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Abstract

A neural model is developed of how motion integration and segmentation processes, both

and across apertures, compute global motion percepts. Figure-ground properties, such as

sion, influence which motion signals determine the percept. For visible apertures, a line’s ter

tors do not specify true line motion. For invisible apertures, a line’s intrinsic terminators cr

veridical feature tracking signals. Sparse feature tracking signals can be amplified before

propagate across position and are integrated with ambiguous motion signals within line inte

This integration process determines the global percept. It is the result of several processing

Directional transient cells respond to image transients and input to a directional short-range

that selectively boosts feature tracking signals with the help of competitive signals. Then a

range filter inputs to directional cells that pool signals over multiple orientations, opposite

trast polarities, and depths. This all happens no later than cortical area MT. The directiona

activate a directional grouping network, proposed to occur within cortical area MST, within w

directions compete to determine a local winner. Enhanced feature tracking signals typicall

over ambiguous motion signals. Model MST cells which encode the winning direction feed

to model MT cells, where they boost directionally consistent cell activities and suppress inco

tent activities over the spatial region to which they project. This feedback accomplishes d

tional and depthfulmotion capturewithin that region. Model simulations include the barberpo

illusion, motion capture, the spotted barberpole, the triple barberpole, the occluded trans

square illusion, motion transparency and the chopsticks illusion. Qualitative explanations o

sory contours from translating terminators and plaid adaptation are also given.
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1.  Introduction

Visual motion perception requires the solution of the two complementary problems ofmotion
integration and of motion segmentation.The former joins nearby motion signals into a sing
object, while the latter keeps them separate as belonging to different objects. Wallach (
translated by Wuerger, Shapley and Rubin, 1996) first showed that the motion of a featurele
seen behind a circular aperture is perceptually ambiguous: for any real direction of motio
perceived direction is perpendicular to the orientation of the line, called the normal compone
motion. This phenomenon was later called theaperture problemby Marr and Ullman (1981). The
aperture problem is faced by any localized neural motion sensor, such as a neuron in the
visual pathway, which responds to a moving local contour through an aperture-like receptive
Only when the contour within an aperture contains features, such as line terminators, obje
ners, or high contrast blobs or dots, can a local motion detector accurately measure the di
and velocity of motion.

To solve the twin problems of motion integration and segmentation, the visual system needs
the relatively few unambiguous motion signals arising from image features to veto and con
the more numerous ambiguous signals from contour interiors. In addition, the visual system
contextual interactions to compute a consistent motion direction and velocity when the sc
devoid of any unambiguous motion signals. This paper develops a neural network mode
demonstrates how a hierarchically organized cortical processing stream may be used to e
important data on motion integration and segmentation (Figure 1). An earlier version of the m
was briefly reported in Viswanathan, Grossberg, and Mingolla (1999). The Discussion se
compares our results with those of alternative models.

FIGURE 1. Neural pathways for interactions between form and motion mechanisms. See te
details.

1. Vector average.The vector average solution is one in which the velocity of the plaid appea
be the vector average of the normal components of the plaids constituent gratings (Figure 

1.1  Plaids: Feature Tracking and Ambiguous Line Interiors

The motion of a grating of parallel lines seen moving behind a circular aperture is ambig
However, when two such gratings are superimposed to form a plaid, the perceived motion
ambiguous. Plaids have therefore been extensively used to study motion perception. Three
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mechanisms for the perceived motion of coherent plaids have been presented in the literat

FIGURE 2. Type II plaids: Vector average vs. intersection of constraints (IOC). Dashed line
the constraint lines for the plaid components. The gray arrows represent the perceived dire
of the plaid components. For these two components, the vector average direction of mo
different from the IOC direction.

2. Intersection of constraints.A constraint lineis the locus in velocity space of all possible pos
tions of the leading edge of a bar or line after some time interval∆t. The constraint line for a fea-
tureless bar, or a grating of parallel bars, moving behind a circular aperture is parallel to th
Adelson and Movshon (1982) suggested that the perceived motion of a plaid pattern follow
velocity vector of the intersection in velocity space of the constraint lines of the plaid com
nents. Thisintersection of constraints(IOC) is the mathematically correct, veridical solution t
the motion perception problem. It does not, however, always predict human motion perce
even for coherent plaids.

3. Feature tracking. When two one-dimensional (1D) gratings are superimposed, they f
intersections which act as features whose motion can be reliably tracked. Other features a
endings and object corners. The visual system may track such features. At intersections or
corners, the IOC solution and the trajectory of the feature are the same. In some non-pla
plays described below, feature tracking differs from IOC.

