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Computer simulations of neural network processes fill an important methodological niche, per-
mitting the investigation of questions not resolvable by physiological, behavioral, or formal ap-
proaches alone. Two types of network simulations are considered: simulations of boundary com-
pletion and simulations of segmentation. Simulations that compare properties of published models
with variations of these models are presented to illustrate how parametric computer simulations
have guided the development of neural models of visual perception.

model in ways that are similar in some respects to ex-
periments run on human or animal subjects.

Models, by definition, do not contain all the richness
of the biological processes they model; their very explana-
tory power comes in part from their greater simplicity.
Nevertheless, once the component mechanisms of a model
are known to be qualitatively valid, computer simulations
have certain distinct advantages over experiments on ac-
tual organisms. Simulations can be cheaper and faster,
but more importantly, they permit a much more precise
level of control of many variables than could ever be real-
ized in physiological or behavioral experimental
paradigms. Thus, parameters in a model can be perturbed,
or entire components of the model can be deleted or
replaced with other mechanisms, by changing the ap-
propriate parts of computer programs. Such systematic
investigations can yield a deeper appreciation of the mo-
deled mechanisms and their variants, both normal and ab-
normal; suggestions for corroborative experiments on live
organisms; and even general design insights that can, at
times, be formalized into mathematical proofs that would
otherwise have been difficult to discover.

The Role of Computer Simulations
in Theory Development

The dynamics of large ensembles of neurons are as yet
difficult to observe directly. Even if direct observation
were possible, it would not explain how the interactions
among neurons generate the emergent properties that sub-
serve intelligent behavior. Additional methodologies are
needed to investigate how the collective properties of a
neural network are related to its components. Computer
simulations of neural networks are crucial tools in the cur-
rent explosion of work in brain science. Although ana-
tomical, physiological, and behavioral methods continue
to be fundamental, theoretical investigations of percep-
tual, cognitive, and motor tasks are gaining increasing im-
portance, thanks in part to the ability afforded by com-
puters to implement and test formal models of distributed
brain processes.

Many basic problems of skilled behavior can now be
modeled in sufficiently precise terms to permit formal
mathematical investigation. Once a mathematical model
of neural functioning is formulated, the investigation of
its properties may culminate in the proof of theorems con-
cerning the stability or convergence behavior of the
model, as in Cohen and Grossberg (1983). Certain classes
of models of neurally based processes, however, partic-
ularly those involving large and hierarchically organized
systems of nonlinear ordinary differential equations, are
characteristically difficult to analyze through purely for-
mal procedures. For these systems there may be no way
to determine the output of the model when given a cer-
tain input, short of running the model in a numerical com-
puter simulation. Thus, "experiments" can be run on a
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Simulation of a Neurally Based Model
of Boundary Completion

This article presents two examples of the way in which
performing computer simulations has helped the develop-
ment of a perceptual theory, whose formal equations are
listed in the Appendix. As these examples illustrate, each
of the processing stages used in the model is essential for
generating its formal perceptual properties. In this limited
sense, at least, the model is a minimal model of the proper-
ties that it sets out to explain.

The first example involves variations of simulations that
were first presented by Grossberg and Mingolla (1985a),
who examined certain problems in boundary detection and
completion faced by mammalian visual systems. Early
visual processing by orientationally tuned, contrast-driven
cells necessarily involves problems of positional and
orientational uncertainty. For example, the very elonga-
tion of cell receptive fields (masks) necessary for preferen-
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tial responses to oriented contrasts along straight lu-
minance borders implies attenuated responses by these
receptive fields at line ends and comers, as indicated in
Figure I. We summarize this property in tenDS of an un-
certainty principle, namely, that orientational certainty
implies positional uncertainty at line ends and comers.
Figure 2 shows a computer simulation depicting this un-
certainty at a line end.

According to our theory, the spatial pattern of early
boundary detection signals depicted in Figure 2 requires
subsequent processing whereby the positional uncertainty
at line ends and comers is overcome. To this end, the
mask responses in Figure 2 act as an input pattern to a
later processing stage that preserves the strong responses
at the line's long edges, but also completes the represen-
tation of the line at its end (Grossberg & Mingolla, 1985a,
1985b). We call the emergent pattern of activity at the
end of a line an end cut, an example of which is shown
in Figure 3.

