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Neural dynamics of perceptual grouping
Textures, boundaries, and emergent
segmentations
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A real-time visual processing theory is used to analyze and explain a wide variety of percep-
tual grouping and segmentation phenomena, including the grouping of textured images, ran-
domly defined images, and images built up from periodic scenic elements. The theory explains
how “local” feature processing and “‘emergent” features work together to segment a scene, how
segmentations may arise across image regions that do not contain any luminance differences,
how segmentations may override local image properties in favor of global statistical factors, and
why segmentations that powerfully influence object recognition may be barely visible or totally
invisible. Network interactions within a Boundary Contour (BC) System, a Feature Contour (FC)
System, and an Object Recognition (OR) System are used to explain these phenomena. The BC
System is defined by a hierarchy of orientationally tuned interactions, which can be divided into
two successive subsystems called the OC filter and the CC loop. The OC filter contains two suc-
cessive stages of oriented receptive fields which are sensitive to different properties of image con-
trasts. The OC filter generates inputs to the CC loop, which contains successive stages of spa-
tially short-range competitive interactions and spatially long-range cooperative interactions.
Feedback between the competitive and cooperative stages synthesizes a global context-sensitive
segmentation from among the many possible groupings of local featural elements. The proper-
ties of the BC System provide a unified explanation of several ostensibly different Gestalt rules.
The BC System also suggests explanations and predictions concerning the architecture of the
striate and prestriate visual cortices. The BC System embodies new ideas concerning the founda-
tions of geometry, on-line statistical decision theory, and the resolution of uncertainty in quan-
tum measurement systems. Computer simulations establish the formal competence of the BC
System as a perceptual grouping system. The properties of the BC System are compared with
probabilistic and artificial intelligence models of segmentation. The total network suggests a new
approach to the design of computer vision systems, and promises to provide a universal set of

rules for perceptual grouping of scenic edges, textures, and smoothly shaded regions.

1. Introduction: Toward a Universal Set of
Rules for Perceptual Grouping

The visual system segments optical input into regions
that are separated by perceived contours or boundaries.
This rapid, seemingly automatic, early step in visual
processing is difficult to characterize, largely because
many perceived contours have no obvious correlates in
the optical input. A contour in a pattern of luminances
is generally defined as a spatial discontinuity in luminance.
Although usually sufficient, however, such discontinui-
ties are by no means necessary for sustaining perceived
contours. Regions separated by visual contours also oc-
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cur in the presence of: statistical differences in textural
qualities such as orientation, shape, density, or color
(Beck, 1966a, 1966b, 1972, 1982, 1983; Beck, Prazdny,
& Rosenfeld, 1983), binocular matching of elements of
differing disparities (Julesz, 1960), accretion and dele-
tion of texture elements in moving displays (Kaplan,
1969), and classical ‘‘subjective contours’’ (Kanizsa,
1955). The extent to which the types of perceived con-
tours just named involve the same visual processes as those
triggered by luminance contours is not obvious, although
the former are certainly as perceptually real and gener-
ally as vivid as the latter.

Perceptual contours arising at boundaries of regions
with differing statistical distributions of featural qualities
have been studied in great detail (Beck, 1966a, 1966b,
1972, 1982, 1983; Beck et al., 1983; Caelli, 1982, 1983;
Caelli & Julesz, 1979). Two findings of this research are
especially salient. First, the visual system’s segmentation
of the scenic input occurs rapidly throughout all regions
of that input, in a manner often described as ‘‘preatten-
tive.’” That is, subjects generally describe boundaries in
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a consistent manner when exposure times are short (un-
der 200 msec) and without prior knowledge of the regions
in a display at which boundaries are likely to occur. Thus,
any theoretical account of boundary extraction for such
displays must exlain how early ‘‘data driven’’ processes
rapidly converge on boundaries wherever they occur.

The second finding of the experimental work on tex-
tures complicates the implications of the first, however:
the textural segmentation process is exquisitely context-
sensitive. That is, a given texture element at a given lo-
cation can be part of a variety of larger groupings, de-
pending on what surrounds it. Indeed, the precise deter-
mination even of what acts as an element at a given
location can depend on patterns at nearby locations.

One of the greatest sources of difficulty in understand-
ing visual perception and in designing fast object recog-
nition systems is such context sensitivity of perceptual
units. Since the work of the Gestaltists (Wertheimer,
1923), it has been widely recognized that local features
of a scene, such as edge positions, disparities, lengths,
orientations, and contrasts, are perceptually ambiguous,
but that combinations of these features can be quickly
grouped by a perceiver to generate a clear separation be-
tween figures and between figure and ground. Indeed, a
figure within a textured scene often seems to *‘pop out’’
from the ground (Neisser, 1967). The ‘‘emergent’’ fea-
tures by which an observer perceptually groups the *‘lo-
cal’’ features within a scene are sensitive to the global
structuring of textural elements within the scene.

The fact that these emergent perceptual units, rather
than local features, are used to group a scene carries with
it the possibility of scientific chaos. If every scene can
define its own context-sensitive units, then perhaps ob-
ject perception can only be described in terms of an un-
wieldy taxonomy of scenes and their unique perceptual
units. One of the great accomplishments of the Gestalt-
ists was to suggest a short list of rules for perceptual
grouping that helped to organize many interesting exam-
ples. As is often the case in pioneering work, the rules
were neither always obeyed nor exhaustive. No justifica-
tion for the rules was given other than their evident plau-
sibility. More seriously for practical applications, no ef-
fective computational algorithms were given to instantiate
the rules.

Many workers since the Gestaltists have made impor-
tant progress in advancing our understanding of percep-
tual grouping processes. For example, Dev (1975), Julesz
(1971), and Sperling (1970} introduced algorithms for us-
ing disparity cues to coherently separate figure from
ground in random-dot stereograms. Later workers, such
as Marr and Poggio (1976), have studied similar al-
gorithms. Caelli (1982, 1983) has emphasized the impor-
tance of the conjoint action of orientation and spatial fre-
quency tuning in the filtering operations that preprocess
textured images. Caelli and Dodwell (1982), Dodwell
(1983), and Hoffman (1970) have recommended the use
of Lie group vector fields as a tool for grouping together

orientational cues across perceptual space. Caelli and
Julesz (1979) have presented evidence that *‘first order
statistics of textons'’ are used to group textural elements.
The term “‘textons’’ designates the features that are to be
statistically grouped. This view supports a large body of
work by Beck and his colleagues (Beck, 1966a, 1966b,
1972, 1982, 1983; Beck et al., 1983), who have in-
troduced a remarkable collection of ingenious textural dis-
plays which they have used to determine some of the fac-
tors that control textural grouping properties.

The collective effect of these and other contributions
has been to provide a sophisticated experimental litera-
ture about textural grouping which has identified the main
properties that need to be considered. What has not been
achieved is a deep analysis of the design principles and
mechanisms that lie behind the properties of perceptual
grouping. Expressed in another way, what is missing is
the raison d’etre for textural grouping and a computational
framework that dynamically explains how textural ele-
ments are grouped, in real time, into easily separated
figures and ground.

One manifestation of this gap in contemporary under-
standing can be found in the image-processing models that
have been developed by workers in artificial intelligence.
In this approach, curves are analyzed using models differ-
ent from those that are used to analyze textures, and tex-
tures are analyzed using models different from the ones
used to analyze surfaces (Horn, 1977; Marr & Hildreth,
1980). All of these models are built up using geometrical
ideas—such as surface normal, curvature, and
Laplacian—that were used to study visual perception dur-
ing the 19th century (Ratliff, 1965). These geometrical
ideas were originally developed to analyze local proper-
ties of physical processes. By contrast, the visual system’s
context-sensitive mechanisms routinely synthesize figural
percepts that are not reducible to local luminance differ-
ences within a scenic image. Such emergent properties
are not just the effect of local geometrical transformations.

Our recent work suggests that 19th century geometri-
cal ideas are fundamentally inadequate to characterize the
designs that make biological visual systems so efficient
(Carpenter & Grossberg, 1981, 1983; Cohen & Gross-
berg, 1984a, 1984b; Grossberg, 1983a, 1983b, 1984a,
1985; Grossberg & Mingolla, 1985a, 1985b). This claim
arises from the discovery of new mechanisms that are not
designed to compute local geometrical properties of a
scenic image. These mechanisms are defined by parallel
and hierarchical interactions within very large networks
of interacting neurons. The visual properties that these
equations compute emerge from network interactions,
rather than from local transformations.

A surprising consequence of our analysis is that the
same mechanisms that are needed to achieve a biologi-
cally relevant understanding of how scenic edges are in-
ternally represented also respond intelligently to textured
images, smoothly shaded images, and combinations
thereof. These new designs thus promise to provide a
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universal set of rules for the preattentive perceptual group-
ing processes that feed into depthful form percept and ob-
ject recognition processes.

The complete development of these designs will require
a major scientific effort. The present article takes two steps
in that direction. The first goal of the article is to indicate
how these new designs render transparent properties of
perceptual grouping which previously were effectively
manipulated by a small number of scientists, notably Jacob
Beck. A primary goal of this article is thus to provide a
dynamic explanation of recent textural displays from the
Beck school. Beck and his colleageus have gone far in
determining which aspects of textures tend to group and
under what conditions. Our work sheds light on how such
segmentation may be implemented by the visual system.
The results of Glass and Switkes (1976) on grouping of
statistically defined percepts and of Gergory and Heard
(1979) on border locking during the café wall illusion will
also be analyzed using the same ideas. The second goal
of the article is to report computer simulations that illus-
trate the theory’s formal competence for generating per-
ceptual groupings that strikingly resemble human group-
ing properties.

Our theory first introduced the distinction between the
Boundary Contour System (BC System) and the Feature
Contour System (FC System) to deal with paradoxical data
concerning brightness, color, and form perception. These
two systems extract two different types of contour-
sensitive information—called BC signals and FC
signals—at an early processing stage. The BC signals are
transformed through successive processing stages within
the BC System into coherent boundary structures. These
boundary structures give rise to topographically organized
output signals to the FC System (Figure 1). FC signals
are sensitive to luminance and hue differences within a
scenic image. These signals activate the same processing
stage within the FC System that receives boundary sig-
nals from the BC System. The FC signals here initiate
the filling-in processes whereby brightnesses and colors
spread until they either hit their first boundary contour
or are attenuated by their spatial spread.

Although earlier work examined the role of the BC Sys-
tem in the synthesis of individual contours, whether
““real’’ or *‘illusory,”’ its rules also account for much of
the segmentation of textured scenes into grouped regions
separated by perceived contours. Accordingly, Sections
2-9 of this paper review the main points of the theory with
respect to their implications for perceptual grouping. Sec-
tions 10-15 and 17-19 then examine in detail the major
issues in grouping research to date and describe our so-
lutions qualitatively. Section 16 presents computer simu-
lations showing how our model synthesizes context-
sensitive perceptual groupings. The model is described
in more mechanistic detail in Section 20. Mathematical
equations of the model are contained in the Appendix.

2. The Role of Illusory Contours
One of the main themes in our discussion is the role
of illusory contours in perceptual grouping processes. Our
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Figure 1. A macrocircuit of processing stages: Monocular
preprocessed signals (MP) are sent independently to both the Bound-
ary Contour System (BCS) and the Feature Contour System (FCS).
The BCS preattentively generates coherent boundary structures from
these MP signals. These structures send outputs to both the FCS
and the Object Recognition System (ORS). The ORS, in turn, rapidly
sends top-down learned template signals to the BCS. These template
signals can modify the preattentively completed boundary structures
using learned information. The BCS passes these modifications along
to the FCS. The signals from the BCS organize the FCS into per-
ceptual regions wherein filling-in of visible brightnesses and colors
can occur. This filling-in process is activated by signals from the
MP stage.

results make precise the sense in which percepts of “‘il-
lusory contours’’—or contour percepts that do not cor-
respond to one-dimensional luminance differences in a
scenic image—and percepts of ‘‘real contours’’ are both
synthesized by the same mechanisms. This discussion clar-
ifies why, despite the visual system’s manifestly adaptive
design, illusory contours are so abundant in visual per-
cepts. We also suggest how illusory contours that are at
best marginally visible can have powerful effects on per-
ceptual grouping and object recognition processes.
Some of the new designs of our theory can be moti-
vated by contrasting the noisy visual signals that reach
the retina with the coherence of conscious visual percepts.
In humans, for example, light passes through a thicket
of retinal veins before it reaches retinal photoreceptors.
The percepts of human observers are fortunately not dis-
torted by their retinal veins during normal vision. This
is due, in part, to the action of mechanisms that attenuate
the perception of images that are stabilized with respect
to the retina as the eye jiggles in its orbit with respect
to the outside world. Suppressing the percept of the stabi-
lized veins does not, in itself, complete the percept of reti-
nal images that are occluded and segmented by the veins.
Boundaries need to be completed and colors and bright-
nesses filled in to compensate for the image degradation
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that is caused by the retinal veins. A similar discussion
follows from a consideration of why human observers do
not typically notice their blind spots (Kawabata, 1984).

Observers are not able to distinguish which parts of such
a completed percept are derived directly from retinal sig-
nals and which parts are due to boundary completion and
featural filling-in. The completed and filled-in percepts
are called, in the usual jargon, ‘‘illusory’’ figures. These
examples suggest that both “‘real’’ and “‘illusory’’ figures
are generated by the same perceptual mechanisms, and
suggest why ‘‘illusory’’ figures are so important in per-
ceptual grouping processes. Once this is understood, the
need for a perceptual theory that treats ‘‘real’” and ‘‘illu-
sory”’ percepts on an equal footing also becomes apparent.

A central issue in such a theory concerns whether
boundary completion and featural filling-in are the same
or distinct processs. One of our theory’s primary contri-
butions is to show, by characterizing the different process-
ing rules that they obey, that these processes are different.

At our present stage of understanding, many percep-
tual phenomena can be used to make this point. We find
the following three phenomena to be particularly useful:
the Land (1977) color and brightness experiments, the
Yarbus (1967) stabilized-image experiments, and the
reverse-contrast Kanizsa square (Grossberg & Mingolla,
1985a).