No consensus exists about which mechanism best explains motion perception. Vector ave
tends to uniformize motion signals over discontinuities and efficiently suppresses noise,
cially when the features are ambiguous as with features formed by occlusion. However, Ad
and Movshon (1982) showed that observers often do not see motion in the vector average
tion. Ferrera and Wilson (1990, 1991) tested this by classifying plaids into Type 1 plaids
which the IOC lies inside the arc formed by the motion vectors normal to the two compon
and Type 2 plaids, for which this is not true (Figure 2). The vector average always lies insid
arc. They found that the motion of Type 2 plaids may be biased away from the IOC solu
Rubin and Hochstein (1993) showed that moving lines can sometimes be seen to move in th
tor average, rather than the IOC direction. Mingolla, Todd and Norman (1992), using mu
aperture displays, showed that, in the absence of features, motion was biased toward the
average. However, when features were visible within apertures, the correct motion directio
perceived. Clearly, the IOC solution does not always predict what the visual system sees.

These data suggest that feature tracking signals as well as the normals to component orien
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contribute to perceived motion direction. Lorenceau and Shiffrar (1992) showed that m
grouping across apertures is prevented by feature tracking signals that capture the motion
lines to which they belong. In the absence of feature tracking signals, ambiguous signals fro
interiors can propagate and combine with similar signals from nearby apertures to select a
motion direction. Consistent with these data, the present model analyzes how both signal
line interiors and feature tracking signals may determine perceived motion direction. Fe
tracking signals can propagate across space and veto ambiguous signals from line interior
endings may thus decide the perceived motion direction of the line to which they belong. W
such signals are absent, ambiguous signals from line interiors may propagate across spa
combine with signals from nearby apertures. Thus, in the absence of feature tracking signa
model can select the vector average solution.

FIGURE 3. Type II plaids: Vector average vs. intersection of constraints (IOC). Dashed line
the constraint lines for the plaid components. The gray arrows represent the perceived dire
of the plaid components. For these two components, the vector average direction of mo
different from the IOC direction.

1.2  Intrinsic vs. Extrinsic Terminators

The present model is a synthesis of three earlier models: a model of 3D vision and figure-g
separation, of form-motion interactions, and of motion processing by visual cortex. The
model is needed because not all line terminators are capable of generating feature tracki
nals. When a line is occluded by a surface, it is usually perceived as extending behind that s
The visible boundary between the line and the surface belongs not to the line but to the occ
surface. Nakayama, Shimojo and Silverman (1989) proposed classifying of line terminator
intrinsic andextrinsic terminators (Figure 3). Bregman (1981) and Kanizsa (1979) earlier u
this distinction to create compelling visual displays. The motion of an extrinsic line termin
tells us little about the line’s motion. Such motion says more about occluder shape. The mot
an intrinsic line terminator often signals veridical line motion. As we shall soon see, the v
system treats intrinsic terminator motion as veridical signals if their motion is consistent.
makes it possible to fool the visual system by making the occluder invisible by coloring it
same color as the background. Then line terminators may be treated as intrinsic, but their m
is not the line’s veridical motion. The preferential treatment displayed by the visual system

Intrinsic

Extrinsic
3
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motion signals from intrinsic terminators over those from extrinsic terminators is incorpor
into our model through figure-ground processes that detect occlusion events in a scene and
edge ownership at these locations to near and far depth planes. Such figure-ground process
modeled as part of the FACADE theory of 3D vision and figure-ground separation; e.g., G
berg (1994, 1997), Grossberg and Kelly (1999), Grossberg and McLoughlin (1997), Gros
and Pessoa (1998), and Kelly and Grossberg (2001). FACADE theory describes how 3D bou
and surface representations are generated within the blob and interblob cortical proc
streams from cortical area V1 to V2. The theory predicts that the key figure-ground sepa
processes that are needed for the present analysis are completed within the pale stripes of
area V2; see Figure 1. These figure-ground processes help to segregate occluding and o
objects, along with their terminators, onto different depth planes. The effects of this figure-gr
separation process are assumed in the present model in order to make the simulations co
tionally tractable. The original articles provide explanations and simulations of how the m
realizes the desired properties.

How do these figure-ground constraints influence the motion processing that goes on in c
areas MT and MST? This leads to the need for form-motion interactions, also called form
interactions. Grossberg (1991) suggested that an interaction from cortical area V2 to M
modulate motion-sensitive MT cells with the 3D boundary and figure-ground computations
are carried out in V2; see Figure 1. This interaction was predicted to provide MT with comp
object boundaries to facilitate object tracking, and with sharper depth estimates of the obje
be tracked. Francis and Grossberg (1996) and Baloch and Grossberg (1997) develop
hypothesis to simulate challenging psychophysical data about long-range apparent motion
bly Korté’s laws, as well as data about the line motion illusion, motion induction, and transfo
tional apparent motion.

