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A real-time visual processing theory is used to provide a new approach to the analysis of
surface perception, notably shape-from-shading. The theory elsewhere has been used to
explain data about boundary detection and completion, textural segmentation, depth percep-
tion, color and brightness perception, and striate-prestriate cortical interactions. Neural
network interactions within a multiple scale boundary contour (BC) system and feature
contour (FC) system are used to explain these phenomena. Each spatial scale of the BC system
contains a hierarchy of orientationally tuned interactions, which can be divided into two
successive subsystems called the OC filter and the CC loop. The OC filter contains two
successive stages of oriented receptive fields which are sensitive to different properties of image
contrasts. The OC filter generates inputs to the CC loop, which contains successive stages of
spatially short-range competitive interactions and spatially long-range cooperative interactions.
Feedback between the competitive and cooperative stages synthesizes a coherent, -multiple
scale structural representation of a smoothly shaded image, called a boundary web. Such a
boundary web regulates multiple-scale filling-in reactions within the FC system which generate
a percept of form-and-color-in-depth. Computer simulations establish key properties of a
boundary web representation: nesting of boundary web reactions across spatial scales, coher-
ent completion and regularization of boundary webs across incomplete image data, and
relative insensitivity of boundary webs to illumination level and highlights. The theory clarifies
data about interactions between brightness and depth percepts, transparency, influences of
highlights on perceived surface glossiness, and shape-from-texture gradients. The total network
suggests a new approach to the design of computer vision systems, and promises to provide a
universal set of rules for 3D perceptual grouping of scenic edges, textures, and smoothly
shaded regions. © 1987 Academic Press, Inc.

1. THE PROBLEM OF MODELING SURFACE PERCEPTION

The perception of surfaces is arguably the single most important competence of
the visual systems of terrestrial mammals. The ground that affords support for
locomotion and the bodies of predators, prey, and conspecifics are bounded by
surfaces of various shapes and appearances. The state of scientific understanding of
the processes of surface perception, however, is such that few if any pages are
devoted to the subject in many textbooks on visual perception. A number of recent
experimental studies have examined important aspects of surface perception, but as
yet no coherent psychological theory with broad explanatory power has emerged.
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Moreover, as we will argue later in this paper, many of the computational models
of surface perception to date have failed to solve or in some cases even identify
some of the most fundamental problems in dealing with surfaces. As a result, these
models lack both biological plausibility and the capacity to be readily implemented
in functional, real-time vision machines. The present article begins to extend a
rapidly growing, neurally based theory of 3D form perception to the domain of
surface perception.

For decades before the subject became fashionable, Gibson studied the percep-
tion of surfaces and their properties. If his only contribution had been to emphasize
the importance of gradients, whether of motion parallax, luminance, or textural
properties, to the perception of surfaces, that contribution would by itself have been
important [22]. A major goal of this paper is accordingly to introduce and analyze
the notion of a boundary web, wherein the same mechanisms responsible for
detecting discrete luminance or textural boundaries are also capable of synthesizing
form-sensitive compartments, or dynamically generated coordinate systems, in
response to static scenic gradients.

Gibson, however, studied more than gradients, going on to identify up to nine
surface properties accessible by the visual and haptic systems [24, 69]. These nine
properties, including several relating to surface reflectance, illumination conditions,
and the relative transparency, opacity, or luminosity of surfaces, are deemed to be
perceivable simultaneously with the shape or form or, as Gibson preferred, the
layout of surfaces. The present paper will not address all of the phenomenological
richness of Gibson’s classification. We will, however, present a mechanistically
plausible theory which takes seriously the need to provide a coherent account of
how we can, in different but in equally real ways, perceive both the structural,
shape-related properties of surfaces, and the more evanescent modes of surface
appearance. Our theory is a natural one for such a development in three dimensions
(3D), because its analysis of boundary completion and textural grouping has already
led to the articulation of the analogous distinction in two dimensions, namely that
of seeing contrast in luminance or hue versus recognizing form or pattern [35, 37].

With this addition, the theory has been shown competent to analyse perceptual
data about surface perception, boundary completion, textural segmentation, mo-
tion-induced segmentation, stereopsis, hypercuity, monocular and binocular bright-
ness perception, binocular rivalry, McCullough effect, border distinctness, lateral
inhibition within spatial frequency channels, control of object superiority effect by
emergent features, metacontrast, transparency, stereoscopic capture, and illusory
features. In addition, the theory has suggested explanations and a number of new
predictions about the organization and reciprocal interactions among the hypercol-
umns, blobs, and stripes of the visual cortical areas V1, V2, and V4, and has
successfully predicted several recently discovered perceptual and neural phenomena
[15, 16, 34-37].

Our analyses of these phenomena have led to a qualitatively new computational
theory of how visual systems are designed, including the identification of several
new uncertainty principles which visual interactions are designed to surmount.
These developments have led to a number of revolutionary conclusions, whose
paradoxical nature is best perceived when they are expressed simply and without
technical caveats or interpretations. These conclusions include: All boundaries are
invisible. All line ends are illusory. Boundaries are formed discontinuously. Orienta-
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tionally fuzzy computations are the basis for orientationally sharp segmentations.
Positionally fuzzy computations are the basis for positionally sharp percepts of
3-dimensional space.

This paper is divided into two parts. The first part describes the issues to be
probed and briefly reviews our previously existing theoretical machinery. The
second part extends the theory to cope with surface perception of shaded images.
The main goal of this paper is to outline this neurally based theory of the perception
of surfaces, including the process of deriving shape from shading. Because what we
take to be the explanatory requirements of such a theory differ from the require-
ments of most computational models, Section 2 describes some criteria that we hope
to meet in a fully developed theory of surface shape and quality perception. Section
3 then reviews several important computational models for recovering shape from
shading, and criticizes them from the standpoint of the criteria articulated in Section
2. In Section 4 we examine some of the perceptual data on perception of solid shape
from shading, in the light both of theoretical criteria and of predictions from the
computational models. Section 5 begins to summarize key aspects of our theory as it
has already been developed to deal with real-time boundary detection and textural
segmentation phenomena. This brief review of our theory leads to a discussion
explicitly linking previously described mechanisms and concepts to the requirements
of the extended theory as it treats surface perception. Several types of perceptual
data are reanalysed from this perspective. The results of computer simulations of
boundary webs are presented in Sections 13, 21, and 22.

2. THE EXPLANATORY REQUIREMENTS OF A THEORY OF SURFACE PERCEPTION

Consideration of the perception of extended, smoothly curved surfaces in 3D,
especially with respect to a source of visual information as volatile as shading,
requires great care in the choice of desirable goals and attributes for a theory. For
instance, we claim that to approach the problem of surface perception in shaded
images as simply one of shape-from-shading is so incomplete as to be misleading. In
the first place, “shading” is an imprecise term. Taken to refer to available luminance
distributions in an image, its usage is relatively noncontroversial. Used in that sense,
shading is rarely deemed to be a sufficient basis upon which to completely determine
shape. Most existing computational models recover shape from information about
image shading, illumination conditions, and surface reflectances. Such analyses tend
to obscure the fact that determination of the values of “shading” variables at an
area of an image—such as illumination conditions at an area on a surface,
pigmentation or texture of that area, or presence of cast shadows—is an achieve-
ment of the visual system, simultaneous with the determination of the surface shape
depicted within that area of the image [1, 4, 12, 20, 25-27, 47].

We suggest that an adequate theory of surface perception must simultaneously
explain how the invariant properties of surface shape are usually perceived with
high fidelity, despite gross perturbations of surface appearance, without assuming
knowledge about highly changeable variables such as illumination conditions, or
treating them as noise. ,

3. COMPUTATIONAL MODELS FOR RECOVERING SHAPE-FROM-SHADING

A number of models for recovering shape-from-shading, while differing in certain
details, do not meet these requirements [39-41, 43, 65, 81]. In such models, an
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Fic. 1. The geometric variables needed for a model to simulate an image of a surface in three
dimensional space. Symbols L, V, and N are all unit vectors from a point on the reflecting surface; L
lies in the direction of the light source; V' lies in the direction of a picture element and the point of
observation; and N is perpendicular to the surface. (Adapted with permission from Todd and Mingolla

[781)

attempt is made to mathematically invert the image formation process. Algorithms
are proposed to reconstruct the environment most consistent with image data from
inferences about what is known or assumed about image generation. Figure 1
displays a model of shaded image generation, involving parameters for positions of
eye, illuminated surface, and illumination source, as well as illuminant intensity and
surface reflectance. Elaborate computer graphics implementations of such models
are by now capable of making stunningly realistic synthetic images of a variety of
surfaces.

What makes recovery of shape-from-shading a problem is precisely that many
combinations of image generation parameters can result in any given pixel intensity.
The computational analyses for recovering shape just cited all attempt to somehow
reduce the number of unknown parameters or to find constraints on combinations
of their values so that the number of equations to be solved does not exceed the
number of unknowns that can be measured from image data. Typical moves for
accomplishing this goal are: to assume knowledge of illuminant direction; to first
independently measure illuminant direction from the image itself; to assume that no
illumination edges (e.g., cast shadows) fall on a surface; to assume knowledge of
type of reflectance for each surface; to assume that all surface reflectances are
Lambertian. g

The foregoing computational procedures invoke various consistency requirements
across local parameter estimates; and special handling of boundary conditions or
image extrema can cause the effects of certain local gradient measures on recovered
shape to propagate across large image regions. Nevertheless, these procedures for
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recovering shape take as their primary analytical units the local values of image
intensity gradients, and aim to produce estimates of local surface orientation
and/or depth as their outputs.

A more global type of analysis has been contributed in a series of papers by
Koenderink and van Doorn [51-53]. While these papers do not propose an
algorithm or procedure for actually recovering shape, they provide analyses of the
kinds of invariant image structures characteristic of particular shapes and illumina-
tion conditions. That is, instead of ending the analysis of image generation with
techniques for determining individual pixel intensities along the lines described in
Fig. 1, they proceed to analyze the resulting configurations of luminance extrema
and inflection points, and the connectivities of isophotes (contours of equal lumi-
nance). Tacit in their approach is the implication that the major perceptual variables
for recovering shape are not parametric, ratio-scaled estimates of local luminance
gradients, but the more categorical or ordinal global structures which are induced by
those gradients. This characteristic is desirable from the standpoint of noise toler-
ance and receiver-induced nonlinearities in measurement, insofar as the topology of
isophotes is likely to remain relatively intact while local gradient measures are
severely distorted. Similarly, Koenderink and van Doorn claim that their analysis
holds for a wide variety of illumination conditions and, with certain extensions,

surface reflectance functions. For example, one does not have to know illuminant -

direction (beyond ruling out degeneracies) in order to apply their analysis to infer
from isophote configuration to qualitative category of surface shape. Thus,
Koenderink and van Doorn’s analysis is both more modest concerning what can or
ought to be computed from images and more robust in its handling of fluctuations
induced by measurement noise or changes in environmental conditions.

Neither type of approach reviewed in this section indicates how to explain the
simultaneous apprehension of shape and of the surface appearances which are

perceived as occurring on a shape. We will argue that an analysis of the interactions

between the mechanisms determining shape and appearance is needed to fully
understand the design of either type of mechanism. For example, in many
images—such as the monocularly perceived gradients of Gibson [22] or the binocu-
larly perceived stereograms of Kaufman [48] and Julesz [44]—small regions of the
image are perceptually ambiguous in isolation, yet can be unambiguously perceived
as part of a surface when their monocular or binocular contexts are also processed.
Thus global aspects of form can alter the appearance of local image regions.
Appearance and shape are not independently processed, despite the fact that
appearance can vary greatly on an invariant shape [64]. The hypothesis that
independent modules process distinct visual properties such as appearance and
shape is fundamentally flawed [57].