3. Discounting the Illuminant: Color Edges
and Featural Filling-In

The visual world is typically viewed under inhomogene-
ous lighting conditions. The scenic luminances that reach
the retina thus confound fluctuating lighting conditions
with invariant object colors and lightnesses. Helmholtz
(1890/1962) aleady knew that the brain somehow *‘dis-
counts the illuminant’’ to generate color and lightness per-
cepts that are more veridical than those in the retinal im-
age. Land (1977) has clarified this process in a series of
striking experiments wherein color percepts within a pic-
ture constructed from overlapping patches of colored
paper are determined under a variety of lighting condi-
tions. These experiments show that color signals cor-
responding to the interior of each patch are suppressed.
The chromatic contrasts across the edges between adja-
cent patches are used to generate the final percept. It is
easy to see how such a scheme *‘discounts the illuminant.’’
Large differences in illumination can exist within any
patch. On the other hand, differences in illumination are
small across an edge on such a planar display. Hence,
the relative chromatic contrasts across edges, assumed to
be registered by black-white, red-green, and blue-yellow
double opponent systems, are good estimates of the ob-
ject reflectances near the edge.

Just as suppressing the percept of stabilized veins is in-
sufficient to generate an adequate percept, so too is dis-
counting the illuminant within each color patch. Without
further processing, we could at best perceive a world of
colored edges. Featural filling-in is needed to recover es-
timates of brightness and color within the interior of each

patch. Thus, extraction of color edges and featural filling-
in are both necessary for the perception of a color field
or a continuously shaded surface.

4. Featural Filling-In Over Stabilized
Scenic Edges

Many images can be used to firmly establish that a
featural filling-in process exists. The recent thesis of
Todorovié¢ (1983) provides a nice set of examples that one
can construct with modest computer graphics equipment.
Vivid classical examples of featural filling-in were dis-
covered by artificially stabilizing certain image contours
of a scene (Krauskopf, 1963; Yarbus, 1967). Consider,
for example, the image schematized in Figure 2. After
the edges of the large circle and the vertical line are stabi-
lized on the retina, the red color (dots) outside the large
circle fills in the black and white hemidisks, except within
the small red circles whose edges are not stabilized
(Yarbus, 1967). The red inside the left circle looks
brighter and the red inside the right circle looks darker
than the uniform red that envelopes the remainder of the
percept.

When the Land (1977) and Yarbus (1967) experiments
are considered side by side, one can recognize that the
brain extracts two different types of contour information
from scenic images. Feature contours, including *‘color
edges,"” give rise to the signals that generate visible bright-
ness and color percepts at a later processing stage. Fea-
ture contours encode this information as a contour-

Figure 2. A classical example of featural filling-in: When the edges
of the large circle and the vertical line are stabilized on the retina,
the red color (dots) outside the large circle envelopes the black and
white hemidisks except within the small red circles whose edges are
not stabilized (Yarbus, 1967). The red inside the left circle looks
brighter and the red inside the right circle looks darker than the
enveloping red.

T T T 3
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sensitive process in order to discount the illuminant.
Boundary contours are extracted in order to define the
perceptual boundaries, groupings, or forms within which
featural estimates derived from the feature contours can
fill in at a later processing stage. In the Yarbus (1967)
experiments, once a stabilized scenic edge can no longer
generate a boundary contour, featural signals can flow
across the locations corresponding to the stabilized scenic

edge until they reach the next boundary contour. The ;

phenomenon of neon color spreading also illustrates the
dissociation of boundary-contour and feature-contour
processing (Ejima, Redies, Takahashi, & Akita, 1984,
Redies & Spillmann, 1981; Redies, Spillmann, & Kunz,
1984; van Tuijl, 1975; van Tuijl & de Weert, 1979;
van Tuijl & Leeuwenberg, 1979). An explanation of neon
color spreading is suggested in Grossberg (1984a) and
Grossberg and Mingolla (1985a).

5. Different Rules for Boundary Contours
and Feature Contours

Some of the rules that distinguish the BC System from
the FC System can be inferred from the percept gener-
ated by the reverse-contrast Kanizsa square image in
Figure 3 (Cohen & Grossberg, 1984a; Grossberg & Min-
golla, 1985a). Prazdny (1983, 1985) and Shapley and Gor-
don (1985) have also used reverse-contrast images in their
discussions of form perception. Consider the vertical
boundaries in the perceived Kanizsa square. In this per-
cept, a vertical boundary connects a pair of vertical scenic
edges with opposite direction of contrast. In other words,
the black Pac-Man figure causes a dark-light vertical edge
with respect to the gray background. The white Pac-Man
figure causes a light-dark vertical edge with respect to
the gray background. The process of boundary comple-
tion whereby a boundary contour is synthesized between
these inducing stimuli is thus indifferent to direction of
contrast. The boundary completion process is, however,
sensitive to the orientation and amount of contrast of the
inducing stimuli.

The feature contours extracted from a scene are, by con-
trast, exquisitely sensitive to direction of contrast. Were
this not the case, we could never tell the difference be-
tween a dark-light and a light-dark percept. We would
be blind.

Another difference between BC and FC rules can be
inferred from Figures 2 and 3. In Figure 3, a boundary
forms inward in an oriented way between a pair of in-
ducing scenic edges. In Figure 2, featural filling-in is due
to an outward and unoriented spreading of featural qual-
ity from individual FC signals that continues until the
spreading signals either hit a boundary contour or are at-
tenuated by their own spatial spread (Figure 4). The re-
mainder of the article develops these and deeper proper-
ties of the BC System to explain segmentation data.
Certain crucial points may profitably be emphasized now.

Boundaries may emerge corresponding to image regions
in which no contrast differences whatsoever exist. The
BC System is sensitive to statistical differences in the dis-

Figure 3. A reverse-contrast Kanisza square: An illusory square
is induced by two black and two white Pac-Man figures on a gray
background. Illusory contours can thus join edges with opposite
directions of contrast. (This effect may be weakened by the photo-

graphic reproduction process.)
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Figure 4. A monocular brightness and color stage domain within
the FC System: Monocular feature contour signals activate cell com-
ment boundaries which receive boundary contour signals from the
BC System. Consequently, the FC signals are smoothed except at
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tribution of scenic elements, not merely to individual im-
age contrasts. In particular, the oriented receptive fields,
or masks, that initiate boundary processing are not edge
detectors; rather, they are local contrast detectors which
can respond to statistical differences in the spatial distri-
bution of image contrasts, including but not restricted to
edges. These receptive fields are organized into multiple
subsystems, such that the oriented receptive fields within



146 GROSSBERG AND MINGOLLA

each subsystem are sensitive to oriented contrasts over
spatial domains of different sizes. These subsystems can
therefore respond differently to spatial frequency infor-
mation within the scenic image. Since all these oriented
receptive fields are also sensitive to amount of contrast,
the BC System registers statistical differences in lu-
minance, orientation, and spatial frequency even at its
earliest stages of processing.

Later stages of BC System processing are also sensi-
tive to these factors, but in a different way. Their inputs
from earlier stages are already sensitive to these factors.
They then actively transform these inputs, using
competitive-cooperative feedback interactions. The BC
System may hereby process statistical differences in lu-
minance, orientation, and spatial frequency within a scenic
image in multiple ways.

We wish also to dispel misconceptions that a compari-
son between the names *‘Boundary Contour System’’ and
*‘Feature Contour Systemn’’ may engender. As indicated
above, the BC System does generate perceptual bound-
aries, but neither the data nor our theory permit the con-
clusion that these boundaries must coincide with the edges
in scenic images. The FC System does lead to visible per-
cepts, such as organized brightness and color differences,
and such percepts contain the elements that are often called
features.

On the other hand, both the BC System and the FC Sys-
tem contain ‘‘feature detectors’ which are sensitive to
luminance or hue differences within scenic images.
Although both systems contain ‘‘feature detectors,’’ these
detectors are used within the BC System to generate
boundaries, not visible ‘‘features.”’ In fact, within the BC
System, all boundaries are perceptually invisible.

Boundary contours do, however, contribute to visible
percepts, but only indirectly. All visible percepts arise
within the FC System. Completed boundary contours help
to generate visible percepts within the FC System by defin-
ing the perceptual regions within which activations due
to feature contour signals can fill in.

Our names for these two systems emphasize that con-
ventional usage of the terms ‘‘boundary’’ and *‘feature’’
needs modification to explain data about form and color
perception. Our usage of these important terms captures
the spirit of their conventional meaning, but also refines
this meaning, to be consistent within a mechanistic anal-
ysis of the interactions leading to form and color percepts.

6. Boundary-Feature Tradeoff: Every
Line End Is Illusory

The rules obeyed by the BC System can be fully un-
derstood only by considering how they interact with the
rules of the FC System. Each contour system is designed
to offset insufficiencies of the other. The most paradoxi-
cal properties of the BC System can be traced to its role
in defining the perceptual domains that restrict featural
filling-in. These also turn out to be the properties that are
most important in the regulation of perceptual grouping.

The inability of previous perceptual theories to provide
a transparent analysis of perceptual grouping can be traced
to the fact that they did not clearly distinguish boundary
contours from feature contours; hence they could not ade-
quately understand the rules whereby boundary contours
generate perceptual groupings to define perceptual do-
mains adequate to contain featural filling-in.

When one frontally assaults the problem of designing
boundary contours to contain featural filling-in, one is led
to many remarkable conclusions. One conclusion is that
the end of every line is an “‘illusory’’ contour. We now
summarize what we mean by this assertion.

An early stage of boundary-contour processing needs
to determine the orientations in which scenic edges are
pointing. This i5 accomplished by elongated receptive
fields, or orientationally tuned input masks (Hubel &
Wiesel, 1977). Elongated receptive fields are, however,
insensitive to orientation at the ends of thin lines and at
object corners (Grossberg & Mingolla, 1985a). This
breakdown is illustrated by the computer simulation sum-
marized in Figure Sa, which depicts the reaction of a lat-
tice of orientationally tuned cells to a thin vertical line.
Figure 5a shows that in order to achieve some measure
of orientational certainty along scenic edges, the cells
sacrifice their ability to determine either position or orien-
tation at the end of a line. In other words, Figure 5a sum-
marizes the effects of an ‘‘uncertainty principle’” whereby
‘‘orientational certainty’’ along scenic edges implies
‘‘positional un¢ertainty'’ at line ends and corners. Stated
in a vacuum, this breakdown does not seem to be partic-
ularly interesting. Stated in the shadow of the featural
filling-in process, it has momentous implications. Without
further processing that is capable of compensating for this
breakdown, the BC System could not generate boundaries
corresponding to scenic line ends and corners. Conse-
quently, within the FC System, boundary signals would
not exist at positions corresponding to line ends
(Figure 6). The FC signals generated by the interior of
each line could then initiate spreading of featural quality
to perceptual regions beyond the location of the line end.
In short, the failure of boundary detection at line ends
could enable colors to flow out of every line end! In order
to prevent this perceptual catastrophe, orientational tun-
ing, just like discounting the illuminant, must be followed
by a hierarchy of compensatory processing stages in order
to gain full effectiveness.

To offset this breakdown under normal circumstances,
we have hypothesized that outputs from the cells with
oriented receptive fields input to two successive stages
of competitive interaction (Grossberg, 1984a; Grossberg
& Mingolla, 1985a), which are described in greater de-
tail in Section 20 and the Appendix. These stages are
designed to compensate for orientational insensitivity at
the ends of lines and corners. Figure 5b shows how these
competitive interactions generate horizontal BC signals
at the end of a vertical line. These ‘‘illusory’” boundary
contours help to prevent the flow of featural contrast from
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Figure 5. (a) An orientation field: Lengths and orientations of lines
encode the relative sizes of the activations and orientations of the
input masks at the corresponding positions. The input pattern, which
is a vertical line end as seen by the receptive fields, corresponds to
the shaded area. Each mask has total exterior dimension of 16 x8
units, with a unit length being the distance between two adjacent
lattice positions. (b) Response of the potentials y;; of the dipole field
defined in the Appendix to the orientation field of Figure 5a: End
cutting generates horizontal activations at line end locations that
receive small and orientationally ambiguous input activations.
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Figure 6. Possible spurious flow within the FC System of featural
quality from line ends: Labels ABCD outline the positions cor-
responding to the tip of a vertically oriented thin line. The black
areas from A to B and from C to D indicate regions of the FC Sys-
tem which receive signals due to direct image-induced activation of
vertically oriented receptive fields within the BC System. The stip-
pled areas indicate regions of the FC System which receive FC sig-
nals from the interior of the line image. FC System receptive fields,
being small and unoriented, may be excited at line ends, even if the
ariented receptive fields of the BC System are not. The arrows in-
dicate that filling-in due to these FC signals can spread outside the
putative boundary ABCD of the line end.

the line end. Such horizontal boundary contours induced
by a vertical line end are said to be generated by end cut-
ting, or orthogonal induction.

The circle illusion that is perceived by a glance at
Figure 7 can now be understood. The BC end cuts at the
line ends can cooperate with other end cuts of similar
orientation that are approximately aligned across percep-
tual space, just as boundary contours do to generate the
percept of a Kanizsa square in Figure 3. These boundary
contours group ‘‘illysory’’ figures for the same reason
that they complete figures across retinal veins and blind
spots. Within the BC System, both “‘real’’ and “illusory’’
contours are generated by the same dynamical laws.

7. Parallel Induction by Edges Versus
Perpendicular Induction by Line Ends

Knowing the directions in which boundary contours will
form is obviously essential to understanding perceptual
grouping. Why does ia boundary form parallel to the in-
ducing edges in Figure 3 but perpendicular to the line ends
in Figure 7? This is clearly a question about spatial scale,
since thickening a line until its end becomes an edge will
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Figure 7. Cooperation among end-cut signals: A bright illusory
circle is induced perpendicular to the ends of the radial lines.

cause induction to switch from being perpendicular to the
line to being parallel to the edge.