Chey, Grossberg and Mingolla (1997, 1998) developed the third component model, whic
neural model of biological motion perception by cortical areas V1-MT-MST; see Figure 1.
model is called theMotion Boundary Contour System(or Motion BCS). It simulated data on how
speed perception and discrimination are affected by stimulus contrast and duration, dot d
and spatial frequency, among other factors. It also provided an explanation for the barbe
illusion, the conditions under which moving plaids cohere, and how contrast affects their
ceived speed and direction. Our model extends the Motion BCS model to account for a larg
of representative data on motion grouping in 3D space, both within a single aperture and
several apertures. Because the model integrates information about form as well as motion p
tion, it is called theFormotion BCSmodel. The next section describes in detail the design prin
ples underlying the construction of the Formotion BCS model as well as the computations c
out at each stage and their functional significance. Simulation of a moving line illustrates
each stage of the model functions, before other more complex data are explained and simu
4
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2.  Formotion BCS Model

Figure 4 is a macrocircuit showing the flow of information through the model processing st
We now describe the functional significance of each stage of the model in greater detail.

2.1 Level 1: Figure-Ground Preprocessing by the FACADE Model

One sign of occlusion in a 2D picture is a T-junction. The black bar in Figure 5A forms a T-ju
tion with the gray bar. The top of the T belongs to the occluding black bar while the stem be

+++

+--

++

+

-

- - +

Level 6: MST

Level 5: MT

Level 5: Long-range Filter

Level 4: Spatial Competition

Level 3: Short-range Filter

Level 2: Directional Transients

FACADE Boundaries Level 1: Input

--

FIGURE 4. Extrinsic vs. intrinsic terminators: the boundary that is caused due to
occlusion of the gray line by the black bar is an extrinsic terminator of the line. This bound
belongs to the occluder rather than the occluded object. The unoccluded terminator of the
line is called an intrinsic terminator because it belongs to the line itself.
5
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to the occluded gray bar. This boundary ownership operation supports the percept of a blac
zontal bar partially occluding a gray vertical bar which lies behind it.When no T-junctions
present in the image, such as in Figure 5B, the two gray regions no longer look occluded. F
5A and 5B are two extremes in a continuous series of images wherein the black bar is gra
made gray and then white. When the black horizontal bar is replaced by a horizontal gray b
is much lighter than the two gray regions, the two gray regions may appear to be separate r
that are each closer than the horizontal gray bar, and not a single region that is partially occ
by it. Because only the relative contrasts, and not the shapes, in this series of images are ch
it illustrates that geometrical and contrastive factors may interact to determine which im
regions will be viewed as occluding or occluded objects. In the present data explanations,
biguous figure-ground separations, like the one in Figure 5A, are assumed to occur. Since
sic terminators are generated due to occlusions, T-junctions help distinguish between ex
and intrinsic object contours. The present model achieves this by using the FACADE bou
representations that are formed in model cortical area V2. These figure-ground-separated
aries input to model cortical area MT via a formotion interaction from V2 to MT.

FIGURE 5. T-junctions signalling occlusion. In the 2D image (A), the black bar appear
occlude the gray bar. When the black bar is colored white, and thus made invisible, as in (B
harder to perceive the gray regions as belonging to the same object.

The FACADE model detects T-junctions without using T-junction detectors. It uses circuits
includes orientedbipole cells(Grossberg and Mingolla, 1985) which model V2 cells reported
von der Heydt, Peterhans and Baumgartner (1984). Consider a horizontally oriented bipol
for definiteness. Such a cell can fire if the inputs to each of the two oriented branches of its r
tive field are simultaneously sufficiently large, have an (almost) horizontal orientation, an
(almost) collinear. The bipole constraint ensures that the cell fires beyond an oriented co
such as a line-end only if there is evidence to a link with another similarly oriented contrast,
as a another collinear line-end. Various investigators have reported psychophysical data in s
of bipole-like dynamics, including Fieldet al. (1993) and Kellman and Shipley (1992).

