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Ahsfrucf-Recent results towards de\elopment of a neural network 
architecture for general-purpose preattentive vision are summarized. 
The architecture contains two parallel subsystems, the boundarj cun- 
tour system (BCS) arid the feature contour system (FCS), which inter- 
act together to generate a representation of form-and-color-and-depth. 
Eiiiergent houndar? segmentation w ithin the BCS and featural filling- 
in ~ i t h i n  the FCS are herein eniphasized within a monocular setting. 
Applications t o  the analysis of houndaries. textures, and smooth sur- 
faces are dewrihed. as is a model for invariant brightness perception 
under variahle illumination condition5. The theory shows hoa suitably 
defined parallel and hierarchical interactions overcome computational 
uncertainties that iiecessarily exist at early processing stages. Some of 
the psychophysical and neiiroph!siological data \upporting the the- 
ory's predictions are nientioned. 

THE N E E n  F O R  A GENERAL PURPOSE PREATTENTIVE 
V I S I O N  MACHINE 

ANY AI algorithms for machine vision have been M too specialized for applications to real-world prob- 
lems. Such algorithms are often designed to deal with one 
type of information-for example, boundary, disparity, 
curvature, shading, or spatial frequency information. 
Moreover. such algorithms typically use different coni- 
putational schemes to analyze each distinct type of infor- 
mation, so that unification into a single general-purpose 
vision algorithm is difficult at best. For such AI algo- 
rithms. other types of signals are often contaminants, or 
noise elements, rather than cooperative sources of ambi- 
gu it  y - red uc i ng info rnia t i on. U n fo rt u na t e 1 y . most rea I is t i c 
scenes contain partial information of several different 
types in each part of a scene. 

In  contrast. when we humans gaze upon a scene. our 
brains rapidly combine several different types of locally 
ambiguous visual information to generate a globally con- 
sistent and unambiguous representation of forn-and-color- 
in-depth. This state of affairs raises the question: what 
new computational principles and mechanisms are needed 
to understand how multiple sources of visual information 
cooperate automatically to generate a percept of three-di- 
mens ional form? 
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has been developing such a general purpose automatic vi- 
sion architecture, and this paper reviews and integrates 
some of our recent work on its design. This architecture 
clarifies how scenic data about boundaries, textures, 
shading, depth, multiple spatial scales, and motion can be 
cooperatively synthesized in real-time into a coherent rep- 
resentation of three-dimensional form. Moreover, it has 
become clear through cooperative work with collegues at 
M.I.T. Lincoln Laboratory that the same processes which 
are useful to automatically process visual data from hu- 
man sensors are equally valuable for processing noisy 
multidimensional data from artificial sensors, such as laser 
radars. These processes are called emergent segmentation 
and featural filling-in. 

WHY rm Wrr BOTHER '1.0 SEE'? 
T H E  DIFFERtNCE Bt:.TWEtlN s C; AND Rt:CO(;NI%IN(; 

The difficulties inherent in computationally understand- 
ing biological vision can be appreciated by considering a 
few examples. Fig. 1 depicts a type of visual image that 
has been named after L. Glass. When we view such a 
Glass pattern, we see and recogtiize many black dots on 
white paper, but we also recognize among the dots cir- 
cular groupings that we do not see. For most individuals. 
these circular groupings do not generate brightnesses o r  
colors that differ significantly from the background. Thus 
there is a profound difference between seeing and recog- 
nizing. and we can sometimes recognize groupings that 
we cannot see. This state of affairs raises the interesting 
question: if we can recognize things that we cannot see. 
then why do we bother to see? 

The seriousness of this issue is illustrated by consider- 
ing the image of a texture shown in Fig. 2 ,  which was 
introduced by Beck [ I ] .  Humans can very quickly. and 
without prior experience with that texture. distinguish its 
top-half from its bottom-half. One type of factor that we 
use to accomplish this are the long horizontal groupings 
which are generated perpendicular to the line ends in the 
top half of the texture. Although these emergent horizon- 
tal groupings, or segmentations. are critical in  helping us 
to recognize that the bottom half is different from the top 
half, these horizontal segmentations are not seeti in the 
traditional sense of generating a large brightness or color 
differences. Thus. perceptually invisible segmentations 
are critical in the recognition of visual form. 

The other side of the coin is equally perplexing; namely. 
we can sometimes see things that are not in the image. as 
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Fig. I .  A glash pattern: the emergent circuiar pattern i s  "recognircd." 
although i t  i h  not "seen." a\ ;I pai ie i -n ol dillering eontra\ts.  The teyt 
\uggc\ts how this happen\. 

Fig.  2 .  Textural grouping supported by \uhlective contour \ :  cooperation 
among end cut'\ induccd perpendiculai- to the i i i iage line end\ generate\ 
horizontal \ubjecti\e contour\ in the top  h a l l  o f  (h i \  tigurc. The text 
huggests hov. thi\ happen\ .  

Fig. 3 An Ehrenstcin figure. ;I hrlght circular dish IS percei\ed even though 
all white arcah arc equall) l u m i n a n t .  The text suggch is  h o u  thl\ happcns. 

in illusory figures. Thus. in viewing the Ehrenstein figure 
shown in Fig. 3,  we can see a bright disk within the per- 
pendicular lines, although the luminance across all white 
parts of the figure is the same. 

THE HIERARCHICAL R E S O I ~ U I ~ I O N  O F  UNCI:K I A I W Y  

In  order to computationally understand such labile re- 
lationships between recognized emergent segmentations 
and seen brightnesses, it has been necessary to develop a 
qualitatively different type of vision theory [6], 1 I O ] - [  131. 
[ 151. Our theory holds that the seeming paradoxes of  Figs. 
1-3 can be understood by considering such figures to be 
probes of adaptive neural mechanisms which evolved as 
our ancestors coped with constantly changing visual en- 
vironments. Specifically, our visual systems are designed 
to detect relatively invariant surface colors under variable 
illumination conditions. to detect relatively invariant ob- 
ject boundary structures amid noise caused by the eyes' 
own optics or occluding objects, and to recognize familiar 
objects or events in the environment. These three princi- 
ple functions are performed by the three main subsystems 
of our theory. the feature contour system (FCS). the 
boundary contour system (BCS). and the object recogni- 
tion system (ORs), respectively, as indicated in the ma- 
crocircuit of Fig. 4. 

A unifying theme constraining the design of the the- 
ory's mechanisms is that there exist fundamental limita- 
tions of the visual measurement process-that is, uncer- 
tainty principles are just as important in vision as in 
quantum mechanics. For example, the computational de- 
mands placed on a system that is designed to detect in- 
variant surface colors are, in many respects, complemen- 
tary to the demands placed on a system that is designed 
to detect invariant boundary structures. That is why the 
FCS and BCS in Fig. 4 process the signals from each 
monocular preprocessing ( M P )  stage in parallel. This is 
not to say that the FCS and BCS are independent mod- 
ules. Fig. 5 depicts in greater detail how levels of the FCS 
and BCS interact through multiple feedforward and feed- 
back pathways to generate a visual representation at the 
final level of the FCS, which is called the binocular syn- 
cytium. 

In addition to the complementary relationship between 
the FCS and the BCS, there also exist informational un-  
certainties at processing levels within each of these sys- 
tems. As indicated below, the computations within the 
FCS which reduce uncertainty due to variable illumina- 
tion conditions create new uncertainties about surface 
brightnesses and colors that are resolved at a higher FCS 
level by a process of featural filling-in. Likewise, the 
computations within the BCS which reduce uncertainty 
about boundary orientation create new uncertainties about 
boundary position that are resolved at a higher BCS level 
by a process of boundary completion. 

The theory hereby describes how the visual system as 
a whole can compensate for such uncertainties using both 
parallel and hierarchical stages of neural processing. Thus 
the visual system is designed to achieve heterarchicul 
cotnperisution fiir uncertainties of tneusurernetit. 
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BINOCULAR 
SYNCYTIUM 

dr 
t 

Fig. 4. A iiiacrocircuit o l  procc\\ing \rages. iiionocuI;!r prepi-oce\sed sig- 
nal\ ( M P )  are sent indepcndentl) to both the houndar)  c o n t o u r  systeni 
(BCS) and the fcature contour s)\tcni tFCS).  The BCS preattentively 
generate\ coherent boundap \tructure\ lroiii these M P  \ignal\. These 
\tructures send o u t p u t s  to both the FCS und the oblect recognition sys ten i  
(ORS) .  The ORs. in turn. rapidl) bends top-doun learned template \ig- 
nals. o r  expectation\. to the BCS. Thew teinplatc \ignals can inodify the 
preattentively completed boundary \tructui-es using learned. at ten t ive  in- 

thew moditication\ along to the FCS. The 
signal\ lronl the BCS organize the FCS into perceptual region\ wherein 
tillinpin o1 \‘i\ihlc hrightne\\e\ and color \  can occur. Thi\ tilling-in pro- 
ce rs  i \  acti \ated bq signal\ Iron1 the M P  \tage. The coi l lpleted FCS rep- 
rewntation. in t u r n .  a l s o  intc‘racts with the ORS. 

One of the theory’s most central and novel insights con- 
sists in the interactions which it  posits between the BCS 
and the FCS. The division of labor described so far-the 
BCS to perform boundary segmentation and the FCS to 
detect verdical surface color-is not simply a partitioning 
for simplicity or convenience. Rather. the real-time com- 
putational demands of the two processes are intimately 
related and in specific ways. As shown below, BCS dy- 
namics require oriented filtering operations followed by 
oriented cooperative-competitive feedback interactions 
because such an architecture can rapidly and in a context- 
sensitive manner perform the requisite boundary segmen- 
tation that the FCS itself needs in order to pool, or fill-in, 
its estimates of surface color among regions belonging to 
the same perceived ob.jects. That pooling is a type of uno- 
riented spatial averaging performed by a diffusion process 
which is described in a subsequent section. Were a dif- 
fusion of signals employed within the BCS itself. how- 
ever, it could blur the very boundaries that it  seeks to 
sharpen and thereby defeat both the BCS and FCS system 
goals. Accordingly. as shown in Fig. 4. the BCS pro- 
cesses occur separately of, and in parallel with, FCS pro- 
cesses, but send topographically matched signals to the 
FCS to organize the spatial structuring of FCS processes. 