An answer to this question can be seen by inspection
of Figure 5. In Figure 5a, strong vertical reactions oc-
cur in response to the long vertical edge of the line.
Figure 5b shows that these vertical reactions remain ver-
tical when they pass through the competitive stages. This
is analogous to a parallel induction, since the vertical reac-
tions in Figure 5b will generate a completed vertical
boundary contour that is parallel to its corresponding
scenic edge. By contrast, the ambiguous reaction at the
line end in Figure 5a generates a horizontal end cut in
Figure 5b that is perpendicular to the line. If we thicken
the line into a bar, it will eventually become wide enough
to enable the horizontally oriented receptive fields at the
bar end to generate strong reactions, in just the same way
as the vertically oriented receptive fields along the side
of the line generated strong vertical reactions there. The
transition from ambiguous to strong horizontal reactions
as the line end is thickened corresponds to the transition
between perpendicular and parallel boundary contour in-
duction.

This predicted transition has been discovered in electro-
physiological recordings from cells in the monkey visual
cortex (von der Heydt, Peterhans, & Baumgartner, 1984).
The pattern of cell responding in Figure 5a is similar to
the data which von der Heydt et al. recorded in area 17
of the striate cortex, whereas the pattern of cell respond-
ing in Figure Sb is similar to the data that von der Heydt
et al. recorded in area 18 of the prestriate cortex. See
Grossberg (1985) and Grossberg and Mingolla (1985a)
for a further discussion of these and other supportive neu-
ral data.

8. Boundary Completion via Cooperative-Competitive
Feedback Signaling: CC Loops and
the Statistics of Grouping

Another mechanism important in determining the direc-
tions in which perceptual groupings occur will now be
summarized. As in Figure 5b, the outputs of the competi-
tive stages can generate bands of oriented responses.
These bands enable cells sensitive to similar orientations
at approximately aligned positions to begin cooperating
to form the final BC percept. These bands play a useful
role, because they increase the probability that spatially
separated BC fragments will be aligned well enough to
cooperate.

Figure 8 provides visible evidence of the existence of
these bands. In Figure 8a, the end cuts that are exactly
perpendicular to their inducing line ends can group to form
a square boundary. In Figure 8b, the end cuts that are

)N
o

Figure 8. Evidence for bands of orientation responses: In (a), an
illusory square is generated with sides perpendicular to the induc-
ing lines. In (b), an illusory square is generated by lines with orien-
tations that are not exactly perpendicular to the illusory contour.
Redrawn from Kennedy (1979).

(b)
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exactly perpendicular to the line ends cannot group, but
end cuts that are almost perpendicular to the line ends can.

Figure 8 also raises the following issue. If bands of end
cuts exist at every line end, then why cannot all of them
group to form bands of different orientations, which might
sum to create fuzzy boundaries? How is a single sharp
global boundary selected from among all of the possible
local bands of orientations?

We suggest that this process is accomplished by the type
of feedback exchange between competitive and coopera-
tive processes that is depicted in Figure 9. We call such
a competitive-cooperative feedback exchange a CC loop.
Figure 9a shows that the competitive and cooperative
processes occur at different network stages, with the com-
petitive stage generating the end cuts depicted in
Figure 5b. Thus, the outcome of the competitive stage
serves as a source of inputs to the cooperative stage and
receives feedback signals from the cooperative stage.

Each cell in the cooperative process can generate out-
put signals only if it receives a sufficient number and in-
tensity of inputs within both of its input-collecting
branches. Thus, the cell acts like a type of logical gate,

ORIENTED
COOPERATION

FEEDBACK
,” \\\ ’/' \\\
LOCAL LOCAL
COMPETITION

COMPETITION
(a)

@3

(b)

Figure 9. Boundary completion in a cooperative-competitive feed-
back exchange (CC loop): (a) Local competition occurs between
different orientations at each spatial location. A cooperative bound-
ary completion process can be activated by pairs of aligned orien-
tations that survive their local competitions. This cooperative acti-
vation initiates the feedback to the competitive stage that is detailed
in Figure 9b. (b) The pair of pathways 1 activate positive bound-
ary completion feedback along pathway 2. Then pathways such as
3 activate positive feedback along pathways such as 4. Rapid com-
pletion of a sharp boundary between pathways 1 can hereby be
generated. See text for details.
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or statistical dipole. The inputs to each branch come from
cells of the competitive process that have an orientation
and position that are similar to the spatial alignment of
the cooperative cell’s branches. When such a cell is acti-
vated, say by the conjoint action of both input pathways
labeled 1 in Figure 9b, it sends excitatory feedback sig-
nals along the pathways labeled 2. These feedback sig-
nals activate cells within the competitive stage which code
a similar orientation and spatial position.

The cells at the competitive stage cannot distinguish
whether they are activated by bottom-up signals from
oriented receptive fields or by top-down signals from the
cooperative stage. Either source of activation can cause
them to generate bottom-up competitive-to-cooperative
signals. Thus, new cells at the cooperative stage may now
be activated by the conjoint action of both the input path-
ways labeled 3 in Figure 9b. These newly activated
cooperative cells can then generate feedback signals along
the pathway labeled 4.

In this way, a rapid exchange of signals between the
competitive and cooperative stages may occur. These sig-
nals can propagate inward between pairs of inducing BC
inputs, as in the Kanizsa square of Figure 3, and can
thereby complete boundaries across regions that receive
no bottom-up inputs from oriented receptive fields. The
process of boundary completion occurs discontinuously
across space by using the gating properties of the cooper-
ative cells (Figure 9b) to successively interpolate bound-
aries within progressively finer intervals. This type of
boundary completion process is capable of generating
sharp boundaries, with sharp endpoints, across large spa-
tial domains (Grossberg & Mingolla, 1985a). Unlike a
low-spatial-frequency filter, the boundary-completion
process does not sacrifice fine spatial resolution to achieve
a broad spatial range.

Quite the contrary is true, since the CC loop sharpens,
or contrast-enhances, the input patterns it receives from
oriented receptive fields. This process of contrast enhance-
ment is due to the fact that the cooperative stage feeds
its excitatory signals back into the competitive stage. Thus,
the competitive stage does double duty: it helps to com-
plete line ends that oriented receptive fields cannot de-
tect, and it helps to complete boundaries across regions
that may receive no inputs whatsoever from oriented
receptive fields. In particular, the excitatory signals from
the cooperative stage enhance the competitive advantage
of cells with the same orientation and position at the com-
petitive stage (Figure 9b). As the competitive-cooperative
feedback process unfolds rapidly through time, these lo-
cal competitive advantages are synthesized into a global
boundary grouping which can best reconcile all these lo-
cal tendencies. In the most extreme version of this
contrast-enhancement process, only one orientation at
each position can survive the competition. That is, the
network makes an orienfational choice at each active po-
sition. The design of the|/CC loop is based upon theorems
that characterize the factors that enable contrast-
enhancement and choi¢es to occur within nonlinear
cooperative-competitive' feedback networks (Ellias &
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Grossberg, 1975; Grossberg, 1973; Grossberg & Levine,
1975).

As this choice process proceeds, it completes a bound-
ary between some, but not all, of the similarly oriented
and spatially aligned cells within the active bands of the
competitive process (Figure 8). This interaction embod-
ies a type of real-time statistical decision process whereby
the most favorable groupings of cells at the competitive
stage struggle to win over other possible groupings by
initiating advantageous positive feedback from the cooper-
ative stage. As Figure 8b illustrates, the orientations of
the grouping that finally wins is not determined entirely
by local factors. This grouping reflects global coopera-
tive interactions that can override the most highly favored
local tendencies, in this case the strong perpendicular end
cuts.

The experiments of von der Heydt et al. (1984) also
reported the existence of area 18 cells that act like logi-
cal gates. These experiments therefore suggest that either
the second stage of competition, or the cooperative stage,
or both, occur within area 18. Thus, although these BC
System properties were originally derived from an anal-
ysis of perceptual data, they have successfully predicted
recent neurophysiological data concerning the organiza-
tion of mammalian prestriate cortex.

9. Form Perception vs. Object Recognition:
Invisible but Potent Boundaries

One final remark needs to be made before turning to
a consideration of textured scenes. Boundary contours in
themselves are invisible. Boundary contours gain visibil-
ity by separating FC signals into two or more domains
whose featural contrasts, after filling-in takes place, turn
out to be different. (See Cohen & Grossberg, 1984a, and
Grossberg, 1985, for a discussion of how these and later
stages of processing help to explain monocular and
binocular brightness data.) We distinguish this role of
boundary contours in generating visible form percepts
from the role played by boundary contours in object recog-
nition. We claim that completed BC signals project
directly to the object-recognition system (Figure 1).
Boundary contours thus need not be visible in order to
strongly influence object recognition. An ‘‘illusory’” BC
grouping that is caused by a textured scene can have a
much more powerful effect on scene recognition than the
poor visibility of the grouping might indicate.

We also claim that the object-recognition system sends
learned top-down template, or expectancy, signals back
to the BC System (Carpenter & Grossberg, 1985, in press;
Grossberg, 1980, 1982, 1984b). Our theory hereby both
agrees with and disagrees with the seminal idea of Gregory
(1966) that *‘cognitive contours’” are critical in bound-
ary completion and object recognition. Our theory sug-
gests that boundary contours are completed by a rapid,
preattentive, automatic process as they activate the
bottom-up adaptive filtering operations that activate the
object-recognition system. The reaction within the object-
recognition system determines which top-down visual

templates to the BC System will secondarily complete the
BC grouping based upon learned ‘‘cognitive’’ factors.
These **doubly completed”” boundary contours send sig-
nals to the FC System to determine the perceptual domains
within which featural filling-in will take place.

We consider the most likely location of the boundary
completion process to be area 18 (or V2) of the prestri-
ate cortex (von der Heydt et al., 1984), the most likely
location of the final stages of color and form perception
to be area V4 of the prestriate cortex (Desimone, Schein,
Moran, & Ungerleider, 1985; Zeki, 1983a, 1983b), and
the most likely location of some aspects of object recog-
nition to be the inferotemporal cortex (Schwartz, Desi-
mone, Albright, & Gross, 1983). These anatomical in-
terpretations were chosen after a comparison was made
between theoretical properties and known neural data
(Grossberg & Mingolla, 1985a). They also provide mark-
ers for performing neurophysiological experiments to fur-
ther test the theory’s mechanistic predictions.

10. Analysis of the Beck Theory of Textural
Segmentation: Invisible Collinear Cooperation

We now begin a dynamical explanation and refinement
of the main properties of Beck’s important theory of tex-
tural segmentation (Beck et al., 1983). One of the cen-
tral hypotheses of the Beck theory is that ‘‘local linking
operations form higher-order textural elements’ (p. 2).
‘‘Textural elements are hypothesized to be formed by
proximity, certain kinds of similarity, and good continu-
ation. Others of the Gestalt rules of grouping may play
a role in the formation of texture . ... There is an encod-
ing of the brightness, color, size, slope, and the location
of each textural element and its parts’’ (p. 31). We will
show that the properties of these *‘textural elements’’ are
remarkably similar to the properties of the completed
boundaries that are formed by the BC System. To explain
this insight, we will analyze various of the images used
by Beck et al. in the light of BC System properties.

Figure 10 provides a simple example of what the Beck
school means by a *‘textural element.’’ Beck et al. (1983)
write: **The short vertical lines are linked to form long
lines. The length of the long lines is an ‘emergent fea-
ture’ which makes them stand out from the surrounding
short lines’’ (p. §). The linking per se is explained by our
theory in terms of the process whereby similarly oriented
and spatially aligned outputs from the second competi-
tive stage can cooperate to complete a collinear interven-
ing boundary contour.

One of the most remarkable aspects of this *‘emergent
feature’’ is not analyzed by Beck et al. Why do we con-
tinue to see a series of short lines if long lines are the
emergent features that control perceptual grouping? In our
theory, the answer to this question is as follows. Within
the BC System, a boundary structure emerges correspond-
ing to the long lines described by Beck et al. This struc-
ture includes a long vertical component as well as short
horizontal end cuts near the endpoints of the short scenic
lines. The output of this BC structure to the FC System
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Figure 10. Emergent features: The collinear linking of short line
segments into longer segments is an “emergent feature” which sus-
tains textural grouping. Our theory explains how such emergent fea-
tures can contribute to perceptual grouping even if they are not visi-
ble. (Reprinted, by permission, from Beck, Prazdny, & Rosenfeld,
1983.)

prevents featural filling-in of dark and light contrasts from
crossing the boundaries corresponding to the short lines.
On the other hand, the output from the BC System to the
object-recognition system reads out a long-line structure
without regard to which subsets of this structure will be
perceived as dark or light.

This example points to a possible source of confusion
in the Beck model. Beck et al. (1983) claim that ‘‘there
is an encoding of the brightness, color, size, slope, and
the location of each textural element and its parts” (p. 31).
Figure 10 illustrates a sense in which this assertion is
false. The long BC structure can have a powerful effect
on textural segmentation even if it has only a minor ef-
fect on the brightness percepts corresponding to the short
lines in the image, because an emergent boundary con-
tour can generate a large input to the Object Recognition
System (OR System) without generating a large bright-
ness difference. The Beck model does not adequately dis-
tinguish between the contrast sensitivity that is needed to
activate elongated receptive fields at an early stage of
boundary formation and the effects of completed bound-
aries on featural filling-in. The outcome of featural filling-
in, rather than the contrast sensitivity of the BC System’s
elongated receptive fields, helps to determine a bright-
ness or color percept (Cohen & Grossberg, 1984a; Gross-
berg & Mingolla, 1985a).