At a T-junction, horizontal bipole cells get cooperative support from both sides of their rece
field from the top of the T, while vertical bipole cells only get activation on one side of their rec
tive field from the stem of the T. As a result, horizontal bipole cells are more strongly activ
than vertical bipole cells and win a spatial competition for activation. This cooperative-com
tive interaction leads to detachment of the vertical stem of the T at the location where it join
horizontal top of the T, creating an end-gap in the vertical boundary (Figure 6). This end
begins the process whereby the top of the T is assigned to the occluding surface (Grossberg
1997). Grossberg, Mingolla and Ross (1997) and Grossberg and Raizada (2000) have pr
how the bipole cell property can be implemented between collinear coaxial pyramidal ce
layer 2/3 of visual cortex via a combination of known long-range excitatory horizontal con
tions and short-range inhibitory connections that are mediated by interneurons. This implem
tion of bipole cells has been embedded into a detailed neural model of how the cortical laye

A B

T-junction
6
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organized in areas V1 and V2, and how these interactions can be used to quantitatively si
data about cortical development, learning, grouping, and attention; see Grossberg and R
(2000), Grossberg and Williamson (2001), Raizada and Grossberg (2001), and Ross, Gro
and Mingolla (2000) for details. Thus accumulating experimental and theoretical evidence
port the theory’s predictions about how bipole cells initiate the figure-ground separation.

FIGURE 6. (A) T-junctions can signal occlusion. (B) A horizontally-oriented bipole cell (+ sig
can be more fully activated at a T-junction than can a vertically-oriented bipole cell. As a re

the inhibitory interneurons of the horizontal bipole cell (- signs) can inhibit the vertically-oriented
bipole cell more than conversely. (C) A break in the vertical boundary that is formed by vertic
oriented bipole cells can then occur. This break is called anend gap. End gaps induce the
separation of occluding and occluded surface, with the unbroken boundary typically "belon
exclusively to the occluding surface. [Reprinted with permission from Grossberg, 1997.]

FIGURE 7. FACADE output at the far depth with visible and invisible occluders.

FACADE mechanisms generate the type of boundary representations shown in Figure 7 at t
ther depth for a partially occluded line and an unoccluded line. When the occluders are inv
the occluded line does not appear to be occluded. These boundaries, computed at each fra
motion sequence, are the model inputs. Any other boundary-processing system that is cap
detecting T-junctions in an image and assigning a depth ordering to the components of the T

-
- ++

A                             B                           C

VISIBLE OCCLUDERS INVISIBLE OCCLUDERS
Image

FACADE
boundary
7
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2.2  Level 2: Transient Cells

The second stage of the model comprises undirectional transient cells, directional interne
and directional transient cells. Undirectional transient cells respond to image transients s
luminance increments and decrements, irrespective of whether they are moving in a par
direction. They are analogous to the Y cells of the retina (Enroth-Cugell and Robson, 1966; H
stein and Shapley, 1976a, 1976b). A directionally selective neuron fires vigorously when a s
lus is moved through its receptive field in one direction (called thepreferred direction), while
motion in the reverse direction (termed thenull direction) evokes little response. The connectivit
between the three different cell types in Level 2 of the model incorporates three main design
ciples that are consistent with the available data on directional selectivity in the retina and v
cortex: (a) directional selectivity is the result of asymmetric inhibition along the preferred d
tion of the cell, (b) inhibition in the null direction is spatially offset from excitation, and (c) inhi
tion arrives before, and hence vetoes, excitation in the null direction.

Undirectional
Transients

INPUT

Interneurons

Directional
Transients

+ +

++

+ +

++

+ +

++--

-

--

-

Undirectional
Transients

INPUT

Interneurons

Directional
Transients

+ +

++

+ +

++

+ +

++--

-

--

-

B: Frame 2

A: Frame 1

FIGURE 8. Schematic diagram of a 1D implementation of the transient cell network show
the first two frames of the motion sequence. Thick circles represent active undirecti
transient cells while thin circles are inactive undirectional transient cells. Ovals contain
arrows represent directionally-selective neurons. Unfilled ovals represent active cells, c
filled ovals are inhibited cells and gray-filled ovals depict inactive cells. Excitatory a
inhibitory connections are labelled by ‘+’ and ‘-’ signs respectively.
8
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Figure 8 shows how asymmetrical directional inhibition works in a 1D simulation of a two-fra
motion sequence. When the input arrives at the leftmost transient cell in Frame 1, all interne
at that location, both leftward-tuned and rightward-tuned, are activated. The rightward-t
interneuron at this location inhibits the leftward-tuned interneuron and directional cell one u
the right of the current location. When the input reaches the new location in Frame 2, the
ward-tuned cells, having already been inhibited, can no longer be activated. Only the right
tuned cells are activated, consistent with motion from left to right. Further, mutual inhibi
between the interneurons ensures that a directional transient cell response is relatively u
across a wide speed range. Directional transient cells can thus respond to slow and fast
Their outputs for a 2D simulation of a single moving line are shown in Figure 9A. The signals
ambiguous and the effects of the aperture problem are clearly visible.

