now Print signal N both
exist but respond to the US in .different ways. These
data show that an increase in US duration can signifi-
cantly increase the strength of emotional condition-
ing4.16.t9.4o.ttt.t64. How can a brief Now Print signal N
whose duration does not increase significantly with US

According to any spectral timing theory, each CS;
activates a sensory representation Si that broadcasts
signals along many parallel pathways. This can lead to
a combinatorial explosion of cell bodies if the spectra
are incorrectly instantiated. For example, suppose that
each pathway activated a different cell, and that each
cell's activity computed a different xii' j = 1, 2,..., n.
Then there would exist as many copies of the spectral
timing model as there are sensory representations in
the brain. In addition, each spectrum contains 80 activ-
ities zii in our computer simulations. Such a model
would require a huge number of cells to represent a
different spectrum for every possible sensory represen-
tation. This is, in fact, the type of circuit used in the
Grossberg-Schmajuk model.

In the START model, each drive representation,
not every sensory representation, has its own spectral
cells. Thus the pathways from all sensory representa-
tions that correspond to any given drive representation
share the same neurons. This modification greatly re-
duces the number of cells that are needed to achieve
spectral timing of arbitrary conditionable CS-US COQ1-
binations, since there are many fewer drive representa-
tions (e.g. for hunger, thirst, sex, etc.) than there are
sensory representations. As in Fig. 5,. each spectrum is
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computed in parallel with its drive representation. Since
the present simulations only consider one type of rein-
forcer, only one drive representation is depicted. In
general, each CS sends an adaptive pathway to every
drive representation to which it can be conditioned, as
well as adaptive pathways sufficient to sample the
corresponding spectral representation. The 'coordi-
nates' of each drive representation and its spectrum
encode reinforcement and homeostatic variables. In
contrast, the CS-activated pathways to these circuits
carry signals that reflect the sensory features of the
CSs. Thus the fact that different perceptual stimuli
may elicit characteristic responses at the cells which
represent adaptive timing does not, in itself, imply that
these perceptual stimuli are 'encoded' at those cells. It
is suggested in Section 20 how hippocampal cells can
form an adaptive timing circuit, and how dendrites of
hippocampal pyramidal cells can represent a drive-
based spectrum that avoids the combinatorial explo-
sion. Before then, computer simulations of the model
which emulate data from various behavioral experi-
ments will be summarized.

(0)

(b)

10. STABILITY OF LEARNING OVER MANY TRIALS

Some learning models become unstable when they
experience a large number of learning trials. Fig. 14
shows the output of the model after 4, 50 and 100

(c)

Fig. 15. Stability of learned timing under modifications of model
parameters. a: effect of choosing the spectral learning rate a. in (8)
to ~,2 and 5 times that in Fig. 9. b: effect of setting the rates "aA' I3A
and "YA in (I) of the sensory representations to !' I and 2 times their
values in Fig. 9. c: effect of proportionally changing the rates aD,
130' Yo- and aE; in (3) and (10) to 2 and 4 times that in Fig. 16 in

order to speed up the Now Print circuit.

learning trials, illustrating that this output pattern per-
sists over many trials, even long after asymptote is
reached, which occurs before trial 25 for the present
choice of parameters.

11. ROBUSTNESS OF mE MODEL
(0)

Model properties are robust under physically plausi-
ble perturbations of its structure or parameters. For
example, Fig. 15a shows that the asymptotic behavior
of the model is qualitatively preserved under large
changes in the learning rate a z in (8). Fig. 15b shows
that the model's behavior is unaffected by changes in
the parameter which controls the speed at which the
competition among sensory r-epresentationss take
place. Fig. 15c shows that the circuit's qualitative be-
havior is robust against large accelerations or decelera-
tions of the rate at which D generates the Now Print

signal.

(b) (c)

Fig. 14. Evolution of the model's output. Output R(t) on each of the
first 4 conditioning trials, followed by the CS alone on the fifth trial.

Output after (b) 50 learning trials and (c) 100 learning trials.
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The adaptive timing circuit learns accurately even
when the behavior of some other part of the model is
Qualitatively altered. In Figs. 8 through 15, the parame-
ters controlling the STM representations 5 were cho-
sen so that STM can store more than one item. In Fig.
16, the parameters were chosen so that only one sen-
sory representation can remain active through time.
This has a dramatic effect upon the singly gated signals
!(x;j)Y;j within the model, since their support from 51
does not persist when 50 is large on training trials, but
it has little effect upon the timing of the circuit, which
again reaches maximal total activity R at around the
time the US is expected.

R

t

Fig. 17. An inverted U in output intensity as a function of CS-US
ISI as produced by the START model with parameters as shown in
Fig. 16. This figure was produced by plotting the outputs from the
mode! to ISIs of 0.5. 0.125, 0.250, 0.500 and 1.000 units on a single

set of axes.
12. INVERTED U AND WEBER LAW

Fig. 1 shows the average nictitating membrane (NM)
topographies of animals trained with CS's of 50 ms
duration and ISIs of 125, 250, 500, or 1,000 ms, de-
pending upon the group to which the animal belonged.

Fig. 17 displays the outputs of the model at the corre-
sponding ISIs. The model mimics the data pattern of
rapid growth of the peak amplitude as the ISI in-
creases through small values, followed by a gradual
fall-off of peak amplitude for larger values of the ISI;
and an increase in output width across time as the ISI
increases.

51

13. COMPARISO!'l WIlli DATA USING MULTIPLE ISIs

(0)

Fig. 18 summarizes data from experiments, re-
ported 128, in which rabbits were conditioned in a NM
response paradigm. The ISI was one of two different
values: 200 ms or 700 ms, with the different ISIs being
presented at differing frequencies to different groups.
In the group P 1/2 which received equal numbers of
each ISI, the animals' average NM extension on test
trials shows a double peak for the longer trials. The
two peaks also exhibit the Weber law property. These
double peak experiments provide strong evidence that
a spectrum of possible times exists that is tuned by
experience. Fig. 19 summarizes a computer simulation
of that condition, which also exhibits two peaks that
obey the Weber law at the two times at which the US
would have been delivered.

So

(b)

R 14. ISI SHIFT EXPERIMENTS

In Coleman and Gonnezano43, animals were condi-
tioned in a paradigm whose temporal characteristics
were shifted either gradually or abruptly, from a 200-ms
ISI to a 700-ms ISI, or conversely, during the course of
the experimenL TheanlmaIs'benaVibrs acrossleaming
trials are summarized in Fig. 20. Fig. 21 summarizes a
set of computer simulations that qualitatively mimic
the conditions of the original experiments.

(d)

Fig. 16. Stability of learned timing when strengthened inputs to the
sensory representation field no longer allows STM of the CS to
remain activeafterrhe US is stored in STM: a:CSSTMactivity S\;
b: US STM activity So; c: spectral LTM traces after the first learning
trial and in response to a CS alone on trial 25; d: output R(t) under
the conditions of c. STM parameters for this run: aA ~ 0.6, {3A = 60.0,

YA = 60.0, US inputs 1\ and 10 in (1) have intensities equal to 10.
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15. PARTIAL REINFORCEMENT EXPERIMENTS 16. TIME AVERAGING IN RESPONSE TO MULTIPLE

STIMULI
The classical conditioning circuit depicted in Fig. 5

forms part of a larger model neural system that is
capable of 'explaining many data about operant condi-
tioning (see refs. 81-83 and 85 and Part II for further
discussion). Correspondingly, many operant condition-
ing data share similar properties with classical condi-
tioning data. For example, the experiments of
Robertsl44 used an operant rat lever-pressing task in
which frequency of reinforcement was varied but the
ISI was fixed. This manipulation altered the terminal
level of responding to the stimulus, without changing
the peak time of responding; that is, partial reinforce-
ment affects the likelihood, but not the timing, of the
response. The results are shown in Fig. 22.

A computer simulation of the same paradigm is
shown in Fig. 23. As in the Robertsl44 data, only the
level, not the time at which the output peaked, was
affected by the probability of reinforcement.