4. PERCEPTUAL DATA ON PERCEPTION OF SOLID SHAPE IN SHADED IMAGES

Two of the central issues for experimental work on surface perception are: (1) Is
the visual system’s analysis of shape based on some prior knowledge or independent
assessment of illuminant direction? and (2) Must knowledge about surface reflec-
tance precede recovery of shape?

A common belief about the first issue is that the answer is affirmative. Classically,
this conclusion has been based on some rather striking reversals of perceived
concavity and convexity that are achievable by simply rotating an image 180° in the
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frontoparallel plane [14]. We believe that the significance of this demonstration has
been overstated, however. In the first place, many aspects of perceived shape are
preserved even over this gross transformation. Switching concavity and convexity
does not change Gaussian curvature, and both minima and maxima of perceived
depth remain extrema, though of opposite kind, after the image is rotated. More
importantly, however, is the inapplicability of the symmetric reversal of illuminant
direction to the more relevant and common cases. That is, what are the conse-
quences of misconstruing illuminant elevation by, say, 20°? What if clouds or
irregularly spaced lamps produce conditions with no single prevailing direction of
illumination, wherein the directions from which most illumination falls on surfaces
varies in continuously graded and unpredictable ways?

In a direct experimental test of the first issue, Mingolla and Todd [64] found only
weak or nonexistent correlations between errors in judgments of direction of
illumination and judgments of surface orientation for subjects viewing computer
generated shaded images of ellipsoids. The computed angles of elevation of point
source illumination varied by 30° in this study. The assumption that prior knowl-
edge or computation of illuminant direction is required for perception of shape was
not supported by these data.

Regarding the second issue, Todd and Mingolla [78] found that highlights
enhanced the perception of curvature in computer generated displays of cylindrical
surfaces, and Mingolla and Todd [64] found that highlights had no effect on surface
orientation judgments for ellipsoid surfaces. In none of these experiments did
subjects have any information about surface reflectance besides the image itself.
Beck and Prazdny [9] showed subjects a number of photographs of vases, some of
which had been retouched with various perturbations of contours and highlights.
They concluded that the perception of glossiness is a direct response to local visual
stimulation rather than an inference based on stored memories. It appears that the
human visual system determines values of glossiness and direction of illumination
with varying accuracy, but in any event concurrently in the logical and perhaps
temporal sense, with its determination of surface shape.

Mingolla and Todd [64] reported other findings of relevance to modeling of shape
perception. Using a procedure for fitting ellipsoid shape and orientation parameters
to subject errors, they reconstructed the perceived shapes and orientations of
ellipsoids for all subjects. In virtually every case, the orientations of the axes of the
recovered ellipsoids were more aligned with the axes of the display screen and the
line of sight than were the computed axes for the displayed ellipsoids. That is,
subjects experienced more symmetrical figures than were shown according the
computer graphics shading model. Thus global, configurational processes were
clearly at work.

5. BOUNDARY CONTOURS AND FEATURE CONTOURS

The basic concepts of our theory are described at length in Cohen and Grossberg
[15,16], Grossberg [34, 35], and Grossberg and Mingolla [36, 37]. This and the next
two sections provide a brief overview of the theory, highlighting those concepts
relevant to our analysis of surface perception.

Human observers cannot distinguish those parts of a percept that are derived
directly from retinal stimulation from those parts that are occluded by retinal veins
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and the blind spot. Such a perceptual synthesis accomplishes two tasks: boundaries
induced by discontinuities in retinal stimulation have to be matched and completed
over the obstructions, and the relevant featural quality (brightness or color) must be
filled in. By characterizing the different processing rules that are obeyed, we have
argued that boundary completion and featural filling-in are mechanistically different
processes. ,

While a great many perceptual phenomena can be used to argue for the two
processes, we have highlighted three. The Land [56] color and brightness experi-
ments indicate that perceived color and brightness are based primarily on measure-
ments taken at scenic gradients, notably edges. Stabilized image experiments [54, 82]
have shown that when luminance or color edges are stabilized, perceived colors flow
throughout formerly bounded regions. Finally, reverse-contrast illusory figures [36,
66, 71] show that the boundary completion process (Fig. 2) is insensitive to the
direction of contrast (e.g., light-dark vs dark-light). Such data support rules which
distinguish between two systems (Fig. 3), which we have called the boundary
contour system (BC system) and the feature contour system (FC system).

The BC system is sensitive to the amount and orientation of scenic contrast, but
not to its direction of contrast. The FC system is sensitive to both the amount and
the direction of scenic contrast. In the BC system, boundary completion occurs
inward in an oriented fashion from pairs of inducing BC generators, as in Fig. 2. In
the FC system, featural filling-in occurs outward in an unoriented fashion from
individual inducing FC generators. FC filling-in signals spread until they hit a
boundary induced within the FC system or are attenuated by their own spatial
spread. This filling-in reaction is described by a spatial diffusion process. It
performs spatial averaging of activation whose spatial bandwidth is dynamically
controlled by the strength and density of boundary signals from the BC system.

Fi1G. 2. An illusory square is induced by two black and two white figures on a gray background.
Tllusory contours can thus join edges with opposite directions of contrast. (This effect may be weakened
by photographic reproduction processes. Reprinted by permission from Grossberg and Mingolla [36])
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Fi1G. 3. A macrocircuit of processing stages: Monocular preprocessed signals (MP) are sent indepen-
dently to both the boundary contour system (BCS) and the feature contour system (FCS). The BCS
pre-attentively generates coherent boundary structures from these MP signals. These structures send
outputs to both the FCS and the object recognition system (ORS). The ORS, in turn, rapidly sends
top-down learned template signals to the BCS. These template signals can modify the pre-attentively
completed boundary structures using learned ‘information. The BCS passes these modifications along to
the FCS. The signals from the BCS organize the FCS into perceptual regions wherein filling-in of visible
brightnesses and colors can occur. This filling-in process is activated by signals from the MP stage.

6. HIERARCHICAL RESOLUTION OF UNCERTAINTY:
ORIENTED CONTRAST DETECTORS

To date, our characterization of the BC and FC systems has primarily been based
upon their reactions to images built up from configurations of step-function
luminance edges. Even in such sharply defined image environments, fundamental
measurement uncertainties exist that require compensatory processing at later
processing stages. From the very earliest stages of BC system processing, image
contrasts are grouped and regrouped in order to generate BC configurations of ever
greater global coherence and structural invariance.

For example, even the oriented masks at the earliest stage of BC system
processing regroup image contrasts (Fig. 4). Such masks are oriented local contrast
detectors, rather than edge detectors. This property enables them to fire in response
to a wide variety of spatially nonuniform image contrasts that do not contain edges,
as well as in response to edges. In particular, such oriented masks can respond to
spatially nonuniform densities of unoriented textural elements, such as dots. They
can also respond to spatially nonuniform densities of surface gradients. Thus by
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F1G. 4. Oriented masks respond to amount of luminance contrast over their elongated axis of
symmetry, regardless of whether image contrasts are generated by (a) luminance step functions, (b)
differences in textural distribution, or (¢) smooth luminance gradients (indicated by the spacings of the

lines).
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F1G. 5. (a) An orientation field: Lengths and orientations of lines encode the relative sizes of the
activations and orientations of the input masks at the corresponding positions. The input pattern, which
is a vertical line end as seen by the receptive fields, corresponds to the shaded area. Each mask has total
exterior dimensions of 16 X 8 units, with a unit length being the distance between two adjacent lattice
positions. (b) Responses of a network with two stages of short-range competition to the orientation field
of Fig. Sa: A process called end cutting generates horizontal activations at line end locations that receive
small and orientationally ambiguous input activations.
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sacrificing a certain amount of spatial resolution in order to detect oriented local
contrasts, these masks achieve a general detection characteristic which works equally
well in response to boundaries, textures, and surfaces.

The fact that these receptive fields are oriented greatly reduces the number of
possible groupings into which their target cells can enter. On the other hand, in
order to detect oriented local contrasts, these receptive fields must be elongated
along their preferred axis of symmetry. Then the cells can preferentially detect
differences of average contrast across this axis of symmetry, yet can remain silent in
response to differences of average contrast that are perpendicular to the axis of
symmetry. Such receptive field elongation creates even greater positional uncertainty
about the exact locations within the receptive field of the image contrasts which fire
the cell. This positional uncertainty becomes acute during the processing of image
line ends and corners. Figure 5a illustrates the breakdown of oriented receptive field
sensitivity at a line end. In summary, there exists an uncertainty principle which
says: Orientational “certainty” implies positional “uncertainty” at line ends and
corners.

We have shown how two subsequent stages of spatially short-range competition
can compensate for this breakdown through what we have called an end cutting
process (Fig. 5b).

7. THE OC FILTER AND THE SHORT-RANGE COMPETITIVE STAGES

The processing stages that are hypothesized to generate end cuts are summarized
in Fig. 6. First, oriented receptive fields of like position and orientation, but
opposite direction-of-contrast, cooperate at the next processing stage to activate
cells whose receptive fields are sensitive to the same position and orientation as
themselves, but are insensitive to direction-of-contrast. These target cells maintain
their sensitivity to amount of oriented contrast, but not to the direction of this
oriented contrast. Such model cells, which play the role of complex cells in Area 17
of the visual cortex, pool inputs from receptive fields with opposite directions-of-
contrast in order to generate boundary detectors which can detect broadest possible
range of luminance or chromatic contrasts [35, 75]. These two successive stages of
oriented contrast-sensitive cells are called the OC filter [37].

The output from the OC filter successively activates two types of short-range
competitive interaction whose net effect is to generate end cuts. First, a cell of
prescribed orientation excites like-oriented cells corresponding to its location and
inhibits like-oriented cells corresponding to nearby locations at the next processing
stage. In other words, an on-center off-surround organization of like-oriented cell
interactions exists around each perceptual location. The outputs from this competi-
tive mechanism interact with the second competitive mechanism. Here, cells com-
pete that represent different orientations, notably perpendicular orientations, at the
same perceptual location. This competition defines a push—pull opponent process. If
a given orientation is excited, then its perpendicular orientation is inhibited. If a
given orientation is inhibited, then its perpendicular orientation is excited via
disinhibition.

These competitive rules generate end cuts as follows. The strong vertical activa-
tions along the edges of a scenic line, as in Fig. 5a, inhibit the weak vertical
activations near the line end. These inhibited vertical activations, in turn, disinhibit
horizontal activations near the line end, as in Fig. 5b. Thus the positional uncer-
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Fi1c. 6. Early stages of boundary contour processing: At each position cells exist with elongated
receptive fields of various sizes which are sensitive to orientation, amount-of-contrast, and direction-
of-contrast. Pairs of such cells sensitive to like orientation but opposite directions-of-contrast (lower
dashed box) input to cells that are sensitive to orientation and amount-of-contrast but not to direction-
of-contrast (white ellipses). These cells, in turn, excite like-oriented cells corresponding to the same
position and inhibit like-oriented cells corresponding to nearby positions at the first competitive stage
(upper dashed boxes). At this stage, cells corresponding to the same position but different orientations
inhibit each other via a push-pull competitive interaction.

tainty at line ends that is caused by orientational tuning is eliminated by the
interaction of two short-range competitive mechanisms.