The theorv’s noveltv is indicated bv the tvDes of Dara- 

MONOCULAR 
SY NCY TlUM 

t t  
Fig. 5 .  Macrocircuit o1 monocular and binocular interactions within the 

boundary contour  \ y \ t e m  (BCS) and the feature c o n t o u r  $y\teiii (FCS): 
left and right iiionocuI;ir preprocessing stages ( MP, and M P , )  send par- 
;illcl tiionocular inputs  to the BCS (boxe\ with vertical lines) and the FCS 
(boxe\  \bith thi-cc pairs cif circle\). The monocular BCS, and BCS, in- 
teract \ ia h o t t o n - u p  pathways labeled I to generate a coherent binocular 
boundary \egiiientation. This \egmentation generates output  signals 
called tilling-in generators (F IG’S)  and filling-in harriers (FIB‘S). The 
FlGs input to the ii ionocular tilling-in domains, o r  syncytia. o f  the FCS. 
The FIB‘\ input to the binocular tilling-in domoins. o r  \yncyt ia .  o f  the 
FCS. Inputs Iron1 the MP htages interact with FIG‘S at the iiionocular 
\q nc) tia where they select those nioiiocular FC \ignals that iire binocu- 
larly con\i\tcnt. The \elected FC signals are carried by the pathway., 
labeled 2 to the hinocular syncytia where the) interact with FIB \ignals 
tniiii the BCS t o  generite ;I multiple hcale repre\entation of  lorni-and- 
color-in-depth within the binocular syncytia. The present anicle de- 
wrihes \ o m e  iiioiioctiliir properties ol the interaction\ troiii an MP stage 
[hi-ough the first few BCS and FCS stages. naii icly those syinbolired by 
the pathways labeled I and FIG. 

doxical statements that it makes computationally precise. 
Thus, not only are the circular and horizontal segmenta- 
tions of Figs. l and 2 invisible. but also all houndarirs 
lire irzvisihlr. Not only are such apparent curiosities as the 
bright disk in Fig. 3 “illusory” percepts. but even rather 
mundane objects are “illusory” percepts. Indeed, as ex- 
plained below, all line ends are illusory. 

With this overview, we can now consider the dynamics 
of these two systems and their relationship to the ORS in 
greater detail. 

PREATTENTIVE VISUAL PROCESSING BY THE BOUNDARY 
CONTOUR SYSTEM A N D  FEATURE CONTOUR SYSTEM 

The theory’s general purpose capabilities depend upon 
its decomposition into BCS, FCS, and ORS subsystems. 
Both the BCS and FCS operate preattentively and auto- 
matically upon all images. whether or not these images 
have been experienced before. Unlike approaches based 
upon simulated annealing [ 81, [ 181, the BCS and FCS do 
not need to include specific information in the form of 
probability distributions about a limited class of expected 
images. Moreover, the BCS does not rely upon the inde- 
pendent manipulation of an external parameter, such as a 
temperature parameter, to regular convergence to an equi- 
librium determined bv these Dredeterniined Drobabilitv 
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distributions. Instead the BCS utilizes internal coopera- 
tive-competitive feedback interactions to regulate the 
real-time grouping and convergence of the system to one 
of a very large number of possible stable equilibria. Con- 
sequently, whereas stochastic relaxation techniques can, 
at best, sharpen expected properties of an image, the BCS 
can begin to simulate the key property of preattentive vi- 
sion: the automatic discovery of emergent image group- 
ings that may never have been experienced before. 

Thus, the BCS is itself a general purpose device in the 
sense that it can generate an emergent 3-D boundary seg- 
mentation in response to a wide variety of image proper- 
ties. For example, it is capable of detecting, sharpening, 
and completing image edges; of grouping textures; of 
generating a boundary web of boundary compartments that 
conform to the shape of smoothly shaded regions; and of 
carrying out a disparity-sensitive and scale-sensitive 
binocular matching process that generates fused binocular 
structures from disparate pairs of monocular images. The 
outcome of this 3-D boundary segmentation process is 
perceptually invisible within the BC System. Visible per- 
cepts are a property of the FC System. 

A completed segmentation within the BC system elicits 
topographically organized output signals to the FC sys- 
tem. These completed BC signals regulate the hierarchi- 
cal processing of color and brightness signals by the FC 
system (Fig. 5 ) .  Notable among FC system processes are 
the automatic extraction from many different types of im- 
ages of color and brightness signals that are relatively un-  
contaminated by changes in illumination conditions- 
again a general purpose property. These feature contour 
signals interact within the FC system with the output sig- 
nals from the BC system to control featural filling-in pro- 
cesses. These filling-ia processes lead to visible percepts 
of color-and-form-in-depth at the final stage of the FC 
system, which is called the binocular syncytium (Fig. 5 ) .  

Such a theoretical decomposition of the vision process 
conforms to, and has in fact predicted. properties of  a 
similar decomposition that governs the design of the 
mammalian visual cortex. For example, in the theory's 
analyses and predictions of neurobiological data, the 
monocular preprocessor stage ( MP,,, M P R )  of Figs. 4 and 
5 is compared with opponent cells of the lateral geniculate 
nucleus, the first stage of the BC system is compared with 
simple cells of the hypercolumns in area V 1 of striate cor- 
tex. the first stage of the FC system is compared with cells 
of the cytochrome oxydase staining blobs of area VI  of 
striate cortex. the binocular syncytium is compared with 
cells of area V 4  of the prcstriate cortex. and the intcrven- 
ing BC system and FC system stages are compared with 
complex. hypercomplex. double opponent, and related 
cell types in areas V I .  V 2 .  and V4 of striate and prestriate 
cortex [ I O ] ,  [ 121. Some o f  these neural interpretations are 
described in greater detail in subsequent sections. 

I N  I ERACTIONS BETWI-.EN P K ~ , A ' I ' I ~ L : N ~ I ' I V l :  VISION A N I )  

P o s T ~ ~ r T E s ~ i - I v b ~  L E A K N I : I )  OHIbC'I'  Rb,COCiN[.I1ox 

The processes summarized in Figs. 4 and 5 are preat- 
tentive and automatic. These preattentive processes may, 

however, influence and be influenced by attentive, learned 
object recognition processes. The macrocircuit depicted 
in Fig. 4 suggests, for example, that a preattentively com- 
pleted boundary segmentation within the BCS can directly 
activate an object recognition system (ORs), whether or 
not this segmentation supports visible contrast differences 
within the FCS. In the Glass pattern of Fig. 1 ,  for ex- 
ample, the circular groupings can be recognized by the 
ORS even though they do not support visible contrast dif- 
ferences within the FCS. 

The ORS can, in turn, read out attentive learned prim- 
ing, or expectation, signals to the BCS. Why the ORS 
needs to read out learned top-down attentive feedback sig- 
nals is clarified elsewhere by results from adaptive reso- 
nance theory. which has demonstrated that learned top- 
down expectations help to stabilize the self-organization 
of object recognition codes in response to complex and 
unpredictable input environments 13]-[5]. In response to 
familiar objects in a scene. the final 3-D boundary seg- 
mentation within the BCS may thus be tloirhly completed. 
first by automatic preattentive segmentation processes and 
then by attentive learned expectation proce 
bly completed segmentation regulates the 
in processes within the FCS that lead to a percept of vis- 
ible torin. The FCS also interacts with the ORS in order 
to generate recognitions of color and surface properties. 

The feedback interactions between the preattentive BCS 
and FCS and the attentive. adaptive ORS emphasize that 
these subsystems are not independent modules. and clar- 
ify why the distinction between preattentive and attentive 
visual processing has been so controversial and elusive in 
the vision literature. Indeed, while seminal workers such 
as Beck and Julesz have probed the preattentive aspects 
of textural grouping. no less distinguished work, using 
closely related visual images, has emphasized the atten- 
tive and cognitive aspects of vision. as i n  the "uncon- 
scious inferences" of Helmholtz and the "cognitive con- 
tours" of Gregory. The possibility that emergent 
segmentations within the BCS can be doubly completed. 
both by preattentive segmentations and attentive learned 
expectations. helps to unify these parallel lines of inquiry, 
and cautions against ignoring the influence of attentive 
feedback upon the "preattentivc" BCS and FCS. I n  ad- 
dition. the rules whereby such parallel inputs from the 
BCS and the FCS arc combined within the ORS have rc- 
cently been the subject of active experimental investiga- 
tion. especially due to the excitement surrounding the dis- 
covery of "illusory conjunctions" 1261. whereby form and 
color information may be improperly joined under suit- 
ab I e ex pe ri me n t a I co nd i t ions . 

The functional distinction between the attentive learned 
ORS and the "preattentive" BCS and FCS also has a 
neural analog i n  the functional architecture o f  mammalian 
neocortex. Whereas the BCS and FCS are neurally inter- 
preted in terms of data about areas V I ,  V 2 .  and V4 of 
visual cortex. the ORS is interpreted in terms of data con- 
cerning inferotemporal cortex and related brain regions 

The present theory hereby clarifies two distinct types o f  
1231. 
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interactions that may occur among processes governing 
form and color perception: preattentive interactions from 
the BCS to the FCS (Fig. 5 )  and attentive interactions 
between the BCS and the ORS and the FCS and the ORS 
(Fig. 4). We now summarize the monocular model mech- 
anisms whereby the BCS and the FCS preattentively in- 
teract. This foundation has elsewhere been used to derive 
the theory’s binocular mechanisms [ 1 I]. 