2.3 Level 3: Short-range Filter

Although known to occurin vivo, the veto mechanism described in the previous section exhi
two computational uncertainties in a 2D simulation. First, the short spatial range over wh
operates results in the creation of spurious signals near line endings, as can be seen in Fig
Second, vetoing eliminates the wrong (or null) direction, but does not selectively activate the
rect direction. It is important to suppress spurious directional signals while amplifying the co
motion direction at line endings because these unambiguous feature tracking signals m
made strong enough to track the correct motion direction and to overcome the much more n
ous ambiguous signals from line interiors. In Level 3 of the model (see Figure 4), the direct
transient cell signals are space- and time-averaged by a short-range filter cell that accum
evidence from directional transient cells of similar directional preference within a spatially an
tropic region that is oriented along the preferred direction of the cell. This computation stre
ens feature tracking signals at unoccluded line endings, object corners and other scenic fea
is not necessary to first identify form discontinuities that may constitute features and th
match their positions from frame to frame. We thus avoid thefeature correspondence problem
which correlational models (Reichardt, 1961; van Santen and Sperling, 1985) need to solve

The short-range filter uses multiple spatial scales. Each scale responds preferentially to a s
speed range. Larger scales respond better to faster speeds by thresholding short-range fi
puts with a self-similar threshold; that is, a threshold that increases with filter size. Larger s
thus require "more evidence" to fire (Chey, Grossberg, and Mingolla, 1998). Outputs for a s
moving line are shown in Figure 9B. Feature tracking signals occur at line endings, while th
interior exhibits the aperture problem.

2.4  Level 4: Spatial Competition and Opponent Direction Inhibition

Spatial competition among cells of the same spatial scale and that prefer the same motion
tion further boosts the amplitude of feature tracking signals relative to that of ambiguous sig
This contrast-enhancing operation within each direction works because feature tracking s
being at motion discontinuities, tend to get less inhibition than ambiguous motion signals th
within an object interior. This enhancement occurs without making the signals from line inte
so small that they will be unable to group across apertures in the absence of feature trackin
nals. Spatial competition also works with the self-similar thresholds to generate speed t
9
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Frame no. 10; Scale 1

Frame no. 10
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curves for each scale; see Chey, Grossberg, and Mingolla (1998).

This model stage also uses opponent inhibition between cells tuned to opposite direction
Albright (1984) and Albright, Desimone, and Gross (1984). This ensures that cells tuned to
site motion directions are not simultaneously active. Outputs for a moving line are shown in
ure 9C. Feature tracking signals are highly selective and larger than ambiguous signals.

2.5 Levels 5 and 6: Long-range Filter, Directional Grouping, and Attentional
Priming

Levels 5 and 6 of the model consists of two cell processing stages, which are described to
because they are linked by a feedback network. Level 5 models a spatially long-range filter a
effect on model MT cells. Level 6 models MST cells. The long-range filter pools signals,
larger spatial areas than the short-range filter of similar directional preference, opposite co

Frame no. 10

E

FIGURE 9. Model activities for a 2D simulation of a moving tilted line. (A) Directional transie
cells. (B) Thresholded short-range filter cells. (C) Competition network cells. (D) MT cells.
MST cells: model output. The gray region in each diagram represents the position of the in
the current frame. The inset diagram in (A) enlarges the activities of cells at one x-y location
dot represents the center of the x-y pixel. Since all simulations in this paper use eight direc
there are eight cells, each with a different directional tuning at every spatial location. A
location shown, three of the eight cells, those tuned to east, south-east and south directio
active. This is depicted through velocity vectors oriented along the preferred directions of
cell. The length of each vector is proportional to the activity of the corresponding cell.
convention is used for all the model outputs in the paper. The simulations for panels (a) - (e)
done on a 30 X 17 grid of locations; the leftmost 9 columns of the grid were cropped for fi
display.
12
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polarity, and multiple orientations. It turns MT cells into true "directional" cells. A model MT c
can, for example, pool evidence about diagonal motion of a rectangular object that is lighte
its background from both the vertical dark-to-light leading edge of the rectangle and the hor
tal light-to-dark trailing edge. This pooling operation is also depth-selective, so it is restricte
cells of the same scale that are tuned to the same direction. Despite this directional selectiv
network can respond to a band of motion directions at ambiguous locations due to the ap
problem, as in Figure 9C. Thus, although the model MT cells are competent directional m
detectors, they cannot, by themselves, solve the aperture problem. A suitably defined fee
interaction between the model MT and MST cells solves the aperture problem by trigger
wave of motion capture that can travel from feature tracking signals to the locations of ambig
motion signals. This feedback interaction comprises the grouping, matching, and attentional
ing network of the Formotion BCS model. It works as follows.