Holder and Roberts 101 examined the effect of com-

bining the timed responses to two different CS stimuli,
a tone and a light, using rats in a lever-pressing task. If
each of these stimuli has acquired the ability to elicit a
conditioned response, and if they are presented se-
quentially, the resulting response is timed neither as
the forn1er nor as the latter stimulus would have re-
quired, but rather as an average. A simulation that
qualitatively replicates this averaging property is shown
in Fig. 24. This figure was generated with the model
parameters set so that more than one sensory repre-
sentation could be active in STM at one time. When
the two stimuli were presented, the resulting output
produced a peak that averages between the two ex-
pected times of arrival.

The comparisons between behavioral data and com-
puter simulations in Figs. 8-24 illustrate how the spec-
tral timing model emulates parametric behavioral
properties from a number of conditioning paradigms.
Sections 17-21 below point out that the forn1al model
circuit also maps onto neural circuits in the hippocam-
pus. This linkage provides a neural interpretation of
anatomical and neurophysiological data concerning the
role of the hippocampal forn1ation in the control of
adaptively timed conditioning. Testable predictions are
made to further challenge this proposal. A brief histo-
rial discussion will first be given to clarify the larger
neural modelling context in which the proposal needs
to be evaluated.

17. CONDITIONING AND THE HIPPOCAMPUS

Learning within the s -+ D pathways of Fig. 5 was
predicted in Grossberg71.76 to have the hippocampal
formation as a final common path. It was also pre-
dicted that this type of learning is a variant of condi-
tioned reinforcer learning. The distinction between the
different learning processes that govern emotional con-
ditioning and adaptive timing was not, however, made
in these early articles. In experiments on conditioning
the rabbit NM response, Berger and Thompson12 re-
ported that hippocampal learning does occur, thereby
providing partial support for the prediction. At first,
these investigators interpreted their results as the dis-
covel"fofa general neural-' engram '. Subsequent-exper-
iments studied the effects of selective ablations on
learning in both hippocampus and cerebellum126. These
experiments led to the conclusion that hippocampal
learning appears to be a variant of the predicted condi-

200MSEC 700 MSEC 200MSEC 700MSEC

Fig. 18. Conditioning data from the nictitating membrane (NM)
response paradigm as reported by Millenson et al 28. Data shown
are average NM extensions in CS-only trials with a tone CS of length
200 ms (left-hand panels) and 700 ms (right-hand panels) in animals
presented with varying mixtures of training trials: 200-ms tone CSs
immediately followed by a 50-ms shock US and 700-ms tone CSs

immediately followed by a 50 ms shock US.
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tioned reinforcer learning, whereas the cerebellum car-
ries out a type of motor learning. Thompson et al. (ref.
168, p. 82) distinguished these two types of learning as
'conditioned fear' and 'learning of the discrete adap-
tive response', respectively, a distinction that had also
been predicted, and that is elaborated in Part II.

It should also be emphasized that this interpretation
of hippocampal function does not contradict other data
which implicate the hippocampal formation in the
learning of spatial and attentional tasks1O3.131. Such a
hybrid functional role for hippocampus in conditioned
reinforcement, spatial approach and avoidance, and
attentional blocking was mechanistically outlined and
predicted by the theory's earliest model circuits71.76
(reviewed in ref. 85). In support of such a hybrid
function, Eichenbaum and Cohens4 have summarized
recent data showing that the same hippocampal cells
which have place fields in a radial-arm maze can also
show conditioned responses in classical conditioning
tasks. The present article focuses on clarifying how the
emotional conditioning and adaptive timing processes
are designed and related to each other. In particular,
as indicated in Fig. 5, reinforcement learning and
adaptive timing are suggested to take place in different
neural circuits, but circuits that interact with and mod-
ulate each other during normal behaviors. As reviewed
below, aspects of emotional conditioning may be spared
even if adaptive timing is deranged, just as aspects of
motor performance may be spared even if adaptive
timing is deranged.

old to threshold intensity, hippocampal firing to the CS

completely predicted the occurrence of a behavioral
responsel!3, Finally, during an ISI shift experiment (see
Section 14), Hoehler and Thompsonloo found that the
peak time of the hippocampal trace changed before the
peak time of the NM response topography, This differ-
ence may be analyzed in terms of hippocampal and
cerebellar contributions to adaptive timing (see Section
26),

Such data led Berger, Thompson, and their col-
leagues to characterize the response pattern of hip-
pocampal pyramidal cells as a 'temporal model' of the
conditioned response, a proposal that was also es-
poused by SolomonlS7.IS8, The START model suggests
how this 'temporal model' develops and how it is
integrated into a larger neural system for reinforce-
ment learning, recognition learning and motor learn-
ing.

19. COMPARISON OF CONDITIONED PROPERTIES
OF HIPPOCAMPAL PYRAMIDS, NMDA RECEPTORS
AT DENTATE CELLS AND HIPPOCAMPAL AFFER-
ENTS

Berger et al.9 reported data from dentate granule
cells showing "increased firing rate beginning in the
CS period and continuing through the US period...
For any given cell, the latency of increased firing was
constant and was time-locked to the CS" (p. 213). This
difference between the 'time-locked' responses of den-
tate granule cells and the adaptively timed responses of
hippocampal pyramidal cells suggests that pyramidal
cells and dentate cells process hippocampal afferents
in different ways. Berger et al.9 also reviewed data
indicating that the high correlation between firing of
hippocampal pyramidal cells and conditioned re-
sponses cannot be explained solely by conditioned
changes in afferents to the hippocampus. In particular,

18. ADAPTIVEL Y TIMED CONDITIONING OF HIp.
POCAMP AL PYRAMIDAL CELLS

A large number of experiments have by now docu-
mented a role for hippocampal cells in adaptively timed
conditioning. As Berger et al. (ref. 9, p. 204) have
noted, "One of the striking features of these condition-
ing-induced changes in hippocampal activity is that a
close parallel develops between the pattern of CS-
evoked hippocampal pyramidal cell activity and the
shape of the conditioned response-both during NM
(nictitating membrane) aversive [10] and OM (jaw
movement) appetitive [14] paradigms." In addition,
when animals were conditioned using different CS- US
ISI intervals, the poststimulus histograms of pyramidal
cell firing paralleled the shape of the NM response at
ISIs of 150 ms and 250 ms. A 50-ms ISI did not lead to
acondit~oned NMresponse,and-ne enhancement of
hippocampal unit activity occurred in either the CS-US
interval or the US intervapoo. In a signal detection task
in which a white noise CS was varied from suprathresh-

t
Fig. 19. Output R(t) of the START model in a mixed ISI condition,
such as in Fig. 18 (Panel PI/2) in which 50% of all ISIs were 0.2

units and 50% of all ISIs were 0.7 units.
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Berger et al.9.13 reviewed data about firing patterns in
two major hippocampal afferents, the medial septum
and the entorhinal cortex, during conditioning of the
NM response. In the medial septum, each new stimu-
lus generates a short, transient burst of activity fol-
lowed by rapid habituation to the baseline response

pattern. The firing rate pattern in the entorhinal cortex
is more like that seen in areas CA3 and CAI of the
hippocampus. However, the hippocampal behavioral
trace is much stronger than the en to rhinal trace and
evolves more slowly. Whereas the entorhinal trace takes
only 10-20 trials to form and to reach its asymptotic



22

ISI 02 -07 gradual

R(0)

R~t'\-~1lAlA
t

ISI 0.2 -0.7 abrupt

(b)
Fig. 23. Model output in a condition simulating the partial reinforce-
ment paradigm of Robertsl44. In the upper curve, 80% of all presen-
tations of the CS were followed by presentations of the US. In the
lower curve, 20% of all presentations of the CS were followed by
presentations of the US. Despite this difference, the time at which
the peak outputs occur is roughly equal, and only the relative levels

of output are different.