DISCOUNTING THE ILLUMINANT: EXTRACTING FEATURE 
CONTOURS 

One form of uncertainty with which the nervous system 
deals is due to the fact that the visual world is viewed 
under variable lighting conditions. When an object re- 
flects light to an observer’s eyes, the amount of light en- 
ergy within a given wavelength that reaches the eye from 
each object location is determined by a product of two 
factors. One factor is a fixed ratio, or reflectance, which 
determines the fraction of incident light that is reflected 
by that object location to the eye. The other factor is the 
variable intensity of the light which illuminates the object 
location. Two object locations with equal reflectances can 
reflect different amounts of light to the eye if they are 
illuminated by different light intensities. Spatial gradients 
of light across a scene are the rule, rather than the excep- 
tion, during perception, and wavelengths of light that il- 
luminate a scene can vary widely during a single day. If 
the nervous system directly coded into percepts the light 
energies which it received, it would compute false mea- 
sures of object colors and brightnesses, as well as false 
measures of object shapes. This problem was already clear 
to Helmholtz. It demands an approach to visual percep- 
tion that points away from a simple Newtonian analysis 
of colors and white light. 

Land [19] and his colleagues have sharpened contem- 
porary understanding of this issue by carrying out a series 
of remarkable experiments. In these experiments, a pic- 
ture constructed from overlapping patches of colored pa- 
per, called a McCann Mondrian, is viewed under different 
lighting conditions. If red, green, and blue lights simul- 
taneously illuminate the picture, then an observer per- 
ceives surprisingly little color change as the intensities of 
illumination are chosen to vary within wide limits. The 
stability of perceived colors obtains despite the fact that 
the intensity of light at each wavelength that is reflected 
to the eye varies linearly with the incident illumination 
intensity at that wavelength. This property of color sta- 
bility indicates that the nervous system “discounts the il- 
luminant,” or suppresses the “extra” amount of light in 
each wavelength, in order to extract a color percept that 
is invariant under many lighting conditions. 

In an even more striking experimental demonstration of 
this property, inhomogeneous lighting conditions were 
devised such that spectrophotometric readings from po- 
sitions within the interiors of two color patches were the 
same, yet the two patches appeared to have different 
colors. The perceived colors were, moreover, close to the 
colors that would be perceived when viewed in a homo- 
geneous source of white light. 

These results show that the signals from within the in- 
teriors of the colored patches are significantly attenuated 
in order to discount the illuminant. This property makes 
ecological sense since even a gradual change in illumi- 
nation level could cause a large cumulative distortion in 
perceived color or brightness if it were allowed to influ- 
ence the percept of a large scenic region. In contrast, il- 
luminant intensities typically do not vary much across a 
scenic edge. Thus, the ratio of light signals reflected from 
the two sides of a scenic edge can provide an accurate 
local estimate of the relative reflectances of the scene at 
the corresponding positions. We have called the color and 
brightness signals which remain unattenuated near scenic 
edges FC signals. 

The neural mechanisms which “discount the illumi- 
nant” overcome a fundamental uncertainty in the retinal 
pickup of visual information. In so doing, however, they 
create a new problem of uncertain measurement, which 
illustrates one of the classical uncertainty principles of vi- 
sual perception. If color and brightness signals are sup- 
pressed except near scenic edges, then why do not we see 
just a world of colored edges? How are these local FC 
signals used by later processing stages to synthesize global 
percepts of continuous forms, notably of color fields and 
of smoothly varying surfaces? 

FEATURAL FILLING-IN AND STABILIZED IMAGES 
Our monocular theory has developed mechanisms 

whereby contour-sensitive FC signals activate a process 
of lateral spreading, or filling-in, of color and brightness 
signals within the FCS. This filling-in process is con- 
tained by topographically organized output signals from 
the BCS to the FCS (Fig. 5 ) .  Where no BC signals ob- 
struct the filling-in process, its strength is attenuated with 
distance since it is governed by a nonlinear diffusion pro- 
cess. Our monocular model for this filling-in process was 
developed and tested using quantitative computer simu- 
lations of paradoxical brightness data. 

Many examples of featural filling-in and its contain- 
ment by BC signals can be cited. A classical example of 
this phenomenon is described in Fig. 6. The image in Fig. 
6 was used by Yarbus [28] in a stabilized image experi- 
ment. Normally, the eye jitters rapidly in its orbit, and 
thereby is in continual relative motion with respect to a 
scene. In a stabilized image experiment, prescribed re- 
gions in an image are kept stabilized, or do not move with 
respect to the retina. Stabilization is accomplished by the 
use of a contact lens or an electronic feedback circuit. 
Stabilizing an image with respect to the retina can cause 
the perception of the image to fade. The adaptive utility 
of this property can be partially understood by noting that, 
in humans, light passes through retinal veins before it 
reaches the photosensitive retina. The veins form stabi- 
lized images with respect to the retina; hence, they are 
fortunately not visible under ordinary viewing conditions. 

In the Yarbus display shown in Fig. 6, the large circular 
edge and the vertical edge are stabilized with respect to 
the retina. As these edge percepts fade, the red color out- 
side the large circle is perceived to flow over and envelope 
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Fig. 6 .  A classical example of featural filling-in: when the edges of the 
large circle and the vertical line are stabilized on the retina, the red color 
(dots) outside the large circle envelopes the black and white hemidisks 
except within the small red circles whose edges are not stabilized [28]. 
The red inside the left circle looks brighter and the red inside the right 
circle looks darker than the enveloping red. 

the black and white hemi-discs until it reaches the small 
red circles whose edges are not stabilized. This percept 
illustrates how FC signals can spread across, or fill-in, a 
scenic percept until they hit perceptually significant 
boundaries. Our neural network model of this process ex- 
plains how filling-in occurs within the black and white 
regions, and why the left red disk appears lighter and the 
right red disk appears darker than the surrounding red re- 
gion that envelopes the remainder of the percept. 

This model is schematized in Fig. 7. It has been used 
to simulate a wide range of classical and recent phenom- 
ena concerning brightness perception which have not 
heretofore been explained by a single theory [ 151. The 
equations defining the model are now defined. 

A MODEL FOR INVARIANT BRIGHTNESS PERCEPTION 
UNDER VARIABLE ILLUMINATION CONDITIONS 

The equations underlying the Grossberg and TodoroviC 
[ 151 model are based on and extend work by Grossberg 
[9], Cohen and Grossberg [6], and Grossberg and Min- 
golla [13]. The exposition follows the description of lev- 
els in Fig. 7. Only the two-dimensional versions of the 
equations are presented. The one-dimensional forms can 
be derived by straightforward simplifications. The two- 
dimensional simulation in Fig, 9 below was performed on 
a 30 x 30 lattice and that in Fig. 10 on a 40 X 40 lattice. 
The one-dimensional simulations involve 256 units. 

Level I :  Gray-Scale Image Description 
Denote by I f /  the value of the stimulus input at position 

( i ,  j ) in the lattice. In all simulations these values varied 

pi 
2 0 0 0  

F 

A 

1 
Fig. 7 .  Model of how the feature contour system discounts variable illu- 

minants and regulates featural filling-in: The thick-bordered rectangles 
numbered from 1 to 6 correspond to the levels of the system. The sym- 
bols inside the rectangles are graphical mnemonics for the types of com- 
putational units residing at the corresponding model level. The arrows 
depict the interconnections between the levels. The thin-bordered rect- 
angles coded by letters A through E represent the type of processing 
between pairs of levels. Inset F illustrates how the activity at level 6 is 
modulated by outputs from level 2 and level 5 .  This simplified model 
directly extracts boundaries from image contrasts, rather than generating 
emergent segmentations from image contrasts. The model's key ele- 
ments concern how the level 2 network of shunting on-center off-sur- 
round interactions discounts variable illuminants while extracting feature 
contour signals. and how level 5 fills-in these signals via a nonlinear 
diffusion process within the compartments defined by boundary contoiir 
system output signals. 

between 1 and 9. In order to compute the spatial convo- 
lutions of level 2 cells without causing spurious edge ef- 
fects at the extremities of the luminance profile, the lu- 
minance values at the extremities were continued outward 
as far as necessary. 

Level 2: Shunting On-Center Off-Surround Network for 
Discounting Illuminants and Extracting FC Signals 

The activity xIJ of a level 2 on-cell at position ( i ,  j ) of 
the lattice obeys a membrane equation, also called a 
shunting equation, 

d zxl/ = + ( B  - x l J ) c l j  - (.IJ + ( l )  

where C,, ( E , )  is the total excitatory (inhibitory) input to 
x f J .  Each input C,, and E,, is a discrete convolution with 
Gaussian kernel of the inputs Ipq: 
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and shifted from ( i ,  j ) as follows: 

(10) 

(11) 

and 

H$; = exp { - y - 2 [ ( p  - i - mk)’ + ( q  - j  - nk)’] )  

(12)  

F$$ = G .. - f $ k ! .  
P W  P41J 

where 
2 

Gpqij = exp { Y 2 [ ( P  - i)’ + ( 4  - j )  I )  

with 

( 3 )  

where 

cPqij = c exp { --a-* log 2 [ ( p  - i>’ + ( q  - j ) ’ ] )  

(4)  

and 

Epqij = E e x p  { -p -2  log 2 [ ( p  - i)z + ( q  - j ) ’ ] ] .  

( 5 )  

The influence exerted on the level 2 potential xij by input 
Zp4 diminishes with increasing distance between the two 
corresponding locations. Thus, the receptive fields have a 
circular shape. To achieve an on-center off-surround anat- 
omy, coefficient C of the excitatory kernel in (4) is chosen 
larger than coefficient E of the inhibitory kernel in ( 5 ) ,  
but CY, the radius of the excitatory spread at half strength 
in (4), is chosen smaller than p, its inhibitory counterpart 
in (5 ) .  In the simulations, this equation is solved at equi- 
librium. Then ( d / d t ) x i j  = 0, so that 

c (BCpqij - DEpqijVpq 

A + c (Cpqij + E p q i j ) I p q ’  
( 6 )  x,, = ( P . 4 )  

( P . 9 )  

The denominator term normalizes the activity xij. 

rectified, part of xu:  
The output signal from level 2 is the nonnegative, or 

Xij  = max ( x c ,  0) .  ( 7 )  

Levels 3-5 compute the boundary contour signals used 
to contain the featural filling-in process. These boundary 
contour signals do not include properties of emergent seg- 
mentation. The equations for the BCS may be appended 
to the model, as explained below, when emergent seg- 
mentation is required. 