A related source of ambiguity in the Beck model arises
from the fact that the strength of an emergent boundary
contour does not even depend on image contrasts, let alone
brightness percepts, in a simple way. The Beck model
does not adequately distinguish between the ability of elon-
gated receptive fields to activate a boundary contour in
regions where image contrast differences do exist and the
cooperative interactions that complete the boundary con-
tour in regions where image-contrast differences may or

may not exist. The cooperative interaction may, for ex-
ample, alter boundary contours at positions that lie within
the receptive fields of the initiating orientation-sensitive
cells, as in Figure 8b. The final percept, even at posi-
tions that directly receive image contrasts, may be strongly
influenced by cooperative interactions that reach these po-
sitions by spanning positions that do not directly receive
image contrasts. This property is particularly important
in situations in which a spatial distribution of statistically
determined image contrasts, such as dot or letter densi-
ties, form the image that excites the orientation-sensitive
cells.

11. The Primacy of Slope

Figure 11 illustrates this type of interaction between
bottom-up direct activation of orientationally tuned cells
and top-down cooperative interaction of such cells. Beck
and his colleagues have constructed many images of this
type to demonstrate that orientation or ‘‘slope is the most
important of the variables associated with shape for
producing textural segmentation. ... A tilted T is judged
to be more similar to an upright T than is an L. When
these figures are repeated to form textures . . . the texture
made up of Ls is more similar to the texture made up of
upright Ts than to the texture made up of tilted Ts'’ (Beck
et al., 1983, p. 7). In our theory, this fact follows from
several properties acting together: the elongated recep-
tive fields in the BC System are orientationally tuned. This
property provides the basis for the system’s sensitivity
to slope. As collinear boundary completion takes place
due to cooperative-competitive feedback (Figure 9), it can
group together approximately collinear boundary contours
that arise from contrast differences due to the different
letters. Collinear components of different letters are

grouped just as the BC System groups image contrasts-

due to a single scenic edge that excites the retina on op-
posite sides of a retinal vein. The number and density of
inducing elements of similar slope can influence the
strength of the final set of boundary contours pointing in
the same direction. Both Ls and Ts generate many
horizontal and vertical boundary inductions, whereas tilted
Ts generate diagonal boundary inductions.

Figure 11. The primacy of slope: In this classic figure, textural
segmentation between the tilted and upright Ts is far stronger than
between the upright Ts and Ls. The figure illustrates that grouping
of disconnected segments of similar slope is a powerful basis for tex-
tural segmentation. (Reprinted, by permission, from Beck, Prazdny,
& Rosenfeld, 1983.)

T~
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The main paradoxical issue underlying the percept of
Figure 11 concerns how the visual system overrides the
perceptually vivid individual letters. Once one understands
mechanistically the difference between boundary comple-
tion and visibility, and the role of boundary completion
in forming even individual edge segments without regard
to their ultimate visibility, this paradox is resolved.

12. Statistical Properties of Oriented Receptive
Fields: OC Filters

Variations on Figure 11 can also be understood by
refining the above argument. In Beck (1966a), it is shown
that Xs in a background of Ts produce weaker textural
segmentation than a tilted T in a background of upright
Ts, even though both images contain the same orienta-
tions. We agree with Beck et al. (1983) that ‘‘what is im-
portant is not the orientation of lines per se but whether
the change in orientation causes feature detectors to be
differentially stimulated”’ (p. 9). An X and a T have a
centrally symmetric shape that weakens the activation of
elongated receptive fields. A similar observation was
made by Schatz (1977), who showed that changing the
slope of a single line from vertical to diagonal led to
stronger textural segmentation than changing the slope of
three parallel lines from vertical to diagonal.

Both of these examples are compatible with the fact that
orientationally tuned cells measure the statistical distri-
bution of contrasts within their receptive fields. They do
not respond only to a template of an edge, bar, or other
definite image. They are sensitive to the relative contrast
of light and dark on either side of their axis of preferred
orientation (Appendix, Equation Al). Each receptive field
at the first stage of boundary contour processing is divided
into two halves along an oriented axis. Each half of the
receptive field sums the image-induced inputs it receives.
The integrated activation from one of the half-fields in-
hibits the integrated activation from the other half-field.
A net output signal is generated by the cell if the net acti-
vation is sufficiently positive. This output signal grows
with the size of the net activation. Thus, each such
oriented cell is sensitive to amount of contrast (size of
the net activation) and to direction of contrast (only one
half-field inhibits the other half-field), in addition to be-
ing sensitive to factors such as orientation, position, and
spatial frequency.

A pair of such oriented cells corresponding to the same
position and orientation, but opposite directions of con-
trast, send converging excitatory pathways to cells defin-
ing the next stage in the network. These latter cells are
therefore sensitive to factors such as orientation, position,
spatial frequency, and amount of contrast, but they are
insensitive to direction of contrast.

Together, the two successive stages of oriented cells
define a filter that is sensitive to properties concerned with
orientation and contrast. We therefore call this filter an
OC filter. The OC filter inputs to the CC loop. The BC
System network is a composite of OC filter and CC loop.
The output cells of the OC filter, being insensitive to direc-
tion of contrast, are the ones that respond to the relative

contrast of light and dark on either side of their axis of
preferred orientation.

Both the Xs studied by Beck (1966a) and the multiple
parallel lines studied by Schatz (1977) reduce this rela-
tive contrast. These images therefore weaken the relative
and absolute sizes of the input to any particular orienta-
tion. Thus, even the *‘front end'’ of the BC System be-
gins to regroup the spatial arrangement of contrast differ-
ences that is found within the scenic image.

13. Competition between Perpendicular
Subjective Contours

A hallmark of the Beck approach has been the use of
carefully chosen but simple figural elements in arrays
whose spatial parameters can be easily manipulated. Ar-
rays built up from U shapes have provided a particularly
rich source of information about textural grouping. In the
bottom half of Figure 12, for example, the line ends of
the Us and of the inverted Us line up in a horizontal direc-
tion. Their perpendicular end cuts can therefore cooper-
ate, just as in Figures 7 and 8, to form long horizontal
boundary contours. These long boundary contours enable
the bottom half of the figure to be preattentively distin-
guished from the top half. Beck et al. (1983) note that
segmentation of this image is controlled by *‘subjective
contours’’ (p. 2). They do not use this phrase to analyze
their other displays, possibly because the *‘subjective’’
boundary contours in other displays are not as visible.

The uncertainty within Beck et al. (1983) concerning
the relationship between *‘linking operations’’ and *‘sub-
jective contours’ is illustrated by their analysis of
Figure 13. In Figure 13a, vertical and diagonal lines al-
ternate. In Figure 13b, horizontal and diagonal lines al-
ternate. The middle third of Figure 13a is preattentively
segmented better than the middle third of Figure 13b.
Beck et al. (1983) explain this effect by saying that ‘“the
linking of the lines into chains also occurred more strongly

Figure 12. Textural grouping supported by subjective contours:
Cooperation among end cuts generates horizontal subjective con-
tours in the bottom half of this figure. (Reprinted, by permission,
from Beck, Prazdny, & Rosenfeld, 1983.)
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Figure 13. Effects of distance, perpendicular orientations, and col-
linearity on perceptual grouping: In both (a) and (b), vertical and
horizontal subjective boundaries are generated. The text explains
how the groupings in (a) better segregate the middle third of the
figure. (Reprinted, by permission, from Beck, Prazdny, & Rosen-
feld, 1983.)

when the lines were collinear than when they were
parallel, i.e., the linking of horizontal lines to form ver-
tical columns’’ (p. 21). ‘“The horizontal lines tend to link
in the direction in which they point. The linking into long
horizontal lines competes with the linking of the lines into
vertical columns and interferes with textural segmenta-
tion”” (p. 22). '
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Our theory supports the spirit of this analysis. Both the
direct outputs from horizontally oriented receptive fields
and the vertical end cuts induced by competitive process-
ing at horizontal line ends can feed into the collinear
boundary completion process. The boundary completion
process, in turn, feeds its signals back to a competitive
stage where perpendicular orientations compete
(Figure 9). Hence, direct horizontal activations and in-
direct vertical end cuts can compete at positions that
receive both influences due to cooperative feedback.

Beck et al. (1983) do not, however, comment upon an
important difference between Figures 13a and 13b that
is noticed when one realizes that linking operations may
generate both visible and invisible subjective contours.
We claim that, in Figure 13b, the end cuts of horizontal
and diagonal line ends can cooperate to form long verti-
cal boundary contours that run from the top to the bot-
tom of the figure. As in Figure 8b, global cooperative
factors can overtide local orientational preferences to
choose end cuts that are not perpendicular to their induc-
ing line ends. We suggest that this happens with respect
to the diagonal line ends in Figure 13b due to the cooper-
ative influence of the vertical end cuts that are generated
by collinear horizontal line ends. The long vertical bound-
ary contours that are hereby generated interfere with tex-
tural segmentation by passing through the entire figure.

This observation, by itself, is not enough to explain the
better segmentation of Figure 13a. Due to the horizontal
alignment of vertical and diagonal line ends in Figure 13a,
horizontal boundary contours could cross this entire
figure. In Figure 13a, however, vertical lines within the
top and bottom thirds of the picture are contiguous to other
vertical lines. In Figure 13b, diagonal lines are juxtaposed
between every pair of horizontal lines. Thus, in
Figure 13a, a strong tendency exists to form vertical
boundary contours in the top and bottom thirds of the pic-
ture due both to the distance dependence of collinear
cooperation and to the absence of competing intervening
orientations. These strong vertical boundary contours can
successfully compete with the tendency to form horizon-
tal boundary contours that cross the figure. In Figure 13b,
the tendencies to form vertical and horizontal boundary
contours are more uniformly distributed across the figure.
Thus, the disadvantage of Figure 13b may not just be due
to the “‘linking into long horizontal lines [which] com-
petes with the linking of the lines into vertical columns,”’
as Beck et al. (1983, p. 22) suggest. We suggest that, even
in Figure 13a, strong competition from horizontal link-
ages occurs throughout the figure. These horizontal link-
ages do not prevent preattentive grouping, because strong
vertical linkages exist at the top and bottom thirds of the
figure and these vertical groupings cannot bridge the mid-
dle third of the figure. In Figure 13b, by contrast, the
competing horizontal linkages in the top and bottom third
of the figure are weaker than they are in Figure 13a.
Despite this, the relative strengths of emerging groupings
corresponding to different parts of a scene, rather than
the strengths of oriented activations at individual scenic
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positions, determine how well a region of the scene can
be segmented.

14. Multiple Distance-Dependent Boundary Contour
Interactions: Explaining Gestalt Rules

Figure 14 illustrates how changing the spatial separa-
tion of figural elements without changing their relative
positions can alter interaction strengths at different stages
of the BC System; different rearrangements of the same
scenic elements can differentially probe the hierarchical
organization of boundary processing. This type of insight
leads us to suggest how different Gestalt rules are real-
ized by a unified system of BC System interactions.

In the top half of Figure 14a, horizontal boundary con-
tours that cross the entire figure are generated by horizon-
tal end cuts at the tips of the inverted Us. These long
boundary contours help to segregate the top half of the
figure from its bottom, just as they do in Figure 12. This
figure thus reaffirms that collinear cooperative interac-
tions can span a broad spatial range. Some horizontal BC
formation may also be caused by cooperation between the
bottoms of the Us. We consider this process to be weaker
in Figure 14a for the same reason that it is weaker in
Figure 12: the vertical sides of the Us weaken it via com-
petition between perpendicular orientations. Beck et al.
(1983, p. 23), by contrast, assert that ‘‘the bottom lines
of the U’s link on the basis of colinearity (a special case
of good continuation),”’ and say nothing about the
horizontal boundary contours induced by the horizontal
end cuts.

In Figure 14b, the U and inverted-U images are placed
more closely together without otherwise changing their
relative spatial arrangement. End cuts at the tips of the
inverted Us again induce horizontal boundary contours
across the top half of the figure. New types of grouping
are also induced by this change in the density of the Us.
The nature of these new groupings can most easily be un-
derstood by considering the bottom of Figure 14b. At a
suitable viewing distance, one can now see diagonal
groupings that run at 45° and 135° angles through the
bases of the Us and inverted Us. We claim that these di-
agonal groupings are initiated when the density gets suffi-
ciently high to enable diagonally oriented receptive fields
to record relatively large image contrasts. In other words,
at a low density of scenic elements, orientationally tuned
receptive fields can be stimulated only by one U or in-
verted U at a time. At a sufficiently high density of scenic
elements, each receptive field can be stimulated by parts
of different scenic elements that fall within that receptive
field. Once the diagonal receptive ficlds get activated, they
can trigger diagonally oriented boundary completions. A
similar possibility holds in the top half of Figure 14b.
Horizontally and vertically tuned receptive fields can be-
gin to be excited by more than one U or inverted U. Thus,
the transition from Figure 14a to Figure 14b preserves
long-range horizontal cooperation based on competitive
end cuts and other collinear horizontal interactions, and
enables the earlier stage of oriented receptive fields to cre-
ate new scenic groupings, notably in diagonal directions.
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(b)

(c)

Figure 14. The importance of spatial scale: These three figures
probe the subtle effects on textural grouping of varying spatial scale.
For example, the diagonal grouping at the bottom of (b) is initiated
by differential activation of diagonally oriented masks, despite the
absence of any diagonal edges in the image. See the text for extended
discussion. (Reprinted, by permission, from Beck, Prazdny, &
Rosenfeld, 1983.)
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Beck et al. (1983) analyze Figures 14a and 14b using
Gestalt terminology. They say that segmentation in
Figure 14a is due to ‘‘linking based on the colinearity of
the base lines of the Us’ (p. 24). Segmentation in
Figure 14b is attributed to *‘linking based on closure and
good continuation”” (p. 25). We suggest that both segmen-
tations are due to the same BC System interactions, but
that the scale change in Figure 14b enables oriented recep-
tive fields and cooperative interactions to respond to new
local groupings of image components.