1510.7 -02 gradual

(c)

areas do send projections there too, among them the
supermamillary region and the dorsal diagonal gyrus,
which project to region CA3 of the hippocampus via
the fornix, and the anterior and medial dorsal thalamic
nuclei, which project to region CAI of the hippocam-
pus via the cingulum. Collingridge and Davies (ref. 44,
p. 130) discussed additional evidence that "an increase
in transmitter release maintains (hippocampal) L TP.
This evidence is strongest for the perforant path input

15107 -02 abruptR

t

(d)

Fig. 21. Simulation of the model output R(t) under ISI shift condi-
tions similar to those used in Coleman and Gorrnezan04J. In the first
column of each panel. the model output R(t) is displayed after 25
learning trials. Successive columns are displayed after a block of 8
more learning trials. The vertical lines denote the ISI on the corre-
sponding trial. a: gradual increase of ISI from 0.2 to 0.7 time units on
successive learning trials. b: abrupt increase of ISI from 0.2 to 0.7
time units. c: gradual decrease of ISI from 0.7 to 0.2 time units. d:

abrupt decrease of ISI from 0.7 to 0.2 units.

level, the hippocampal trace starts forming when re-
sponses start being generated and continues to grow
stronger through the first 100-150 trials9. These data
are consistent with the hypothesis that at least part of
the hippocampal trace is endogenously generated. It
needs also to be noted that, although two of the most
important projections to the hippocampus arise from
the medial septum and the entorhinal cortex, other

R

t
(b)

Fig. 24. Simulated time-averaging behavior in response to two CSs. a:
model outputs R(t) in response to the two CSs presented individu-
ally. b: composite model output R(t) in response to the two CSs
presented on the same trail at the same relative onset times as in a.
The first vertical line designates the onset time of the first CS, and

the second that of the second CS.
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to the dentate gyrus, where the increase in transmitter
release is dependent on the activation of NMDA re-

ceptors."

r.J/}~r I ::::::(:=:~~> C=
.4)..20. CONDITIONING AT DENDRITIC SPINES OF DEN-

TATE GRANULE CELLS
,...;~
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Fig. 25. A possible synaptic realization of spectral timing operations.
a: different rates 'j can be realized at different (populations of)
dentate granule cells. Each CS, activates branching pathways whose
collaterals synapse at dendritic spines across a subset of cells that
include all the rates 'j' The Now Print signal N is delivered in a way
that can influence all active synapses across all the dendritic spines.
The successive stages x'i' Y,j and Xij of cellular activation and gating
can. in principle. occur either postsynaptically, or through a combi-

nation of presynaptic and postsynaptic operations, as in b.

The fonnal processing stages of the START model
have a natural hippocampal interpretation that mimics
the observed differences between dentate granule cells
and hippocampal pyramidal cells during conditioning,
and uses a learning mechanism at the model analog of
granule cells that is interpreted below in tenDS of a
learned control of transmitter release, with associated
alterations in protein synthesis.

The combinatorial explosion of cells that was de-
scribed in Section 9 is avoided by assuming that the
spectral activations Xii are local potentials at the den-
dritic spines of hippocampal dentate granule cells. Thus
the xii do not correspond to separate cells, but rather
to dendritic spines of a single cell that accumulates
signals from many sensory representations. The many
pathways from different sensory representations to the
dendrites still need to exist, but their targets are a
much smaller population of cells and their dendrites.
The microscopic biophysical details of this interpreta-
tion will be developed elsewhere. Here we show how
the fonnal linkage of spectral learning properties to
hippocampal circuitry leads to new explanations and
predictions about hippocampal anatomy and neuro-

physiology.
In this interpretation, there exists a subset of den-

tate granule cells that reacts at a single spectral averag-
ing rate rj in (5), and different subsets of granule cells
react at different rates r i. Each such cell possesses a
large number of dendrites that are densely encrusted
with dendritic spines. Each spine is assumed to struc-
turally realize a private channel at which individuated
activations xii can be processed at the rate rj. Learn-
ing is activated by a Now Print signal N that globally
activates the entire cell. Fig. 25b indicates that the
twice-gated operation !(Xij)YiiZii in (11) may be real-
ized in several different ways.

model' of adaptively timed behavioral responses. These
data are consistent with the model hypothesis, fom1al-
ized in equation (11), that the individual tem1S
f(x;j)Y;jZ;j, which correspond to each fIXed and differ-
ent rate rj' summate to generate an adaptively timed
model R of the behavioral response. We interpret the
cells corresponding to different values of rj as different
(subsets of) dentate granule cells, and the cells corre-
sponding to the output R as CA3 pyramidal cells (Fig.
26). It is also assumed that different subsets of CA3
pyramidal cells correspond to different drive represen-
tationsl32.

This interpretation of (11) suggests that many den-
tate granule cells converge on individual CA3 pyrami-
dal cells. This property is consistent with the fact that,

-in the -ra:r,-there areapproX1mafeIy-r,UOO;ooo-aenfate
granule cells but only 160,000 CA3 pyramidal
cells2o.21.162. In addition, a CA3 cell receives approxi-
mately 80 mossy-fiber inputs from dentate granule
cellsl62. It may thus not be a coincidence that the

21. CONVERGENCE OF DENTATE GRANULE CELLS
AT CA3 PYRAMIDAL CELLS

-~sint er:pretat i ()n~f-tbe--~-A-R T-~ odcl~nggests
that (I) conditioning occurs at dentate granule cells, (2)
the latency of conditioned firing is constant at individ-
ual granule cells, and (3) the hippocampal pyramidal
cells to which dentate cells project form a 'temporal
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Fig. 26. Interpretation of the output signal R(t) in equation (11) in
terms of convergence of dentate granule cell outputs on CAJ pyrami.

dal cells.

Grossberg and Schmajuk94 computer simulations and
our own found that 80 values of r j provide an excellent
fit to behavioral data on the conditioned NM response.
On the other hand, in unreported simulations we have
shown that qualitative model properties are robust
when the number of populations is increased or de-
creased by a factor of 4. In any case, the order of
magnitude between anatomical and model convergence
is acceptabl~. This anatomical interpretation can be
unequivocally tested in terms of the following

Prediction: sets of dentate cells, or perhaps a combi-
nation of dentate cells and mossy fibers, exhibit dynam-
ics capable of giving rise to a full spectrum of activa-
tion rates rj"

Gray (ref. 65, pp. 97-100) has surveyed experiments
that are consistent with this neurophysiological inter-
pretation of START learning. These data show habitu-
ation in dentate granule cells to stimulation of the
perforant path, analogous to Y jj habituation in re-
sponse to inputs Sj in equations (5) and (7); potentia-
tion at the dentate synapse in response to perforant
path stimulation, analogous to Z jj conditioning in re-
sponse to inputs Sj in equations (5) and (8); swelling in
the dendritic spines of dentate granule cells after
tetanizing stimulation of the perforant pathway, analo-
gous to the anatomical interpretation of the f(xjj)YjjZjj
process at dentate spines; and facilitation of dentate
response to a perforant path pulse by a prior condition-
ing pulse to the septum, analogous to the action of the
Now Print signal on conditioning in equation (8).

The START model is also consistent with more
recent data concerning the effects of manipulations of
the dentate gyrus upon the behavior of animals. Diaz-
Granados et al.51 showed that selective dysgenesis of
the dentate gyrus in rats due to neonatal X-irradiation
impaired performances ina differential-reinforcement-
of-iow-rate-of-responding (DRL) task: After X-irradia-
tion, whichselectivelypreventstheiormatioffm~ran;.
ule cells, animals were unable to run slowly down a
hallway to receive reward. In a similar paradigm,
Robinson 146 impaired acquisition of the conditioned

NM response, and Thompson and Disterhoft 166 showed
that NMDA agonists and antagonists have opposite
effects upon long-interval trace eye blink conditioning.
These results are consistent with the proposed inter-
pretation of the START model: animals without func-
tional dentate granule cells, or with impaired NMDA
receptors, should be unable to adaptively time their
conditioned responses.

