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Figure �� A Kanizsa square can be perceived �A� colinear to edge inducers and �B� perpen�
dicular to line end inducers� �C� Model simulation of the latter type of boundary grouping�

How the brain generates visual percepts is a central problem in neuroscience�
We propose a detailed neural model of how LGN and the interblob cortical
stream through V� and V� generate context�sensitive perceptual groupings from
visual inputs� The model suggests a functional role for cortical layers� columns�
maps� and networks and proposes homologous circuits for V� and V� with larger
scale processing in V�� An integrated treatment of interlaminar� horizontal� ori�
entational� and endstopping cortical interactions and a role for corticogeniculate
feedback in grouping are proposed� Modeled circuits simulate parametric psy�
chophysical data about boundary grouping and illusory contour formation�

Although visual neuroscience is one of the most actively studied areas in biology� a gap
remains in our understanding of how visual percepts arise from neurobiological properties of
identi�ed neurons� A step towards closing this gap is made herein by modeling how percep�
tual groupings may emerge from interactions of cells with known receptive �eld properties�
It is well established that perceptual groupings help to segregate objects and their back�
grounds in response to texture� shading� and depth cues in scenes and images���� These
groupings are highly context�sensitive� as illustrated by Kanizsa square percepts �Figure ��
which can arise either colinear to inducing edges or perpendicular to inducing line ends� We
show herein how the context�sensitivity of such perceptual groupings sheds light on neural
data concerning the context�sensitivity of neuron responses� notably their �non�classical�
receptive �eld properties�

Boundary Formation using Cooperating Pyramidal Cells

Long�range context�sensitive interactions are illustrated by the increasing strength of
illusory contours in edge�induced Kanizsa squares �Figure �A� as the support ratio �ratio of
inducer length to total perceived edge length� increases�� as in Figure �A� This cooperative
process builds a coherent boundary grouping that spans the gap between inducers� Cells
in visual cortical area V� respond to such illusory contours and exhibit a bipole property���

whereby they �re when their receptive �eld lies between aligned inducers but not when they
lie beyond a single inducer� This bipole property was derived from a theoretical analysis
of psychophysical data about perceptual grouping���� and has been further supported by
subsequent psychophysical experiments�����

According to the model� cooperative bipole interactions are realized in cortical layer �
by recurrent long�range horizontal pathways among cortical pyramidal cells� In order for
cooperation to build a boundary like an illusory contour� these monosynaptic excitatory
connections need to converge on shared pyramidal cells with colinear or slightly curvilinear
receptive �elds �see Figure �A�� The horizontal connections also activate smooth stellate
cells� which inhibit nearby pyramidal cells via disynaptic inhibition������ This disynaptic
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Figure �� Model simulations of psychophysical data� �A� In response to the edge inducers
in Figure �A� illusory contour strength increases with support ratio� Support ratio is the
ratio of real to total contour length� �B� For the line end inducers in Figure �B� contour
strength is an inverted U function of the number and density of line end inducers� Contour
strength was determined by computing the average cell activity along the path of the illusory
portion of the contour�

inhibition is proposed to control the monosynaptic excitation� and to also give rise to the
bipole property� One characteristic of this control is that horizontal waves of activation
resulting from spatially isolated inducers are rapidly attenuated by subsequent disynaptic
inhibition� This agrees with studies showing that when a single input source drives horizontal
pathways at threshold intensities in vivo� excitatory postsynaptic potentials �EPSPs� are
generated� whereas supratheshold stimulus currents evoke disynaptic inhibition �IPSPs� that
can overwhelm the EPSPs������ Bipole completion arises from model interactions between
monosynaptic excitation and disynaptic inhibition when layer � cells receive horizontally
induced EPSPs from a surrounding neighborhood of oriented cells� as in the middle of a
contour� These EPSPs from convergent horizontal connections can overcome the e�ect of
disynaptic inhibition because all the horizontal connections are proposed to converge on
a single population of inhibitory interneurons �Figure �A�� Locally� it is a case of two �or
more� against one� The net e�ect of this cooperative�competitive interaction is to convert
the outward propagating long�range horizontal signals from pyramidal cells into the selective
inward activation of pyramidal cells according to a bipole property�

LGN In�uences on V� Layers � and 	

Several other types of cooperative and competitive interactions occur in visual cortex and
our model thereof� As in the brain� inputs to the model area V� arrive at layers � and � from
the model lateral geniculate nucleus or LGN�	� LGN inputs directly activate orientationally
tuned simple cells in layer �� as has been veri�ed by cross�correlational analysis�� and cortical
chemical and cooling inactivation experiments������ Oriented arrays of spatially displaced
LGN ON and OFF cells excite mutually inhibitory simple cells that are sensitive to the
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same orientation but opposite contrast polarities������ The LGN also indirectly excites and
inhibits layer � via layer �� Electrophysiological recordings����� and antidromic activation
of layer � corticogeniculate cells from the cat LGN�	 support the idea that layer � gives rise
to a short�range excitatory input to layer � and a longer�range inhibitory interaction that is
mediated by layer � inhibitory interneurons� The net e�ect is that LGN in�uences layer �
via a feedforward on�center o��surround network �Figure �B�� The model proposes that this
excitatory�inhibitory balance helps layer � cells to maintain their analog sensitivity to visual
inputs of variable contrast�

Closing a Cortical Feedback Loop

Layer � cells� in turn� activate pyramidal cells in layer �� which then attempt to cooperate
using their long�range horizontal connections and short�range disynaptic inhibition� All the
layer � cells that become active either via direct layer � inputs or by bipole cooperation
then generate excitatory feedback signals to layer � via layer 	������ Layer � hereby gains
access to the on�center o��surround network of connections from layer � to layer �� The total
interlaminar feedback loop thus proceeds in the order �� �� 	� �� ��

Context�Sensitive Boundary Formation by Cooperation and Competition

The long�range cooperation in layer � can use the shorter�range on�center o��surround
layer ��to�� signals to amplify those cell activations that are favored by the cooperative
grouping while suppressing those that are not� Model layer ��to�� inhibition in�uences dif�
ferent orientations and positions by being distributed across a cortical hypercolumn map
wherein cells sensitive to these features are spatially organized��� This short�range com�
petition can relatively enhance cell responses cooperating in positional� orientational� and
length�sensitive groupings by suppressing cells responding to weaker groupings� incoherent
noise� or background signals� In addition� feedback ampli�es cell responses without eliminat�
ing their sensitivity to stimulus strength� notably to variable contrast��� as has been shown
in vivo���

The ability of the cooperative�competitive feedback loop to maintain cell sensitivity is
illustrated by computer simulations of perceptual grouping strength as a function of inducer
type and spatial distribution�������� Figure � simulates how contour strength increases with
support ratio� and the density of lines������ owing to increased long�range cooperation as more
and more cells and their horizontal connections are activated� The existence of short�range
competition interactions which balance the long�range cooperation is illustrated perceptually
by the inverted U in Kanizsa square contour strength that is observed as the number and
density of line�end inducers continues to increase������ as in Figure �B� The inverted U occurs
in the model because the excitatory in�uence of each LGN input is increasingly inhibited at
layer � by layer ��to�� spatial inhibition as the inducers get closer together� Thus� although
more inputs activate the cooperating layer � pyramidal cells� each input gets smaller as the
inducers get denser� This explanation functionally clari�es that the short�range layer ��to��
inhibition is not the same as the layer � disynaptic inhibition that helps to realize the bipole
property�

Cortical Columns as Functional Units

These cooperative�competitive interactions play a number of other functional roles in
the model that are consistent with brain data� The interlaminar feedback pathway � �

� � 	 � � � � enables cells throughout each cortical column to function together as a
unit with shared properties like orientational preference that can be contextually modi�ed
by long�range cooperation and short�range competition� The role of feedback in grouping
hereby gives new functional meaning to the classical observation that cortical processing
has a columnar organization�	������ and to data suggesting that the organization of simple�
complex� and hypercomplex cells is not simply a feedforward hierarchy because whatever
cell properties are elaborated in any layer may potentially in�uence cell responses in other
layers via feedback�
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Figure 
� Model retinal� V�� and LGN circuit� Each neuron was modeled as a single voltage
compartment in which the membrane potential� V �t�� was given by