8. LONG-RANGE COOPERATION: BOUNDARY COMPLETION

The outputs from the competition input to a spatially long-range cooperative
process, called the boundary completion process. This cooperative process helps to
build up sharp coherent global boundaries from noisy local boundary fragments. In
the first stage of this boundary completion process; outputs from the second
competitive stage corresponding to (approximately) like-oriented cells that are
(approximately) aligned across perceptual space cooperate to begin the synthesis of
an intervening boundary. For example, such a boundary completion process can
span the retinal blind spot and the faded stabilized images of retinal veins. The
same boundary completion process completes the sides of the Kanizsa square in Fig.
2. To understand further details about this boundary completion process, it is
important to understand that the boundary completion process overcome a different
type of informational uncertainty than that depicted in Fig. 5.

This type of uncertainty is clarified by considering Figs. 7. Figure 7a shows that
the tendency to form boundaries that are perpendicular to line ends is a strong one;
the illusory boundary forms sharp corners to keep the boundary perpendicular to
the inducing line ends. Figure 7b shows, however, that the boundary completion
process can generate a boundary that is not perpendicular to the inducing line ends
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F1G. 7. (a) An illusory square generated by lines with orientations that are perpendicular to the
illusory contour. (b) An illusory square can also be generated by lines with orientations that are not
exactly perpendicular to the illusory contour.

in certain circumstances. A comparison of Figs. 7a and b indicates the nature of the
other problem of uncertain measurement. Figures 7a and b show that boundary
completion can occur within a band of orientations. These orientations include the
orientations that are perpendicular to their inducing line ends (Fig. 7a), as well as
nearby orientations that are not perpendicular to their inducing line ends (Fig. 7b).
Figure 5b illustrates the existence of such a band of end cuts at the end of a scenic
line. Such a band of possible orientations increases the probability that spatially
separated boundary fragments can group cooperatively into a global boundary. If
only a single orientation at each spatial location were activated, then the probability
that these orientations could precisely line up across perceptual space to initiate
boundary completion would be small. Bands of orientations facilitate the initiation
of the perceptual grouping process that controls boundary completion.

This orientational uncertainty can, however, cause a serious loss of acuity in the
absence of compensatory processes. If all orientations in each band could cooperate
with all approximately aligned orientations in nearby bands, then a fuzzy band of
completed boundaries, rather than a single sharp boundary, could be generated. The
existence of such fuzzy boundaries would severely impair visual acuity. Figure 7
illustrates that only a single sharp boundary becomes visible despite the existence of
orientational bands. How does the nervous system resolve the uncertainty produced
by the existence of orientational bands? How is a single global boundary chosen
from among the many possible boundaries that fall within the local orientational
bandwidths?
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Our answer to these questions suggests a basic reason why the cooperative stage
of BC system processing sends feedback signals to the second competitive stage of
BC system processing. This cooperative feedback provides a particular grouping of
orientations with competitive advantage over other possible groupings.

9. BOUNDARY CHOICES BY A COOPERATIVE-COMPETITIVE FEEDBACK
NETWORK: THE CC LOOP

We assume that pairs of similarly oriented and spatially aligned cells are needed
to activate the cooperative cells that subserve boundary completion (Fig. 8a). These
cells, in turn, feed back excitatory signals to like-oriented cells at the stage where
competition occurs between orientations at each position. In Fig. 8a, for example,
feedback signals are triggered in pathway 2 if sufficient activation simultaneously
occurs in both of the feedforward pathways labelled 1. Then both pathways labelled
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Fic. 8. An overview of cooperative feedback: (a) The pair of pathways 1 activate positive boundary
completion feedback along pathway 2. Then pathways such as 3 activate positive feedback along
pathways such as 4. Rapid completion of a sharp boundary between the locations of pathways 1 can
thereby be generated by a spatially discontinuous bisection process. (b) Circuit diagram of the boundary
contour system: Inputs activate oriented masks which cooperate at each position and orientation before
feeding into an on-center off-surround interaction. This interaction excites like-orientations at the same
position and inhibits like-orientations at nearby positions. The affected cells are on-cells within a dipole
field. On-cells at a fixed position compete among orientations. On-cells also inhibit off-cells which
represent the same position and orientation. Off-cells at each position, in turn, compete among
orientations. Both on-cells and off-cells are tonically active. Net excitation of an on-cell excites a similarly
oriented cooperative receptive field at a location corresponding to that of the on-cell. Net excitation of an
off-cell inhibits a similarly oriented cooperative receptive field of a bipole cell at a location corresponding
to that of the off-cell. Thus, bottom-up excitation of a vertical on-cell, by inhibiting the horizontal on-cell
at that position, disinhibits the horizontal off-cell at that position, which in turn inhibits (almost)
horizontally oriented cooperative receptive fields that include its position. Sufficiently strong net positive
activation of both receptive fields of a cooperative cell enables it to generate feedback via an on-center
off-surround interaction among like-oriented cells. On-cells which receive the most favorable combination
of bottom-up signals and top-down signals generate the emergent perceptual grouping.
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3 can trigger feedback in pathway 4. The feedback cycle, once initiated, can rapidly
complete an oriented boundary between pairs of inducing scenic contrasts via a
spatially discontinuous bisection process.

This boundary completion process realizes a type of real-time statistical decision
theory. Each cooperative cell is sensitive to the position, orientation, density, and
size of the inputs that it receives from the second competitive processing stage. Each
cooperative cell performs like a type of statistical “and” gate, since it can fire
feedback signals to the second competitive processing stage only if both of its
branches are sufficiently activated. We call such cells bipole cells. The entire
cooperative—competitive feedback network is called a CC loop. The CC loop can
choose a sharp boundary from a band of possible boundaries for the following
reason [36, 37].

As in Fig. 5b, certain orientations at a given position are more strongly activated
than other orientations. Suppose that the cells which encode a particular orientation
at two or more approximately aligned positions can more strongly activate their
target cooperative cells than can the cells which encode other orientations. Then
competitive cells of similar orientation at intervening positions will receive more
intense excitatory feedback from their cooperative cells. This excitatory feedback
enhances the activation of these cells relative to the activation of cells which encode
other orientations. This advantage enables the favored orientation to suppress
alternative orientations due to the orientational competition (Fig. 6). Cooperative
feedback hereby provides the network with contrast-enhancing properties that
enable it to choose a single sharp boundary from among a band of possible
boundaries by using the short-range competitive interactions. Figure 8b joins
together the OC filter with the CC loop to describe the BC system circuit which
Grossberg and Mingolla [37, 38] used to simulate properties of perceptual grouping.

The ability of the CC loop to group fuzzy local orientational bands into sharp
global boundaries illustrates how the imposition of simple perceptual constraints
can lead to unsuspected mechanistic conclusions. The need to generate end cuts
(Fig. 5) led to the hypothesis that orientational competition occurs corresponding to
each perceptual location (Fig. 6) at a prescribed stage of boundary processing. Once
orientational competition is available, the cooperative process which it feeds can use
the same orientational competition to also make sharp boundary choices and to
choose coherent textural segmentations. The same competitive laws are also used to
define disparity-sensitive binocular boundaries, to suppress binocularly generated
double images, and to generate properties of hyperacuity [35]. These competitive
stages, which are new to our theory, have proved to be a critical ingredient for
explaining a wide range of perceptual and neural data about vision.

The receptive fields of cooperative cells are taken to have the bipolar shape
indicated in Fig. 9a. The spatial averaging within each bipole receptive field
regroups inputs from the competitive layers using different rules than those whereby
the oriented receptive fields in Fig. 4 regroup their inputs. Both types of regrouping
enable their respective cells to process a large set of scenic images, but both types of
regrouping also generate potential sources of uncertainty which are corrected by
interactions with competitive mechanisms. In particular, a horizontally .oriented
branch of a bipole receptive field is excited by (approximately) horizontally tuned
competitive cells, but is inhibited by (approximately) vertically tuned competitive
cells within its receptive field (Fig. 8b). A bipole receptive field emits a net
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Fi1G. 9. Bipole cells: (a) The receptive fields of the bipole cells used in our simulations have colinear
branches. (b) Bipole cell receptive fields may have noncolinear branches. Such cells would be sensitive to
corners, as well as to the angle subtended at these corners.

excitatory signal to its cell body only if its net input from all oriented competitive
cells is positive. A bipole cell body can fire positive feedback signals towards the
competitive level only if it receives large enough signals from both of its receptive
fields. Thus a cooperative bipole cell can fire only if both of its receptive fields
detect statistically significant trends in approximately colinear oriented contrasts.

Due to this colinearity constraint, bipole cells generate straight emergent
boundaries in response to some displays, such as the Kanizsa figure (Fig. 2). On the
other hand, each receptive field of a bipole cell performs a statistical average which
enables it to fire in response to oriented contrasts which are not exactly colinear.
Thus bipole cells can also fire in response to image curves as well as to spatially
curved statistical contrasts that are generated by textures or surface gradients.

Once the concept of a bipole cell is defined, its possible role in detecting sharp
corners is also raised. A bipole cell whose individual receptive fields are not colinear
(Fig. 9b) would respond selectively to image corners within a range of prescribed
angles. The competition between orientations within each bipole receptive field
prevents both receptive fields from simultaneously inputting to their bipole cell
body except when a corner of prescribed orientation is present. The possible role of
noncolinear bipole receptive fields in boundary completion and visual pattern
recognition will not be further analyzed here. It is mentioned primarily to emphasize
that cooperative bipole cells can selectively respond to statistically non-colinear
image contrast distributions.

10. FROM ANALOG CONTRASTS TO DIGITAL STRUCTURES

The CC loop, as a whole, behaves like an on-line statistical decision machine in
response to its input patterns. It senses only those groupings of perceptual elements
that possess enough “statistical inertia” to drive its cooperative—competitive feed-
back exchanges towards a non-zero stable equilibrium configuration. After a
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F1G.10. A filling-in syncytium: Feature contour signals activate cell compartments that permit rapid
lateral diffusion of activity, or potential, across their compartment boundaries, except at those compart-
ment boundaries that receive boundary contour signals from the boundary contour system of Fig. 3. Thus
boundary contour signals create barriers to filling-in within the feature contour system.

boundary structure emerges from the cooperative—competitive feedback exchange, it
is stored in short-term memory by the feedback signals until it is actively reset by
the next perceptual cycle. While the boundary structure is active, it possesses
hysteretic and coherent properties due to the averaging properties of the receptive
fields, the persistent suppression of alternative groupings by the competition, the
persistent enhancement of the winning grouping by the cooperation, and the
self-sustaining activation by the feedback. Thus, whereas inputs to the CC loop
retain their “analog” sensitivity to amount-of-contrast in order to properly bias its
operation to favor statistically important image groupings, once the CC loop
responds to these inputs, it generates a more structural and “digital” representation
of the form within the image.

All the rules for boundary completion just described, as well as the formation of
the boundary webs to be described in Section 13, occur within the single box
labelled BCS in Fig. 3. Completed BC system signals are fed to the FC system, in
which the determination of perceived featural quality occurs through the spread, or
filling-in, of feature contour signals within the form-sensitive compartments, or
coordinate system, determined by boundary contour signals (Fig. 10). The cellular
network in which such filling-in occurs is called a syncytium. The importance of the
two system hypothesis for surface perception concerns the manner in which the
rules for BC system and FC system interactions clarify how we simultaneously
perceive a stable surface shape and labile surface qualities. In order to arrive at this
insight, we first need to provide more information about how the CC loop can
segment a scenic image.