This interpretation is also consistent with the lack of
effect of granule cell dysgenesis3 or NMDA antagonist
treatment16S upon place learning. The START model
suggests that the reinforcing value of an event is less
affected by these manipulations than is the abilitY to
adaptively time reinforced behavior. Given this inter-
pretation, the close temporal relationship between be-
ing in a place and getting rewarded there may be
spared, but distant temporal relationships may be un-
bridgeable. This possibilitY may be further testable in
the context of fear conditioning, where NMDA antago-
nists impair fear conditioning over an ISI of 4 S48, If
this failure is substantially due to a failure of adaptive
timing, then near-normal fear conditioning may be
found over sufficiently short ISIs if NMDA antagonists
are selectively applied to dentate granule cells.

The occurrence of associative learning on dendritic
spines also helps to explain how the read-out (or per-
formance) of old associative memories can be decou-
pled from the read-in (or learning) of new associative
memories, Such a dissociation is needed to solve the
self-printing problem (Section 5). By (11) read-out of
old associative memories is accomplished by the twice-
gated signals f(xjj)YjjZjj; also see Fig. 26. These sig-
nals need to be separated from the influence of twice-
gated signals activated by other conditioned stimuli
and other spectral averaging rates. Dendritic spines
can provide this functional separation during read-out,
while also being responsive to more global events, such
as the Now Print signal N, during LTM read-in via
equation (8).

The hypothesis of the START model that hip-
pocampal L TP occurs at dendritic spines in order to
functionally dissociate the read-out of old associative
memories from the read-in of new associative memo-
ries was discussed in Grossberg 76 (see Fig. 25). This

tYpe of process has recently excited a great deal of
further work based upon new experimental approaches
to hippocampal LTP and the discovery of the NMDA
receptor 25,26.S3. The START model is consistent with
data showing that conditioning takes place at NMDA
Teceptorsin--w--perforant;;w"-dentate--pmtway. As
Collingridge and Davies (ref. 44, p. 130) have noted:
"Most neurochemical evidence suggests that an in-
crease in transmitter release maintains LTP. This evi-
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dence is strongest for the perforant path input to the
dentate gyrus, where the increase in transmitter re-
lease is dependent on the activation of NMDA recep-
tors."

these poles. Interactions between the cell nucleus, the
cell membrane, microtubules and tight junctions be-
tween presynaptic terminals and postsynaptic cells were
proposed to maintain these gradients. Further details
concerning these predicted chemical dipole properties
may be found in Grossberg68.

22. NMDA RECEPTORS AND ADAPTIVE TIMING

PART II. REINFORCEMENT, RECOGNITION AND MO-
TOR LEARNING

The spectral timing part of the circuit in Fig. 5 is
new. The remainder of the circuit is part of a larger
theory concerning the neural substrates of reinforce-
ment, recognition, attention, memory search and motor
control. Relevant parts of the theory are summarized
below. They are used to clarify how the adaptive timing
circuit interacts with other types of brain circuits, and
to show how recent neurobiological data support the
existence of each of the model's processing stages.

23. REINFORCEMENT LEARNING IN VERTEBRATES
AND INVERTEBRATES

In Section 4, a drive representation D was defined
as a population of cells at which sensory, reinforcement
and homeostatic, or drive, signals converge to regulate

reinforcement learning, emotional reactions and moti-
vational decisions. Fig. 27 depicts the type of model
circuit in which drive representations were described in

The recent experiments suggesting that an increase
in presynaptic transmitter release may help to control
LTP at dentate granule cells and includes activation of
NMDA receptors44.55 are consistent with another early
prediction67.68 about associative learning. This predic-
tion su~gested that associative learning is achieved by
"joint control of presynaptic excitatory transmitter pro-
duction by presynaptic and postsynaptic levels of mem-
brane potential. This control is presumed to be ef-
fected by the interaction of the pairs (Na +, K +) and
(Ca++, Mg++) of antagonistic ions whose binding
properties to intracellular sites and enzymes set cellu-
lar production levels" (ref. 68, p. 325). In p~rticular, a
synergetic interaction of a voltage-dependent, postsy-
naptically generated, inward Ca2+ current with inward
Na + and outward K + currents was predicted, as well

as a competitive interaction between Ca2+ and Mg2+.
Recent studies of LTP at NMDA receptors have re-
ported and greatly elaborated contemporary under-
standing of this sort of interaction, including the com-
petition between Ca2+ and Mg2+ (ref. 44).

Related predictions may now be testable at the
perforant path-CA3 pyramidal cell synapse. One pre-
diction suggests certain "nerve cells are capable of
learning as 'chemical dipoles'" (ref. 68, p. 325) that
control the availability of the proper relative amounts
of Ca2+, Mg2+, Na+, and K+, among other chemicals,
at the cell 3ites where they are needed. Such control is
suggested to coordinate potentiation of presynaptic
transmitter production with levels of postsynaptic pro-
tein synthesis aimed at enabling the postsynaptic cell to
cope with time-varying loads of presynaptic input.
Akers et al.1 have shown that "protein kinase activa-
tion leading to phosphorylation of neural proteins ap-
pears to occupy a pivotal role in the development and
expression of synaptic plasticity" in response to per-
forant path stimulation (p. 587). Further experiments
are needed to test possible correlations between presy-
naptic and postsynaptic effects. This proposal also sug-
gested that the shape of neurons realizes a type of
structural dipole that helps to support the dynamics of

dipole, at the dendritic apparatus/cell body and the
synaptic knobs, respectively, were suggested to help
maintain chemical gradients along the axons between~

INTERNAL
DRIVE
INPUT

Fig. 27. Schematic conditioning circuit: conditioned stimuli (CSj)
activate sensory representations (SCSI) which compete amonp them-
selves for limited capacity STM activation and storage. The activated
scr,elicit conditionable;-signals..{)-drive-r~f}resentations -and-motor
command representations. Learning from a scs, to a drive represen-
tation D is called conditioned reinforcer learning. Learning from D
to a scs, is called incentive motivational learning. Singals from D to
scs, are elicited when the combination of external sensory plus

internal drive inputs is sufficiently large.
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Blocking Paradigm

CS1 J~

us n

Phase 1

CS1 J I

CS2J I

us n
Phase 2

Fig. 29. A schematic of the Pavlovian blocking paradigm. The two
phases of the experiment are discussed in the text.

representational field, these signals can bias the com-
petition for STM activity towards the set of motivation-
ally preferred cues.

24. A TfENTIONAL FOCUSING, BLOCKING AND THE
HIPPOCAMPUS

Grossberg 71 to explain vertebrate conditioning data. A

similar model (Fig. 28) has recently been used to
explain invertebrate conditioning data from experi-
ments on Aplysia28.84. The use of a similar circuit by
such different species is clarified by the fact that it is
the simplest solution of two general learning problems,
called the synchronization problem and the persistence
problem, that all animals capable of classical condi-
tioning in an unconstrained environment need to
solve71.82.85. The synchronization problem asks how
classical conditioning can occur without massive inter-
ference if the ISI on each learning trial may be differ-
ent and irrelevant stimuli may occur between the CS
and US. The persistence problem asks how alternating
CSs, each conditioned to different emotional re-
sponses, are protected against rapid extinction due to
association with the 'wrong' emotional response.

Fig. 27 contains pathways that were omitted from
Fig. 5 for simplicity. As noted in Section 4, during
classical conditioning, pairing of a CS1 sensory repre-
sentation SCSI with activation of a drive representation
D by a reinforcer US causes the modifiable synapses
connecting SCSI with D to become strengthened. This
conditioning event converts CS I into a conditioned
reinforcer. Fig. 27 shows reciprocal conditionable path-
ways from the drive representations D to the sensory
representations s. Conditioning of these pathways is
called incentive motivational learning. Activation of
conditioned s -+ D -+ S feedback pathways by CS I can
shift attention towards the set of all previously rein-
forced sensory cues that are motivationally consistent
with D.