Bottom-up directional signals from model MT cells activate like-directional MST cells, wh
interact via a winner-take-all competition across directions. We propose that this occurs in v
MST, which has large directionally tuned receptive fields that are specialized for detecting
ing objects (Tanaka, Sugita, Moriya, and Saito, 1993). The winning direction is then fed
down to MT through a top-down matching and attentional priming pathway that influenc
region that surrounds the location of the MST cell (Figure 4). Cells tuned to the winning dire
in MST have an excitatory influence on MT cells tuned to the same direction. However, they
nonspecifically inhibit all directionally tuned cells in MT. For the winning direction, the excitat
cancels the inhibition, so the winning direction survives the top-down matching process, and
even be a little amplified by it. But for all other directions, having lost the competition in MST
not receiving excitation from MST to MT, there is net inhibition in MT. This matching proce
within MT by MST leads to net suppression of all directions other than the winning direc
within a region surrounding a winning cell. If the winning cell happens to correspond to a fea
tracking signal, then the direction of the feature tracking signal is selected within the sp
region that its top-down matching signals influence, due to the relatively large size of fe
tracking signals compared with ambiguous motion signals. This selection, or motion capture
cess creates a region dominated by the direction of the feature tracking signal. The bottom-
nals from MT to MST from this region then force the direction of the feature tracking signa
win in MST. Feedback from MST to MT then allows the feature tracking direction to supp
more ambiguous motion signals in the contiguous region of MT via top-down matching signa
feature tracking signal can hereby propagate its direction into the interior of the object, muc
a travelling wave, using undirectional bottom-up and top-down feedback exchanges be
model MT and MST. Motion capture is hereby achieved, as shown in Figures 9D and 9E, w
display the activities of MT and MST cells after feedback has a chance to respond to a s
tilted line moving to the right.

Motion capture is apreattentiveprocess, since it is driven by bottom-up signals, even thoug
makes essential use of top-down feedback. This particular kind of top-down matching proce
select winning directions, without unduly biasing their speed signals (Chey, Grossberg, and
golla, 1997), while suppressing losing directions. Such a matching process has also been u
top-downattentional priming. This kind of attentional priming was proposed by Carpenter a
Grossberg (1987) as part of Adaptive Resonance Theory (ART). In the present instance, it re
a type of directional priming, which is known to exist (Groner, Hofer, and Groner, 1986; Sek
and Ball, 1977; Stelmach, Herdman, and McNeil, 1994). Cavanagh (1992) has describ
attention-based motion process, in addition to low-level or automatic motion processes, an
shown that it provides accurate velocity judgments. The facts that ART-style MST-to-MT ma
ing preserves the velocity estimates of attended cells, and suppresses aperture-ambiguou
13
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tion and velocity estimates, are consistent with his data. Neural data are also consistent w
attentional effect. Treue and Maunsell (1996) have shown that attention can modulate motio
cessing in cortical areas MT and MST in behaving macaque monkeys. O’Cravenet al. (1997)
have shown by using fMRI that attention can modulate the MT/MST complex in humans.

These data are consistent with the following model predictions. One prediction is that the
MT/MST feedback circuit that accomplishespreattentivemotion capture also carries outattentive
directional priming. Cooling ventral MST should prevent MT cells from exhibiting motion c
ture in the aperture-ambiguous interiors of moving objects. Another prediction is that a direc
attentional prime can reorganize preattentive motion capture. A third prediction derives from
fact that MST-to-MT feedback is predicted to carry out ART matching, which has been pred
to help stabilize cortical learning (Carpenter and Grossberg, 1987; Grossberg, 1980, 1999b
property suggests how directional receptive fields develop and maintain themselves. In addi
is predicted that inhibition of the MT-to-MST bottom-up adaptive weights can prevent directi
MST cells from forming, and inhibition of the MST-to-MT adaptive weights can destabilize lea
ing in the bottom-up adaptive weights. Grossberg (1999a) has also proposed how top-dow
attention is realized within the laminar circuits from V2-to-V1, and by extension from MST
MT; also see Grossberg and Raizada (2000) and Raizada and Grossberg (2001). By exten
predicted attentional pathway is from layer 6 of ventral MST to layer 6 of MT (possibly b
multi-synaptic pathway from layer 6 of MST to layer 1 apical dendrites of layer 5 MT cells
project to layer 6 MT cells) followed by activation of a modulatory on-center off-surround n
work from layer 6-to-4 of MT. Preattentive motion capture signals, as well as directional a
tional priming signals, from MST are hereby predicted to strongly activate layer 6 of MT
modulate MT layer 4 cells via the on-center, and to inhibit layer 4 cells in the off-surround.

3. Model Computer Simulations

This section describes some motion percepts and how the model explains them.