In Figure 14c, the relative positions of Us and inverted
Us are again preserved, but they are arranged to be closer
together in the vertical than in the horizontal direction.
These new columnar relationships prevent the image from
segmenting into top and bottom halves. Beck et al. (1983)
write that *‘strong vertical linking based on proximity in-
terferes with textural segmentation”” (p. 28). We agree
with this emphasis on proximity, but prefer a description
which emphasizes that the vertical linking process uses
the same textural segmentation mechanisms as are needed
to explain all of their displays. We attribute the strong
vertical linking to the interaction of five effects within the
BC System. The higher relative density of vertically ar-
ranged Us and inverted Us provides a relatively strong
activation of vertically oriented receptive fields. The
higher density and stronger activation of vertically
oriented receptive fields generates larger inputs to the ver-
tically oriented long-range cooperative process, which en-
hances the vertical advantage by generating strong top-
down positive feedback. The smaller relative density of
horizontally arranged Us and inverted Us provides a rela-
tively weak activation of horizontally oriented receptive
fields. The lower density and smaller activation of these
horizontally oriented receptive fields generates a smaller
input to the horizontally oriented cooperative process. The
horizontally oriented cooperation consequently cannot off-
set the strength of the vertically oriented cooperation.
Although the horizontal end cuts can be generated by in-
dividual line ends, the reduction in density of these line
ends in the horizontal direction reduces the total input to
the corresponding horizontally oriented cooperative cells.
All of these factors favor the uitimate dominance of ver-
tically oriented long-range BC structures.

Beck et al. (1983) analyze the different figures in
Figure 14 using different combinations of classical Gestalt
rules. We analyze these figures by showing how they
differentially stimulate the same set of BC System rules.
This type of mechanistic synthesis leads to the sugges-
tion that the BC System embodies a universal set of rules
for textural grouping.

15. Image Contrasts and Neon Color Spreading
Beck et al. (1983) used regular arrays of black and gray
squares on a white background and of white and gray
squares on a black background with the same incisive-
ness as they used U displays. All of the corresponding
perceptual groupings can be qualitatively explained in
terms of the contrast sensitivity of BC System responses

to these images. The most difficult new property of these
percepts can be seen by looking at Figure 15. Diagonal
gray bands can be sgen joining the gray squares in the
middle third of the figure. We interpret this effect to be
a type of neon colot spreading (van Tuijl, 1975). This
interpretation is supported by the percept that obtains when
the gray squares are replaced by red squares of similar
contrast, as we have| done using our computer graphics
system. Then diagonjl red bands can be seen joining the
red squares in the middle of the figure. Neither these red
diagonal bands nor, by extension, the gray bands seen
upon inspection of Figure 15, can be interpreted as be-
ing merely a classicpl contrast effect due to the black
squares. ,

The percept of these diagonal bands can be explained
using the same type of analysis that Grossberg (1984a)
and Grossberg and Mingolla (1985a) have used to explain
the neon color spreading that is induced by a black Ehren-
stein figure surrounding a red cross (Figure 16; Redies
& Spillmann, 1981) and the complementary color induc-
tion and spreading that is induced when parts of an im-
age grating are achromatic and complementary parts are
colored (van Tuijl, 1975). These explanations indicate
how segmentation within the BC System can sometimes
induce visible contrasts at locations where no luminance
contrasts exist in the scenic image.

Neon spreading phenomena occur only when some
scenic elements have greater relative contrasts with respect
to the background than do the complementary scenic ele-
ments (van Tuijl & de Weert, 1979). This prerequisite
is satisfied by Figure 15. The black squares are much
more contrastive relative to the white ground than are the
gray squares. Thus, the black-to-white contrasts can ex-
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Figure 15. Textural segmentation and neon color spreading: The
middle third of this figure is easily segmented from the rest. Diagonal
flow of gray featural quality between the gray squares of the mid-
dle segment is an example of neon color spreading. See also Figures
16 and 17. (Reprinted from Beck, Prazdny, & Rosenfeld, 1983. We
are grateful to Jacob Beck for providing the original of this figure.)
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(b)

Figure 16. Neon color spreading: (a) A red cross in isolation ap-
pears unremarkable. (b) When the cross is surrounded by an Jzhren-
stein figure, the red color can flow out of the cross until it hits the
illusory contour induced by the Ehrenstein figure.

cite oriented receptive fields within the BC System much
more than can the gray-to-white contrasts. As in our other
explanations of neon color spreading, we trace the initia-
tion of this neon effect to two properties of the BC Sys-
tem: the contrast-sensitivity of the oriented receptive fields
and the lateral inhibition within the first competitive stage
among like-oriented cells at nearby positions (Section 20
and Appendix). Due to contrast sensitivity, each light-gray
square activates oriented receptive fields less than does
each black square. The activated orientations are, by and
large, vertical and horizontal, at least on a sufficiently
small spatial scale. At the first competitive stage, each
strongly activated vertically tuned cell inhibits nearby
weakly activated vertically tuned cells, and each strongly
activated horizontally tuned cell inhibits nearby weakly
activated horizontally tuned cells (Figure 17).

In all, each light-gray square’s boundary contours
receive strong inhibition both from the vertical and the
horizontal direction. This conjoint vertical and horizon-
tal inhibition generates a gap within the boundary con-
tours at each corner of every light-gray square and a net

tendency to generate a diagonal boundary contour via dis-
inhibition at the second competitive stage. These diagonal
boundary contours can then link up via collinear cooper-
ation to further weaken the vertical and horizontal bound-
ary contours as they build completed diagonal boundary
contours between the light-gray squares. This lattice of
diagonal boundary contours enables gray featural quality
to flow out of the squares and fill in the positions bounded
by the lattice within the FC System. In the top and bot-
tom thirds of Figure 15, on the other hand, only the
horizontal boundary contours of the gray squares are sig-
nificantly inhibited. Such inhibitions tend to be compen-
sated at the cooperative stage by collinear horizontal
boundary completion. Thus, the integrity of the horizon-
tal boundary contours near such a gray square’s corner
tends to be preserved.

It is worth emphasizing a similarity and a difference
between the percepts in Figures 14b and 15. In both per-
cepts, diagonal boundary contours help to segment the im-
ages. However, in Figure 14b, the diagonals are activated
directly at the stage of the oriented receptive fields,
whereas in Figure 15, the diagonals are activated in-
directly via disinhibition at the second competitive stage.
We suggest that similar global factors may partially de-
termine the Hermann grid illusion. Spillmann (1985) has
reviewed evidence that suggests a role for central factors
in generating this illusion, notably the work of Preyer
(1897/1898) and Prandtl (1927) showing that when a white

Figure 17. Boundary contour disinhibition and neon color spread-
ing: This figure illustrates how the neon spreading evident in
Figure 16 can occur. If gray squares are much lighter than black
squares and the squares are sufficiently close, the net effect of strong
inhibitory boundary signals from the black squares to the weakly
activated gray square boundaries leads to disinhibition of diagonal
boundary contours. Cooperation between these diagonal boundaries
enables diagonal featural flow to occur between the gray squares.
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grid is presented on a colored background, the illusory
spots have the same color as the surrounding squares.
Wolfe (1984) has presented additional evidence that global
factors contribute to this illusion.

Although we expect our theory to be progressively re-
fined as it achieves a greater behavioral and neural ex-
planatory range, we believe that the types of explanation
suggested above will continue to integrate the several clas-
sical Gestaltist laws into a unified neo-Gestaltist mechanis-
tic understanding. In this new framework, instead of in-
voking different Gestalt laws to explain different percepts,
one analyses how different images probe the same laws
in context-sensitive ways.

16. Computer Simulations of
Perceptual Grouping

In this section, we summarize computer simulations that
illustrate the BC System’s ability to generate perceptual
groupings akin to those in the Beck et al. displays. In the
light of these results, we then analyze data of Glass and
Switkes (1976) about random-dot percepts and of Gregory
and Heard (1979) about border locking during the café
wall illusion before defining rigorously the model neu-
ron interactions that define the BC System.

Numerical parameters were held fixed for all of the
simulations; only the input patterns were varied. As the
input patterns were moved about, the BC System sensed
relationships among the inducing elements and generated
emergent boundary groupings among them. In all of the
simulations, we defined the input patterns to be the out-
put patterns of the oriented receptive fields, as in
Figure 18a, since our primary objective was to study the
CC loop, or cooperative-competitive feedback exchange.
This step reduced the computer time needed to generate
the simulations. If the BC System is ever realized in
parallel hardware, rather than by simulation on a tradi-
tional computer, it will run in real time. In Figures 18-
25, we have displayed network activities after the CC loop
converges to an equilibrium state. These simulations used
only a single cooperative bandwidth. They thus illustrate
how well the BC System can segment images using a sin-
gle ‘‘spatial frequency’” scale. Multiple scales are,
however, needed to generate three-dimensional form per-
cepts (Grossberg, 1983b, 1985; Grossberg & Mingolla,
1985b).

Figure 18a depicts an array of four vertically oriented
input clusters. We call each cluster a Line because it
represents a caricature of an orientation field’s response
to a vertical line (Figure 5a). In Figures 18b, 18c, and
18d, we display the equilibrium activities of the cells at
three successive CC loop stages: the first competitive
stage, the second competitive stage, and the cooperative
stage. The length of an oriented line at each position is
proportional to the equilibrium activity of a cell whose
receptive field is centered at that position with the
prescribed orientation. We will focus upon the activity
pattern within the y field, or second competitive stage,

Figure 18. Computer simulation of processes underlying textural
grouping: The length of each line segment in this figure and
Figures 19-25 is proportional to the activation of a network node
responsive to one of 12 possible orientations. The dots indicate the
positions of inactive cells. In Figures 18-25, part (a) displays the
results of input masks which sense the amount of contrast at a given
orientation of visual input, as in Figure 5a. Parts (b)-(d) show
equilibrium activities of oriented cells at the competitive and cooper-
ative layers. A comparison of (a) and (c) indicates the major group-
ings sensed by the network. Here only the vertical alignment of the
two left and two right Lines is registered. See text for detailed dis-
cussion.

of each simulation (Figdre 18c). This is the final com-
petitive stage that inputs to the cooperative stage (Sec-
tion 8). The w-field (first competitive stage) and z-field
(cooperative stage) activity patterns are also displayed to
enable the reader to achieve a better intuition after con-
sidering the definitions of these fields in Section 20 and
the Appendix. ‘

The input pattern in l#igure 18a possesses a manifest
vertical symmetry: Pairs of vertical Lines are collinear
in the vertical direction, whereas they are spatially out-
of-phase in the horizontal direction. The BC System senses
this vertical symmetry, and generates emergent vertical
lines in Figure 18c, in addition to horizontal end cuts at
the ends of each Line, as suggested by Figure 10.

In Figure 19a, the input pattern shown in Figure 18a
has been altered, so that the first column of vertical Lines
is moved downward relative to the second column of ver-
tical Lines. Figure 19c shows that the BC System begins
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to sense the horizontal symmetry within the input config-
uration. In addition to the emergent vertical grouping and
horizontal end cuts like those of Figure 18c, an approxi-
mately horizontal grouping has appeared.

In Figure 20, the input Lines are moved so that pairs
of Lines are collinear in the vertical direction and their
Line ends are lined up in the horizontal direction. Now
both vertical and horizontal groupings are generated in
Figure 20c, as in Figure 13.

In Figure 21a, the input Lines are shifted so that they
become noncollinear in a vertical direction, but pairs of
their Line ends remain aligned. The vertical symmetry
of Figure 20a is hereby broken. Thus, in Figure 21c, the
BC System groups the horizontal Line ends, but not the
vertical Lines.

Figure 22 depicts a more demanding phenomenon: the
emergence of diagonal groupings where no diagonals
whatsoever exist in the input pattern. Figure 22a is gener-
ated by bringing the two horizontal rows of vertical Lines
closer together until their ends lie within the spatial band-
width of the cooperative interaction. Figure 22¢ shows
that the BC System senses diagonal groupings of the
Lines, as in Figure 14b. It is remarkable that these di-
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Figure 19. The emergence of nearly horizontal grouping: The only
difference between the input for this figure and that of Figure 18
is that the left column of Lines has been moved downward by one
lattice location. The vertical grouping of Figure 18 is preserved as
the horizontal grouping emerges. The horizontal groupings are due
to cooperation between end cuts at the Line ends.
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Figure 20. Coexistence of vertical and horizontal grouping: Here
both horizontal and vertical groupings are completed at all Line ends.

agonal groupings emerge both on a microscopic scale and
a macroscopic scale. Thus, diagonally oriented receptive
fields are activated in the emergent boundaries, and these
activations, as a whole, group into diagonal bands.

In Figure 23c, another shift of the inputs induces in-
ternal diagonal bands while enabling the exterior group-
ing into horizontal and diagonal boundaries to persist.

In Figure 24a, one of the vertical Lines is removed.
The BC System now senses the remaining horizontal and
diagonal symmetries (Figure 24c). In Figure 25a, the
lower Line is moved further away from the upper pair
of lines until the cooperation can no longer support the
diagonal groupings. The diagonal groupings break apart,
leaving the remaining horizontal groupings intact
(Figure 25c). |

17. On-Line Statistical Decision Theory
and Stochastic Relaxation

These figures illustrate the fact that the BC System be-
haves like an on-line statistical decision theory in response
to its input patterns. The BC System can sense only those
groupings of perceptual elements which possess enough
“‘statistical inertia’’ to drive its cooperative-competitive
feedback exchanges toward a nonzero stable equilibrium
configuration. The emergent patterns in Figures 18-25 are
thus as important for what they do not show as they are
for what they do show. All possible groupings of the
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oriented input elements could, in principle, have been
generated, since all possible groupings of the cooperative-
competitive interaction were capable of receiving inputs.

In order to compare and contrast BC System proper-
ties with other approaches, one can interpret the distri-
bution of oriented activities at each input position as be-
ing analogous to a local probability distribution, and the
final BC System pattern as being the global decision that
the system reaches and stores based upon all of its local
data. The figures show that the BC System regards many
of the possible groupings of these local data as spurious,
and suppresses them as being functional noise. Some
popular approaches to boundary segmentation and noise
suppression do adopt a frankly probabilistic framework.
For example, in a stochastic relaxation approach based
upon statistical physics, Geman and Geman (1984) slowly
decrease a formal temperature parameter that drives their
system towards a minimal-energy configuration with
boundary-enhancing properties. Zucker (1985) has also
suggested a minimization algorithm to determine the best
segmentation.