This shift of attention occurs because the sensory
representations, in addition to emitting conditioned
reinforcer signals and receiving incentive motivation
signals, compete among themselves (Fig. 27) for a
limited capacity STM. When strong incentive motiva-
tional feedback signals are received at the sensory

The feedback signals s -+ D -+ S generate a resonant
state of activation between levels sand D that focuses
attention upon recognition codes of events which have
led to reinforcing consequences during past experi-
ences. Such attentional modulation enables a biological
infmmation processing system to selectively process
those environmental inputs that are most important to
its current goals. A typical example of such selective
processing is illustrated by the blocking paradigm shown
in Fig. 29"°. First, a conditioned stimulus CS1, such as
a tone, is presented several times, followed at a given
time interval by an unconditioned stimulus US, such as
electric shock, until a conditioned response CR, such
as fear, develops. Then CSI and another conditioned
stimulus, CS2, such as light, are presented simultane-
ously, followed at the same time interval by the US.
After conditioning, CS2 is presented alone, not fol-
lowed by a US, and no CR occurs. Intuitively, CS,
'blocks' conditioning of the simultaneously presented
CS2 because CS" by itself, perfectly predicts its conse-
quence, the US. The CS2 is thus redundant and unpre-
dictive, hence does not get conditioned to the US.

The blocking property may be explained in terms of
4 properties of the network in Fig. 27: (1) pairing of a
cs; with a-US--intbenfSf-phaseoTihe-t)ro-cking
experiment endows the CS, cue with properties of a
conditioned, or secondary, reinforcer;. that is, the posi-
tive feedback pathway SI -+ D -+ s, between the drive

I ['.'~~~ ""'"i
l .""""'_."""-- :

:. "-'---"- :
: :
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rig~&AmOder rorcondllioninginAptysia. SN, sensor)' neuron;
FN, facilitator)' neuron; IN, inhibitor)' neuron. The SNs play the role
of sensor)' representations s, the FNs the role of a drive representa.
tion D, and the INs carr)' out the competition between sensor)'

representations,
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Fig. 30. A START model with feedback pathways D -+ 5(2) -+ 5(1)
that are capable of focussing attention in an adaptively timed fashion
on reinforcing events. The sensory representations 5 are broken into
two successive levels 5(1) and 5(2). Levels 5'1) and 5(2) interact via

reciprocal excitatory pathways. The excitatory pathways 5(1) -+ D and
D -+ 5(2) are adaptive. Representations in 5'2) can fire only if they

receive convergent signals from 5(1) and D. Then they deliver posi-
tive feedback to 5(11 and bias the competition to focus attention on
their respective features. Thus, prior to conditioning, a CS can be
stored in STM at 5(1) and can subliminally prime 5,2) and D repre-
sentations without supraliminally firing these representations. After
conditioning, the CS can trigger positive 5(1) -+ D -+ 5'21 -+ 5'1) feed-
back and draw attention io itself as it activates the emotional

representations and motivational pathways controlled by D.

was shown that each sensory representation s need to
be broken into two successive stages S(I) and S(2), as in

Fig. 30, such that S(I) projects to both S(2) and D, D
projects to S(2), and S(2) projects back to S(I). The
pathway S(I) -+ D can support emotional conditioning,

thereby converting the stimuli represented at S(I) into
conditioned reinforcers. The pathway D -+ S(2) supports
incentive motivational conditioning. It primes all sen-

sory representations that are motivationally consistent
with D. The multisynaptic pathway D -+ S(2) -+ S(I) pro-
vides the feedback from D that supports the blocking
process. This expanded version of the model has been
used to computationally simulate blocking data91.

Grossberg76.79 interpreted the first stage of sensory
processing S(I) as a thalamic representation, the second
stage S(2) as a cortical re.presentation, the first stages of
drive representational processing D as networks, such_~h~Q~J~m~~~-!1~my.gdala.th~Jnv:olYed 

in
homeostatic and emotional processing, and the final
stages of drive representational processing as including
the hippocampal formation. With this interpretation,
the conditioning of S(I) -+ D synapses in Fig. 30 predicts

that subcortical emotional conditioning is possible. This

prediction has been supported bv recent exoeriments

representation D and the sensory representation 51 of
CS I is strengthened due to learning. (2) These reinforc-
ing properties of a CSI shift the focus of attention
towards its own processing at 51. (3) The processing
capacity of attentional resources is limited, as a result
of the competition between sensory representations 5.
Thus a shift of attention towards one set of stimuli can
prevent other stimuli, such as CS2, from being at-
tended (Fig. 27). Withdrawal of attention from the
sensory representation 52 of the stimulus CS2 prevents
that representation from entering new conditioned re-

lationships, by attenuating learning from 5 to D and
from D to 5. Learning is attenuated when the activity
52 of 52 becomes small, because it is regulated by an
activity-dependent gate, as in (4).

Just as simultaneous occurrence of a conditioned
reinforcer CSI with a new CS2 can block conditioning
of CS2, so too can simultaneous occurrence of a pri-
mary reinforcer US with a new CS block conditioning
of CS. This latter property helps to explain why US
onset needs to occur after CS onset in order for
effective conditioning to occur28.82.91.

One way to verify whether a neural model has
processing stages that correlate well with brain circuits
is to test if a formal model lesion has effects similar to
those of a corresponding brain lesion on behavioral
properties. Grossberg (ref. 76, Fig. 24) suggested that a
final common path within (an expanded model of) a
drive representation D includes the hippocampal for-
mation. Eliminating the 'hippocampal formation' in
the model would therefore weaken D -+ 5 feedback
signals, and thus the model's mechanism of blocking.
Hippocampal lesions do, in fact, prevent blocking from
occurring. Both CSI and CS2 can be conditioned in a
blocking experiment performed on a hippocampec-
tomized animaII16,143,lso,ls6. Likewise, hippocampec-
tomized animals find it hard to actively ignore non-re-
inforced cuesl42.

These experiments also showed that hippocampal
lesions do not interfere with emotional conditioning.
Although such a dissociation could not be explained in
the model of Figs. 27 and 28, it can be explained using
the model of Fig. 5, which distinguishes the circuit for
adaptive timing from the circuit for emotional condi-
tioning. A circuit which combines the components of
Fig. 5 with those of Fig. 27 is shown in Fig. 30.

~ ~:--SUBCORTICAL FEAR CONDITIONING AND A

CORTICAL ROLE IN EXTINCTION

The circuit in Fig. 30 includes sensory representa-
tions 5 that process incoming signals in two successive

processing stages 5(1) and 5(2). In Grossberg71.76.79.82 it
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26. CONDITIONING IN THE CEREBELLUM

Thompson et al.167.168 reviewed many experiments
which implicate the cerebellum as "an obligatory part
of the learned response circuit for eyelid/NM condi-
tioning" (ref. 167, p. 383). In particular, they noted that
ablation of deep cerebellar nuclei abolishes the previ-
ously learned response, prevents relearning of the re-
sponse as a result of ipsilateral stimulation (although
such stimulation continues to evoke unconditioned re-
sponses), but has no effect upon acquisition of the
response as a consequence of contralateral stimulation.

Fig. 31. Anatomy of an adaptive resonance theory (ART) circuit. a:
interactions between the attentional and orienting subsystems: learn-
ing of recognition codes takes place at the long term memory (L TM)
traces within the bottom-up and top-down pathways between levels
FI and F2' The top-down pathways can read-out learned expecta-
tions, or templates, that are matched against bottom-up input pat-
terns at Fl' Mismatches activate the orienting subsystem A. thereby
resetting short term memory (STM) at F2 and initiating search for
another recognition code. Output from subsystem A can also trigger
an orienting response;Sensitivitytomismatchat-F I;S moduta1ed by
vigilance signals from the drive representations. b: trainable path-
ways exist between level F.. and the drive representations. Learning
from F2 to a drive representation D endows a recognition category
with conditioned reinforcer properties. Learning from D to F2 asso-
ciates D with a set of motivationally compatible categories. tn

general, more than two processing levels Fj are used in ART sys
terns.

which show that ablation of visual cortex does not
interfere with acquisition of fear responses to visual
stimuli, but does greatly prolong, if not prevent, extinc-
tion of fear responsesl17. Analogous results have been

reported for auditory conditioning. Fear conditioning
to acoustic stimuli is mediated by projections from

auditory processing areas of the thalamus to the amyg-
dala, which bypass the auditory cortex and provide a
subcortical mechanism of emotional learningl16.