3.1   Classic Barber Pole

Due to the aperture problem, the motion of a line seen behind a circular aperture is ambig
The same is true for a grating of parallel lines moving coherently. Wallach (1935) showed t
such a grating is viewed behind an invisible rectangular aperture, then the grating appears to
in the direction of the longer aperture edge of the aperture. For the horizontal aperture, in F
10A, the grating appears to move horizontally from left to right, as in Figure 10B.

Line terminators help to explain this illusion by acting as features with unambiguous motion
nals (Hildreth, 1984; Nakayama and Silverman, 1988a, 1988b). As in the tilted line simula
our model uses line terminators to generate feature tracking signals. In the short-range filte
(Level 3), line terminators generate feature tracking signals that are strengthened by spatia
petition (Level 4). In a horizontal rectangular aperture, there are more line terminators alon
horizontal direction than along the vertical direction (Figure 10). Hence there are more fe
tracking signals signalling rightward than downward motion. Rightward motion therefore win
the interdirectional competition of the long-range directional grouping MT-MST network. T
down priming of the winning motion direction from MST to MT suppresses all losing directi
across MT. Thus, in the presence of multiple feature tracking signals (here, grating termin
that signal motion in different directions, interdirectional and spatial competition ensure tha
14
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direction favored by the majority of features determines the global motion percept as shown
simulation in Figure 11A.

FIGURE 10. Moving grating illusions. The left column shows the physical stimulus presente
observers and the right column depicts their percept. (A,B) Classic barber pole illusion. (
Motion capture. (E,F) Spotted barber pole illusion.

3.2 Motion Capture

The barber pole illusion demonstrates how the motion of a line is determined by unambig
signals formed at its terminators. Are motion signals restricted to propagate only from unam
ous motion regions to ambiguous motion regions within the same object or can they also p
gate from unambiguous motion regions of an object to nearby ambiguous motion regions of
objects? Ramachandran and Inada (1985) addressed this question with a motion sequ
which random dots were superimposed on a classic barber pole pattern such that the dots
one frame of the sequence were completely uncorrelated with the dots on the subsequent
Despite the noisiness of the dot motion signals from frame to frame, subjects saw the dots m
the same direction as the barber pole grating (Figures 10C and 10D). The dot motion wacap-
tured by the grating motion. Solving the aperture problem is also a form of motion capture.

The Formotion BCS model explains motion capture as follows: Since the dots are not stati
but flickering, they activate transient cells in Level 2. However, due to the noisy and incons
dot motion in consecutive frames, no feature tracking signals are generated for the dots
short-range filter. The dot signals lose the competition in the MT-MST loop. The winning ba

INPUT SEQUENCE PERCEIVED OUTPUT

A B

C D

E F
15



Frame no. 15

Frame no. 15

A

B

Figure 11.  Caption on next page.
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pole motion direction inhibits the inconsistent motion directions of the dots, which now appe
move with the grating, as shown in the computer simulation of Figure 11B.

3.3  Spotted Barber Pole

The spotted barber pole (Shiffrar, Li, and Lorenceau, 1995) also involves superposition o
dom dots on a barber pole, as in motion capture. Unlike motion capture, the dots move cohe
downwards (Figure 10E). Observers here see the grating move downwards with the dots (
10F). Thus, the motion of the dots now captures the perceived motion of the grating.

This phenomenon may seem to be difficult to explain. One may expect that, as in the class
ber pole, for each line of the grating, the unambiguous motion of its terminators would deter
its perceived motion. Since the stimulus contains more lines with rightward moving termin
than downward moving terminators, it would seem that the grating should appear to move
ward rather than downward. However, unambiguous motion signals need not propagate
within a single object. They can also influence the perceived motion of spatially adjacent re
using long-range filter kernels that are large enough to overlap feature tracking signals from
tially contiguous regions. The superimposed dots thus generate strong feature tracking sign
nalling downward motion. When these downward signals combine with those produced b
few downward moving grating terminators, they outnumber the rightward signals formed b
remaining grating terminators. Downward energy predominates over rightward energy in the
MST loop and wins the interdirectional competition. Both grating and dots appear to move d
ward, as shown in the computer simulation of Figure 11C.

Frame no. 15

C

FIGURE 11. Model MST outputs for the grating illusions. (A) Classic barber pole illusion. (
Motion capture. (C) Spotted barber pole illusion. The simulations for panels (a) - (c) were d
on a 60 X 30 grid of locations; the leftmost 14 columns of the grid were cropped for fig
display.
17
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3.4  Line Capture

The previous simulations have demonstrated the importance of line terminators in determini
perceived motion direction. However, all terminators are not created equal. While intrinsic te
nators appear to belong to the line, extrinsic terminators, which are artifacts of occlusion, d
The following simulations, which are related to the motion capture stimuli of Ramachandran
Inada (1985), predict how the visual system assigns differing degrees of importance to int
and extrinsic terminators to determine the global direction of motion in a scene.