11. TEXTURAL SEGMENTATION AND PREATTENTIVE GROUPING

Grossberg and Mingolla [37] describe how BC system and FC system properties,
notably properties of the CC loop, help to explain much of the most difficult data of
Beck and his colleagues on emergent features in textural segmentation and grouping
[2, 3, 5, 7, 8, 11]. In these phenomena, extremely rapid, pre-attentive groupings of
image data into highly context-sensitive emergent features promotes scene segmen-
tation, as exemplified in Fig. 11. The crucial control in displays such as Figs. 11b
and c is that overall image contrast is equated between the top and bottom regions,
so no simple contrast filtering alone can account for the segmentation.
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FiG. 11. Tllustrations of emergent segmentation: (a) The colinear linking of short line segments into
longer segments in response to one region of the image 1s an “emergent feature” that sustains perceptual
grouping. (b) Grouping can also occur in a direction perpendicular to local image contrasts, as happens
between the end cuts at the ends of the upright and inverted U’s in the bottom half of this figure. (c) The
emergent grouping in the lower hall of the figure is in diagonal directions, although the only local image
contrasts are horizontal and vertical U segments. (Reprinted with permission from Beck, Prazdny, and
Rosenfeld [11].)

Figure 12 displays some computer simulations illustrating the competence of the
BC system to perform the kinds of grouping operations needed to explain the Beck
data, as well as other data about textural grouping. Figure 12a depicts an array of
nine vertically oriented input clusters. We call each cluster a Line because it
represents a caricature of how a field of OC filter output cells respond to a vertical
line. Figure 12b displays the equilibrium activities of the cells at the second
competitive stage of the CC loop in response to these Lines. The length of an
oriented line at each position is proportional to the equilibrium activity of a cell
whose receptive field is centered at that position with that orientation. The input
pattern in Fig. 12a possesses a manifest vertical symmetry: Triples of vertical Lines
are colinear in the vertical direction, whereas they are spatially out-of-phase in the
horizontal direction. The boundary contour system senses this vertical symmetry,
and generates emergent vertical lines in Fig. 12b. The boundary contour system also
generates horizontal end cuts at the ends of each Line, which can trap the featural
contrasts of each Line within the FC system. Thus the segmentation simultaneously
supports a vertical macrostructure and a horizontal microstructure among the Lines.
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F1G. 12. Computer simulations of processes underlying textural grouping: The length of each line
segment is proportional to the activation of a network node responsive to one of twelve possible
orientations. Parts (a), (c), (e), and (g) display the activities of oriented cells which input to the CC loop.
Parts (b), (d), (f), and (h) display equilibrium activities of oriented cells at the second competitive stage
of the boundary contour system. A pairwise comparison of (a) with (b), (¢) with (d), and so on indicates
the major groupings sensed by the network.

In Fig. 12¢ the input Lines are moved so that triples of lines are colinear in the
vertical direction and their Line ends are lined up in the horizontal direction. Now
both vertical and horizontal groupings are generated in Fig. 12d. The segmentation
distinguishes between Line ends and the small horizontal inductions that bound the
sides of each Line. Only Line ends have enough statistical inertia to activate
boundary completion via the CC loop.

In Fig. 12e the input Lines are shifted so that they become non-colinear in a
vertical direction, but triples of their Line ends remain aligned. The vertical
symmetry of Fig. 12¢ is hereby broken. Consequently, in Fig. 12f the boundary
contour system groups the horizontal Line ends, but not the vertical Lines.

Figure 12h depicts the emergence of diagonal groupings where no diagonals exist
in the input pattern. Figure 12g is generated by bringing the three horizontal rows of
vertical Lines closer together until their ends lie within the spatial bandwidth of the
cooperative interaction. Figure 12h shows that the boundary contour system senses
diagonal groupings of the Lines. These diagonal groupings emerge on both micro-
scopic and macroscopic scales. Thus diagonally oriented receptive fields are activated
in the emergent boundaries, and these activations, as a whole, group into diagonal
bands.

Figure 12 illustrates our claim that the mechanisms of textural segmentation are
the same as those of boundary completion, whether of “real” or of “illusory”
boundaries. We further claim that precisely the same mechanisms underly the
generation of boundary webs for surface perception. Although the results of CC
loop equilibration in our analysis of textural segmentation were always discrete
boundary structures, the capacity for graded responses of units in the BC system
have always been present, as indicated in Fig. 4 and Section 6. Even in the Beck
displays of Fig. 11, the receptive fields of individual contrast sensitive cells can
overlap two or more of the U’s, resulting in gradations of activity at many
orientations besides the horizontal and vertical orientations of the segments of the
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U’s themselves. It is precisely the ability of the CC loop to swiftly choose among all
the possible groupings latent in these graded outputs from the OC filter that is its
chief virtue. The ability of the CC loop to rapidly converge onto one of a very large
number of possible stable configurations does not, however, imply that these
configurations must necessarily be activated by line-like image contrasts only. In
fact, without any change of equations or parameter values, the CC loop can generate
dense activations of oriented cell activity in response to smoothly varying image
luminance gradients.

Image processing and computer vision algorithms have for years been beset by
tradeoffs of purported virtues between region-based algorithms with derived
boundaries and edge-based algorithms with derived regions. In contrast, the BC
system can simultaneously sustain both “discrete” and “continuous” modes for a
single image. The BC system does not need external prompting about which style of
processing to adopt for each image region. It does not need a preprocessor which is
smart enough to segment regions containing boundaries, textures, and surfaces from
one another before specialized algorithms can process these distinct types of image
properties. Indeed, many natural images contain mixtures of boundaries, textures,
and surface elements in each region of perceptual space, and human observers can
benefit from, rather than be confused by, such combinations of image properties
[24, 77, 78]. The BC system is also equally at home with several types of image
information. Within the BC system, a boundary web can simultaneously encode
boundaries, discrete textural elements, and smooth shading into a single form-sensi-
tive network of boundary compartments.

12. RECOGNIZING FORM VS SEEING CONTRAST

How does a discrete boundary structure, no matter how form-sensitive, give rise
to a percept of a smooth surface? This possibility also depends upon the identifica-
tion of distinct BC and FC systems and upon an analysis of how interactions
between these systems give rise to conscious percepts within the FC system, but not
within the BC system. The key issue can be discerned through a consideration of
how “emergent features” can influence recognition without necessarily generating a
corresponding visible contrast.

For example, in the Beck textural segmentation displays of Fig. 11, local contrasts
define short line segment features in the image. If certain of the segments are
distributed in a regular manner, colinear groupings of these segments can become
“emergent features,” capable of setting one textural region apart from another. In
such displays the colinear arrangement making up emergent features need not be in
line with the directions of the local contrasts. They can, for example, be generated
by colinearly arranged end cuts that are perpendicular to image contrasts (Fig. 11b).

A remarkable aspect of displays such as Fig. 11 is that we see a series of short
lines despite the control of perceptual grouping by the long emergent features. We
claim that within the BC system a boundary structure emerges corresponding to the
long lines of Fig. 11, as in the computer simulation summarized in Fig. 12b. This
structure includes long vertical structures as well as short horizontal components
near the endpoints of the short scenic lines. Within the FC system (Fig. 10) these
horizontal signals prevent featural filling-in of dark and light contrasts from
crossing the boundaries corresponding to the short lines. On the other hand, the
output from the BCS to an object recognition system (Fig. 3) reads out a long line
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structure without regard to which subsets of this structure will be seen as dark or
light.

Unless a connected boundary can be synthesized by the BC system, it cannot
separate the activity of the FC system into domains capable of supporting different
filled-in color or brightness signals. Thus if a later event can inhibit the cooperation
before a connected boundary structure can emerge, no percept may be visible. This
insight clarifies how later events can block the percept of earlier events during
metacontrast {13, 21, 70]. Even if a connected boundary structure does emerge,
boundary signals are always invisible within the BC system; visible percepts emerge
within the FC system. Thus the contrast-sensitivity of cells within the BC system
does not imply visibility of the final percept. Only the generation within the FC
system of different filled-in featural contrasts on the opposite sides of a completed
boundary (Fig. 10) can lead to a visible perceptual difference.Thus if a boundary
separates two FC compartments with equal, or very similar, filled-in contrasts, the
boundary may itself be invisible, even though it is necessary to support the contrasts
that are perceived.

Thus a spatially dense set of boundary contours can separate the FC system into
a set of compartments whose contiguous filled-in contrasts are so similar that the
compartmental boundaries are invisible. In response to a continuous image gradient,
the spatial density of boundary contour and feature contour signals covary in such a
way that the filled-in contrasts of contiguous FC system compartments are very
similar. In particular, a large flat region of an image may generate a single large
compartment whose filled-in contrast is also approximately flat over the entire
region. An image region in which a steep reflectance gradient exists may generate
very small compartments whose individual filled-in contrasts are different, but due
to the small size of the compartments, are very similar to the filled-in contrasts of
contiguous compartments. Thus the fact that the BC system generates a set of
compartments which is form-sensitive enables it to support a filled-in FC system
percept, many of whose boundaries are invisible in response to continuously shaded
image.

Further argument is needed to explain how visible qualities such as color and
brightness seem to adhere to the structure of recognizable 3D form, giving substan-
tial, continuous body to the skeleton of boundary structures. To achieve this insight,
we will indicate how featural filling-in can be differentially controlled at several
spatial scales in such a way as to give a coherent representation of form-and-color-
in-depth.

13. COMPUTER SIMULATION: AN EXAMPLE OF A BOUNDARY WEB

Before introducing multiple spatial scales, we illustrate how image luminance
gradients can give rise to an invisible boundary web in a BC system with only a
single spatial scale. By a boundary web, we mean a spatially fine mesh of boundary
contour activation within the CC loop (Sect. 9). This boundary structure is induced
by the oriented receptive fields of the OC filter (Sect. 7). Accordingly, Fig. 13 shows
a shaded image of a shiny ellipsoid under somewhat oblique illumination from a
point source. Figure 14 shows the equilibrium pattern of activity that is induced
within the OC filter by the ellipsoidal image in Fig. 13. All of the oriented masks, or
receptive fields, are of the size indicated in Fig. 14. The spatial configuration of all
such mask reactions is called an orientation field, or a mask field.
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F1G. 13. A computer generated image depicts a shiny ellipsoid under oblique illumination against a
gray background.

Boundary webs occur as a result of rapid CC loop ‘equilibration in response to
inputs from a mask field of the OC filter. Figures 15-18 show the equilibrium
patterns of activity at four subsequent processing stages of the CC loop. Note that
according to our theory, none of the CC loop activity patterns correspond as such to
visible contrasts. Instead, the boundary webs merely describe those regions within
which contrast can and cannot spread after BC system signals are fed into the FC
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Fic. 14.  An orientation field, or mask field, is shown in this lattice of oriented line segments. The
length of each segment is proportional to the equilibrium response of an oriented contrast-sensitive mask
of the size indicated in the lower right corner. The orientation of each line segment is that of the mask
that it codes. This mask field was generated using a Gaussian blurred version of Fig. 13 as input. See
Appendix, part A, for a detailed description of mask responses.
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F1G. 15. Figures 15 through 18 depict the equilibrium activities of four subsequent processing stages
in response to input from the mask field of Fig. 14. Line segment lengths and orientations code activities
of the corresponding network nodes as in Fig. 14. This figure displays activities at the first competitive
stage. See Appendix, part B, for a detailed description of this stage.
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F1G. 16. Equilibrium activities of the second competitive stage in response to the mask field of Fig,
14. See Appendix, part C, for a detailed description of this stage.
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Fi1G. 17. Equilibrium activities of the cooperative stage in response to the mask field of Fig. 14. See
Appendix, parts D and E, for a detailed description of this stage.
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Fi1G. 18. Equilibrium activities of the feedback stage from the cooperative stage to the first competi-
tive state in response to the mask field in Fig. 14. See appendix, part F, for a detailed description of this

stage.
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system. The novel ingredient in the boundary web simulations of Figs. 15-18,
relative to the textural segmentation simulations of Fig. 12, is that the distributions
of activity over nodes of the boundary webs have dense regions as well as line-like
structures, while the textural segmentation displays generate only line-like struc-
tures. These completed boundary structures, whether discrete or continuous, map
topographically into the FC system. Consequently, within the FC system, the
boundary structures of the textural simulations would trap brightness discretely on
either side of thin boundary contours, whereas the dense regions of boundary webs
would trap brightness in local areas over large regions. Note that the signals of the
FC system can have different strengths, accounting for the perception of different
degrees of brightness even within regions containing essentially identical levels of
BC system activation.