An ablation of cortex that spares the thalamus
would, in the model, remove 5(2) but leave 5(1) intact.
The acquisition of fear responses is mediated by the
intact conditioned reinforcer pathways 5(1) -+ D. Ex-

tinction in the model is mediated by cognitive mecha-
nisms, described in Sectio.ns 27 and 28, that act upon
the ablated cortical 5(2) representations. These 5(2)

representations alter the dynamics of the 5(1) and D
representations via 5(2) -.5(1) and 5(1) -+ D interactions

in a way that causes extinction82.83. Thus a selective
ablation of 5(2) spares acquisition of fear conditioning
but impairs extinction, as also occurs in the data. This

explanation of normal acquisition with abnormal ex-
tinction is consistent with the fact that acquisition may
itself be impaired in paradigms wherein the abnormal

distractibility of hippocampectomized animals occurs
(see Section 28). Such data provide support for the
model's anatomical interpretation of the interactions
5(1) -.D and 5(2) -.5(1). The prediction in Grossberg76
that the D -+ 5 pathway is a hippocampal to cortical

pathway is consistent with experiments of Rosene and
Van Hoesenl48. Thus the main anatomical and func-
tional properties of the model have neurobiological
correlates that permit its operations to be subjected to
additional neurobiological tests, and to be refined in
the light of new neural data.

Further support for the model derives from its abil-
ity to provide a unified mechanistic explanation of a
large data base about conditioned behavior, including
data about unblocking, latent inhibition, overexpecta-
tion, behavioral contrast, vicious circle behavior, selec-
tive forgetting, hyperphagia and analgesia72.73.76.82.83. A
recent summary of other predictions and their experi-
mental support is found in Carpenter and Gross-
berg36.37 and Grossberg88.

One issue of particular interest concerns whether or
not there ex.ists an analog of the vertebrate thalamo-
cortical pathway 5(1) -.5(2) in certain invertebrate cir-
~Hits. Suc--h~pathway is-notdescribedin the inverte-

brate model of Fig. 28. Another important issue con-
cerns the anatomical sites that subserve the motor

learning, or 'habit strength', pathways in Figs. 27 and
30. Various data suggest that these pathways include
the cerebellum.
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27. MACROCIRCUIT FOR SENSORY-COGNITIVE

PROCESSING: ADAPTIVE RESONANCE THEORY

They also summarized data from their laboratory show-

ing that "the dorsal accessory olive-climbing fiber pro-

jection is the necessary and sufficient US pathway...

the mossy fiber projection is the necessary a.nd suffi-

cient CS pathway... and. ..appropriately timed con-

joint activation of mossy fibers as the CS and climbing

fibers as the US yields normal learning of discrete,

adaptive behavioral CSs" (ref. 167, pp. 387-388). Clark

et al.41 have shown, moreover, that lesions of the deep

cerebellar nuclei not only abolish the conditioned be-

havioral response, but also abolish the hippocampal

temporal model of the behavior (Part I) in response to

ipsilateral USs. Administration of contralateral USs

quickly causes the reacquisition of both the neuronal

model and the behavioral response. Taken together,

these data strongly support the hypothesis that condi-

tioning of the CS-activated discrete adaptive response

occurs in the cerebellum and that these cerebellar

signals are needed for expression of the hippocampal

temporal model.

The hypothesis that the cerebellum helps to control
motor learning has a long history. Brindley 24 and

Grossberg66 were among the first to model motor

learning in the cerebellum at the synapses between

cerebellar parallel fibers and Purkinje cell dendritic

spines, using the climbing fibers as a teaching signal.

Grossberg7O, Marrl24, and Albus2 further modelled
this concept. Marrl24 suggested that these synapses

increase in strength due to learning; Albus2 suggested
that they decrease in strength; Grossberg 70 suggested

that they may either increase or decrease in strength,

depending upon the learning context. Subsequent mod-

els of cerebellar motor learning include those of Bul-

lock and Grossberg27, Fujita57.58, Grossberg and

Kuperstein89.90, Houk et al.'02 and ItoI04,105. These

cerebellar models have been used to analyze behav-

ioral and neural data about eye and arm movements,

such as the results of Ebner and Bloedel52, Gilbert and

Thach62, Ito105, Optican and Robinson133 and Ron and

Robinsonl47. In addition to their discussions of nictitat-

ing membrane and jaw movement conditioning,

Thompson et al.167.168 also summarized experiments

demonstrating motor learning in the cerebellum during

classical conditioning of the limb flexion reflex. Thus

the cerebellum plays a key role in conditioning motor

responses of eye, arm, leg, nictitating membrane and

jaw movements, among others.
These recent data and models about cerebellar

I ~~~ i ~~cl~~ft ~!!~- ~- ~t~ ~-- r~~ ~!!~ ~ ~~~_r~~Q~-P t _iy ~_I y

-controlled, and also suggest that motor learning differs

from the types of conditioned reinforcer learning, in-

centive motivational learning, recognition learning and

adaptive timing that are depicted in Figs. 5, 27 and 30.
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Fig. 32. ART search for an F2 code. a: the input pattern I generates
the specific STM activity pattern X at FI as it non-specifically
activates the orienting subsystem A. Pattern X both inhibits A and
generates the output signal pattern S. Signal pattern S is transformed
into the input pattern T. which activates the STM pattern Y across
F2. b: Pattern Y generates the top-down signal pattern U which is
transformed into the prototype pattern V. If V mismatches I at Fl'
then a new STM activity pattern X. is generated at Fl. The
reduction in total STM activity which occurs when X is transformed
into X. causes a decrease in the total inhibition from F I to A. c: if
the matching criterion fails to be met. A releases a non-specific
arousal wave to F2. which resets the STM pattern Y at F2. d: after Y
is inhibited, its top-down prototype signal is eliminated. and X can
be reinstated at Fl' Enduring traces of the prior reset lead X to
activate a different STM pattern Y. at F2. If the top-down proto-
type due to Y. also mismatches I at FI- then the search for an

appropriate F2 code continues.

itself as a pattern X of activity, or short term memory
(STM), across level Fl. The F 1 output vector S is then
transmitted through the multiple converging and di-
verging adaptive pathways emanating from Fl. This
transmission event multiplies the vector S by a matrix
of adaptive weights, or long term memory (L TM) traces,
to generate a net input vector T to level F2. Lateral
inhibitory interactions within F2 contrast-enhance vec-
tor T. A compressed activity vector Y is thereby gener-
atedacross F2-

Activation of F2 nodes may be interpreted as 'mak-
ing a hypothesis' about an input I. When Y is activated,
it generates a signal vector U that is transmitted along
top-down adaptive pathways. After multiplication of
these top-down signals by a matrix of adaptive weights,
or LTM traces, a net vector V inputs to FI (Fig. 32b).
Vector V plays the role of a learned top-down expec-
tation. Activation of V by Y may be interpreted as
'testing the hypothesis' Y, or 'reading out the category
prototype' V. ART networks are designed to match the
'expected prototype' V of the category against the
active input pattern, or exemplar, I.