The processing stages that are hypothesized to gener-
ate end cuts are summarized in Figure 4. These process-
ing stages have also been used to analyze a wide variety
of perceptual and neural data (Grossberg, in press a, in

Figure 2. An orientation field: Lengths and orientations of lines
encode the relative sizes of the activations and orientations of the
input masks at the COn'eslMlnding positions. The input lMittem, which
is a vertical line end as seen by the receptive fields, corresponds to
the shaded &rea. Eacb mask bas total exterior dimensions of 16 x 8
units, with a unit length being the distance between two adjacent
lattice positions.

A

B

(b)(a)
Figure 1. Orientational specificity at figural edges, corners, and

exteriors. (a) At positions that are along a figural edge but not at a
figural corner, such as A, the oriented mask parallel to the edge
is highly favored. At positions beyond the edge, such as B, ulasks
of the same orientation are still partially activated. This tendency
can, in the absence of compensatory mechanisUlS, support a flow
of dark featuraI activity down and out of the black figure. (b) A
line is thin, functionally speaking, when at positions near a corner,
such as C, many masks of different orientations are all weakly acti-
vated or not activated at all.

press b; Grossberg & Mingolla, 1985a, 1985b, in press).
First, oriented receptive fields of like position and orien-
tation but opposite direction of contrasts, cooperate at dte
next processing stage to activate cells whose receptive
fields are sensitive to dte same position and orientation
as dtemselves, but which are insensitive to direction of
contrast. These target cells maintain dteir sensitivity to
dte amount of oriented contrast, but not to dte direction
of this oriented contrast. The computer simulation sum-
marized in Figure 2 depicts dte responses of cells at this
processing stage. Such model cells, which play dte role
of complex cells in Area 17 of dte visual cortex, pool in-
puts from receptive fields widt opposite directions of con-
trast in order to generate boundary detectors dtat can de-
tect dte broadest possible range of luminance or chromatic
contrasts (Grossberg, in press a; Thorell, DeValois, &
Albrecht, 1984). These two successive stages of oriented
contrast-sensitive cells are called dte DC filter (Grossberg
& Mingolla, 1985b).

The output from dte OC filter successively activates two
types of short-range competitive interaction, whose net
effect is to generate end cuts. First, a cell of prescribed
orientation excites like-oriented cells corresponding to its
location and inhibits like-oriented cells corresponding to
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directly to the second competitive stage; thus the first com-
petitive stage is eliminated and the mask field pattern
shown in Figure 2 is input directly to the second competi-
tive stage. Figure 6, conversely, shows the output of the
first competitive stage to the input signal pattern shown
in Figure 2. Together, Figures 5 and 6 illustrate the im-
portance of coupling the two successive competitive
stages. Without the first competitive stage (Figure 5), the
output pattern has a broad band of vertically oriented ac-
tivity along the sides of the line, thereby failing to ade-
quately localize the sides of the line itself. Without the
second competitive stage (Figure 6), almost all signals are
swamped by noise.
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Implementation of Simulations Using
Algebraic Equations

Simulations of the kind shown in Figure 2 are relatively
easy to perform, in terms of both programming difficulty
and computer processing time, because they involve only
algebraic calculations of contrast distributions in an im-
age. (See Appendix, Equation AI.) In image processing
terms, one performs a convolution of the image with
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Figure 3. Responses of a network with two stages of short-range
competition to the orientation field of Figure 2: A p~ called end
cutting generates horizontal activations at line end locations that
receive small and orientationally ambiguons input activations.

nearby locations at the next processing stage. In other
words, an on-center off-surround organization of like-
oriented cell interactions exists around each perceptual
location. The outputs from this competitive mechanism
interact with the second competitive mechanism. Here,
cells compete that represent different orientations, not-
ably perpendicular orientations, at the same perceptual
location. This competition defines a push-pull opponent
process. If a given orientation is excited, then the per-
pendicular orientation at its location is inhibited. If a given
orientation is inhibited, then the perpendicular orienta-
tion at its location is excited via disinhibition.

These competitive rules generate end cuts as follows.
The strong vertical activations along the edges of a scenic
line, as in Figure 2, inhibit the weak vertical activations
near the line end. These inhibited vertical activations, in
turn, disinhibit horizontal activations near the line end,
as in Figure 3. Thus the positional uncertainty at line ends
that is caused by orientational tuning is eliminated by the
interaction of two short-range competitive mechanisms.