14. MULTIPLE SPATIAL SCALES: DISTINGUISHING SIZE FROM DEPTH

Experiments demonstrating the existence of simultaneous binocular fusion and
rivalry at different spatial scales [48,55] underscore the subtlety of issues about
spatial scale that are addressed by our theory. Many of these issues pertain to
binocular matching of boundaries, and in particular to the perceptual suppression of
binocularly mismatched boundaries. While the main goal of this paper does not
include discussion of stereopsis, many of the theory’s concepts about monocular
perception of curved surfaces in depth can best be understood in juxtaposition with
related ideas about binocular viewing. To motivate the use of multiple spatial scales
in our theory, consider the following gedanken experiment [34, 35]. This gedanken
experiment suggests the need for multiple spatial scales, such that only those scales
capable of supporting a match can be allowed to generate a visible percept. This
experiment can also be phrased in terms of the fixation process.

As a rigid object approaches an observer, the binocular disparities between its
nonfixated features increase proportionally. In order to maintain the fixation
process and to achieve a percept of object permanence, mechanisms capable of
correlating these progressively larger disparities are needed. Other things being
equal, the largest disparities will lie at the most peripheral points on the retina. The
cortical magnification factor, whereby cortical regions of fixed size process larger
retinal regions as a function of retinal eccentricity, is one mechanism whereby this is
accomplished [42, 73].

It is not sufficient, however, for a single spatial scale to exist at each retinal
position, such that scale size increases with retinal eccentricity. This is because
objects of different size can approach an observer. The observer can confuse object
size with object depth unless multiple scales exist corresponding to each retinal
position. In particular, objects of different sizes can generate the same monocular
retinal image if they lie at different distances from an observer, with larger objects
further away. If these objects possess spatially uniform interiors, then the boundary
disparities of their paired retinal images carry information about their depth.
Because all the objects are at different depths, they all generate different disparities.
Within the range of accurate depth perception, all of these disparities need to be
computable with respect to the fixed retinal positions in one eye that are excited by
all the objects’ boundaries. Multiple spatial scales corresponding to each retinal
position can carry out these multiple disparity computations.
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This gedanken experiment suggests the functional utility of suppressing percepts
corresponding to binocularly mismatched boundaries. Each monocular image can
excite more spatial scales corresponding to each retinal position than can binocu-
larly match. Only the binocularly matched boundaries provide correct information
concerning form-in-depth. Consequently, the mismatched boundaries must be pre-
vented from generating a conscious percept.

The gedanken experiment also clarifies the utility of allowing certain lower spatial
frequencies to match and be fused, whereas mismatched higher spatial frequencies
are suppressed or rivalrous, when two images are binocularly viewed at a fixed
disparity. As an object approaches an observer, the sizes of its monocular retinal
images and their binocular disparities increase together. Other things being equal,
larger spatial scales should therefore be able to match pairs of images with larger
disparities.

15. MONOCULAR SELF-MATCHES: GRADIENT DEPTH AND MOTION DEPTH

In order to clarify the relationship of binocular perception to multiple scale -
monocular perception, it is useful to recall that when an observer closes one eye,
vivid perception is still possible. Moreover, monocular percepts can retain a signifi-
cant impression of depth. Thus a binocular match within the boundary contour
system is not necessary to generate a conscious percept, let alone a depthful percept.
What is needed is the absence of a binocular mismatch. Because the visual world
can vividly be perceived through a single eye, certain boundary contour system cells
that project to the cell syncytium must be capable of being monocularly activated.
We call such activation a monocular self-match to distinguish it from a binocular
match [34].

In the absence of binocular mismatches, more monocular self-matches can occur
than under binocular viewing conditions. This property helps to explain why, when
viewed under reduction conditions (one eye looks through a small aperture in dim
light), depth percepts can be ambiguous [29-31]. On the other hand, the existence of
more monocular self-matches raises the question of why depth is ever perceived
under monocular viewing conditions? One factor is the correlation between scale
size and disparity that was mentioned in Section 14. Larger scales can, other things
being equal, preferentially respond to larger image elements. Under binocular
viewing conditions, larger images are often closer and generate larger disparities.
Due to the preferential response of larger scales to large image elements, a
monocularly viewed image which contains spatial gradients (Fig. 13) can be parsed
among multiple spatial scales in a manner similar to its parsing during binocular
viewing conditions. Gibson [22] is notable among classical perceptual theorists for
his many illustrations of how spatial gradients can influence depth perception,
whether the spatial gradients are continuous as in Fig. 13 or discrete as in Fig. 19.

A monocularly viewed moving object can activate a succession of monocular
self-matches which are capable of matching or mismatching previous self-matches
before they can decay. Temporally staggered pairs of monocular self-matches can
hereby generate “binocular” matches or mismatches across the multiple spatial
scales, thereby strengthening the percept of depth.

The present theory suggests, more generally, that any visual operations which
cause equivalent activations across the multiple scale boundary contour computa-
tions that input to the cell syncytium will generate equivalent depth percepts,
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F1G6.19. The corridor illusion: The phenomenally nearer cylinder appears smaller than the phenome-
nally further cylinder due to the influence of the convergent gradient of lines. (Reprinted with permission
from Kaufman [48].)

whether they be due to monocular spatial gradients, monocular motion cues,
binocular disparities, or top-down “cognitive contours.” This tenet of the theory is
of such importance that we call it the principle of scale equivalence [34]. The
principle of scale equivalence clarifies why conclusions about multiple scale boundary
processing that are derived from an analysis of binocular perception can be used to
analyze monocular processing of a surface image.

16. CONTINUOUS MODULATION OF MULTIPLE SCALE ACTIVITY

As an observer moves within a scene, the scenic forms and their depths seem to
change continuously. By contrast, at most a finite number of spatial scales can exist
in the brain. In many contemporary models of binocular depth perception, depth
jumps discretely between a few values as an observer moves about. Moreover, these
binocular models do not explain how the computation of disparity values leads to a
percept of form-and-color-in-depth. Grossberg [34] summarizes and analyzes a
number of these models.

The present theory suggests that multiple spatial scales exist within the boundary
contour system and that these scales can be simultaneously activated by a monocu-
larly or binocularly viewed scene, albeit by different amounts corresponding to
different scenic positions. As an observer moves about a scene, the relative and
absolute degree to which each of these multiple boundary scales is activated
changes. These changes in the energy balance across multiple boundary scales alters
the ability of the corresponding feature contour signals to génerate a visible percept.
We suggest that multiple feature contour syncytia exist corresponding to the
multiple boundary contour system spatial scales, each syncytium capable of contrib-
uting to a visible percept, but to different degrees (Fig. 10). In the limit wherein no
boundary contour signal within a given spatial scale excites the corresponding
feature contour syncytium, that feature contour syncytium cannot contribute to a
visible percept, as approximately occurs during binocular rivalry.

This type of multiple scale concept supports the strong kernel of truth that exists
within the Fourier theory of spatial perception [32, 33], but also replaces the Fourier
theory by one with a greater explanatory range.



142 GROSSBERG AND MINGOLLA

17. SURFACE CURVATURE AND MULTIPLE SYNCYTIAL SCALES:
FILLING-IN AMBIGUOUS REGIONS

Another basic role for multiple scale featural filling-in can be appreciated from
the following gedanken experiment. When both eyes focus on a single-point within a
patterned planar surface viewed in depth, the fixation point is a point of zero
disparity. Points increasingly far from the fixation point have increasingly large
binocular disparities. Why does such a plane not recede towards optical infinity at
the fixation point and curve towards the observer at the periphery of the visual field?
Why does the plane not become distorted in a new way every time our eyes fixate on
a different point within its surface? If the relative sizes of boundary disparities
contribute to relative depth percepts, then how do we ever perceive planar surfaces?
How do we even perceive rigid surfaces?

The severity of this problem is further indicated by the fact that perceived depth
can, under certain circumstances, depend upon the choice of fixation point. Starting
at one point in a Julesz stereogram can result in a gradual loss of depth [48]. Also, in
a stereogram composed of three vertical lines to the left eye and just the two
outmost lines to the right eye, the depth of the middle line depends upon whether
the left line or the right line is fixated [48]. If depth can depend on the fixation point
when discrete lines are viewed, then why do not observers perceive planar surfaces
as being highly curved? What is the crucial difference between the way we perceive
the depths of curves and of surfaces?

These examples raise the fundamental issue of how an observer knows that a
planar surface is being viewed, not just whether the observer can estimate the depths
of some parts of the surface. Moreover, when a homogeneous planar surface is being
viewed, it is not possible to compute any unambiguous disparity computation within
‘the interior of the plane. Determining that such a surface is planar thus cannot just
be a matter of showing that the same disparity can be computed at all interior
points of the surface. Somehow locations where unambiguous depth computations
can be performed can generate a filling-in reaction which enables nearby regions to -
inherit these depth values. Such a filling-in reaction is not, moreover, just a matter
of filling-in disparity values, as a number of authors have proposed [17, 44, 59, 74],
because the featural qualities, such as brightness and color, of the percept inherit
these depth values.

A similar point is made through the study of stereograms. Julesz [44, p. 336] has,
for example, constructed a stereogram in which a “figure” and its “ground’ are both
indicated in the left image of the stereogram by a 5% density of randomly placed
black dots on a white background. The “figure” is indicated in the right image of
the stereogram by shifting the positions of the black dots that fall within the figure
relative to the positions of the corresponding black dots in the left image, while
placing the dots indicating the “ground” in the same positions as those in the left
image. When this pair of images is stereoscopically viewed, the whole figure,
including the entire 95% of white image between its black dots, seems to hover at a
different depth than the ground. How does the white region of the “figure” inherit
the depth quality arising from the disparities of its meagerly distributed black dots,
and the white region of the “ground” inherit the distinct depth quality due to its
black dots? What mechanism organizes the locally ambiguous white patches that
dominate 95% of the pictorial area into two unambiguous white regions hovering at
distinct perceived depths?
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The present theory suggests that when a particular boundary contour scale is
strongly activated by a given scene, this boundary contour activation can trigger a
strong filling-in reaction within the corresponding syncytium of the feature contour
system. By definition, featural filling-in within a syncytium is restricted to the spatial
scale in which this syncytium resides. We suggest that a surface percept will appear
flat if it is generated by a pair of bounding boundary contours within a single spatial
scale, because featural filling-in is restricted to the single syncytial scale that these
boundary contours activate. We trace the perceived curvature of a nonplanar
surface to a multiple scale boundary contour reaction which causes the distribution
of filled-in featural activity to be “curved” among several syncytial scales as
perceptual space is traversed.