This matching process may change the F 1 activity
pattern X by suppressing activation of all the feature
detectors in I that are not confirmed by V. The resul-
tant pattern X * encodes the pattern of features to

which the network 'pays attention'. If the expectation
V is close enough to the input I, then a state of
resonance occurs as the attentional focus takes hold.
Damasio47 uses the term 'convergence zones' to de-
scribe the process whereby an activation pattern X *

across distributed features is bound together by reso-
nant feedback. The resonant state persists long enough
for learning to occur; hence the term adaptiL'e reso-
nance theory. ART systems learn prototypes, rather
than exemplars, because the attended feature vector
X *, rather than the input I itself, is learned.

The criterion of an acceptable match is defined by a
dimensionless parameter called vigilance. The vigilance
parameter is computed in the orienting subsystem A,
where it may be increased by punishing events or other
unexpected consequences31.38.39. Vigilance weighs how
close the input exemplar I must be to the top-down
prototype V in order for resonance to occur. Because
vigilance can vary across learning trials, recognition
categories capable of encoding widely differing degrees
of generalization, or morphological variability, can be
learned by a single ART system. Low vigilance leads to
broad generalization and abstract~~~t~~~~~gh vig-~Iranceleads~~nmow-gener~ation 

and to prototypes
that represent fewer input exemplars. In the limit of
very high vigilance, prototype learning reduces to ex-
emplar learning. Thus a single ART system may be

By itself, the attentional subsystem is unable simul-
taneously to maintain stable representations of familiar
categories and to learn new categories for unfamiliar
patterns. An isolated attentional subsystem may be
either rigid and incapable of creating new recognition
categories for unfamiliar patterns, or unstable and
capable of ceaselessly recoding the recognition cate-
gories of familiar patterns.

The orienting subsystem interacts with the atten-
tional subsystem to maintain the stability-plasticity
balance. It resets the STM of the attentional subsystem
when an unfamiliar event occurs and thereby initiates a
memory search within the attentional subsystem for a
better internal representation. The orienting subsystem
is thus essential for expressing whether an input pat-
tern is familiar and well represented by an existing

re co g rii tionooae -, orunrairiilla i -anal n-nee a ~of a -new
recognition code.

Fig. 32 illustrates a typical ART memory search
cycle. As shown in Fig. 32a, an input vector I registers,
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sentations with low STM activation tend to become
more acti"e, and the novel event which caused the
mismatch tends to be more actively stored than it
would have been had it been expected. Banquet and
Grossberg 7 have discussed experiments on human

event-related potentials (ERPs) during probabilistic
choice reaction time tasks that have tested the pre-
dicted chronometry of the mismatch-arousal-reset se-
quence in terms of the P120-N200-P300 sequence of
ERPs. One effect of STM reset is to shift the focus of .

attention towards sensory representations which may
better predict environmental contingencies. In a classi-
c~l conditioning paradigm, such an attention shift can
dishabituate, or unblock, sensory representations that
were not attended before the STM reset event81.82.
Activation of the orienting subsystem also triggers ori-
enting responses, such as the activation of motor reac-
tions to orient towards the unexpected event (Fig. 31).

This organization of learned expectations, attention
shift mechanisms, and orienting mechanisms within
ART allowed Grossberg and Schmajuk 94 to hypothe-
size that activation of the drive representation D gates,
or inhibits, the orienting subsystem A. Activation of
this inhibitory gate prevents reset of the attentional
focus and release of orienting behaviors if an expected
non-occurrence is experienced. Such a gating operation
does not, however, prevent a sensory match from being
detected earlier than usual, because matches with
learned expectations occur within the attentional sub-
system, not the orienting subsystem. At times when the
adaptive timing mechanism is inactive, the gate is open.
Then activation of the orienting subsystem can trigger
reset of STM and orienting reactions in response to

unexpected non-occurrences.

28. HIPPOCAMPAL LESIONS AND MEDIAL TEMPO-
RAL AMNESIA

used, say, to recognize abstract categories of faces and
dogs, as well as individual faces and dogs.

If the top-down expectation V and the bottom-up
input. I are too novel, or unexpected, to satisfy the
vigilance criterion, then a bout of hypothesis testing, or
memory search, is triggered. Memory search leads to
selection of a better recognition code at level F2 with
which to represent input I at level F2' The orienting
subsystem A mediates the search process. During
search, the orienting subsystem interacts with the at-
tentional subsystem, as in Fig. 32c,d, to enable the
attentional subsystem to learn about novel inputs with-
out risking unselective forgetting of its previous knowl-
edge.

The search process prevents associations from form-
ing between Y and X * if X * is too different from I to

satisfy the vigilance criterion. The search process resets
Y before such an association can form. A familiar
category may be selected by the search if its prototype
is similar enough to the input I to satisfy the vigilance
criterion. The prototype may then be refined in light of
new information carried by I. If I is too different from
any of the previously learned prototypes, then an un-
committed population of F2 cells is selected and learn-
ing of a new category is initiated.

A network parameter controls how deeply the search
proceeds before an uncommitted node is chosen. As
learning of a particular category self-stabilizes, all in-
puts coded by that category access it directly, without
the need for search. Familiar, consolidated memories
can thus be accessed in a one-pass fashion, after reset-
ting the previously active category. The category se-
lected is the one whose prototype provides the globally
best match to the input pattern. In a situation where a
mixture of familiar and unfamiliar events are experi-
enced, familiar inputs can directly activate their learned
categories, while novel inputs continue to trigger adap-
tive memory searches for better categories, until the
network's memory capacity is fully utilized.

These ART mechanisms include the processes that
are needed to interpret the effects of D -+ A inhibition
that were described in Section 1. These include a
process whereby learned expectations may be mis-
matched by a sensory expectation at level F 1 of the
attentional subsystem in Fig. 31. When a mismatch of
bottom-up exemplar and top-down prototype occurs,
the orienting subsystem is activated, giving rise to a
STM reset wave in the form of a non-specific arousal
-bu rsr to~ he me DUo DaiS\! csys -t e m-wl g:~TIi.. s--
arousal burst acts to reset the sensory representations
of all sensory events that are currently active in STM
within the attentional subsystem. Representations with
high STM activation tend to become less active, repre-

The division of labor within ART, between an atten-
tional subsystem and an orienting subsystem, thus pro-
vides the type of processing substrate that is needed to
instantiate adaptive timing heuristics. This division of
labor has also been helpful in clarifying many other
types of data. For example, Carpenter and Gross-
bergJI.J4 have pointed out that a lesion of the ART
orienting subsystem creates a memory disturbance
whose~ ~~ptoms are sim~~~~~~n~
afflicted with medial temporal amnesia, including un-
limited anterograde amnesia; limited retrograde amne-
sia; failure of consolidation; tendency to learn the
first event in a series; abnormal reactions to novelty,
including perseverative reactions; normal priming;
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and normal information processing of familiar
events"2,64,122,12S,I60,161.173,174,178.

Unlimited anterograde amnesia occurs in the model
be~ause, without a functional orienting subsystem, the
network cannot carry out the memory search and sub-
sequent learning needed to establish a new recognition
code. limited retrograde amnesia occurs because fa-
miliar events can directly access their recognition codes,
without activating the orienting subsystem. Before
events become familiar, a period of memory consolida-
tion occurs during which the orienting subsystem does
playa role, as indicated in Fig. 32c. This failure of
consolidation does not prevent learning per se. In-
stead, learning is associated with the first recognition
category that is activated by bottom-up processing,
much as "amnesics are particularly strongly wedded to
the first response they learn" (ref. 65, p, 253). Abnor-
mal reactions to novelty, including perseverative reac-
tions, occur. In an ART circuit, this happens because
the orienting subsystem cannot carry out its normal
function of STM reset, and therefore cannot inhibit
sensory representations or top-down expectations that
may be persistently mismatched by bottom-up sensory
signals. The inability to search memory via its orienting
subsystem prevents an ART system from discovering
more appropriate stimulus combinations to which to
attend. In a similar vein, Butters and Cermak (ref. 29,
p. 393) reported that "Korsakoff patients' encoding
deficits may be related to a general impairment in their
ability to attend to relevant dimensions of stimuli."
Normal priming is possible in an ART model because

it can be mediated entirely by the attentional subsys-
tem, notably the top-down expectations of this subsys-
tem. The close correspondence between the symptoms
of medial temporal amnesia and the formal properties
of an ART model with defective orienting subsystem is
consistent with accumulating evidence for the hypothe-
sis76 that the in vivo analog of the ART orienting
subsystem intersects, or is closely linked to, the hip-
pocampal formation.