Level 3: Simple Cells 
The potential Yi jk  of the cell centered at position ( i ,  j ) 

whose oriented receptive field possesses orientation k 
obeys an additive equation 

which is computed at equilibrium: 

(9) 

in all our simulations. In order to generate an oriented 
kernel FE; as simply as possible, let F$$ be the difference 
of an isotropic kernel GPqu centered at ( i ,  j ) and another 
isotropic kernel H$$ whose center ( i  + mk, j + n k )  is 

2irk 
mk = sin - 

K 

and 

2irk 
nk = cos-. 

K 

In the 2-D simulations, the number K is 12, whereas for 
the 1-D simulations it is 2.  

The output signal from level 3 to level 4 is the non- 
negative, or rectified, part of Y L J k ,  namely 

K J k  = max ( Y l ~ k ,  O ) .  (15) 

Level 4: Complex Cells 
Each level 4 potential Z I J k  with position ( i ,  j ) and on-  

entation k is made sensitive to orientation but insensitive 
to direction-of-contrast by summing the output signals 
from the appropriate pair of level 3 units with opposite 
contrast sensitivities; viz., 

Zgk  = K j k  + K j ( k + K / 2 ) .  (16) 

An output signal ZIJk is generated from level 4 to level 5 
if the activity zIJk exceeds the threshold L: 

Z,,k = max (zIJk - L,  0 ) .  (17) 

Level 5: Boundary Contour Signals 

signals from all level 4 units at that position; viz., 
A level 5 signal z ,  at position ( i ,  j ) is the sum of output 

‘IJ = ’Ilk. (18) 

Level 6 computes the filling-in process, which is reg- 
ulated by feature contour inputs from level 2 and bound- 
ary contour inputs from level 5 .  

Level 6: Filling-In Process 

cess obeys a nonlinear diffusion equation 
Each potential S, at position ( i ,  j ) of the filling-in pro- 

The diffusion coefficients that regulate the magnitude of 
cross influence of location ( i ,  j ) with location ( p ,  q )  de- 
pend on the boundary contour signals ZPq and Z, as fol- 
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lows: 

6 p . . =  
W’ 1 + E(Zpq + ZJ 

The set NIJ of locations comprises only the lattice nearest 
neighbors of (i, j ): 

N!, = { ( i , j  - l ) ,  ( i  - 1 , j ) ,  ( i  + 1 , j ) ,  ( i , j  + I ) } .  

(21)  
At lattice edges and comers, this set is reduced to the set 
of existing neighbors. According to (19), each potential 
S, is activated by the feature contour output signal XIJ and 
thereupon engages in passive decay (term -MYlJ) and dif- 
fusive filling-in with its four nearest neighbors to the de- 
gree permitted by the diffusion coefficients PPqlJ. At equi- 
librium, each S, is computed as the solution of a set of 
simultaneous equations 

which is compared with properties of the brightness per- 
cept. See Grossberg and Todorovid [ 151 for parameter 
choices. 

COMPUTER SIMULATIONS OF BRIGHTNESS CONSTANCY, 
CONTRAST, AND ASSIMILATION 

Fig. 8 depicts the results of four computer simulations 
with a single set of parameters using a one-dimensional 
version of the model to illustrate its responses to images 
which possess a one-dimensional symmetry. In such an 
image, each horizontal slice through the image possesses 
the same luminance profile, labeled stimulus in Fig. 8. 
Fig. 8(a) and (b) illustrate discounting the illuminant and 
brightness constancy; Fig. 8(c) illustrates discounting the 
illuminant and brightness contrast; and Fig. 8(d) illus- 
trates brightness assimilation. Note that the feature con- 
tour patterns, labeled feature, are distributed activation 
patterns with positive baseline values, rather than zero 
crossings, binary edge patterns, or other classical objects. 
Comparison of the feature contour patterns of Fig. 8(a) 
and (b) illustrate how these patterns discount the illumi- 
nant. The theory also explains how a feature contour pat- 
tern triggers a filling-in, or diffusion, process within com- 
partments bounded by a boundary contour pattern, labeled 
boundary, to generate the filled-in pattern, labeled output, 
on which the percept is based. 

VISIBLE EFFECTS OF INVISIBLE CAUSES 

The computer simulation summarized in Fig. 8(c) is of 
particular interest because it illustrates a visible effect of 
an invisible cause. The luminance gradient between the 
two equiluminant patches in the stimulus caused the dif- 
ferent brightnesses of these patches in the output, but is 

OUTPUT 

U BOUNDARY - 
STIMULUS 

n 
OUTPUT 

A BOUNDbRi 

=z==zLk FEATURE -- 
STIMULUS 

I I  

OUTPUT 

U BOUNDAW 

OUTPUT 

BOUNDMY 

FEATURE V ” ’  

Fig. 8. Simulation of feature contour interactions in response to images 
with a one-dimensional symmetry: the luminance profile (stimulus) in 
(b) is tilted with respect to that in (a) due to an asymmetric light source, 
but the filled-in percept (output) is the same as that in (a), illustrating 
discounting of the illuminant and brightness constancy. Although the 
small patches have equal luminance in (c), their filled-in percepts are 
different, in the direction opposite to their backgrounds, illustrating 
brightness contrast. Although the small inner patches have equal lumi- 
nance in (d), the filling-in percept of the right patch is darker than that 
of the left patch, in the direction of their surrounding patches, illustrating 
brightness assimilation. 

itself rendered invisible in the output due to filling-in. 
Such a process helps to explain the percept of the Yarbus 
display in Fig. 6, which also includes a visible contrast 
due to an invisible filled-in image property. 

SIMULATION OF CRAIK-O’BRIEN CORNSWEET AND 

MCCANN MONDRIAN PERCEPTS 
Figs. 9 and 10 show the results of computer simulations 

using the full two-dimensional version of the model. 
These simulations suggest an explanation of two impor- 
tant visual phenomena which are partly due to featural 
filling-in: the Craik-O’Brien Cornsweet effect and a 
McCann Mondrian image in response to which humans 
perceive a brightness contrast effect that has not been ex- 
plained by other computer vision theories. In Fig. 9, al- 
though the luminances are equal at the left and right sides 
of the image within the dark frame, the filled-in output on 
the left half of the image is more intense (“brighter”) 
than the output on the right. (Activation level is propor- 
tional to the size of the symbols at each location.) In Fig. 
10, although the luminances are equal within the small 
square regions on the 135” diagonal in the upper-left and 
lower-right portions of the image, the filled-in output in 
the upper-left is more intense (“brighter”) than the out- 
put on the lower-right. Both of the effects simulated in 
Figs. 9 and 10 correspond to brightness judgments of hu- 
man observers. 
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Fig. 9. Simulation of the Craik-O'Brien Cornsweet effect. The symbols 
of the units used in these simulations are introduced in Fig. 7 .  The size 
of the symbols codes the activity level of units at corresponding locations 
at different network levels. (a) The luminance distribution (stimulus). 
(b) The feature contour activity pattern that discounts the illuminant (fea- 
ture). (c) The boundary segmentation (boundary). (d) The filled-in 
brightness profile (output) 

a) STIMULUS 

................. 

.......... ................. . . . . . . . . . . .  . . . . . . . . . .  . . . . . . .  
: :e+:: 

. .  . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . _._ . . .  . . .  . ._ . . .  

c) BOUNDARY 

b) FEATURE 

d) OUTPUT 

Fig. I O .  Simulation o f a  Mondrian image. The depicted network levels are 
the same as in Fig. 7. See text for details. 

In summary, the uncertainty of variable lighting con- 
ditions is resolved by discounting the illuminant and ex- 
tracting contour-sensitive FC signals. The uncertainty 
created within the discounted regions is resolved at a later 
processing stage via a featural filling-in process that is 
activated by the FC signals and contained within bound- 
aries defined by BC signals. 

THE BOUNDARY CONTOUR SYSTEM AND THE FEATURE 
CONTOUR SYSTEM OBEY DIFFERENT RULES 

Fig. 11 provides another type of evidence that feature 
contour and boundary contour information is extracted by 
separate, but parallel, neural subsystems before being in- 
tegrated at a later stage into a unitary percept. By now, 
the total body of evidence for this new insight takes sev- 
eral forms: the two subsystems obey different rules; they 
can be used to explain a large body of perceptual data that 
has received no other unified explanation; they can be 
perceptually dissociated; when they are interpreted in 
terms of different neural substrates (the cytochrome-ox- 
ydase staining blob system and the hypercolumn system 
of the striate visual cortex and their prestriate cortical pro- 
jections), their rules are consistent with known cortical 
data and have successfully predicted new cortical data 

Fig. 11 illustrates several rule differences between the 
BCS and FCS. The reproduction process may have weak- 
ened the percept of an "illusory" square, which is called 
a Kanizsa square. The critical percept is that of the 
square's vertical boundaries. The black-gray vertical edge 
of the top-left pac-man figure is, relatively speaking, a 
dark-light vertical edge. The white-gray vertical edge of 
the bottom-left pac-man figure is, relatively speaking, a 
light-dark vertical edge. These two vertical edges possess 
the same orientation but opposite directions-of-contrast. 
The percept of the vertical boundary that spans these op- 
posite direction-of-contrast edges shows that the BCS is 
sensitive to boundary orientation but is indifferent to di- 
rection-of-contrast. This observation is strengthened by 
the fact that the horizontal boundaries of the square, which 
connect edges of like direction-of-contrast, group to- 
gether with the vertical boundaries to generate a unitary 
percept of a square. Opposite direction-of-contrast and 
same direction-of-contrast boundaries both input to the 
same BCS. 