This explanation of perceived surface flatness and curvature suggests that feature
contour signals corresponding to a fixed retinal position send inputs to the filling-in
syncytia of all the multiple spatial scales. Only those scales that also receive
boundary contour signals can, however, convert these feature contour signals into
visible percepts. One of the fundamental tasks of our binocular theory is to explain
how such an interaction between boundary contour signals and feature contour
signals can convert some, but not all, of the feature contour signals into filled-in
percepts. Grossberg [35] discusses model processes whereby this can be accom-
plished in greater detail. Although such an analysis goes beyond the scope of this
article, a number of general conclusions can be drawn.

18. THE 2;D SKETCH DOES NOT EXIST

For example, the above considerations suggest that the hypothesis that a 2iD
sketch exists, distinct from a full 3D representation, is invalid [58]. Such a 21D
sketch is an “orientation and depth map of the visible surfaces around a viewer”
[60, p. 306]. In contrast, the above considerations suggest that “ambiguous” regions
of a scene, whose positions do not possess their own boundary contours, derive a
relative depth value from the energy balance of their filled-in featural activities
across all the spatial scales at that position. In other words, a depth map is
completed by the featural filling-in process which generates a full 3D representation
of form-and-color-in-depth.

19. INTERACTIONS BETWEEN BRIGHTNESS AND DEPTH INFORMATION

This conclusion implies, in particular, that brightness and depth information can
mutually influence one another. Grossberg [34] reviews classical data that support
this assertion. Three types of data are summarized in this section for illustrative
purposes.

Kaufman, Bacon, and Barroso [49] studied stereograms built up from the two
monocular pictures shown in Fig. 20a. When these pictures are fused through a
stereogram, the two lines are perceived at a different depths due to the disparity
between the two monocular views. If the stereogram is changed so that the left eye
sees the same picture as before, whereas the right eye sees the two pictures
superimposed (Fig. 20b), then depth is still perceived. If both eyes view the same
superimposed pictures, then no depth is seen. However, if one eye sees the
pictures superimposed with equal luminance, whereas the other eye sees the two
pictures superimposed each with different luminance, then depth is again seen. In
this last example, there is no disparity between the two figures, although there is a
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PICTURE 1 PICTURE 2
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F1G6. 20. Combinations of the two pictures in (a), such as in (b), yield a depth percept when each
picture is viewed through a separate eye. Depth can be seen even if the two pictures are combined to
yield brightness differences but no disparity differences. (Reprinted with permission from Kaufman [48].)

luminance difference. Thus a luminance difference per se can induce a depth
percept.

Schwartz and Sperling [72] and Dosher, Sperling, and Wurst [18] have further
analyzed influences of luminance differences upon both perceived depth and per-
ceived rigidity of form. In their studies they consider proximity-luminance covariance
(PLC) as a factor influencing percepts of depth and form. To manipulate PLC, the.
luminance of each line in a 2D projection of an object was made to depend on the
3D depth of that line. A larger luminance was used to signal a closer object
projection. PLC’s that confirm and that conflict with the 3D depth were analyzed.
The interaction of PLC with stereo information was also analyzed. Both studies
concluded that PLC is a powerful factor in determining a depth percept and that,
moreover, stereo and PLC information combine in a way that can be summarized
by a weighted linear model.

Egusa [19] has studied the effects of luminance differences on perceived depth by
constructing stimuli consisting of two hemifields of different colors, and asking the
subject to state which appeared nearer and to judge the perceived depth between
them. When both hemifields were achromatic, the perceived depth increased with
increasing brightness difference. With chromatic—chromatic combinations, the per-
ceived depth depended upon the hue combination. In terms of decreasing frequency
of “nearer” judgments, the hue order was red, green, and blue.

Thus there seems to exist a well-replicated effect. of brightness and color on
perceived depth, as is consistent with our conception that relative depth information
is carried by the energetic loading of filled-in featiiral contrasts across the FC
system syncytia corresponding to multiple BC system spatial scales.

20. TRANSPARENCY

Transparency phenomena [10, 61-63] provide another type of data which support
the concept that multiple syncytia exist corresponding to different spatial scales, and
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that filling-in of feature contour signals within some of these syncytia but not others
can generate a percept of color-and-form-in-depth. In percepts of transparency, a
phenomenal scission occurs which replaces the percept of a single color at a fixed
perceptual location with the simultaneous perception of two colors: the color of the
object seen through the transparency and the color of the transparent layer. Within
our theory, such a scission is analyzed by considering how one color elicits filling-in
within a syncytium of one spatial scale, whereas the other color elicits filling-in
within a syncytium of a different spatial scale. Such an analysis is possible due to
the hypothesis that each FC signal is topographically broadcast to the syncytia of all
spatial scales, and that the spatial distribution of BC signals among the several
scales determines which of the syncytia will react to such an FC signal by triggering
a filling-in reaction.

The formal rules which Metelli [61] is articulated for predicting the occurrence of
transparency are similar to the conditions under which the BC system triggers neon
color spreading [68, 79, 80] within the FC System. Meyer and Senecal [63] studied a
variant of the Kanizsa [45, 46] subjective contour configuration. Unlike Fig. 2, some
of the pac-man figures which they used to induce a rectangular subjective contour
were completed in the image using faintly colored wedge shaped regions. Meyer and
Senecal [63] showed that a percept of transparency covaries with the percept of a
chromatically filled-in rectangle surrounded by a strong rectangular subjective
contour. In our explanation of neon color spreading [36], the strength of such a
subjective contour also regulates the strength of the chromatic filling-in reactions by
inhibiting boundaries that would otherwise prevent filling-in from escaping from the
colored inducing regions. Thus our theory suggests that certain instances of trans-
parency are due to featural filling-in reactions across some, but not all, of the
syncytia corresponding to each fixed perceptual location, and that these differential
filling-in reactions are associated with a perception of a relative difference in depth.

21. COMPUTER SIMULATION: NESTING OF BOUNDARY WEBS ACROSS
SPATIAL SCALES

With this background in mind of how BC signals can interact with FC signals to
generate a completed percept of form, we now illustrate several key properties of
boundary webs through computer simulations.

Figures 14-18 showed how a single spatial scale of the OC filter and CC loop
react to the shiny ellipsoid in Fig. 13. Figures 21 and 22 show how a smaller spatial
scale reacts to the same image. Figure 21 depicts the equilibrium activity pattern of
the orientation field, as in Fig. 14. Figure 22 depicts the equilibrium activity pattern
of the second competitive stage, as in Fig. 16. (See the Appendix, part B, for a
mathematical definition.of this stage.)

Figures 23 and 24 show how a larger spatial scale than that used in Figs. 14-18
reacts to the shiny ellipsoid in Fig. 13. Figure 23 describes the equilibrium activity
pattern of the orientation field. Figure 24 describes the equilibrium activity pattern
of the second competitive stage.

In these simulations, “spatial scale” can be defined as the size of the oriented
masks used by the OC filter. The primary fact of interest is seen by comparing the
orientation fields in Figs. 14, 21, and 23 and the second competitive stage in Figs.
16, 22, and 24. This comparison shows that, in all scales, there exists a dense band
of boundary web activity bounded by the exterior contour of the ellipsoid. The
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Fi1Gg. 21. This mask field is also based on the shaded image in Fig. 13, but for a smaller set of masks
(indicated on the lower right) than was used for Fig. 14.
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F1G. 23. This mask field is also based on Fig. 13, but for a larger set of masks (indicated on the lower
right) than was used for Fig. 14.
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21. This figure differs from Fig. 22 in that the spatial scale at which cooperative feedback occurs is
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image.
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Fic. 26. Equilibrium activities of the second competitive stage in response to the mask field of Fig,
23. This figure differs from Fig. 24 in that the spatial scale at which cooperative feedback occurs is larger
than for Fig. 24. Unlike Figs. 22 and 25, the larger cooperative bandwidth does not cause a qualitative
change in grouping because the larger masks can detect isophotes at a dense set of image positions.
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orientations of all the boundary webs also tend to be parallel to the isophotes of the
ellipsoidal image. On the other hand, larger input masks generate broader bands of
boundary web activity than smaller input masks. This nesting property of boundary
web structures across multiple spatial scales is, we claim, on of the key sources of
information for deriving 3D shape from monocularly viewed luminance gradients of
a 2D image. :

Figures 25 and 26 illustrate a more sophisticated concept of spatial scale. In these
simulations, the smaller and larger input masks of Figs. 21 and 23 were again
employed. In addition, the spatial bandwidths of the cooperative interactions within
the CC loop were also altered in a proportional, or self-similar, manner. That is, the
cooperative feedback in Fig. 25 operated at a shorter spatial range than in Fig. 22,
whereas the cooperative feedback in Fig. 26 operated at a longer spatial range than
in Fig. 24. This covariation of input and cooperative bandwidths again reproduces
the nesting of boundary webs across spatial scales. Such a self-similar covariation of
cooperative bandwidth with input bandwidth realizes the plausible idea that inputs
which are averaged by input masks over a larger image domain can afford-to group
over a larger image domain.

22. COMPUTER SIMULATION: COHERENT COMPLETION OF BOUNDARY
WEBS ACROSS INCOMPLETE BOUNDARY DATA

One of the basic properties of the CC loop is that its nonlinear feedback
mechanisms transform analog inputs from the OC filter into coherent structures
with hysteretic properties. In addition, the long-range cooperative interactions of the
CC loop can complete boundaries over perceptual regions whose image contrasts
have been attenuated, as across the retinal veins or the retinal blind spot [50].
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F1G. 27. The mask field shown in Fig. 21 has been altered by the deletion of activities in five lattice
columns as an idealization of disruption of visual input by a retinal vein.
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F1G. 29. Equilibrium activities of the second competitive stage in response to the mask field of Fig. 27
in the normal, “closed loop” condition. Unlike Fig. 28, the equilibrium activity pattern in Fig. 29
completes a boundary web over the gap in the mask field of Fig. 27.
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We illustrate how such coherent completion can occur in a boundary web by
deleting a vertical band of activations at the orientation field that is generated by
the shiny ellipsoid in Fig. 13. Such an excised orientation field is depicted in Fig. 27.
In order to describe the effects of cooperative feedback upon boundary web
completion, we feed this orientation field into both an open loop and a closed loop
version of the CC loop. In the open loop case (Fig. 28), the gap is not closed because
cooperative feedback cannot be used to bridge the gap in the input mask contrasts.
In the closed loop, or normal, case (Fig. 29), the gap is closed nicely, as would be
desired if the image were obstructed by a retinal vein or blind spot. In fact, the
completed boundary web is almost indistinguishable from the boundary web that is
due to direct activation by a complete orientation field (Fig. 16). Comparison of
Figs. 28 and 29 shows, moreover, how the nonlinear feedback within the CC loop
smoothes and renders more symmetrical the global configuration of the boundary
web, a-process consistent with the data of Mingolla and Todd [64].

23. HIGHLIGHTS AND THE PERCEPTION OF GLOSSINESS

The completion properties described in Fig. 29 illustrate how long-range statisti-
cal properties of image contrasts can interpolate over weaker short-range properties
of image contrasts. Indeed, a colinear grouping due to long-range cooperation can
feed back to second competitive stage to inhibit weaker short range effects via
orientational competition (Sect. 7). Using such mechanisms, one can imagine
examples in which the CC loop obliterates the OC filter activations due to a
highlight in certain spatial scales, notably the large spatial scales whose cooperative
cells can average contrast gradients over a large portion of the image. Remarkably,
the CC loop remains sensitive to structural properties, such as isophotes, despite the
existence of interactions which are broad enough to overcome local image distor-
tions. The active dynamical behavior of the CC loop thus stands in stark contract to
that of a low spatial frequency filter or other passive smoothing operator.