Such algorithms provide one way, indeed a classical
way, to realize coherent properties within a many-body
system. These algorithms define open-loop procedures in
which external agents manipulate the parameters leading
to coherence. In the BC System, by contrast, the only “‘ex-
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Figure 21. Horizontal grouping by end cuts: A horizontal shift
of the lower two Lines in Figure 20 breaks the vertical groupings
but preserves the horizontal groupings.
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Figure 22. The emergence of diagonal groupings: The Boundary
Contour System (BCS) is capable of generating groupings along
orientations which have no activity in the oriented mask responses.
[ndividual diagonally oriented cells are activated within the diagonaily
oriented groupings.

ternal parameters’’ are the input patterns themselves. Each
input pattern defines a different set of boundary condi-
tions for the BC System, and this difference, in itself,
generates different segmentations. The BC System does
not need extra external parameters, because it contains
a closed-loop process—the CC loop—which regulates its
own convergence ta a symmetric and coherent configu-
ration via its real-time competitive-cooperative feedback
exchanges.

The BC System differs in other major ways from alter-
native models. Geman and Geman (1984), for example,
build into the probability distributions of their algorithm
information about the images to be processed. The dy-
namics of the BC System clarify the relevance of
probabilistic concepts to the segmentation process. In par-
ticular, the distributions of oriented activities at each in-
put position (Figure 5) play the role of local probability
distributions. On the other hand, within the BC System,
these distributions emerge as part of a real-time reaction
to input patterns, rather than according to predetermined
constraints on probabilities. The BC System does not in-
corporate hypotheses about which images will be
processed into its probability distributions. Such
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knowledge is not needed to achieve rapid preattentive seg-
mentation.

The OR System does encode information about which
images are familiar (Figure 1). Feedback interactions be-
tween the BC System and the OR System can rapidly sup-
plement a preattentive segmentation using the templates
read out from the OR System in response to BC System
signals. Within our theory, however, these templates are
not built into the OR System. Rather, we suggest how
they are learned, in real time, as the OR System self-
organizes its recognition code in response to the preat-
tentively completed output patterns from the BC System
(Carpenter & Grossberg, 1985, in press; Grossberg,
1980, 1984b).

Thus, the present theory sharply distinguishes between
the processes of preattentive segmentation and of learned
object recognition. By explicating the intimate interaction
between the BC System and the OR System, the present
theory also clarifies why these distinct processes are often
treated as a single process. In particular, the degree to
which top-down learned templates can deform a preat-
tentively completed BC System activity pattern will de-
pend upon the particular images being processed and the
past experiences of the OR System. Thus, by carefully
selecting visual images, one can always argue that one
or the other process is rate-limiting. Furthermore, both

e TNDPHIT TN L’\

Figure 23. Multiple diagonal groupings: A new diagonal group-
ing emerges as a result of the shifting of input Lines. As in Figure 20,
grouping in one orientation does not preclude grouping in an (almost)
perpendicuiar orientation at the same Line end.
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Figure 24. Global restructuring due to removal of local features:
The inputs of this figure and those of Figure 23 are identical, ex-
cept that the lower right Line has been removed. A comparison of
Figure 24b and Figure 23b shows that, although gross aspects of
the shared grouping are similar, removal of one Line can affect
groupings among other Lines.

the preattentive BC System interactions and the top-down
learned OR System interactions are processes of comple-
tion which enhance the coherence of BC System output
patterns. They can thus easily be mistaken for one another.

18. Correlations That Cannot Be Perceived:
Simple Cells, Complex Cells,
and Cooperation

Glass and Switkes (1976) described a series of striking
displays which they partially explained using the proper-
ties of cortical simple cells. Here we suggest a more com-
plete explanation of their results using properties of the
BC System. In their basic display (Figure 26), when ‘‘a
random pattern of dots is superimposed on itself and ro-
tated slightly ... a circular pattern is immediately per-
ceived. . .. If the same pattern is superimposed on a nega-
tive of itself in which the background is a halftone gray
and is rotated as before ..., it is impossible to perceive
the circular Moiré. In this case spiral petal-like patterns
can be seen’’ (p. 67).

The circular pattern in Figure 26 is not ‘‘perceived’’
in an obvious sense. All that an observer can ‘‘see’’ are
black dots on white paper. We suggest that the percept
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Figure 25. Distance-dependence of grouping: Relative to the in-
puts of Figure 24, the bottom Line has moved outside of the cooper-
ative bandwidth that supported diagonal grouping. Although the
diagonal grouping vanishes, the horizontal grouping at the bottom
of the top Lines persists.
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Figure 26. A Glass pattern: The emergent circular pattern is
“recognized,” although it is not.“seen,” as a pattern of differing con-
trasts. The text suggests how this can happen. (Reprinted, by per-
mission, from Glass & Switkes, 1975.)

of circular structur}: is recognized by the OR System,
whereas the FC System, wherein percepts of brightness
and color are seen, generates the filled-in contrast differ-
ences that distinguish the black dots from the white back-
ground (Figure 1). A similar issue is raised by Figure 10,
in which short vertical lines are seen even though emer-
gent long vertical lines influence perceptual grouping.
Thus, in the Glass and Switkes (1976) displays, no less
than in the Beck et al. (1983) displays, one must sharply
distinguish the recognition of perceptual groupings from
the percepts that are seen. These recognition events al-
ways have properties of *‘coherence,”” whether or not they
can support visible contrast differences. It then remains
to explain why inverting the contrast of one of the im-
ages can alter what is recognized as well as what is seen.

We agree with part of the Glass and Switkes (1976) ex-
planation. Consider a pair of black dots in Figure 26 that
arises by rotating one image with respect to the other. Let
the orientation of the pair with respect to the horizontal
be 6°. Since the dots are close to one another, they can
activate receptive fields that have an orientation approxi-
mately equal to 6°. This is due to the fact that an oriented
receptive field is not an edge detector per se, but, rather,
is sensitive to relative contrast differences across its medial
axis. Only one of the two types of receptive fields at each
position and orientation will be strongly activated, depend-
ing on the direction pf contrast in the image. Each recep-
tive field is sensitivd to direction of contrast, even though
pairs of these fields corresponding to like positions and
orientations pool their activities at the next processing
stage to generate an-output that is insensitive to direction
of contrast. We identify cells whose receptive fields are
sensitive to direction of contrast with simple cells and the
cells at the next stage which are insensitive to direction
of contrast with complex cells of the striate cortex
(DeValois, Albrecht, & Thorell, 1982; Gouras & Krii-
ger, 1979; Heggelund, 1981; Hubel & Wiesel, 1962,
1968; Schiller, Finlay, & Volman, 1976; Tanaka, Lee,
& Creutzfeldt, 1983). Glass and Switkes (1976) did not
proceed beyond this fact.

We suggest, in addition, that long-range cooperation
within the BC System also plays a crucial role in group-
ing Glass images. To see how cooperation is engaged,
consider two or more pairs of black dots that satisfy the
following conditions: Each pair arises by rotating one im-
age with respect to the other. The orientation of all pairs
with respect to the horizontal is approximately °. All
pairs are approximately collinear and do not lie too far
apart. Such combinations of dots can more strongly acti-
vate the corresponding cooperative cells than can random
combinations of dots. Each cooperative cell sends posi-
tive feedback to cells at the competitive stages with the
same position and orientation. The competing cells that
receive the largest cooperative signals gain an advantage
over cells with different orientations. After competition
among all possible cooperative groupings takes place, the
favored groupings win and generate the large circular
boundary contour structure that is recognized but not seen.
Small circular boundaries are also generated around each
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dot and support the visible percept of dots on a white back-
ground within the FC System. Thus, the orientation 6°
of a pair of rotated black dots engages the BC System in
two fundamentally different ways. First, it preferentially
activates some oriented receptive fields above others. Sec-
ond, it preferentially activates some cooperative cells
above others due to combinations of inputs from preferen-
tially activated receptive fields. As in the displays of Beck
et al. (1983), the Glass images probe multiple levels of
the BC System.

The other Glass images probe different levels of the BC
System, notably the way in which simple cells activate
complex cells which, in turn, activate the competitive
layers. These images are constructed by reversing the con-
trast of one of the two images before they are superim-
posed. Then an observer sees black and white dots on a
gray background. The recognition of circular macrostruc-
ture is, however, replaced by recognition of a more amor-
phous spiral petal-like pattern. Glass and Switkes (1976)
noted that their ‘‘hypothesized neural mechanism does not
appear to explain the observation of spiral-like patterns’’
(p. 71). To explain this recognition, we first note that the
black dots on the gray background generate light-dark con-
trasts. Hence, the simple cells which responded to pairs
of rotated black dots in Figure 26 are now stimulated by
only one dot in each pair. Two or more randomly dis-
tributed black dots may be close enough to stimulate in-
dividual simple cells, but the orientations of the cells fa-
vored by stimulation by two or more random dots will
be different from those of the cells stimulated by two or
more rotated black dots in Figure 26. In addition, simple
cells that are sensitive to the opposite direction of con-
trast can respond to the white dots on the gray background.
These cells will be spatially rotated with respect to the
cells that respond to the black dots. Moreover, since the
black-to-gray contrast is greater than the white-to-gray
contrast, the cells that respond to the black dots will fire
more vigorously than the cells that respond to the white
dots. Thus, although both classes of simple cells feed into
the corresponding complex cells, the complex cells that
respond to the black dots will be more vigorously acti-
vated than the complex cells that respond to the white dots.
The cooperative stage will favor the most active combi-
nations of complex cells whose orientations are approxi-
mately collinear and which are not too far apart. Due to
the differences in spatial position and orientation of the
most favored competitive cells, a boundary grouping
different from that in Figure 26 is generated. A similar
analysis can be given to the Glass and Switkes displays
that use complementary colors.

In summary, the Glass and Switkes (1976) data empha-
size three main points: Although simple cells sensitive to
the same orientation and opposite direction of contrast feed
into complex cells that are insensitive to direction of con-
trast, reversing the direction of contrast of some inputs
can alter the positions and the orientations of the com-
plex cells that are most vigorously activated. Although
many possible groupings of cells can initially activate the
cooperative stage, only the most favored groupings can

survive the cooperative-competitive feedback exchange,
as in Figures 18-25. Although all emergent boundary con-
tours can influencg the OR System, not all of these bound-
ary countours can|support visible filled-in contrast differ-
ences within the FC System. Prazdny (1984) has presented
an extensive set of Glass-type displays, which have led
him to conclude that *‘the mechanisms responsible for our
perception of Glass patterns are also responsible for the
detection of extended contours’’ (p. 476). Our theory pro-
vides a quantitative implementation of this assertion.

19. Border Locking: The Café Wall Illusion

A remarkable percept which is rendered plausible by
BC System properties is the café wall illusion (Gregory
& Heard, 1979). This illusion is important because it clar-
ifies the conditions under which the spatial alignment of
collinear image contours with different contrasts is nor-
mally maintained. The illusion is illustrated in Figure 27.

The illusion oceurs only if the luminance of the ‘‘mor-
tar’’ within the horizontal strips lies between, or is not
far outside, the luminances of the dark and light tiles, as
in Figure 27. The illusion occurs, for example, in the
limiting case of the Miinsterberg figure, in which black
and white tiles are separated by a black mortar. Gregory
and Heard (1979) have also reported that the tile bound-
aries appear to ‘‘creep across the mortar during luminance
changes’’ (p. 368). Using a computer graphics system,
we have generated a dynamic display in which the mor-
tar luminance changes continuously through time. The
perceived transitions from parallel tiles to wedge-shaped
tiles and back are dramatic, if not stunning, using such
a dynamic display.

Some of the BC System mechanisms that help to clar-
ify this illusion can be inferred from Figure 28. This
figure depicts a computer simulation of an orientation field
that was generated in response to alternating black and
white tiles surrounding a black strip of mortar. Figure 29
schematizes the main properties of Figure 28. The hatched
areas in Figure 29a depict the regions in which the greatest
activations of oriented receptive fields occur. Due to the

Figure 27. The café wall illusion: Although only horizontal and
vertical luminance contours exist in this image, strong diagonal
groupings are perceived. (Reprinted, by permission, from Gregory
& Heard, 1979).
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Figure 28. Simulation of the responses of a field of oriented masks
to the luminance pattern near the mortar of the cafe wall illusion:
The right of the bottom row joins to the left of the top row. The
relative size of the masks used to generate the figure is indicated
by the oblong shape in the center.

Figure 29. A schematic depiction of the simulation in Figure 28:
(a) shows the region of strong horizontal activity and indicates a pos-
sible diagonal grouping between positions A and B. (b) suggests that
cooperation may occur in response to direct activations of oriented
masks at positions C and D, as well as in response to end cuts at
positions A and B. See text for additional discussion.
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approximately horizontal orientations of the activated
receptive fields |in Figure 29a, diagonal cooperative
groupings between positions such as A and B can be in-
itiated, as in Figures 22-24. Figure 28 thus indicates that
a macroscopic spatial asymmetry in the activation of
oriented receptive fields can contribute to the shifting of
borders which leads to the wedge-shaped percepts.

Figure 29b schematizes the fact that the microstructure
of the orientation field is also skewed in Figure 28. Di-
agonal orientatiohs tend to point into the black regions
at the corners of the white tiles. Diagonal end cuts in-
duced near positions A and B (Section 6) can thus cooper-
ate between A and B in approximately the same direction
as the macrostructure between A and C can cooperate with
the macrostructure between B and E (Figure 29a). Di-
agonal activations near positions C and D can cooperate
with each other in a direction almost parallel to the cooper-
ation between A and B. These microscopic and macro-
scopic cooperative effects can help to make the bound-
aries at the top pf the mortar seem to tilt diagonally
downward.