Similar behavioral problems have been identified in
hippocampectomized monkeys. Gaffan59 noted, for ex-
ample, that fornix transection "impairs ability to change
an established habit... (there is) impaired learning
ability when one habit is to be formed in one set of
circumstances and a different habit is to be formed in a
different set of circumstances that is similar to the first
and therefore liable to be confused with it" (p. 94). A
similar problem occurs in an ART network with a
defective orienting subsystem. Such a defect prevents
STM reset, which normally leads to memory search
and learning of different representations for the two
similar events. Pribraml42 calls such a process a "com-
petence for recombinant context-sensitive processing"
(p. 362). These ART mechanisms illustrate how mem-
ory consolidation and novelty detection may be medi-
ated by the same neural structures178, and clarify why
hippocampectomized rats have difficulty orienting to
novel cues131 and why there is a progressive reduction
in novelty-related hippocampal potentials as learning
proceeds in normal rats49.50. In summary, localization
of both orienting subsystem circuits and adaptive tim-
ing circuits in, or intimately related to, the hippocam-
pal formation helps to explain a large body of neu-
ropsychological data. Further hippocampal relation-
ships to ART model mechanisms will be discussed
below.

29. A SYNTHESIS OF SENSORY-COGNITIVE AND
COGNITIVE-REINFORCER CIRCUITS

External Internal
Sensory Input Drive Input

(8) (b)

Fig. 33. A schematic representation showing the close homology
betWeen the sensory-cognitive ART circuit shown in Fig. 31 and the
cognitive-emotional circuit shown in Fig. 30. a: the sensory-cognitive
circuit consists of a level F( for representing activation of sensory
features. Level Fl interacts with a sensory representation level F2
that encodes learned chunks, or compressed representations. of the
sensory features. Level F I interacts with level F2 via reciprocal
pathways that are adaptive and excitatory. Level F( also inhibits the
orienting subsystem A. b: the sensory-drive ART circuit consists of a
~TiveTepresentatioo level that interacts with:r.ensoryrepyesenu-
tion level s via reciprocal pathways that are adaptive and excitatory.
Level D also inhibits the orienting systems A. The circuits a and b
are combined by incorporating level F2 into level s as described in

the text.

We are now ready to join together the sensory-cog-
nitive ART network in Fig. 31a with the cognitive-rein-
forcer and adaptive timing network in Fig. 30. When
this is done, a striking formal similarity between the
different types of circuits may be discerned. This simi-
larity suggests that cognitive and emotional processes
in the brain share many design properties in com-
mon82.83, unlike artificial intelligence models of prob-

1emwlving-; ~ ---

The sensory representations s in Fig. 30 are recog-
nition codes for sensory events. For definiteness, we
identify them with the recognition codes at the level F2
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of the ART network in Fig. 31a, as in Fig. 31b. When
this is done, Fig. 30 may be redrawn in a way that

reveals a striking homology with the ART recognition
circuit in Fig. 31. A comparison between Fig. 33a and b

illustrates this homology. In Fig. 33a and b, the sensory

representation level Fl and the drive representation
level D play an analogous role. In particular, both level

Fl and level D send inhibitory signals to the orienting
subsystem A. The inhibitory signals from Ft prevent A
from resetting STM at level F2 unless a sensory input

pattern mismatches a top-down learned expectation at
level Fl. The inhibitory signals from D help to prevent
A from resetting level F2 when a reinforced event is

being attended. As noted in Section 24, such an atten-
tive focus develops due to an exchange of positive

feedback signals between levels F2 and D, supported
by conditioned F2 -+ D -+ F2 pathways.

the duration of motivated attention, are no longer
available. This analysis also clarifies why properties of
delay conditioning are altered by hippocampec-
tomy9.141.

The model gains additional support from its ability
to rationalize this pattern of conditioned behavioral
changes due to hippocampectomy. Although these data
strongly suggest that the hippocampus plays an impor-
tant role in the control of timing, they do not imply
that other brain regions do not also contribute to the

hippocampally observed 'temporal model'. The very
fact that hippocampectomy alters conditioned behav-
ioral timing indicates that timing is conditioned at
hippocampal sites, as well as at non-hippocampal sites,
such as the sites that control the cerebellar conditioned
reactions (Section 26).

31. CONCLUDING REMARKS: VARIETIES OF LEARN-
ING FUNCTIONS AND NElWORKS30. INFLUENCES OF HIPPOCAMPECfOMY ON CON-

DITIONED TIMING

The theory developed in this article provides a com-
putational framework in which many behavioral and
neural data about conditioning can be analyzed. By
identifying several problems that a behaving organism
needs to solve in order to survive, the theory has been
able to distinguish between several functionally distinct
learning processes, to model several of their main
mechanisms, and to outline a system architecture within
which they are combined. These learning processes
include adaptive timing, and the way in which it selec-
tively inhibits unappropriate reactions to expected
non-occurrences; reinforcement learning, notably emo-
tional conditioning; incentive motivational learning, in-
cluding the allocation of attention and the energizing
of behavioral responses; recognition learning, including
the bottom-up learning that initiates selection of
recognition categories and the top-down learning of
expectations that help to calibrate novelty and to con-
trol memory search; and response learning, including
the conditioning of discrete defensive reflexes. This
sort of integrative theory exhibits features that are still
quite novel in computational neuroscience. This is par-
ticularly true where the theory links together several
conceptual and organizational levels in order to experi-
mentally support its hypotheses. The theory provides
behavioral analyses that help to identify functionally
distinct brain processes, mathematically precise circuits~ 

modclJhe~ss~ing-de sign-pr1 nciples
to tie these circuits together into a system architecture,
neural markers in terms of identifiable anatomical and
physiological processes, and computer simulations and
predictions to test this architecture at multiple levels of

This synthesis of cognitive and emotional networks
enables the theory to explain a broad range of data
concerning changes in conditioned timing that are due
to hippocampectomy. The expanded model clarifies
why the hippocampus is not needed for delay condi-
tioning, but is needed for classical conditioning of
more complex associations, such as reversal condition-
ing and trace conditioning. It has been shown that
bilateral hippocampectomy severely disrupts the rate of
reversal of two-tone discrimination 1 1, reversal of cross-

modality discrimination and tone-light discrimina-
tionl7S. Hippocampectomy does not, however, disrupt
initial learning of the discrimination9. The deficit in
reversal conditioning is consistent with the explanation
of perseverative behavior due to disrupted STM reset
and memory search that was given in Section 28.

Hippocampectomy has a profound effect on NM
response shape during trace conditioning; for example,
if a 100-ms CS duration and a 500-ms ISI are used.
Then small, short-latency responses occur to the CS,
rather than the large, adaptively timed long-latency
responses of control animals1s9. The removal of the
spectral timing process clarifies why the timed re-
sponses are eliminated. A detailed study of the model
circuit also clarifies why some responses remain. As
Fig. 30 illustrates, the interactions between sensory
representations s_~~~i~~~~~~~~iQ~~~-
ablation of the adaptive timing circuit, so that certain
aspects of motivated behavior remain intact. On the
other hand, the role of the adaptive timing circuit in
prolonging reactions to sensory cues, and in regulating
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behavioral and neural organization. With such a foun-
dation in hand, every new datum creates a series of
implications that may support or confront the theory at
multiple points, thereby creating multiple constraints
for propelling further theoretical tests, modifications
and refinements. Such theories seem necessary if the
immense masses of behavioral and neural data already
available are ever to achieve a rational explanation.
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APPENDIX

Simulation methods. All simulations were perfonned
on an Iris-4D /240 superwork-station using double pre-