The postulated ability of a boundary web of the CC loop to fracture activations
of the OC filter by a surface highlight is supported by data of Beck and Prazdny [9].
In this investigation, artificial highlights were attached to digitized images of vases.
Beck [5] had earlier published pictures of a vase with and without highlights. The
vase with highlights attached looked glossy. A sharply bounded white dot attached
to a vase would not make it look glossy. A highlight, in contrast, decreases
continuously in intensity from its center to its borders.

The data of Beck and Prazdny [9] are consistent with the hypothesis that, in some
spatial scales, a boundary web can break through the boundary contours induced by
the highlight and can trigger a filling-in reaction that spreads within the boundary
web compartments of these spatial scales. Thus, Beck and Prazdny [9] showed that
each highlight makes its surrounding area look shiny, but not the whole vase. A
highlight attached to a uniform gray image of a vase does not produce the
perception of glossiness. Correspondingly, such an image would not generate a
boundary web through the highlight. The perception of glossiness depends not only
upon the presence of highlights, but also on the intensity gradient on the surface.
We claim that such an intensity gradient is needed to induce a boundary web that
can penetrate the highlight. The exact form of the gradient is not important. What is
important is that the intensity gradient produces the perception of a curved surface.
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In our theory, an intensity gradient is needed to generate a boundary web that can
coherently span the interior regions of the vase where the highlight is placed.

The luminance profile of a highlight points to another possible source of glossi-
ness in some spatial scales. Certain highlights may generate more boundary contour
activation near their centers than near their borders due to the continuous decrease
in intensity from center to border. Consequently, in these spatial scales, the feature
contour signals induced by these highlights can fall exterior to these boundaries, in
the sense that they can fill-in their syncytia until they hit the nearest boundaries
formed by the figure to which the highlight is attached.

Whether a spread of glossiness is due to fracture of a highlight’s local structure by
a more global grouping or due to spread from a highlight’s center boundary, the
resulting spread conforms to the constraints imposed by the boundary structure
within that scale. Consequently, the highlight tends to look like it is attached to the
surface.

24. SHAPE FROM TEXTURE GRADIENTS

In many natural scenes, smooth shading and textural variations occur concur-
rently. This fact raises the issue of whether mechanisms competent to represent
smooth gradients are also able to deal with gradients built out of discrete textural
elements. The experiments of Todd and Akerstrom [77] investigate how a percept of
3D form is generated by texture gradients in a 2D image. Todd and Akerstrom [77]
and Todd [76] have analyzed how our concept of a multiple scale boundary web
accounts for their data. Some of their main observations are now summarized.

A striking aspect of displays depicting surfaces using gradients of discrete texture
elements is how the phenomenal impression of shape is smoothly distributed over
and even between the discrete elements [22]. We have already demonstrated how a
dense form-sensitive boundary web can be generated by a smooth luminance
gradient. This fact raises the basic question: how smooth is smooth? The question
can be answered by analyzing the response of the OC filter to changes in the spatial
grain of the image. As emphasized in Section 6, the input masks of the OC filter are
oriented local contrast detectors, not edge detectors. In particular, such oriented
masks can respond to spatially nonuniform densities of textural elements, such as
dots, rectangles, etc.

The basic issue is whether or not the densities and orientations of these elements
can generate statistically coherent form-sensitive groupings within the CC loop.
Clearly, a sufficiently small perturbation off a smooth luminance gradient, say by
replacing a smooth image with densely packed small squares whose luminance
equals the average luminance of the area which they replace, will not appreciably
change the CC loop response. Thus 2D images which generate a percept of 3D form
using texture gradients provide a powerful probe of the spatial scale for averaging
and grouping within the BC system.

Figure 30 displays a textured ellipsoid surface, viewed along its longest axis. Note
that the outer portion of this figure give the impression of circular bands, much like
those that occur in the Glass pattern of Fig. 31. In a series of experiments on such
figures, Todd and Akerstrom [77] perturbed various aspects of texture—including
projected element area, amount of compression (the foreshortening of obliquely
viewed elements), and element orientation in the picture plane—in an effort to
isolate the conditions affecting perceived curvature or depth. An example of such a
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Fi1G. 30. An ellipsoid viewed along its longest axis of symmetry is depicted through a distribution of
texture computed in accordance with the constraints of perspective. (Adapted with permission from Todd
and Akerstrom [77].)

perturbation is shown in Fig. 32, in which the elements have appropriately com-
puted areas but where compression has been held constant. This figure gives little or
no impression of depth. After conversation with the present authors, Todd and
Akerstrom reasoned that according to our theory, this effect could be traced to the
absence of preferred orientations in the periphery of the ellipsoid. That is, the
constant compression prevents the texture elements from appearing elongated and
aligned with the curved shape of the ellipsoid.

In terms of the model, the distribution of activated input masks in response to
Fig. 32 does not favor any given orientation. This does not prevent input masks that
are activated by edges of individual textural elements from generating large CC loop

Fi1G. 31. In a Glass pattern, circular groupings emerge from the spatial distribution of small black
dots. Unlike Fig. 30, this figure does not induce an impression of surface curvature or depth. (Reprinted
with permission from Glass [28].)
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F1G. 32. The ellipsoid in this figure is the same shape as that in Fig. 30 but the elongation due to
compression of texture elements has been suppressed, resulting in a much diminished impression of
surface curvature or depth. (Adapted with permission from Todd and Akerstrom [77].)

responses. On the other hand, co'operative groupings across individual textural
elements tend to get inhibited al the second competitive stage by orientational
competition due to other cooperative groupings. Thus the absence of preferred
orientations in the ellipsoid enables orientational competition to attenuate cooper-
ative activity between the individual textural elements.

Accordingly, Todd and Akerstrom reasoned that a strong prediction follows from
the model: An image generated equivalently to that of Figure 32 (i.e., constant
compression) but having elongated texture elements ought to produce a vivid
impression of depth, provided-that the direction of elongation tends to parallel the
circular symmetry of the figure. More technically, the direction of elongation for
each element is the same as would have occurred if appropriate compression values
had been computed, as for Fig. 30. In the model, the favored directions of
elongation cause enhanced activations of the corresponding orientations at the
second competitive stage, and thereby enable the CC loop to form strong oriented
bands of cooperative activity between individual textural elements. '

To test this hypothesis, Todd and Akerstrom generated displays such as shown in
Fig. 33. Their psychophysical procedure strikingly confirmed this prediction, which
is consistent with no other proposed model perception of curvature from texture. In
fact, Todd and Akerstrom [77] used the model to devise a measure of the distribu-
tion of element elongation over several spatial scales. The lowest correlation of this
measure with subjects’ 1mpressmn of depth in the various condltlons of the1r study
was 0.985. €2 '

‘Figure 34 deplcts a simulation. of an orientation ﬁeld in response to the'i 1mage in

o F1g 30. The size of an individual orlented mask relative to the scale of the-image is

depicted in the figure. Note that activity is irregularly distributed across. several
orientations. Figure 35 depicts the response at the second competitive stage of the
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Fi16. 33. The same ellipsoid shape used in Figs. 30 and 32 is depicted. This time, although
compression of elements has been suppressed as in Fig. 32, each element is elongated and aligned with
the local orientation of the underlying depicted surfaces resulting in an impression of curvature or depth
close to that of Fig. 30. (Adapted with permission from Todd and Akerstrom [77].)

\ v/
/o= - - - )
t - - - ~
A - - A
\/ N 7
/e L B AN
VAR - - = DAY
4 - '
;/ 0 .= e ~ \
X
1, . ‘s \ A}
~ . ) . \
> 1 [ \ il
X e e s Ny ' 3
X - N> [’ . x
’ ] N
N o ' '
~ 1 \ AN [ ¢ -—
\ - !
T e e \
/o AR N - ’ /
\ . N . +
/ N\ RN - P 7/
N N - - - .. /A
. + s - e e . J o+
N ~ e e e - - - PP
N - + A
N . MASKS

=

F1G. 34. Equilibrium activities of a mask field computed directly from Fig. 30 are shown here.



156 GROSSBERG AND MINGOLLA

D SUASAREAN
{/——-\n—\\\--xx
.\/,,,,/,\_..\_\_\\\.,,
\/If//!/—k-——-\\~~\\\\/-

A A i e I e T TR T AR B NN
A A I R N e R )
—rl'I///-/-~—|~|\:\\\\-\\+
4-‘//;[//////|—4-:\\\\\’\|\\—
L I O 2 I Pt C N N U N T S N
DY A A A A A AV NP A R T T N A N |
Rl A T RV EESC S TN AT RN TN §
A I ARV RPN B AR I R RN U S U N O
NN NN T Y SN LA A U T T S R ST U S S T S By
clb vt Pooo v e =N v N X
V2 IR0 T Y S S T SR TN N N I A B AN B SN
ST I T SN R WA PN Ny ey
Lt I A T T N Y P O L LANT 2R N BN BT WP A
»\1\|\\\\\\|\/----/://1:1[.
[ 2 W T S W W N -~y L A A B A Y
P25 W T U G U N S NP [ R A A B A N N
L B T S N B e R N G AV Y B S S}
/\\\\~\\-\\~——————/:z://~
—~ N VN Y v s Ve R PRIV AN
T N T A S NS s S+
R T N
IETIITII TN Y PIELD

B e e
. SN omom X g .

F1G. 35. Equilibrium activities of the second competitive stage in response to the mask field of
Fig. 34.

B T S N N
R ol o o bt S MU UEN
e o e e NS
A A A AN AR
ittt NN R Y
P P N NN

*

S UNNYN
- = - SN\
NN

\

!

|

l

’

’

’ /
e

- S

AN ’
(NN - ,
NN N~ P

SN e e o B Sy e ot
—————

P

AN
N
A
\
1
i
|
1
’
/
/
7
/7

e
T W A Pt et ot M e gy S, N,
//**nuu&&%&&\\\

/////,.\\\\\\

Ve

%
AY
\
1
]
)
|
!
1
/
/
Ve
/
/
’

\\\\\k-,,///

-+
(
<
{
'l
'
'
!
!
!
{
1
A
A\
AN
AN

/////~ﬂ-~\\\\\
TN AN A AR PR P gl et

Ve
Ve
e
/
7/
/
!
§
{
1
\
\
\
AN
N

Ve
+
<
+
'l
{
/
'
I
I

1

1

X
%
hY
AN
\

NN NN At ek gk e s

o
Ydre
L7
s
PV
{7
It
i1
11
]t
11
it
AN
LYY
AN Y
5\
AN
ALY
N

NN N R P S P P PPy g e
T A B R A B PP Pyt 2 -
e e - Z FIELD

F1G. 36. Equilibrium activities of the cooperative stage in response to the mask field of Fig. 34. A
smooth tracking of underlying statistical groupings of orientations is accomplished, even though the
texture elements themselves are discrete patches and the mask field responses are weak and locally

ambiguous.



SURFACE PERCEPTION: NEURAL DYNAMICS 157

CC loop within this spatial scale. Here a dense boundary web forms that completes
a coherent representation of the globally consistent statistical groupings of oriented
activity in Fig. 34. Note that while near the center of Fig. 35 most activity is in
direct response to the luminance contrasts of the texture elements with the back-
ground, near the edges of the figure cooperative activity over large regions emerges.
The tendency of this cooperative activity to be strongest in the periphery of the
figure can be appreciated in Fig. 36, which depicts the output of the cooperative
stage in response to the input of Fig. 34.