The FCS must, on the other hand, be exquisitely sen- 
sitive to direction-of-contrast. If FC signals were insen- 
sitive to direction-of-contrast, then it would be impossible 
to detect which side of a scenic edge possesses a larger 
reflectance, as in dark-light and red-green discrimina- 
tions. Thus the rules obeyed by the two contour-extract- 
ing systems are not the same. 

The BCS and the FCS differ in their spatial interaction 
rules in addition to their rules of contrast. For example, 
in Fig. 11, a vertical illusory boundary forms between the 
boundary contours generated by a pair of vertically-ori- 
ented and spatially aligned pac-man edges. Thus, the pro- 
cess of boundary completion is due to an inwardly di- 

[lo], [121. 
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Fig. 11.  A reverse-contrast Kanizsa square: an illusory square is induced 
by two black and two white pac-man figures on a grey background. 11- 
lusory contours can thus join edges with opposite directions-of-contrast. 
(This effect may be weakened by the photographic reproduction pro- 
cess.) 

BCS : F C S  : 

t 7  
cooperation 

diffusion 

i n w a r d  o u t w a r d  
propagation propagation 

orientation not orientation 
sensitive sensitive 

not sensitive to sensitive to 
contrast polarity contrast polarity 

Fig. 12. Some computational differences between the BCS and FCS: the 
outcome of a BCS interaction is independent of direction-of-contrast, 
oriented and induced by pairs, or larger numbers, of oriented inducers. 
The outcome of an FCS interaction is dependent upon direction-of-con- 
trast, unoriented, and generated by individual inducers. 

rected and oriented interaction whereby pairs of inducing 
BC signals can trigger the formation of an intervening 
boundary of similar orientation. In contrast, in the filling- 
in reactions of Figs. 8-10, featural quality can flow from 
each FC signal in all directions until it hits a boundary 
contour or is attenuated by its own spatial spread. Thus 
featural filling-in is an outwardly directed and unoriented 
interaction that is triggered by individual FC signals. 
These differences between the BCS and FCS rules are 
summarized in Fig. 12. 

ILLUSORY PERCEPTS AS PROBES OF ADAPTIVE 
PROCESSES 

The adaptive value of a featural filling-in process is 
clarified by considering how the nervous system discounts 
the illuminant. The adaptive value of a boundary comple- 
tion process with properties capable of generating the per- 
cept of a Kanizsa square (Fig. 11)  can be understood by 
considering other imperfections of the retinal uptake pro- 
cess. As noted above, light passes through retinal veins 
before it reaches retinal photoreceptors. Human observers 
do not perceive their retinal veins in part due to the action 
of mechanisms that attenuate the perception of images that 
are stabilized with respect to the retina. 

Suppressing the perception of stabilized veins is insuf- 
ficient, however, to generate an adequate percept. The 
images that reach the retina can be occluded and seg- 
mented by the veins in several places. Broken retinal con- 
tours need to be completed, and occluded retinal color and 
brightness signals need to be filled in. Holes in the retina, 
such as the blind spot or certain scotomas, are also not 
visually perceived due to a combination of boundary com- 
pletion and filling-in processes. These completed bound- 
aries and filled-in colors are illusory percepts, albeit il- 
lusory percepts with an important adaptive value. 
Observers are not aware which parts of such a completed 
figure are “real” (derived directly from retinal signals) or 
“illusory” (derived by boundary completion and featural 
filling-in). Thus, in a perceptual theory capable of under- 
standing such completion phenomena, “real” and ‘‘illu- 
sory” percepts exist on an equal ontological footing. 
Consequently, we have been able to use the large litera- 
ture on illusory figures, such as Figs. l ,  3 , and l l , and 
filling-in reactions, such as in Figs. 8-10, to help us dis- 
cover the distinct rules of BCS segmentation and FCS fill- 
ing-in. 

BOUNDARY CONTOUR DETECTION AND GROUPING 
BEGINS WITH ORIENTED RECEPTIVE FIELDS 

Having distinguished the BCS from the FCS, the rules 
whereby boundaries are synthesized are now stated with 
increasing precision. 

In order to effectively build up boundaries, the BCS 
must be able to determine the orientation of a boundary 
at every position. To accomplish this, the cells at the first 
stage of the BCS possess orientationally-tuned receptive 
fields, or oriented masks. Such a cell, or cell population, 
is selectively responsive to oriented contrasts that activate 
a prescribed small region of the retina, and whose orien- 
tations lie within a prescribed band of orientations with 
respect to the retina. A collection of such orientationally- 
tuned cells is assumed to exist at every network position, 
such that each cell type is sensitive to a different band of 
oriented contrasts within its prescribed small region of the 
scene, as in the hypercolumn model, which was devel- 
oped to explain the responses of simple cells in area Vl 
of the striate cortex [17]. 

These oriented receptive fields illustrate that, from the 
very earliest stages of BCS processing, image contrasts 
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a) (b) 
Fig. 13. Oriented masks respond to amount of luminance contrasi over 

their elongated axis of symmetry, regardless of whether image contrasts 
are generated by (a) luminance step functions. (b) differences in textural 
distribution, or (c) smooth luminance gradients (indicated by the spac- 
ings of the lines). 

are grouped and regrouped in order to generate configu- 
rations of ever greater global coherence and structural in- 
variance. For example, even the oriented masks at the 
earliest stage of BCS processing regroup image contrasts. 
Such masks are oriented local contrast detectors, rather 
than edge detectors. This property enables them to fire in 
response to a wide variety of spatially nonuniform image 
contrasts that do not contain edges, as well as in response 
to edges (Fig. 13). In particular, such oriented masks can 
respond to spatially nonuniform densities of unoriented 
textural elements, such as dots. They can also respond to 
spatially nonuniform densities of surface gradients. Thus 
by sacrificing a certain amount of spatial resolution in or- 
der to detect oriented local contrasts, these masks achieve 
a general detection characteristic which can respond to 
boundaries, textures, and surfaces. 

This general detection characteristic is achieved by 
using a relatively coarse weighted averaging and filtering 
of optical information at the earliest stages of the BCS. 
Such a coarse detection scheme obviates the need to pro- 
liferate a very large number of highly specialized detec- 
tors. In contrast, a vision system that postulated special- 
ized dot, edge, angle, texture, shading, etc., detectors 
would be faced with a formidable problem of combining 
the data from each of these detectors. No less formidable 
is the problem that such specialized detectors often re- 
spond badly to other types of image statistics than the ones 
for which they are specialized. To overcome this prob- 
lem, one would need an expert system to decide which 
type of detector should be applied to particular regions of 
a scene. Such a preprocessor would, however, have to 
solve the very problems that the vision system was sup- 
posed to solve. Thus, the reliance on highly specialized 
detectors leads to a formulation of the vision problem that 
does not work well on images whose properties are not 
narrowly defined, predictable, and controllable in  ad- 
vance. 

On the other hand, the very properties of coarse sam- 

pling that lead to a general detection characteristic also 
imply a certain amount of informational uncertainty. From 
local estimates alone, such a detector cannot, for exam- 
ple, easily decide whether an edge, texture gradient, or 
shading gradient is present. The BCS thus accepts a cer- 
tain amount of informational uncertainty at an early pro- 
cessing stage to ensure system versatility, and uses sub- 
sequent processing levels to help extract, sharpen, and 
complete from the spatial distribution of locally ambigu- 
ous signals those groupings which cohere into percep- 
tually meaningful wholes. 

In particular, the BCS is capable of automatically de- 
tecting and enhancing structures in a visual input by mea- 
suring inhomogeneities in the spatial distribution of local 
oriented contrasts against a statistical baseline that is de- 
termined by the input itself. This is done by a particular 
arrangement of short-range competition and long-range 
cooperation among orientation-sensitive nodes, following 
an initial stage of oriented-contrast filtering. Activations 
in groupings of nodes tuned to similar orientations that 
are approximately aligned in space receive a cooperative 
feedback advantage over randomly distributed network 
activations that arise from imaging noise. These random 
activations help to define the amount of aligned activity 
needed to be counted as signal. We now describe how this 
is done in greater detail. 

AN UNCERTAINTY PRINCIPLE: ORIENTATIONAL 
CERTAINTY IMPLIES POSITIONAL UNCERTAINTY 

AT LINE ENDS AND CORNERS 
The fact that the receptive fields of the BCS are ori- 

enred greatly reduces the number of possible groupings 
into which their target cells can enter. On the other hand, 
in order to detect oriented local contrasts, the receptive 
fields must be elongated along their preferred axis of sym- 
metry. Then the cells can preferentially detect differences 
of average contrast across this axis of symmetry, yet can 
remain silent in response to differences of average con- 
trast that are perpendicular to the axis of symmetry. Such 
receptive field elongation creates even greater positional 
uncertainty about the exact locations within the receptive 
field of the image contrasts which fire the cell. This po- 
sitional uncertainty becomes acute during the processing 
of image line ends and comers. 

Oriented receptive fields cannot easily detect the ends 
of thin scenic lines or scenic comers. This positional un- 
certainty is illustrated by the computer simulation in Fig. 
14(a). The scenic image is a black vertical line (colored 
gray for illustrative purposes) against a white back- 
ground. The line is drawn large to represent its scale rel- 
ative to the receptive fields that it activates. In Fig. 14(a), 
each receptive field covers an area equivalent to 16 x 8 
lattice points. The activation level of each oriented recep- 
tive field at a given position is proportional to the length 
of the line segment at that position which possesses the 
same orientation as the corresponding receptive field. The 
relative lengths of line segments across all positions en- 
code the relative levels of receptive field activation due to 
different parts of the input pattern. We call such a spatial 
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Fig. 14. (a) An orientation field: lengths and orientations of lines encode 
the relative sizes of the activations and orientations of the input masks 
at the corresponding positions. The input pattern, which is a vertical line 
end as seen by the receptive fields, correspond to the shaded area. Each 
mask has total exterior dimension of 16 X 8 units, with a unit length 
being the distance between two adjacent lattice positions. (b) Response 
of the second competitive stage, defined in (28) and Fig. 15, to the ori- 
entation field of Fig. 14(a): End cutting generates horizontal activations 
at line end locations that receive small and orientationally ambiguous 
input activations. 

array of oriented responses an orientation field. An ori- 
entation field provides a concise statistical description in 
real-time of an image as seen by the receptive fields that 
it can activate. It models the responses of cortical simple 
cells in area VI of the visual cortex [ 171. 