The properties of the two stages of competition can be
formally dissected through the use of simulations that omit
one or the other stage. Figure 5 shows the effects of feed-
ing signals proportional to the output of oriented masks

-
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Figure 4.. Early stages of boundary contour processing: At each

position exist cells with elongated receptive fields of various sizes
that are sensitive to orientation, amount of contrast, and direction
of contrast.. Pairs of such cells that are sensitive to like orientation
but to o~te directions of contrast (lower ~ box) input to cells
that are sellSitive to orientation and amount of contrast but not to
direction of contrast (white ellipses). These cells, in turn, excite like-
oriented cells corresponding to the same position and inhibit like-
oriented cells corresponding to nearby positions at the first com-
petitive stage (upper dashed boxes). At this stage, cells correspond-
ing to the same position but to different orientations inhibit each
other via a push-puD competitive interaction.
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For the simulations of Figures 3, 5, and 6, all VlJkS are
set identically equal to zero, since no feedback is involved.
The simulations shown in Figures 5 and 6 were perfonned
by replacing Equations I and A6 by

WlJk = I+BJlJk .(2)

and
Yijk = Wijk, (3)

respectively. All other relevant equations and quantities
were identical to those used for the simulation shown in
Figure 3.

* *

* *

* *

* *

* t

* t

* *

* *

* *

* t

.*

I *

/ *

/ I

* &

* \

t \
\ \
~ \
~ \

\

Simulation of Textural Segmentation
and Perceptual Grouping

The second set of simulations concerns the role of long-
range cooperative activity among oriented cells at a
processing stage subsequent to the two short-range com-
petitive stages. In our theory, this cooperation is crucial
to the understanding of boundary detection and comple-
tion, textural segmentation and grouping, surface per-
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#. , Figure 6. Responses of the first competitive stage to the input of

the orientation field in Figure 2. Without processing by the second

competitive stage, almost all responses to the line (indicated by the

shaded region) are swamped by noise.

Figure 5. Tbjs simulation was perfonned with tbe second com-
petitive stage res~nding directly to the inputs of the orientation field
in Figure 2, without any processing by the first competitivl~ stage.
The sides of the line (indicated by the shaded region) are not weD
localized by the network.

oriented kernels (weighting functions) that express the
oriented contrast sensitivity of masks. The difference be-
tween an ordinary image convolution and the simulation
shown in Figure 2, is that, in the latter, only a sparse lat-
tice of image locations is sampled in order to form the
grid of mask responses over several orientations, and the
larger of the two convolutions is plotted at each loca-
tion and orientation to implement the insensitivity of the
masks to direction of contrast, as defined in the numera-
tor of Equation Al of the Appendix.

Simulations such as those shown in Figures 3, 5, and
6 are also easy to perform, since they also can be executed
using only algebraic equations. The networks involved
in the simulation of Figure 3 are defined by a system of
Equations Al through A6 of the Appendix. These, equa-
tions represent a feedforward flow of activation from the
input masks to the competitive stages. The equilibrium
states of this system can therefore be easily computed.
In fact, all equations but A4 are already computed at
equilibrium. The equilibrium of A4 can be computed sim-
ply by setting the rate of change, (dldt)w/jk, of W/jk equal
to zero. Thus, at equilibrium,

0
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ception, and the perception of illusory contours (Gross-
berg & Mingolla, 1985b, in press). The cooperation is
mediated by oriented cells with two separately thresholded
receptive fields, as indicated in Figure 7. The alignment
of the two receptive field weighting functions is such that,
for example, a horizontally oriented cooperative cell tends
to fire whenever it receives sufficiently strong signals from
approximately horizontally oriented cells of the second
competitive stage to both receptive fields simultaneously.
When the cooperative cell fires, it sends excitatory sig-
nals back to the similarly oriented cells corresponding to
its position at the first competitive stage, and inhibitory
signals to similarly oriented cells corresponding to nearby
positions. These tOP-down signals set up a feedback loop
between the long-range cooperative process and the short-
range competitive processes. This cooperative-<:ompetitive
feedback process is called the CC loop. The design con-
straints leading to the entire system for implementing the
CC loop are beyond the scope of this article, and can be
found in Grossberg and Mingolla (1985b). The role of
computer simulations in the formulation of one key func-
tional capacity of the CC loop is instead described in
detail.

Figure 8 presents the results of two separate simula-
tions of textural grouping. Figure 8a shows the input pat-
tern that is presented to the CC loop. The pattern con-
sists of nine clusters of 18 vertically oriented mask
responses. We call each cluster a Line because it is a
caricature of how a finer lattice of masks would respond
to an actual line. Figure 8b displays the pattern of
equilibrium activities that is generated by this input at the
second competitive stage of the full model, including CC
loop feedback. This simulation is a success because,
without any preassigned template or external prompting,
the network has automatically regulated itself to an
equilibrium state wherein each Line, besides being sur-
rounded by its own boundary activity, is also emergently
grouped with neighboring vertical and horizontal Lines
in a manner similar to that found in human perception (see
Beck, Prazdny, & Rosenfeld, 1983, for an excellent
review).