25. CONCLUDING REMARKS: THE DYNAMIC GEOMETRY OF SURFACE
FORM AND APPEARANCE

Classical mathematical theories of surfaces are predicated on the possibility of
decomposing a surface into infinitesimal regions within which concepts such as
surface normal and Jacobian can be unambiguously defined. In contrast, our
analysis suggests that the concept of infinitesimal regions is not consonant with
emergent percepts of pre-attentive surface form, and that attendant concepts such as
surface normal are irrelevant in perceptual processes. Instead, we have indicated
how self-scaling form-sensitive coordinate systems are induced dynamically by
combinations of image contrasts, and that perceived surface shape emerges not from
any single measure taken on explicitly defined surface elements, but rather from the
collective action of multiple completion and filling-in events distributed across
several spatial scales.

This nonclassical approach to the perception of 3D form is equally at home with
discrete and continuous sources of scenic information, and in fact can utilize
multiple sources of information cooperatively to generate a less ambiguous form
percept than any single source of information could sustain. While local computa-
tional units play a central role in classical geometrical theories, they are fundamen-
tally insufficient to explain the stability and coherence of a percept of form. In the
present theory, whereas relatively local analog signals are needed to initiate the
processing of form information, the grouping mechanisms which feed upon these
signals transform them into structural representations using nonlinear feedback
interactions that are sensitive to large image domains. The design of the CC loop
illustrates how such long-range interactions can override imperfections of local
analog signalling without becoming insensitive to global structural properties. Thus
our model suggests that an analysis of form perception which begins to address the
phenomenological richness of perceptual data in this field mandates a radical break
from the classical concepts of geometry which have been the source of most models
of surface perception until the present time.

APPENDIX: BoUNDARY CONTOUR SYSTEM EQUATIONS

The network which we used to define the boundary contour system (BCS) is
defined in stages below. This network further develops the BCS system that was
described in Grossberg and Mingolla [37].

A. Oriented Masks

To define a mask, or oriented receptive field, centered at position (i, j) with
orientation k, divide the elongated receptive field of the mask into a left half L, ;,
and a right half R, ;. Let all the masks sample a field of preprocessed inputs. If S,
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equals the preprocessed input to position (p, ¢) of this field, then the output J, K
from the mask at position (i, j) with orientation k is

= (Ui = V] "+ [Vige — aUpa]

J;; , Al
4 1+ B(Uy + Vip) (A1)
where
U= X S (A2)
(P-DELy
I/i_/'k = Z Spq’ (A3)
(P.9)ER

and the notation [ p]* = max( p,0). The sum of the two terms in the numerator of
(A1) says that J;, is sensitive to the orientation and amount-of-contrast, but not to
the direction-of-contrast, received by L;;, and R, ;. The denominator term in (Al)
enables J;, to compute a ratio scale in the limit where (U, + V) is much
greater than 1. In all of our simulations, we have chosen 8 = 0.

B. On-Center Off-Surround Interaction Within Each Orientation (Competition I)

Inputs J;;, with a fixed orientation k activate potentials w,; at the first
competitive stage via on-center off-surround interactions: each J;, excites w,;, and
inhibits w,_, if |[p — i|*> + |g — j|? is sufficiently small. All the potentials w, ;, are
also excited by the same tonic input I, which supports disinhibitory activations at
the next competitive stage. Thus

d
Zwijk = Wik +1 +f(‘,ijk) — Wik Z f(Jqu)qu,'p (A4)

(7,9

where 4, is the inhibitory interaction strength between positions ( p, ¢) and (i, j)
and f(J;;) is the input signal generated by J ;. In our runs, we chose f(J;;)
proportional to J ;. Section C defines the on-cell subfield of the dipole field
described in Fig. 8.

C. Normalization and Push-Pull Opponent Process between Orientations
at Each Position (Competition 11)

For simplicity, we assume that the output signals from the w,;, potentials equal
the potentials themselves, which are always nonnegative. Each w,, influences
potentials y, ,, at the second competitive stage via a shunting on-center off-surround
interaction across orientations m at each position (i, j),

d

Zyijk = Vit (B - yijk)zwijmcmk - (yijk + D)Zwiijmk (A5)
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where
2
Cpe = Cexp| —p(m — k)’] (AS6)
and
2
E,. = Eexp| ~»(m — k). (A7)

Equation (AS5) says that input w,, excites orientation k maximally and nearby
orientations m with an exponentially decreasing strength C,,, at each position (i, j).
Input w,, also inhibits orientations m with an exponentially decreasing strength
E,. . at each position (i, j). Since u < », the definitions (A6) and (A7) permit w,
to generate maximal inhibition at, or near, the orientation K that is perpendicular
to k. In addition, the responses y,; tend to normalize the inputs w,;, since, at

equilibrium,
Zwijm(Bka - DE,,;)

1+ Zwijm(cmk + Emk) .

Yije = (A8)

By (A8), y,; is sensitive to ratios of weighted w,,, values if the coeflicients C,,
and E,,, in (A6) and (A7) are sufficiently large.

D. Opponent Inputs to the Cooperative Stage

The w, 4, x,;,, and y,;, potentials are all assumed to be part of the on-cell
subfield of a dipole field. If y,, is excited, an excitatory signal f(y, ) is generated
at the cooperative stage. When potential y,, is excited, the potential y, , corre-
sponding to the perpendicular orientation is inhibited. Both of these potentials form
part of the on-cell subfield of a dipole field. Inhibition of an on-cell potential y,
disinhibits the corresponding off-cell potential y, x, which sends an inhibitory signal
—~f(¥;jx) to the cooperative level. The signals f(y,;) and —f(J,x) thus occur
together. In order to instantiate these properties, we made the simplest hypothesis,
namely that

Vijx = Vijk- (A9)

E. Oriented Cooperation: Statistical Gates

The cooperative potential z,;, can be supraliminally activated only if both of its
cooperative input branches receive enough net positive excitation from similarly
aligned competitive potentials. Thus

d _
:i;Zijk= _Zijk+ g( Z [f(ypqr) _f(ypqr)]l:;)(;;jk))
(p.g.7)

val T [10p) - 1G] 650) (A10

(p.q.n
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In (A10), g(s) is a signal function that becomes positive only when s is positive,
and has a finite maximum value. A slower-than-linéar function

H[s]"

m (A11)

g(s) =

was used in our simulations. A sum of two sufficiently positive g(s) terms in (A10)
is needed to activate z;;, above the firing threshold of its output signal 4(z, ;). A
threshold-linear signal function

h(z)=L[z-M]" (A12)
was used. Each sum such as
Y ) B (A13)
(0% )]
and
Y (%) G (A14)
(r.q,7)

is a spatial cross-correlation that adds up inputs from a strip with orientation
(approximately equal to) k that lies to one side or the other of position (i, j), as in
Fig. 9. The orientations r that contribute to the spatial kernels F,:* and G,%
also approximately equal k. The kernels £ % and G{* are defined by

N .. 2 r +
Fp(qr;jk) = [exp[_z(ﬂ - 1) ][|cos(qu,j - r)|] R[cos(qu[j - k)] J (Al5)

P
and
k Npqij ? R T "

Gp(trfij) = | TXP _2(7 - 1) [lCOS(quij - r)|] [COS(QMU‘ - k)] i
(A16)

where
Npys = V(p =) + (g =), (A17)
Qi = arctan(z :]z ) , (A18)

and P, R, and T are positive constants. In particular, R and T are odd integers.
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Kernels F and G differ only by a minus sign under the [ - - - ]* sign. This minus sign
determines the polarity of the kernel; namely, whether it collects inputs for z,
from one side or the other of position (i, j). Term exp[—2(N, i/ P — 1)?] de-
termines the optimal distance P from (i, j) at which each kernel collects its inputs
The kernel decays in a Gaussian fashion as a function of N,,,,/P, where N,

(A17) is the distance between ( p, ¢) and (i, j). The cosine terms in (A15) and (A16)
determine the orientational tuning of the kernels. By (A18), O pqi; 18 the direction of
position ( p, g) with respect to the position of the cooperative cell (i, j) in (A10).
Term |cos(Q,,:; — )l in (A15) and (A16) computes how parallel Q,4ij 1s to the
receptive field orientation r at position (p, ¢). By (A18), term |cos(Q,,.;; — 1) is
maximal when the orientation r equals the orientation of (p, q) with respect to
(i, j). The absolute value sign around this term prevents it from becoming negative.
Term cos(Q,,,; — k) in (Al5) and (Al6) computes how parallel Q, ;; is to the
orientation k of the receptive field of the cooperative cell (i, j) in (A10). By (A18),
term cos(Q,,;; — k) is maximal when the orientation k equals the orientation of
(p,q) with respect to (i, j). Positions ( p, g) such that cos(QMU k) < 0 do not
input to z,, via kernel F because the [ - - - ]* of a negative number equals zero. On
the other hand, such positions ( p, g) may input to z, ; via kernal G due to the extra
minus sign in the defimition of kernel G. The extra minus sign in (A16) flips the
preferred axis of orientation of kernel G{/;% with respect to the kernel F, (;, ) in
order to define the two input-collecting branches of each cooperative cell, as in Fig.
9. The product terms * [cos(Q,,,;; — r)|Rcos(qu,-j ~ k)T in (A15) and (A16) thus
determine larger path weights from dipole field on-cells whose positions and
orientations are nearly parallel to the preferred orientation k of the cooperative cell
(i, j), and larger path weights from dipole field off-cells whose positions and
orientations are nearly perpendicular to the preferred orientation k of the cooper-
ative cell (i, j). The powers R and T determine the sharpness of orientational
tuning: Higher powers enforce sharper tuning. ]

F. On-Center Off-Surround Feedback within Each Orientation

We assume that each z,;, activates a shunting on-center off-surround interaction
within each orientation k across position (i, j). The target potentials v, therefore
obey an equation of the form

d
;Uijk-__ _Uijk+h(zijk) - Uk Z h(zqu) pqij* (Alg)

(r,9)

The bottom-up transformation J;;, — w,;, in (Ad) is thus srrmlar to the top-down
transformation z;;, — v;; in (Al9). Functronally, the z;;, — v, transformation
enables the most favored cooperations to enhance. their preferred positions and
orientation as they suppress nearby positions with the same orientation. The signals
v;;x take effect by inputting to the w,;, opponent process. Equation (A4) is thus
changed to

d
_d_twijk= ljk+‘[+f( ljk) ijk—wijk E f(']qu)quij‘ (AZO)
(pr9)
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At equilibrium, the computational logic of the BCS is determined, up to parame-
ter choices, by the equations

A

J..
T Bt V) (A1)
I+ BJ., +uv..
ijk ijk
W,y = , 21
I 1+ Bz(p,q)Jququif (A )
mei'm(BCm - DE;n )
Yijk = : : = (A8)
I+ meijm(cmk + Emk)
Zijk=g( Z [f(ypqr) —-f(yqu)]F})((;i’jk))
(p,q,n
+s| T [0p) ~ 10650, (a22)
(p,q,71)
and
h(ZUk)
Vi = . (A23)
’ 1+ E: h(zqu)u§qﬁ
(p,q)

Wherever possible, simple spatial kernels were used. For example the kernels W,
in (A19) and A4
receptive field:

. . . . ql‘/
pqgij 10 (A20) were both chosen to be constant within a circular

Amu={A if (p = i)'+ (g ) <4 (A24)
0 otherwise
and
qu’_j={W if(P—i)2+((1‘J')2$Wo. (A25)
0 otherwise.

The oriented receptive fields L;;, U R;; in (A2) and (A3) were chosen to have
parallel linear sides with hemicircular ends.
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