In Fig. 14(a), a strong vertical reaction occurs at posi- 
tions along the vertical sides of the input pattern that are 
sufficiently far from the bottom of the pattern. The con- 
trast needed to activate these receptive fields was chosen 
low enough to allow cells with close-to-vertical orienta- 
tions to be significantly activated at these positions. De- 

spite the fact that cells were tuned to respond to relatively 
low contrasts, the cell responses at positions near the end 
of the line are very small. This result obtains in response 
to lines that are wider than lines which generate a contin- 
uous band of vertically-oriented responses throughout 
their interior, and are narrower than lines which generate 
a band of horizontally-oriented responses throughout their 
lowest extremity. Such a choice of lines always exist if 
the receptive field is elongated by a significant amount in 
a preferred orientation. Fig. 14(a) thus illustrates a basic 
uncertainty principle which says: orientational “cer- 
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tainty” implies positional “uncertainty” at the ends of 
scenic lines whose widths are neither too small nor too 
large with respect to the dimensions of the oriented re- 
ceptive field. The next section shows that a perceptual 
disaster would ensue in the absence of hierarchical com- 
pensation for this type of informational uncertainty. 

BOUNDARY-FEATURE TRADEOFF: A NEW 
ORGANIZATIONAL PRINCIPLE 

The perceptual disaster in question becomes clear when 
Fig. 14 is considered from the viewpoint of the featural 
filling-in process that compensates for discounting the il- 
luminant, as in Figs. 8-10. If no BC signals are elicited 
at the ends of lines and at object comers, then in the ab- 
sence of further processing within the BCS, .boundary 
contours will not be synthesized to prevent featural qual- 
ity from flowing out of all line ends and object corners 
within the FCS. Many percepts would hereby become 
badly degraded by featural flow. 

Thus, basic constraints upon visual processing seem to 
be seriously at odds with each other. The need to discount 
the illuminant leads to the need for featural filling-in. The 
need for featural filling-in leads to the need to synthesize 
boundaries capable of restricting featural filling-in to ap- 
propriate perceptual domains. The need to synthesize 
boundaries leads to the need for orientation-sensitive re- 
ceptive fields. Such receptive fields are, however, unable 
to restrict featural filling-in at scenic line ends or sharp 
comers. Thus, orientational certainty implies a type of 
positional uncertainty, which is unacceptable from the 
perspective of featural filling-in requirements. Indeed, an 
adequate understanding of how to resolve this uncertainty 
principle is not possible without considering featural fill- 
ing-in requirements. That is why perceptual theories 
which have not clearly distinguished the complementary 
computational requirements of the BCS and FCS have not 
adequately characterized how perceptual boundaries are 
formed. We call the complementary design balance that 
exists between BCS and FCS design requirements the 
boundary-feature tradeoff. 

We now summarize how later stages of BC system pro- 
cessing compensate for the positional uncertainty that is 
created by the orientational tuning of receptive fields. 

THE HIERARCHICAL RESOLUTION OF ORIENTATION- 
INDUCED UNCERTAINTY: ALL LINE ENDS ARE 

ILLUSORY 
Fig. 14(b) depicts the reaction of the BC system’s next 

processing stages to the input pattern depicted in Fig. 
14(a). Strong horizontal activations are generated at the 
end of the scenic line by these processing stages. These 
horizontal activations are capable of generating a horizon- 
tal boundary within the BCS whose output signals, as in 
Figs. 4 and 7, prevent flow of featural quality from the 
end of the line within the FCS. These horizontal activa- 
tions form an “illusory” boundary, in the sense that this 
boundary is not directly extracted from luminance differ- 

ences in the scenic image. The theory hereby suggests 
that the perceived ends of all such thin lines are generated 
by such “illusory” line end inductions, which we call end 
cuts. This conclusion is sufficiently remarkable to sum- 
marize it with a maxim: all line ends are illusory. 

This seemingly paradoxical maxim can be understood 
as one manifestation of how the visual system overcomes, 
using multiple processing stages, the informational un- 
certainties that it cannot overcome at a single processing 
stage. In the present example, orientational tuning of re- 
ceptive fields is needed to partially overcome the uncer- 
tainty of an image edge’s orientation but in so doing ren- 
ders uncertain the positions of the ends and corners of 
such edges. Later processing stages are needed to recover 
both the positional and orientational data that are lost in 
this way. 

THE OC FILTER AND THE SHORT-RANGE COMPETITIVE 
STAGES 

The processing stages that are hypothesized to generate 
end cuts are summarized in Fig. 15. First, oriented-re- 
ceptive fields of like position and orientation, but opposite 
direction-of-contrast, generate rectified output signals that 
summate at the next processing stage to activate cells 
whose receptive fields are sensitive to the same position 
and orientation as themselves, but are insensitive to di- 
rection-of-contrast. These target cells maintain their sen- 
sitivity to amount of oriented contrast, but not to the di- 
rection of this oriented contrast, as in our explanation of 
Fig. 12. Such model cells, which play the role of complex 
cells in area V1 of the visual cortex, pool inputs from 
receptive fields with opposite directions-of-contrast, 
which play the role of simple cells in area V1, in order to 
generate boundary detectors which can detect the broadest 
possible range of luminance or chromatic contrasts [7], 
[24]. These two successive stages of oriented contrast- 
sensitive cells are called the OC filter. Equations (8)-(16) 
above model simple cells and complex cells in our com- 
puter simulations of invariant brightness perception. 

The rectified output from the OC filter activates a sec- 
ond filter which is composed of two successive stages of 
spatially short-range competitive interaction whose net ef- 
fect is to generate end cuts (Fig. 15). First, a cell of pre- 
scribed orientation excites like-oriented cells correspond- 
ing to its location and inhibits like-oriented cells 
corresponding to nearby locations at the next processing 
stage. In other words, an on-center off-surround organi- 
zation of like-oriented cell interactions exists around each 
perceptual location. This mechanism is analogous to the 
neurophysiological process of end stopping, whereby hy- 
percomplex cell receptive fields are fashioned from inter- 
actions of complex cell output signals [ 161, [2 11. The out- 
puts from this competitive mechanism interact with the 
second competitive mechanism. Here, cells compete that 
represent different orientations, notably perpendicular 
orientations, at the same perceptual location. This com- 
petition defines a push-pull opponent process. If a given 
orientation is excited, then its perpendicular orientation is 
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TO COOPERATION 

END STOP I 
+A+ 

SIMPLE 
CELLS 

Fig. 15. Early stages of boundary contour processing: at each position ex- 
ist cells with elongated receptive fields (simple cells) of various sizes 
which are sensitive to orientation, amount-of-contrast, and direction-of- 
contrast. Pairs of such cells sensitive to like orientation but opposite 
directions-of-contrast (lower dashed box) input to cells (complex cells) 
that are sensitive to orientation and amount-of-contrast but not to direc- 
tion-of-contrast (white ellipses). These cells, in turn, excite like-oriented 
cells (hypercomplex cells) corresponding to the same position and inhibit 
like-oriented cells corresponding to nearby positions at the first compet- 
itive stage. At the second competitive stage, cells corresponding to the 
same position but different orientations (higher-order hypercomplex cells) 
inhibit each other via a push-pull competitive interaction. 

inhibited. If a given orientation is inhibited, then its per- 
pendicular orientation is excited via disinhibition. 

The combined effect of these two competitive interac- 
tions generate end cuts as follows. The strong vertical ac- 
tivations along the edges of a scenic line, as in Fig. 14(a), 
inhibit the weak vertical activations near the line end. 
These inhibited vertical activations, in turn, disinhibit 
horizontal activations near the line end, as in Fig. 14(b). 
Thus, the positional uncertainty generated by orienta- 
tional certainty is eliminated at a subsequent processing 
level by the interaction of two spatially short-range com- 
petitive mechanisms which convert complex cells into two 
distinct populations of hypercomplex cells. 

The properties of these competitive mechanisms have 
successfully predicted and helped to explain a variety of 
neural and perceptual data. For example, the prediction 
of the theory summarized in Fig. 14 predated the report 
by von der Heydt, Baumgartner, and Peterhans [27] that 
cells in prestriate visual cortex respond ‘to perpendicular 
line ends, as in Fig. 14(b), whereas cells in striate visual 
cortex do not, as in Fig. 14(a). These cells properties also 
help to explain why color is sometimes perceived to spread 
across a scene, as in the phenomenon of neon color 
spreading [IO] ,  [ 121, [22], by showing how some BC sig- 
nals are inhibited by boundary contour processes. An ex- 
ample of neon color spreading can be found on the cover 
of the journal neural networks where it is placed to em- 

phasize how an emergent behavioral property can be in- 
duced by form-color interactions triggered across a whole 
scene. In that example, the red crosses in the image form 
the crosses of a cross-bar associative network. Such com- 
petitive interactions also clarify many properties of per- 
ceptual grouping, notably of the ‘‘emergent features” that 
group textures into figure and ground [I] ,  [ 111, [ 121. Such 
percepts can be explained by the end cutting mechanism 
when it interacts with the next processing stage of the 
BCS. 