Several finer points are clarified by the combination of
these macroscale and microscale properties. By them-
selves, the microscale properties do not provide a suffi-
cient explanation of why, for example, an end cut at po-
sition D cannot cooperate with direct diagonal activations
at A. The macroscale interactions tilt the balance in favor
of cooperation between A and B. In the Miinsterberg
figure, the black mortar under a white tile may seem to
glow, whereas the black mortar under a black tile does
not. Using a dark-gray mortar, the gray mortar under a
white tile may seem brighter, whereas the gray mortar
under a black tile may better preserve its gray appear-
ance. McCourt (1983) has also called attention to the
relevance of brightness induction in explaining the café
wall illusion. A partial explanation of these brightness per-
cepts can be inferred from Figure 29. End cuts and di-
agonal groupings hear position A may partially inhibit the
parallel boundary between A and C. Brightness can then
flow from the white tile downward, as during neon color
spreading (Figure 16). The more vigorous boundary ac-
tivations above positions such as D and E (Figure 29a)
may better contain local featural contrasts within a tighter
web of boundary contours. This property also helps to
explain the observation of Gregory and Heard (1979) that
the white tiles se¢m to be pulled more into the black at
such positions as A than at such positions as C.

Our analysis of the café¢ wall illusion, although not based
on a complete computer simulation, suggests that the same
three factors which play an important role in generating
the Glass and Switkes (1976) data also play an important
role in generating the Gregory and Heard (1979) data.
In addition, perpendicular end cuts and multiple spatial
scales seem to play a role in generating the Gregory and
Heard (1979) data, with different combinations of scales
acting between such positions as A-B than between such
positions as C-D. This last property may explain why op-
posite sides A and C of an apparently wedge-shaped tile
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sometimes seem to lie at different depths from an observer
(Grossberg, 1983b).

20. Boundary Contour System Stages:
Predictions About Cortical Architectures

This section outlines in greater detail the network in-
teractions that we have used to characterize the BC Sys-
tem. Several of these interactions suggest anatomical and
physiological predictions about the visual cortex. These
predictions refine our earlier predictions that the data of
von der Heydt et al. (1984) have since supported (Gross-
berg & Mingolla, 1985a).

Figure 30 summarizes the proposed BC System inter-
actions. The process whereby boundary contours are built
up is initiated by the activation of oriented masks, or elon-
gated receptive fields, at each position of perceptual space
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Figure 30. Circuit diagram of the BC System: Inputs activate
oriented masks which cooperate at each position and orientation be-
fore feeding into an on-center-off-surround interaction. This inter-
action excites like-orientations at the same position and inhibits like-
orientations at nearby positions. The affected cells are on-cells within
a dipole field. On-cells at a fixed position compete among orienta-
tions. On-cells also inhibit off-cells which represent the same posi-
tion and orientation. Off-cells at each position, in turn, compete
among orientations. Both on-cells and off-cells are tonically active.
Net excitation (inhibition) of an on-cell (off-cell) excites (inhibits)
a cooperative receptive field corresponding to the same position and
orientation. Sufficiently strong net positive activation of both recep-
tive fields of a cooperative cell enables it to generate feedback via
an on-center—off-surround interaction among like-oriented cells. Di-
pole on-cells which receive the most favorable combination of bottom-
up signals and top-down signals generate the emergent perceptual
grouping.

(Hubel & Wiesel, 1977). An oriented mask is a cell, or
cell population, that is selectively responsive to oriented
scenic-contrast differences. In particular, each mask is
sensitive to scenic edges that activate a prescribed small
region of the retina, and whose orientations lie within a
prescribed band of orientations with respect to the retina.
A family of such oriented masks lies at every network
position, such that each mask is sensitive to a different
band of edge orientations within its prescribed small
region of the scene.

A. Position, orientation, amount of contrast, and
direction of contrast. The first stage of oriented masks
is sensitive to the position, orientation, amount of con-
trast, and direction of contrast at an edge of a visual scene.
Thus, two subsets of masks exist corresponding to each
position and orientation. One subset responds only to light-
dark contrasts, and the other subset responds to dark-light
contrasts. Such oriented masks do not, however, respond
only to scenic edges. They can also respond to any im-
age that generates a sufficiently large net contrast with
the correct position, orientation, and direction of contrast
within their receptive fields, as in Figures 14b and 26.
We identify these cells with the simple cells of striate cor-
tex (DeValois et al., 1982; Hubel & Wiesel, 1962, 1968;
Schiller et al., 1976).

Pairs of oriented masks that are sensitive to similar po-
sitions and orientations but to opposite directions of con-
trast excite the next BC System stage. The output from
this stage is thus sensitive to position, orientation, and
amount of contrast, but is insensitive to direction of con-
trast. A vertical boundary contour can thus be activated
by either a close-to-vertical light-dark edge or a close-to-
vertical dark-light edge at a fixed scenic position, as in
Figure 3. The activities of these cells define the orienta-
tion field in Figure 5a. We identify the cells at this stage
with the complex cells of striate cortex (DeValois et al.,
1982; Gouras & Kriiger, 1979; Heggelund, 1981; Hubel
& Wiesel, 1962, 1968; Schiller et al., 1976; Tanaka
et al., 1983). Spitzer and Hochstein (1985) have indepen-
dently developed an essentially identical model of com-
plex cell receptive fields to explain parametric proper-
ties of their cortical data.

B. On-center —off-surround interaction within each
orientation. The outputs from these cells activate the first
of two successive stages of short-range competition, which
are denoted by Competition (I) and Competition (II) in
Figures 18-25. At the first competitive stage, a mask of
fixed orientation excites the like-oriented cells at its po-
sition and inhibits the like-oriented cells at nearby posi-
tions. Thus an on-center-off-surround interaction between
like-oriented cells occurs around each perceptual location.
This interaction predicts that a stage subsequent to striate
complex cells organizes cells sensitive to like orientations
at different positions so that they can engage in the re-
quired on-center-off-surround interaction.

C. Push-pull competition between orientations at
each position. The inputs to the second competitive stage
are the outputs from the first competitive stage. At the

e
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second competitive stage, competition occurs between
different orientations at each position. Thus, a stage of
competition between like orientations at different, but
nearby, positions (Competition I) is followed by a stage
of competition between different orientations at the same
position (Competition II). This second competitive stage
is tonically active. Thus, inhibition of a vertical orienta-
tion excites the horizontal orientation at the same posi-
tion via disinhibition of its tonic activity.

The combined action of the two competitive stages
generates the perpendicular end cuts in Figure 5b that we
have used to explain the percepts in Figures 7, 8, 12, and
13. Conjoint inhibition of vertical and horizontal orien-
tations by the first competitive stage leading to disinhibi-
tion of diagonal orientations at the second competitive
stage (Figure 17) was also used to explain the diagonal
groupings in Figure 15. A similar interaction was used
to help explain the neon color-spreading phenomenon
described in Figure 16 (Grossberg & Mingolla, 1985a).
Thus, the interactions of the first and second competitive
stages help to explain a wide variety of seemingly un-
related perceptual groupings, color percepts, and illusory
figures.

D. Dipole field: Spatial impenetrability. The process
described in this section refines the BC System model that
was used in Grossberg and Mingolla (1985a). This process
incorporates a principle of cortical design that has been
used to carry out related functional tasks in Grossberg
(1980, 1983a). The functional role played by this process
in the BC System can be understood by considering
Figure 18c.

At the second competitive stage of this figure, horizontal
end cuts border the vertical responses to the inducing in-
put Lines. What prevents the end cuts at both sides of each
line from cooperating? If these end cuts could cooperate,
then each Line could activate one of a cooperative cell’s
pair of receptive fields (Figure 9). As a result, horizon-
tal boundary countours could be generated throughout the
region between pairs of vertical Lines in Figure 18d, even
though these Lines are spatially out-of-phase. The problem
can thus be summarized as follows: Given the need for
a long-range cooperative process to complete boundaries
over retinal veins, the blind spot, and so forth, what pre-
vents this cooperative process from leaping over inter-
vening images and grouping together inappropriate com-
binations of inputs? In situations wherein no
image-induced obstructions prevent such grouping, it can
in fact occur, as in Figures 7 and 8. If, however, cooper-
ative grouping could penetrate all perceived objects, then
many spurious groupings would occur across every Line.
The perceptual space would be transparent with respect
to the cooperative process.

To prevent this catastrophe, we propose a postulate of
spatial impenetrability. This postulate suggests that
mechanisms exist which prevent the cooperative process
from grouping across all intervening percepts. Figure 18¢c
discloses the primary computational properties that such
a process must realize. It must not prevent like-oriented

responses from cooperating in a spatially aligned posi-
tion, because that is the primary functional role of cooper-
ation. It need only prevent like-oriented responses (such
as the horizontal end cuts in Figure 18a) from cooperat-
ing across a region of perpendicularly oriented responses
(such as the vertical responses to the vertical Lines in
Figure 18c). We therefore hypothesize that the vertical
responses to the Lines generate inhibitory inputs to
horizontally oriented receptive fields of the cooperative
process (Figure 31). The net input due to both horizontal
end cuts and vertical lines at the horizontally oriented
cooperative cells is thus very small or negative. As a
result, neither receptive field of a horizontally oriented
cooperative cell between the vertical Lines can be
supraliminally excited. That is why the cooperative
responses in Figure 18d ignore the horizontal end cuts.

It remains to say how both excitatory and inhibitory in-
puts are generated from the second competitive stage to
the cooperative stage. We hypothesize that the second
competitive stage is a dipole field (Grossberg, 1980,
1983a) and that inputs from the first competitive stage ac-
tivate the on-cells of this dipole field. Suppose, for ex-
ample, that an input excites vertically oriented on-cells,
which inhibit horizontally oriented on-cells at the same
position, as we have proposed in Section 20C. We as-
sume, in addition, that inhibition of the horizontal on-cells
excites the horizontal off-cells via disinhibition. The ex-
cited vertically oriented on-cells send excitatory inputs to
the receptive fields of vertically oriented cooperative cells,
whereas the excited horizontally oriented off-cells send

Figure 31. A mechanism to implement the postulate of spatial im-
penetability: The left receptive fields of two horizontally tuned
cooperative cells are crossed by a thin vertical Line. Although
horizontal end-cut signals can excite the upper receptive field, these
are cancelled by the greater number of inhibitory inputs due to the
vertical Line inputs. Within the lower receptive field, the excita-
tory inputs due to end cuts prevail.
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inhibitory inputs to the receptive fields of horizontally
oriented cooperative cells (Figure 30).

Two new cortical predictions are implied by this dipole-
field hypothesis: Both the on-cell subfield and the off-cell
subfield of the dipole field are tonically active, thereby
enabling their cells to be activated due to disinhibition.
Excitation of on-cells generates excitatory inputs to like-
oriented cooperative receptive fields, whereas excitation
of off-cells generates inhibitory inputs to like-oriented
cooperative receptive fields. The tonic activity of the on-
cell subfield helps to generate perpendicular end cuts,
thereby preventing color flow from line ends. The tonic
activity of the off-cell subfield helps to inhibit like-oriented
cooperative cells, thereby augmenting spatial impenetra-
bility.

E. Long-range oriented cooperation between like-
oriented pairs of input groupings. The outputs from the
dipole field input to a spatially long-range cooperative
process. We call this process the boundary completion
process. Outputs due to like-oriented dipole-field cells that
are approximately aligned across perceptual space can
cooperate via this process to synthesize an intervening
boundary, as in Figures 18-25. A cooperative cell can be
activated only if it receives a sufficiently positive net in-
put at both of its orientationally tuned receptive fields
(Figure 9).

Two types of parameters must be specified to charac-
terize these receptive fields: macroscale parameters,
which determine the gross shape of each receptive field,
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Figure 32. Cooperative in-field and out-field: Line lengths are
proportional to the strengths of signals from a horizontally tuned
competitive cell to cooperative cells of various orientations at nearby
positions. Thus, in (a) strong signals are sent to horizontal coopera-
tive cells 5 units to the left or the right of the competitive cell (center
circle), but signal strength drops off with distance and change of
orientation. (b) shows the dual perspective of weights assigned to
incoming signals by the receptive field of a horizontal cooperative
cell. (Note that only excitatory signal strengths are indicated in this
figure.) The parameters used to generate these fields are identical
to those used in Figures 18-25.
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Figure 33. Extreme cooperative in-field and out-field: This figure
employs more extreme parameter choices than were used in the simu-
lations of Figure 18-25. Greater orientational uncertainty at one lo-
cation of the in-field corresponds to greater positional uncertainty
in the out-field, thereby illustrating the duality between in-field and
out-field.

and microscale parameters, which determine how effec-
tively a dipole-field input of prescribed orientation can
excite or inhibit a cooperative receptive field. Figure 32
describes a computer simulation of the cooperative recep-
tive field that we used to generate Figures 18-25. The
cooperative out-field, or projection field, in Figure 32a
describes the interaction strengths, or path weights, from
a single horizontally oriented dipole-field on-cell to all
cells within the cooperative stage. The length of each line
is proportional to the size of the interaction strength to
on-cells with the depicted positions and orientations. The
cooperative in-field, or receptive field, in Figure 32b
describes the path weights from all dipole-field on-cells
with the depicted positions and preferred orientations to
a single cooperative cell with a horizontally oriented
receptive field. The length of each line is thus propor-
tional to the sensitivity of the receptive field to inputs
received from cells coding the depicted positions and
orientations. The cell in Figure 32b is most sensitive to
horizontally oriented inputs that fall along a horizontal
axis passing through the cell. Close-to-horizontal orien-
tations and close-to-horizontal positions can also help to
excite the cell, but they are less effective. Figures 32a
and 32b describe the same information, but from differ-
ent perspectives of a single dipole-field on-cell source
(Figure 32a) and a single cooperative cell sink
(Figure 32b).

Figure 33 depicts a cooperative out-field (Figure 33a)
and in-field (Figure 33b) due to a different choice of nu-
merical parameters. In Figure 33a, a single dipole-field
on-cell can spray inputs over a spatially broad region, but
the orientations that it can excite are narrowly tuned at
each position. From the perspective of a cooperative cell’s
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receptive fields, the out-field in Figure 33a generates an
in-field that is spatially narrow, but the orientations that
can excite it are broadly tuned. Figures 32 and 33 illus-
trate a duality between in-fields and out-fields that is made
rigorous by the equations in the Appendix.