Cm

dV �t�
dt

� ��V �t��EEXCIT �gEXCIT �t�� �V �t��EINHIB�gINHIB�t�� �V �t��ELEAK�gLEAK�

where the parameters E represent reversal potentials� gLEAK is a constant leakage conduc�
tance� and the time�varying conductances gEXCIT �t� and gINHIB�t� represent the total inputs
to the cell� Transient after hyperpolarization terms �AHP� were not incorporated since all
groupings were allowed to reach steady state� Cortical layers and successive processing stages
are indicated in the vertical direction from LGN to V�� The relative scale of horizontal in�
teractions is roughly indicated by the length of pathways in the horizontal direction� The
time�varying conductances gEXCIT �t� and gINHIB�t� were determined as follows� �A� Feed�
forward circuit from retina to LGN to cortical layers � and �� Retina� Retinal ON cells
have on�center o��surround organization� Retinal OFF cells have an o��center on�surround
organization� LGN� The LGN ON and OFF cells receive feedforward ON and OFF cell
inputs form the retina� Layer �� Layer � cells receive feedforward inputs from LGN and
layer �� LGN ON and OFF cell excitatory inputs to layer � establish oriented simple cell
receptive �elds� Layer � cells excite layer � cells with a narrow on�center and inhibit them
from using layer � inhibitory interneurons that span a broader o��surround� Like�oriented
layer � simple cells with opposite contrast polarities compete �not shown� before generating
half�wave recti�ed outputs that converge on layer � complex cells� Layer 
� The converging
simple cell outputs enable complex cells to respond to both polarities� They hereby full�wave
rectify the image� �B� Horizontal bipole interactions in layer �� Layer � complex pyrami�
dal cells monosynaptically excite one another via horizontal connections� primarily on their
apical dendrites� They also inhibit one another via disynaptic inhibition that is mediated
by model smooth stellate cells� Multiple horizontal connections are proposed to share a
common pool of stellate cells near each target complex cell� The bipole property is hereby
achieved� �C� Cortical feedback loop from layer � to layer �� Layer � cells receive excitatory
inputs from layer �� The long�range cooperation hereby engages the feedforward layer ��to��
on�center o��surround network� This cooperative�competitive feedback loop can select win�
ning groupings without a loss of analog sensitivity� �D� Top�down corticogeniculate feedback
from layer �� LGN ON and OFF cells receive topographic excitatory feedback from layer ��
and more broadly distributed inhibitory feedback via LGN inhibitory interneurons that are
excited by layer � signals� The feedback signals pool outputs over all cortical orientations
and are delivered equally to ON and OFF cells� Corticogeniculate feedback selects� gain con�
trols� and synchronizes LGN cells that are consistent with the cortical activation that they
cause� thereby acting like a type of automatic attentional focus� Layer ��to�� inhibition and
layer ��to�LGN inhibition both contribute to length�sensitive �endstopped� responses that
facilitate grouping perpendicular to line ends�
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Endstopping

Another property to which layer ��to�� inhibition may contribute is the endstopping
e�ect by which the responses of oriented cells to the middle portion of a long edge are at�
tenuated relative to cell responses at edge ends or to short edges� The cortical endstopping
circuitry has been studied in vivo by reversible inactivation of layer � in V� using the in�
hibitory transmitter ��aminobutyric acid �GABA�� which causes cells in layer � to lose their
end�inhibition� as do cells in layer � which get input from layer �����	� This procedure has
little impact on orientational selectivity in vivo� or in the model� An inhibitory interac�
tion with a mean length of ��
 � in cat cortical area V��� �area ��� well matches the value
predicted for the inhibitory �eld generating endstopping������ It is indicated below how
corticogeniculate feedback may also in�uence endstopping�

Endstopping cannot be the only role of layer ��to�� inhibitory inputs since layer �
connectivity enhances the excitability of non�length�tuned cells in layers � and ���� The
model proposes that these interactions are� more generally� part of the mechanism that helps
to select correct groupings without a loss of analog or spatial sensitivity� In particular� the
on�center o��surround organization from layer ��to�� may help to explain patch�suppressed
cell responses in both cat and macaque monkey cortex� These cells respond to gratings
of a speci�c orientation within their classical receptive �eld� but the response diminishes
if the grating is expanded to cover the surrounding area��������� The balance of recurrent
facilitation and inhibition across hypercolumn representations of position and orientation
may also help to clarify how cat and monkey cortical cells respond to discontinuities in visual
input patterns������ We have included discussions of both cat and monkey data throughout
this article where they are consistent�

Interactions of Areas V� and V�

Both similarities and di�erences between V� and V� circuitry �areas �� and �
 in the
cat� play important functional roles in the model� It is known in vivo that cells in both V�
and V� respond when illusory contours span closely spaced line ends������ as in Figure �A�
On the other hand� cells in V� do not respond when illusory contours span large distances�
whereas cells in V� do�� as in Figure �B� These facts suggest that some of the properties of
V�� such as the existence of horizontal connections among pyramidal cell may be replicated
in V� at a larger scale� The model proposes that the V� and V� circuits are� in fact�
homologous� but that V� has longer�range interactions than V� �Figure 	�� Consistent with
this proposal� a quantitative study of orientation maps �using multiunit recordings� and
of cortical connections �using biocytin injections analysed in horizontal sections� show no
signi�cant di�erences in the proportions of excitatory and inhibitory cells and their preferred
orientational contacts across areas V� and V�� but did show a larger scale in V� than V����

As in the brain� layer � of the model V� circuit activates layers � and � of the model V�
circuit�	���� When they interact� model V� and V� circuits simulate the data on o�set grating
stimuli from experiments on both V� and V� �Figures �A and �B�� Cooperative interactions
across the smaller scales in V� enhance mutually consistent responses indicating boundary
location and orientation� while larger scale cooperation in V� supports long�range boundary
completion and grouping� In addition� the same short�range inhibition that helps the model
V� to generate only well�supported long�range groupings �e�g�� Figure �C� can� as part of the
homologous V� circuit� simulate how mutually perpendicular inducers can prevent groupings
in monkey area V� �Figure �C�� which when they do form between colinear inducers improve
stimulus detectability by mutual activation��� The same mechanisms also help to explain
more global properties of Gestalt grouping �Figure ���

Feedback from Area V� to LGN

The model also relies on reciprocal connectivity between cortex and LGN �Figure �D��
Layer � in both brain and model sends topographic excitation and broader�range inhibition
back to the LGN������ This feedback selects and synchronizes LGN activities that are
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Figure �� Simulation of the� �A� Grosof et al� display��� illusory contours between the
o�set gratings occur in both V� and V�� �B� von der Heydt et al� display�� illusory contours
group the line ends in V� but not V�� �C� Kapadia et al� display��� horizontal orientations
compete with the vertical grouping� The displays are in the top row� the simulated V�
responses are in the middle row� and the simulated V� responses are in the bottom row�

consistent with cortical cell activity������ In so doing� it increases the visual information
transmitted from LGN to cortex by enhancing contextually signi�cant di�erences between
LGN responses�� and may in�uence the length tuning of LGN cells��� Model feedback
from layer � cells also enhances LGN responses near line�ends� thereby strengthening the
perpendicular cortical responses at line�ends that enable them to cooperatively group��� as
in Figure �C�

A Role for Feedback in Learning�
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V2

V1

LGN

Figure �� Schematic of LGN�V��V� model circuitry� The V� circuit is proposed to replicate
the main properties of the V� circuit but at a larger spatial scale�
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It has been suggested that corticogeniculate feedback helps to stabilize perceptual learn�
ing in V�� notably the adaptive tuning of disparity�sensitive cortical complex cells that occurs
during the visual critical period��� Top�down adaptive feedback of this type seems to oc�
cur at many levels of visual and auditory processing in the brain��� The corticogeniculate
feedback pathway may prove to be a particularly accessible system for studying how cortical
learning is dynamically stabilized by feedback�
FACADE Theory and Related Vision Models

Taken together� these results suggest how multiple levels of thalamocortical organization
work together to generate the emergent boundary groupings that help to form visual per�
cepts in a context�sensitive way� The present model of boundary grouping further develops
an evolving neural theory of visual perception� called FACADE theory� that has previously
been used to analyse a diverse set of perceptual and neural data about both boundary and
surface perception� including data on brightness� color� form� texture� depth� motion� and
�gure�ground perception������	���� The boundary formation circuits of FACADE theory are
collectively called the Boundary Contour System� or BCS� The present work suggests how
the combined e�ects of long�range cooperation� short�range competition� a cortical hypercol�
umn map� laminar cortical organization� interlaminar feedback pathways� and hierarchical
replication of the same processing modules with di�erent spatial scales � can robustly achieve
context�sensitive properties of boundary grouping that were di�cult to explain using earlier
versions of the BCS� The new BCS model does so� moreover� without undermining explana�
tions of other types of data that the theory had previously handled�

One di�erence between the BCS and competing perceptual grouping models is that the
BCS uses feedback between its cooperative and competitive cells� Alternative models have
invoked the bipole property that was introduced with the BCS� but have assumed that this
property is expressed in a purely feedforward circuit������ These alternative models need to
somehow deal with the fact that interlaminar feedback between layers �� �� and � does exist�
and that various perceptual grouping data� notable data about visual persistence and bistable
percepts� exhibit grouping formation and reset times in the hundreds of milliseconds that
seem to require feedback and have� in fact� been explained using it�������� More generally�
whereas a model that uses feedback can inhibit strong signals if they are weak relative
to a prescribed image context� and can amplify weak signals if they are strong relative to a
prescribed image context� feedforward models have a more limited range of options� Feedback
grouping models can also create coherent representations� including fast synchronous binding
of signals����	� that feedforward models cannot�

Perhaps as a result of these advantages� feedback models have been shown capable of
generating appropriate boundary groupings in response to the types of complex and noisy
imagery that are created by arti�cial sensors� such as synthetic aperture radar� laser radar�
and infrared radar sensors������ We have also found that the re�ned grouping mechanisms
that are reported herein are capable of generating even more accurate� computationally
e�cient� and noise tolerant boundary groupings of radar images than did previous versions
of the model� The present version of the BCS model hereby illustrates how the various levels
of cortical organization � its layers� columns� maps� networks� and successive processing
stages � work together to generate e�cient perceptual representations of the external world�
whether natural or man�made�
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Figure 	� A� An ambiguous grouping �both vertical and horizontal� may be perceived in
response to this image� and is simulated by the model� �B� Additional horizontal lines cause
the grouping to become horizontal in perception and the model�
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