LONG-RANGE COOPERATION: BOUNDARY COMPLETION 
AND EMERGENT FEATURES 

The outputs from the competition input to a spatially 
long-range cooperative process, called the boundary com- 
pletion process. This cooperative process helps to build 
up sharp coherent global boundaries and emergent seg- 
mentations from noisy local boundary fragments. In the 
first stage of this boundary completion process, outputs 
from the second competitive stage from (approximately) 
like-oriented cells that are (approximately) aligned across 
perceptual space cooperate to begin the synthesis of an 
intervening boundary. For example, such a boundary 
completion process can span the blind spot and the faded 
stabilized images of retinal veins. The same boundary 
completion process is used to complete the sides of the 
Kanizsa square in Fig. 12. Further details about this 
boundary completion process can be derived once it is 
understood that the boundary completion process over- 
comes a different type of informational uncertainty than 
is depicted in Fig. 14. 

This type of uncertainty is clarified by considering Fig. 
16. The percept in Fig. 16(a), as well as those in Figs. 3 
and 16(b), can be understood as a byproduct of four pro- 
cesses: within the BCS, perpendicular end cuts at the line 
ends [Fig. 14(b)] cooperate to complete a emergent 
boundary which separates the visual field into two do- 
mains. This completed boundary structure sends topo- 
graphically organized boundary signals into the FCS (Fig. 
7), thereby dividing the FCS into two domains. If differ- 
ent filling-in contrasts are induced within these domains 
due to the FC signals generated by the black scenic lines, 
then the illusory figure can become visible. 

Fig. 16(a) shows that the tendency to form boundaries 
that are perpendicular to line ends is a strong one; the 
completed boundary forms sharp corners to keep the 
boundary perpendicular to the inducing scenic line ends. 
Fig. 16(b) shows, however, that the boundary completion 
process can generate a boundary that is not perpendicular 
to the inducing line ends under certain circumstances. 

ORIENTATIONAL UNCERTAINTY A N D  THE INITIATION OF 

BOUNDARY COMPLETION 
A comparison of Fig. 16(a) and (b) indicates the nature 

of the third problem of uncertain measurement that we 
have encountered. Fig. 16(a) and (b) show that boundary 
completion can occur within bands of orientations, which 
describe a type of real-time local probability distribution 
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(b) 

Fig. 16. (a) An illusory square forms perpendicular to all line ends. The 
global grouping confirms all the locally preferred perpendicular grouping 
orientations. (b) An illusory square forms almost perpendicular to all line 
ends. The global grouping amplifies grouping orientations that are not 
locally preferred and competitively inhibits the locally preferred perpen- 
dicular orientations. Both emergent segmentations (a) and (b) are sharp 
despite the fact that fuzzy bands of possible grouping orientations must 
exist. 

for the orientations in which grouping can be initiated at 
each position. These orientations include the orientations 
that are perpendicular to their inducing line ends [Fig. 
16(a)], as well as nearby orientations that are not perpen- 
dicular to their inducing line ends [Fig. 16(b)]. Fig. 14(b) 
illustrates how such a band of end cuts can be induced at 
the end of a scenic line. The existence of such bands of 
possible orientations increases the probability that spa- 
tially separated boundary segments can begin to group co- 
operatively into a global boundary. If only a single ori- 
entation at each spatial location were activated, then the 
probability that these orientations could precisely line up 
across perceptual space to initiate boundary completion 
would be vanishingly small. The (partial) orientational 

uncertainty that is caused by bands of orientations is thus 
a useful property for the initiation of the perceptual group- 
ing process that controls boundary completion and tex- 
tural segmentation. 

Such orientational uncertainty can, however, cause a 
serious loss of acuity in the absence of compensatory pro- 
cesses. If all orientations in each band could cooperate 
with all approximately aligned orientations in nearby 
bands, then a fuzzy band of completed boundaries, rather 
than a single sharp boundary, could be generated. The 
existence of such fuzzy boundaries would severely impair 
visual clarity. Fig. 16 illustrates that only a single sharp 
boundary usually becomes visible despite the existence of 
oriented bands of boundary inducers. How does the ner- 
vous system resolve the uncertainty produced by the ex- 
istence of orientational bands? How is a single global 
boundary chosen from among the many possible bound- 
aries that fall within the local oriented bandwidths? 

Our answer to these questions suggests a basic reason 
why later stages of boundary contour processing must send 
nonlinear feedback signals to earlier stages of boundary 
contour processing. This cooperative feedback provides a 
particular grouping of orientations with a competitive ad- 
vantage over other possible groupings by exploiting the 
competitive interactions described above. 

BOUNDARY COMPLETION BY COOPERATIVE- 
COMPETITIVE FEEDBACK NETWORKS: THE CC LOOP 
We assume, as is illustrated by Fig. 11, that pairs of 

similarly oriented and spatially aligned cells of the second 
competitive stage are needed to activate the intervening 
cooperative cells that subserve boundary completion (Fig. 
17). These cells, in turn, feed back excitatory signals to 
like-oriented cells at the first competitive stage, which 
feeds into the competition between orientations at each 
position of the second competitive stage. Thus, in Fig. 
16, positive feedback signals are triggered in pathway 2 
by a cooperative cell if sufficient activation simulta- 
neously occurs in both of the feedforward pathways la- 
beled 1 from similarly oriented cells of the second com- 
petitive stage. Then both pathways labeled 3 can trigger 
feedback in pathway 4. This feedback exchange can rap- 
idly complete an oriented boundary between pairs of in- 
ducing scenic contrasts via a spatially discontinuous bi- 
section process. 

Such a boundary completion process realizes a new type 
of real-time statistical decision theory. Each cooperative 
cell is sensitive to the position, orientation, density, and 
size of the inputs that it receives from the second com- 
petitive stage. Each cooperative cell performs like a type 
of statistical “and” gate since it can only fire feedback 
signals to the first competitive stage if both of its branches 
are sufficiently activated. We call such cooperative cells 
bipole cells. The existence of such bipole cells was pre- 
dicted by our theory. Von der Heydt, Baumgartner, and 
Peterhans [27] reported the existence of such cells in the 
prestriate visual cortex, in the same report that confirmed 
the existence of prestriate cells which respond to perpen- 
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Fig. 17. A cooperative-competitive feedback exchange leading to bound- 
ary completion: cells at the bottom row represent like-oriented cells at 
the second competitive stage whose orientational preferences are ap- 
proximately aligned across perceptual space. The cells in the top two 
rows are bipole cells in the cooperative layer whose receptive field pairs 
are oriented along the axis of the competitive cells. Suppose that simul- 
taneous activation of the pair of pathways 1 activates positive boundary 
completion feedback along pathway 2. Then pairs of pathways such as 
3 activate positive feedback along pathways such as 4. Rapid completion 
of a sharp boundary between the locations of pathways 1 can hereby be 
generated by a spatially discontinuous bisection process. 

dicular line ends, as in Fig. 14(b). See [ 101 for a summary 
of these and related neurophysiological data. The entire 
cooperative-competitive feedback network is called the 
cc loop. 

EQUATIONS FOR A MONOCULAR VERSION OF THE 
BOUNDARY CONTOUR SYSTEM 

Fig. 18 depicts a BCS circuit that combines the OC fil- 
ter and the CC loop. The following neural network equa- 
tions represent a monocular, single-scale version of the 
OC filter and the CC loop. All processes, except the first 
competitive stage, are assumed to react so quickly that 
they can be represented at equilibrium as algebraic equa- 
tions. This approximation speeds up the simulations, but 
does not influence the results. See Grossberg and Min- 
golla [ 131 for more complete definitions of these network 
processes. See Grossberg and Mingolla [14] for a modi- 
fied version of this system. 

As in (1)-(22), indexes ( i ,  j ) represent a cell position 
within a two-dimensional lattice and k represents an ori- 
entation. 

OC FILTER 
Oriented Filter: Complex Cell Receptive Fields 

For simplicity, a different simple cell and complex cell 
model was used than in (8)-(16). Many variants are pos- 
sible, including models based upon Gabor filters. 

Letting Xp4 equal the input to position ( p ,  q ) ,  

where 

and the notation [ p ]  + = max ( p ,  0). In (23), the elon- 
gated receptive field is divided into a left-half Lijk and a 

DIPOLE 
FIELD 

INPUTS 
Fig. 18. Circuit diagram of the OC filter and CC loop of the BCS: the OC 

filter contains the simple cell and complex cell filter shown in Fig. 15. 
The CC loop contains the first and second competitive stages shown in 
Fig. 15, as well as the feedback interaction of these competitive stages 
with the cooperative bipole cells shown in Fig. 17. Additional BCS fea- 
tures are also here summarized: the hypercomplex cells of Fig. 15 are 
the on-cells of a dipole field. As in Fig. 15, on-cells at a fixed position 
compete among orientations. On-cells also inhibit off-cells which rep- 
resent the same position and orientation. Off-cells at each position, in 
turn, compete among orientations. Both on-cells and off-cells are toni- 
cally active. As in Fig. 17, net excitation of an on-cell excites a similarly 
oriented cooperative bipole cell at a location corresponding to that of the 
on-cell. In addition, net excitation of an off-cell inhibits a similarly ori- 
ented cooperative bipole cell at a location corresponding to that of the 
off-cell. Thus, bottom-up excitation of a vertical on-cell, by inhibiting 
on-cell at that position, disinhibits the horizontal off-cell at that position, 
which in turn inhibits (almost) horizontally oriented cooperative bipole 
cells whose receptive fields include its position. Sufficiently strong net 
positive activation of both receptive fields of a cooperative bipole cell 
enables it to generate feedback via an on-center off-surround interaction 
among the like-oriented cells. On-cells which receive the most favorable 
combination of bottom-up signals and top-down signals generate the 
emergent perceptual grouping. 

right-half Rqk. The simple cell terms UUk - aVik could be 
replaced by a Gabor filter, or a related oriented filter. 

cc LOOP 

First Competitive Stage: Hypercomplex Cells 

(26)  

Second Competitive Stage: Higher-Order Hypercomplex 
Cells 

oijk = c [ wjjk - WijR] + (27) 
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where K is the orientation perpendicular to k ,  and 0, = 
E;=, O$. 