0000
0.-,--

,-

-+

CC LOOP

~~ --;;;~L~;R--
fo~

ORIENTED

MASKS

~
INPUTS

Figure 7. An overview of cooperative feedback. (a) The pair of
pathways 1 activate ~tive boundary completion feedback along
pathway 2. Then pathways such as 3 I¥:tivate positive feedback along
pathways such as 4. Rapid completion of a sharp boundary between
the locations of pathways 1 can hereby he generated by a spatially
djS(,ontinuous bisection pnM:ess. (b) Circuit diagram of the Bound-
ary ContJKIr System: Inputs activate oriented masks, which COOpeI'8te
at elM:h position and orientation before feeding into an OIH:eDter off-
surround interaction. This interaction excites like-i}riented ceUs at
the same position and inhibits Iike-oriented ceUs at nearby positiom.
The affected ceUs are on~Us within a dipole field. On~Us at a
fixed ~tion compete among orientations. ~ aLw inhibit 00'-
cell.. that represent the same ~tion and orientation. Off-<eUs at
each ~tion, in turn, compete among orientations. Both on~Us
and oO'~Us are tonically active. Net excitation of an on-<eU excites
a sinIilarly oriented cooperative receptive field at a location cor-
responding to that of the on-i:eII. Net excitation of an 00' -i:eII inhibits
a similarly oriented cooperative receptive field of a bipoie ceO at
a location corresponding to that of the oO'-i:eII. Thus, bottom-up ex-
citation of a vertical on-<eO, by inhibiting the horizontal on~O at
that position, dNnhI"bits the IMIri7AJIIta1 off-i:ell at that position, which
in him inhibits (~) horizontaUy oriented cooperative receptive
fields that include its ~tion. Sufficiently strong net positive acti-
vation of both receptive fields of a cooperative ceO enables the ceO
to generate feedback via an on-<enter off~ interlM:tion among
like-i}riented ceUs. On-<eUs that receive the most favorable combi-
nati-m of bottom-up signab and top..dowD signab generate the emer-
gen. perceptual grouping. The letters in this figure are keyed to the
variables in the Appendix.

The Postulate of Spatial Impenetrability
Because the only inputs for the simulation summarized

in Figure 8b were the vertical activities shown in
Figure 8a, it is clear that the emergent horizontal group-
ings came about through horizontal cooperative activity
induced by horizontal end cut signals that are generated
at the ends of Lines by the second competitive stage. If
such horizontal end cuts induce horizontal groupings at
line ends, however, why do the horizontal signals induced
along the sides of the Lines not also group, thereby flood-
ing the entire region between Lines with activity? Pre-
cisely this event is shown in Figure 8c, which shows the
results of a simulation run not on our actual model but
on a variation of it.

Our actual CC loop model (Figure 7b) avoids the dis-
aster shown in Figure 8c by instantiating a computational
property that implements what we have termed the postu..
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second competitive ~itage
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Figure 8c played a crucial role in our development of d1e
CC loop model in its present form.

III
input

III III Implementation of Perceptual
Grouping Simulations

Performing the simulations of Figure 8 involves more
complexity than is apparent from the output displays them-
selves. For example, the lattice of network nodes con-
tains 12 orientations at each of 40 x 25 spatial locations
for five network processing stages. This means that 6O,(XX)
nonlinear ordinary differential equations must be solved
to perform each of the simulations in Figure 8. One fac-
tor prevents the computational demands from being com-
pletely unmanageable: Some of the equations can be
solved algebraically, in the same manner as those for the
end cut simulations (Figure 3). Because the full model
involves feedback, however, the use of algebraic approx-
imations requires explicit assumptions about reaction rates
within the model. That is, those stages whose equilibria
are computed algebraically are assumed to equilibrate
more rapidly than do the other stages. The Appendix
describes which equations were solved algebraically and
which were solved through numerical integration.