F. On-center-off-surround feedback within each
orientation. This process refines the BC System that was
described in Grossberg and Mingolla (1985a). In Sec-
tion 8, we suggested that excitatory feedback from the
cooperative stage to the second competitive stage—more
precisely to the on-cells of the dipole field—can help to
eliminate fuzzy bands of boundaries by providing some
orientations with a competitive advantage over other
orientations. It is also necessary to provide some posi-
tions with a competitive advantage over other positions,
so that only the favored orientations and positions will
group to form a unique global boundary. Topographically
organized excitatory feedback from a cooperative cell to
a competitive cell is insufficient. Then the spatial fuzzi-
ness of the cooperative process (Figure 32) favors the
same orientation at multiple noncollinear positions. Sharp
orientational tuning but fuzzy spatial tuning of the resul-
tant boundaries can then occur.

We suggest that the cooperative-to-competitive feedback
process realizes a postulate of spatial sharpening in the
following way. An active cooperative cell can excite like-
oriented on-cells at the same position (Figure 30). An ac-
tive cooperative cell can also inhibit like-oriented on-cells
at nearby positions. Then both orientations and positions
that are favored by cooperative groupings gain a com-
petitive advantage within the on-cells of the dipole field.

Figures 18-25 show that the emergent groupings tend
to be no thicker than the inducing input Lines due to this
mechanism. Figure 30 shows that both the bottom-up in-
puts and the top-down inputs to the dipole field are or-
ganized as on-center—off-surround interactions among like
orientations. The net top-down input is, however, always
nonnegative due to the fact that excitatory interneurons
are interpolated between the on-center—off-surround in-
teraction and the dipole field. If this on-center—off-
surround interaction were allowed to directly input to the
dipole field, then a single Line could generate a spatially
expanding lattice of mutually perpendicular secondary,
tertiary, and higher order end cuts via the cooperative-
competitive feedback loop. This completes our descrip-
tion of BC System interactions.

21. Concluding Remarks: Universality of the
Boundary Contour System

The BC System and FC System interactions of our the-
ory have suggested quantitative explanations and predic-
tions for a large perceptual and neural data base, includ-
ing data about perceptual grouping of textures and
borders, illusory figures, monocular and binocular bright-
ness percepts, monocular and binocular rivalry, the Land
retinex demonstrations, neon color spreading and related
filling-in phenomena, complementary color induction,
fading of stabilized images, muitiple scale interactions,
shape-from-shading, metacontrast, hyperacuity, and var-

ious other global interactions between depth, lightness,
length, and form properties (Cohen & Grossberg, 1984a;
Grossberg, 1980, 1983a, 1984a, 1985; Grossberg & Min-
golla, 1985a).

This expanded explanatory and predictive range is due,
we believe, to the introduction and quantitative analysis
of several fundamental new principles and mechanisms
to the perceptual literature, notably the principle of
boundary-feature tradeoff and the mechanisms governing
BC System and FC System interactions.

The present article has refined the mechanisms of the
BC System by using this system to quantitatively simu-
late emergent perceptual grouping properties that are
found in the data of such workers as Beck et al. (1983),
Glass and Switkes (1976), and Gregory and Heard (1979).
We have hereby been led to articulate and instantiate the
postulates of spatial impenetrability and of spatial shar-
pening, and to thereby make some new predictions about
prestriate cortical interactions. These results have also
shown that several apparently different Gestalt rules can
be analyzed using the context-sensitive reactions of a sin-
gle BC System. Taken together, these results suggest that
a universal set of rules for perceptual grouping of scenic
edges, textures, and smoothly shaded regions is well on
the way to being characterized.
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APPENDIX

Boundary Contour System Equations

The network we used to define the Boundary Contour Sys-
tem (BC System) is defined in stages below. This network fur-
ther develops the BC System that was described in Grossberg
and Mingolla (1985a). ’

A. Oriented Masks

To define a mask, or oriented receptive field, centered at po-
sition (i,j) with orientation k, divide the elongated receptive field
of the mask into a left-half L;jx and a right-half Rij. Let all the
masks sample a field of preprocessed inputs. If Spq equals the
preprocessed input to position (p,q) of this field, then the out-
put Jijx from the mask at position (i,j) with orientation k is

[Uiik —aVik]* +[Vixk —aUix]*
Jix = (A1)
1 +B(Uijx + Vijk)

where

Ujk= L Sea
(P9 E€Lijx

Vig = E Spq, (A3)
(p.9) ERix

and the notation [p]*=max(p,0). The sum of the two terms in
the numerator of Equation Al says that Ji;x is sensitive to the

orientation and amount of contrast, but not to the direction of

contrast, received by Lijx and Rijx. The denominator term in
Equation A1 enables J;;x to compute a ratio scale in the limit
where 8(Uijk + Vijx) is much greater than 1. In all of our simu-
lations, we have chosen §=0.

B. On-Center-Off-Surround Interaction
Within Each Orientation (Competition I)

Inputs Jijx with a fixed orientation k activate potentials wijx
at the first competitive stage via on-center-off-surround inter-
actions: each Jijjx excites wijx and inhibits wpqx if
|p—i|*+]q—j|? is sufficiently small. All the potentials wi;x
are also excited by the same tonic input I, which supports dis-
inhibitory activations at the next competitive stage. Thus,

d
—wijk = —Wig I+ —Wijk & fpa)Apais, (A4)
dt P9

where Apg; is the inhibitory interaction strength between posi-
tions (p,q) and (i,j) and f(Ji;x) is the input signal generated by
Jijx. In our runs, we chose

f(Jix) = Blijk.

Sections C and D together define the on-cell subfield of the di-
pole field described in Section 20.

C. Push-Pull Opponent Processes
Between Orientation at Each Position

Perpendicular potentials wijx and wijk elicit output signals that
compete at their target potentials X;;k and Xijx, respectively. For
simplicity, we assume that these output signals equal the poten-
tials wijk and wik, which are always nonnegative. We also as-
sume that x;j and xix respond quickly and linearly to these sig-
nals. Thus,

Xijk = Wijk —WijK
and
XijK = WijK — Wijk. (A7)

D. Normalization at Each Position
We also assume that, as part of this push-pull opponent
process, the outputs yij of the second competitive stage become
normalized. Several ways exist for achieving this property
(Grossberg, 1983b). We have used the following approach.
The potentials xijk interact when they become positive. Thus,
we let the output Ojjx =O(xijk) from x;jx equal

Ok = Clwijk—wikl', (AB)

T
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where C is a positive constant and [p]*=max(p,0). All these
outputs at each position interact via a shunting en-center-off-
surround network whose potentials yjx satisfy

= =Dyik +(E-Yi)Oik —¥ijk L Oijm.
m#k

d
e Yisk (A9)

Each potential yij equilibrates rapidly to its input. Setting
d 0
dt Y=

in Equation A9 implies that

EOi
Yijk = D+Oij » (AlO)
where
n
0y = Y Oijm. (All)
m=1

Thus, if D is small compared with Oj;, then 7. _ | vijm = E.

E. Opponent Inputs to the Cooperative Stage

The next process refines the BCS model used in Grossberg
and Mingolla (1985a). It helps to realize the postulate of spatial
impenetrability that was described in Section 20. The wijk, Xijk,
and y;jk potentials are all assumed to be part of the on-cell sub-
field of a dipole field. If yij is excited, an excitatory signal f(yijx)
is generated at the cooperative stage. When potential y;jx is ex-
cited, the potential y;jk corresponding to the perpendicular orien-
tation is inhibited. Both of these potentials form part of the on-
cell subfield of a dipole field. Inhibition of an on-cell potential
yijk disinhibits the corresponding off-cell potential ¥i;x, which
sends an inhibitory signal —f(yi;k) to the cooperative level. The
signals f(yijx) and —f(¥ijx) thus occur together. In order to in-
stantiate these properties, we made the simplest hypothesis,
namely that

Viik = Yijk. (A12)

F. Oriented Cooperation: Statistical Gates

The cooperative potential z;jx can be supraliminally activated
only if both of its cooperative input branches receive enough
net positive excitation from similarly aligned competitive poten-
tials (Figure 9). Thus,

d
= Zijk

a Tk T TRkTE

> [f(ypqo—f@pqolFé‘.;!}’)
(p,q.1)

+g(( )3 )[f(ypqo—f@pqmc,‘,:;’) (A13)
P.q.T.

In Equation A13, g(s) is a signal function that becomes positive
only when s is positive, and has a finite maximum value. A
slower-than-linear function,

H[s)

i—'—*'—[;]-; , (Al4)

g(s) =

was used in our simulations. A sum of two sufficiently positive
g(s) terms in Equation A13 is needed to activate Zijk above the
firing threshold of its output signal h(zijx). A threshold-linear
signal function,

h(z) = L{z—M]*, (A15)
was used. Each sum, such as
o=, (P (A16)
and
B I o A

is a spatial cross-correlation that adds up inputs from a strip with
orientation (approximately equal to) k, which lies to one side
or the other of position (i,j), as in Figures 32 and 33. The orien-
tations r that contribute to the spatial kernels F‘p':,'i‘,-) and G,(,"i,kj)
also approximately equal k. The kernels FS;%) and G&X) are de-
fined by

Foa = [ekPI—2(NpqisP' ~1 y7]
X| [ | c08(Qpai;—1) | 1*{c0s(Qpqij— k)]T]’ (A18)
and
G(l:';l;) = [ —exp[ —2(Npqi;P' —1)%]

% |[| cos(Qpais—1) | IRfcos(Qpas —kI™]", (A19)

where
Npaij = V=P +@Q-))* , (A20)
Qpaij = arctan(-;::"i (A21)

and P, R, and T are positive constants. In particular, R and T
are odd integers. Kernels F and G differ only by a minus sign
under the [--]* sign. This minus sign determines the polarity
of the kernel, namely, whether it collects inputs for z;;x from
one side or the other of position (i,j). Term

{5 ]

determines the optimal distance P from (i,j) at which each ker-
nel collects its inputs. The kernel decays in a Gaussian fashion
as a function of Np,ij/P, where Npg;; in Equation A20 is the dis-
tance between (p,q) and (i,j). The cosine terms in Equations A18
and A19 determine the orientational tuning of the kernels. By
Equation A21, Qpq;; is the direction of position (p,q) with respect
to the position of the cooperative cell (i,j) in Equation A13. Term
| cos(Qpqij—1) | in Equations A18 and A19 computes how
parallel Qyq;; is to the receptive field orientation r at position
(p,q). By Equation A21, term | cos(Qpqi;—r) | is maximal when
the orientation r equals the orientation of (p,q) with respect to
(i,j). The absolute value sign around this term prevents it from
becoming negative. Term cos(Qpqi;—k) in Equations A18 and
A19 computes how parallel Qpq;; is to the orientation k of the
receptive field of the cooperative cell (i,j) in Equation A13. By
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Equation A21, term cos(Qpqi;—K) is maximal when the orien-
tation k equals the orientation of (p,q) with respect to (i,j). Po-
sitions (p,q) such that cos(Qpqi;—k) < 0 do not input to z;x via
kernel F because the {---]* of a negative number equals zero.
On the other hand, such positions (p,q) may input to zij via
kernel G due to the extra minus sign in the definition of ker-
nel G. The extra minus sign in Equation A19 flips the preferred
axis of orientation of kernel G3;¥) with respect to the kernel F&%
in order to define the two input-collecting branches of each
cooperative cell, as in Figures 9 and 30. The product terms
[} cos(Qpaji—1) | 1} [c05(Qpqi;—k)]" in Equations A18 and A19
thus determine larger path weights from dipole field on-cells
whose positions and orientations are nearly parallel to the
preferred orientation k of the cooperative cell (i,j), and larger
path weights from dipole-field off-cells whose positions and
orientations are nearly perpendicular to the preferred orienta-
tion k of the cooperative cell (i,j). The powers R and T deter-
mine the sharpness of orientational tuning: Higher powers en-
force sharper tuning.

G. On-Center-Off-Surround Feedback
Within Each Orientation

The next process refines the BC System model used in Gross-
berg and Mingolia (1985). It helps to realize the postulate of
spatial sharpening that was described in Section 20. We assume
that each z;jx activates a shunting on-center-off-surround inter-
action within each orientation k. The target potentials vijx there-
fore obey an equation of the form

d
- Vik =

- (A22)

—Vijk+h(Zijk) — Vi 12 h(Zpak) Wpaij-
o)

The bottom-up transformation Jijx — Wi in Equation A4 is thus
similar to the top-down transformation z;jx — vijx in Equa-
tion A22. Functionally, the zijx — vij transformation enables
the most favored cooperations to enhance their preferred posi-
tions and orientation as they suppress nearby positions with the
same orientation. The signals vijx take effect by inputting to the
wijx opponent process. Equation A4 is thus changed to

d
—wik = —Wijk +1+ i) + Vi — Wik 3o fUpak)Apaij-
dt X))

(A23)

At equilibrium, the computational logic of the BC System is
determined, up to parameter choices, by the equations

[Usi —aVigl* + [ Vi —aUind*
sige = Vi Vi~ o] QA1

I+ Bl + Vi

wip = LBV
5 T+BE .0 pakApaii

Oijk = Clwijk—wiik]", (A8)
EOij
D+0y;

Yik =

Zixk = g 2 [f(qur)—f(YPqR)]F;:ili())

(.q.0
1 (t.k)
+g ﬂE [f(Yqu)_f(YPqR)]quij)’
P.q.0)

and

h(ziix)
1+ Z.0h(@pak) Woaii

Vijk =

(Ve VVY)

Wherever possible, simple spatial kernels were used. For ex-
ample, the kernels Wyq;; in Equation A22 and Apgi; in Equa-
tion A23 were both chosen to be constant within a circular recep-
tive field:

.y

W if (p—i)*+(@q—j) = W,
0 otherwise.

if (p—iy’+(@Q-j) = Ao
otherwise

and

Wpgij = (A28)
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