Cooperation: Oriented And-Gates 

where 

H b I +  
K + [ S I '  = 

and kernels Fh$' and G g ; )  define the cell's two oriented 
receptive fields. 

Cooperative Feedback to First Competitive Stage 

(e) ( f )  1 (g) ~ (h) 

Fig. 19. Computer simulations of processes underlying textural grouping. 
The length of each line segment is proportional to the activation of a 
network node responsive to one of twelve possible orientations. Parts 
(a), (c), (e), and (8) display the activities of oriented cells which input 
to the CC loop. Parts (b), (d) ( f ) ,  and (h) display equilibrium activities 
of oriented cells at the second competitive stage of the CC loop. A pair- 
wise comparison of (a) with (b), (c) with (d), and so on indicates the 
major groupings sensed by the network. These simulations demonstrate 
that an emergent segmentation can form colinear to-as in (b) and (d),- 
perpendicular to-as in (d), ( f ) ,  and (h), or diagonal to-as in (h), the 
inducing vertically oriented Lines by merely changing the relative po- 
sitions of these lines. See text for details. 

where 

h ( s )  = L [ s  - M I + .  (32) 

When a complete BCS is used to regulate the filling-in 
process described in (1)-(22), then the variables Zi,k in 
(18) are replaced by Y j j k  in (28). 

The CC loop can generate a sharp emergent boundary 
from a fuzzy band of possible boundaries for the follow- 
ing reason. As in Fig. 16, certain orientations at given 
position are more strongly activated than other orienta- 
tions. Suppose that the cells which encode a particular 
orientation at two or more approximately aligned posi- 
tions can more strongly activate their target bipole cells 
than can the cells which encode other orientations. Then 
competitive cells of similar orientation at intervening po- 
sitions will receive more intense excitatory feedback from 
these bipole cells. This excitatory feedback enhances the 
activation of these competitive cells relative to the acti- 
vation of cells which encode other orientations. This ad- 
vantage enables the favored orientation to suppress alter- 
native orientations due to the orientational competition 
that occurs at the second competitive stage (Fig. 15). 

A preattentive BCS representation emerges when CC 
loop dynamics approach a nonzero equilibrium activity 
pattern. The nonlinear feedback process whereby an 
emergent line or curve is synthesized need not even define 
a connected set of activated cells until equilibrium is ap- 
proached. This process sequentially interpolates bound- 
ary components within progressively finer spatial inter- 
vals until a connected configuration is attained. Thus, 
continuous boundaries are completed discontinuously. 

TEXTURAL GROUPING 
Fig. 19 depicts the results of computer simulations 

which illustrate how these properties of the CC loop can 
generate a perceptual grouping or emergent segmentation 
of figural elements (as in Fig. 2). Fig. 19(a) depicts an 
array of nine vertically-oriented input clusters. Each clus- 
ter is called a Line because it represents a caricature of 
how a field of OC filter output cells respond to a vertical 
line. Fig. 19(b) displays the equilibrium activities of the 
cells at the second competitive stage of the CC loop in 
response to these Lines. The length of an oriented Line at 
each position is proportional to the equilibrium activity of 
a cell whose receptive field is centered at that position 
with that orientation. The input pattern in Fig. 19(a) pos- 
sesses a vertical symmetry: triples of vertical Lines are 
colinear in the vertical direction, whereas they are spa- 
tially out-of-phase in the horizontal direction. The BCS 
senses this vertical symmetry, and generates emergent 
vertical boundaries in Fig. 19(b). The BCS also generates 
horizontal end cuts at the ends of each Line, which can 
trap the featural contrasts of each Line within the FCS. 
Thus, the emergent segmentation simultaneously supports 
a vertical macrostructure and a horizontal microstructure 
among the Lines. 

In Fig. 19(c), the input Lines are moved so that triples 
of Lines are colinear in the vertical direction and their 
Line ends are lined up in the horizontal direction. Both 
vertical and horizontal boundary groupings are generated 
in Fig. 19(d). The segmentation distinguishes between 
Line ends and the small horizontal inductions that bound 
the sides of each Line. Only Line ends have enough sta- 
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nL 
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Fig. 20. (a) Distribution of noise in horizontal dimension of image; (b) 
binary image of a rectangle cormpted by noise whose distribution, as in 
(a), varies continuously; (c) responses of oriented contrast detectors to 
the image; (d) equilibrated responses of cooperative feedback cells of 
BC system. The rectangle is recovered and the ramped increase of noise 
in the middle of the figure is ignored. 

tistical inertia to activate horizontal boundary completion 
via the CC loop. 

In Fig. 19(e), the input Lines are shifted to that they 
become noncolinear in a vertical direction, but triples of 
their Line ends remain aligned. The vertical symmetry of 
Fig. 19(c) is hereby broken. Consequently, in Fig. 19(f) 
the BCS groups the horizontal Line ends, but not the ver- 
tical Lines. 

Fig. 19(h) depicts the emergence of diagonal groupings 
where no diagonals exist in the input pattern. Fig. 19(g) 
is generated by bringing the three horizontal rows of ver- 
tical Lines close together until their ends lie within the 
spatia1 bandwidth of the cooperative interaction. In Fig. 
19(h), the BCS senses diagonal groupings of the Lines. 
Diagonally-oriented receptive fields are activated in the 
emergent boundaries, and these activations, as a whole, 
group into diagonal bands. Thus, these diagonal group- 
ings emerge on both microscopic and macroscopic scales. 
The computer simulations illustrated in Fig. 19 show that 
the CC loop can generate large-scale segmentations with- 
out a loss of positional or orientational acuity. 
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Fig. 21. (a) A textured, curved surface (adapted from [ 2 5 ] ) .  (b) Equili- 
brated response of cooperative feedback cells of the CC loop to the in- 
puts from Fig. 21(a). The cooperative cells group the circular statistics 
of the parallelogram orientations near the figure's periphery, but sup- 
press the discordant orientations near the center. A similar grouping pro- 
cess generates the circular segmentations induced by the Glass pattern 
in Fig. 1. 

The computer simulations of textural grouping in Fig. 
19 do not deny that the two successive filters defined by 
the OC filter and the short-range competitive stages (Fig. 
15) contribute to percepts of texture. Beck, Sutter, and 
Ivry [2] have provided recent experimental evidence sup- 
porting the role of these filters in texture segregation. 

A number of other important properties of emergent 
segmentation have also been demonstrated through com- 
puter simulations of the BCS. Fig. 20 illustrates the BCS's 
ability to detect and complete sharp boundaries over long 
distances in the presence of severe noise, a type of capa- 
bility useful in penetrating camouflage. This simulation 
illustrates the response of spatial scale large enough to 
group across individual image contrasts. Smaller spatial 
scales generate the boundaries of individual black and 
white compartments. 

Fig. 21 illustrates the BCS's ability to detect form 
within a 2-D texture. Although the input is a pattern of 
discrete texture elements [Fig. 21(a)] the BCS can gen- 
erate a dense boundary web of form-sensitive emergent 
groupings [Fig. 21(b)]. In a multiple scale version of the 
BCS, these boundary webs help to explain the percept of 
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a smoothly curved 3-D surface. Todd and Akerstrom [25] 
have shown that the worst between human 

1191 E. H. Land, “The retinex theory of color vision,” Sci. Amer. ,  vol. 

1201 G .  E. Meyer and T. Dougherty, “Effects of flicker-induced depth on 
237, pp. 108-128, 1977. 

psychophysical judgments of 3-D shape-from-texture and 
the theoretical predictions of such a multiple scale version 
Of the BCS was 0’985’ Meyer and Dougherty 1201 have 
further shown that the theory is consistent with data about 
the effects of flicker-induced depth on chromatic subjec- 
tive The theory has also been able to analyze 
and predict many other perceptual and neural data that 
other vision theories cannot yet handle. 

chromatic subjective contours,” J .  Exp. Psych. : Human Percep. Per- 
f o r m . ,  vol. 1 3 ,  PP. 353-360, 1987. 

1211 G. A. Orban, H. Kato, and P. 0. Bishop, “Dimensions and proper- 
ties of end-zone inhibitory areas in receptive fields of hypercomplex 
CCIIS in cat striate cortex,” J .  Neurophysiol.,  vol. 42, pp. 833-849, 
1979. 

1221 C.  Redies and L. Spillmann, “The neon color effect in the Ehrenstein 
illusion,” Perception, vol. I O ,  pp. 667-681, 1981. 

I231 E. L. Schwartz, R. Desimone, T. Albright, and c. Gross, “Shape 
recognition and inferior temporal neurons,” Proc. Nut. Acad. Sci. , 

1241 H. Spitzer and S .  Hochstein, “A complex-cell receptive field model,” 

1251 J .  T.  Todd and R. A. Akerstrom, “Perception of three-dimensional 
form from patterns of optical texture,” J .  Exp. Psych.: Human Per- 
rep.  Perform., vol. 13, pp. 242-255, 1987. 

[26] A. Treisman and H .  Schmidt, “Illusory conjunctions in the percep- 

vol. 80, pp. 5776-5778, 1983. Thus, a great Of work remains to be done 
on further development of the BCS, the FCS, and their J .  Neurophysiol., VOI. 53, pp. 1266-1286, 1985. 
interactions, many promising results suggest that we are 
well along the way towards a better of bi- 
ologically-motivated Vision Systems which are equally at - -  
home in segmenting and filling-in the full range of visual 
phenomena-bounda~es, textures, surfaces--from the 

tion ofobjects,” Cognitive P s w h . ,  vol. 14, pp. 107-141, 1982. 
1271 R. von der Heydt, E. Peterhaus, and G.  Baumgartner, “Illusory con- 

tours and cortical neuron responses,” Science, vol. 224, pp. 1260- 
discrete to the continuous. 1262. 1984. 

[28] A. L. Yarbus, Eye Movements and Vision. New York: Plenum, 
1967. 
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