For the simulations of Figure 8, the numerical integra-
tion of the differential equations not solved algebraically
was carried out using the DGEAR subroutine package of
the IMSL Library, which is commonly available at univer-
sity computational facilities. Using IMSL is not much
more difficult than using the packages for statistical anal-
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Figure 8. Computer simulatiom of ~ underlyiDg textural
grouping. The length of each line segment is proportiolw to th~, ac-
tivation of a network node responsive to one of 12 possible orienta-
tiom. Part (a) displays the activity of oriented cells that input to
the CC loop. Part (b) displays the group~ sensed by our actual
model network. Part (c) displays the resulting Doodilag of bound-
ary activity that occurs when the model's mechanism for spatial im-
penetrability is removed. See text for details of the twlJl simulatiiom
shown in (b) and (c).
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late of spatial impenetrability. This postulate ac-
knowledges the need to prevent the cooperative process
from being able to leap across, and thereby penetrate, all
intervening percepts. Figure 9 motivates the mechanisms
that we have developed to implement the postulate of spa-
tial impenetrability. Figure 9 shows the left halves of the
receptive fields of two horizontally tuned cooperative
cells. In our actual model, horizontal activations at the
second competitive stage that fall within such a horizon-
tally tuned cooperative cell's receptive field generate ex-
citatory inputs to the receptive field. Vertical activations,
in contrast, generate inhibitory inputs to the receptive
field. (The pairing of excitatory and inhibitory inputs at
perpendicular orientations is represented by the terms
Yp9r-Yp9R in Equation A7.) Thus, by summing excitatory
and inhibitory inputs from the second competitive stage,
the left receptive field of the lower cooperative cell of
Figure 9 can be excited above threshold, because of the
preponderance of horizontals from the end cut. On the
other hand, the upper cooperative cell's left receptive field
receives net inhibition because signals from the six verti-
cal segments overwhelm those from the four horizontals.
Our neural model of how both excitatory and inhibitory
signals input to a cooperative cell assumes that on-cells
generate the excitatory inputs and off-cells generate the
inhibitory inputs from the second competitive stage. These
cells, taken together, are called a dipole field, as illus-
trated in Figure Th.

The model variation whose noisy output is shown in
Figure 8c was achieved by removing the inhibitory ef-
fects of signals oriented orthogonally to the cooperative
cell's preferred orientation (-YP9R) while keeping the ex-
citatory effects of signals at the same orientation as the
cooperative cell itself (YP9r). Indeed, along with study of
perceptual and physiological data and earlier theoretical
results, observation of simulations such as that shown in

Figure 9. A mechanism to implement the postulate of spatial im-
penetrability: The left receptive fields of two horizontally tuned
cooperative cells are crossed by a thin vertical Line. Although
horizontal end-cut si~ can excite the upper receptive field, these
are canceUed by the greater number of inhibitory inputs due to the
vertical Line inputs. Within the lower receptive field, the excita-
tory inputs due to end cuts prevail.

~
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ysis so familiar to psychologists. Solving systems of simul-
taneous nonlinear differential equations, however, is
notoriously slow work for general-purpose digital com-
puters. The simulations of Figure 8, for example, took
hours of computer time on a large mM mainframe.

Those of us working on neurally based network models
hope that the forthcoming generation of massively parallel
hardware can be used to speed up simulations for basic
research. Certain prototypes of parallel processors have
in fact been developed along lines suggested by theoreti-
cal research on neural models that has been performed
over the past two decades. In particular, TRW's new
Mark ill and Mark IV computers are designed to rapidly
integrate a wide range of neural models at relatively low
cost. We hope that this type of cooperative feedback loop
between computer simulation and hardware development
will speed the attainment both of theoretical understand-
ing of biological processes and of development of ad-
vanced parallel hardware designs.

position within a two-dimensional lattice and k represents an
orientation.

OC Filter

(AI)

where

UI/O = E S'9' (A2)

(P.q)E1..,.

VI/O = E S'9' (A3)

(P.q)ER..
and the notation [P] + = max (P,O). In Equation AI, the elon-

gated receptive field is divided into a left half Ll/o and a right
half Rl/o.
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and kernels FI;OV and Gc;.V define the cell's two receptive fields.
APPENDIX

Cooperative Feedback to First Competitive Stage

h(zlJ") (A9)VIJ' = 1
+ E(p.,>h(zPOk)WPOl}

where

h(s) = L(s-M]+. (AIO)

The following neural network ~tions represent the OC filter
and the CC loop. All processes, except the first competitive
stage, are assumed to react so quickly that they can be
represented at equilibrium as algebraic equations. This approx-
imation is merely a computational convenience to speed up the
simulations, and does not influence the results. See Grossberg
and Mingolla (1985b) for complete definitions of the network
processes.

In all of the subsequent equations, indices (iJ) represent a cell