3.4.1 Partially Occluded Line

When a line’s terminators are occluded and thus extrinsic, their motion signals are ambiguo
the absence of other disambiguating motion signals, the visual system accepts the motion o
terminators as the most likely candidate for the line’s motion (Figure 12A). Extrinsic termina
can produce feature tracking signals, but these are weaker than those produced by intrinsic
nators. They play a role in determining the global percept (Figure 12B) only when intrinsic
tures are lacking. This effect is simulated in Figure 13A.

FIGURE 12. Line capture stimuli: Percept and model input from FACADE. Small arrows n
line terminators depict the actual motion of the terminators. Larger gray arrows represe
perceived motion of the lines. (A,B) Single line translating behind visible rectangular occlu
(C,D) Line behind visible occluders with flanking unoccluded rightward moving lines.

3.4.2  Horizontal Line Capture

When the same partially occluded line is presented with flanking unoccluded lines (Figure
the perceived motion of the ambiguous line is captured by the unambiguous motion of the

PERCEPT MODEL INPUT FROM
FACADE

A B

C D
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ing lines. The terminators of the unoccluded lines, being intrinsic, generate strong feature tra
signals in the short-range filter (Figure 12D). These can are capture not only the motion of th
that they belong to but also that of nearby ambiguous regions, such as the partially occlude
which only has extrinsic terminators, as shown in the computer simulation in Figure 13B).

3.5  Triple Barber Pole

Shimojo, Silverman and Nakayama (1989 studied the relative strength of feature tracking s

Frame no. 10

A

    B

FIGURE 13. Model MST output for line capture. (A) Partially occluded line. (B)
Horizontal line capture.The simulation for panel (a) was done on a 31 X 31 grid of
locations; the leftmost 12 columns and bottommost 11 rows of the grid were cropped for
figure display. The simulation for panel (b) was done on a 71 X 71 grid of locations; the
leftmost 32 columns and bottommost 31 rows of the grid were cropped for figure display.
The cropped region included another line input, identical in shape, orientation, motion to
the one displayed in the upper right of the grid in panel (b).
19
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at intrinsic and extrinsic line terminators. They combined three barber pole patterns (Figur
When the occluding bars are visible (when the horizontal barber pole terminators are extr
observers saw a single downward-moving vertical barber pole behind the occluding bars.
the occluding bars are invisible (when the barber pole terminators are intrinsic), the percep
of three rightward-moving horizontal barber pole patterns. The similar Tommasi and Vallort
(1999) experiment emphasized figure-ground segregation in the percept.

The three barber pole gratings appear to move rightward when the occluders are invisible be
in each grating, rightward moving terminators outnumber downward moving termina
Although this is still true with visible occluders, the rightward moving line endings, being ext
sic, produce very weak feature tracking signals while the downward moving endings, being i
sic, produce strong feature tracking signals. Downward activities, although fewer, are large
the more numerous, but weaker, rightward activities, so downward motion wins the MT-M
competition. Figures 15A and 15B show simulations of cases 14A and 14B, respectively.

FIGURE 14. Triple Barber Pole. Thin black arrows represent the possible physical motions
barber pole patterns. Thick gray arrows represent the perceived motion of the gratings.

3.6  Translating Square seen behind Multiple Apertures

All the phenomena described so far involved integration of motion signals into a global per
We now describe data in which the nature of terminators is solely responsible for whether m
integration or segmentation takes place. Lorenceau and Shiffrar (1992) studied the effect o
ture shape and color on how humans group local motion signals into a global percept. Sin
physical motion in each of the three cases described below is identical and the only para

VISIBLE OCCLUDERS INVISIBLE OCCLUDERS

A B
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varied are the occluder luminance and shape, a solution computed on the basis of the inter
of constraints (IOC) model (Adelson and Movshon, 1982) would predict the same percep
each case. The percept, however, varies widely and depends entirely on the strength of the
tracking signals generated in each case.

FIGURE 16. Square translating behind rectangular occluders. (A,B,C) Visible occluders.
gray dashed lines represent the corners of the square that are never visible during the tran
motion of the square. (D,E,F) Invisible occluders. Light gray dashed lines depict the invi

INPUT PERCEPT MODEL INPUT

Frame no. 15Frame no. 15

A B

FIGURE 15. Model MST output for the triple barber pole illusion. (A) Visible occluders.
extrinsic horizontal line terminators. (B) Invisible occluders, i.e., intrinsic horizontai
terminators. The simulations for panels (a) and (b) were done on a 60 X 90 grid of locatit
leftmost 15 columns and bottommost 35 rows of the grid were cropped for figure displT
cropped area contained inputs that continued the pattern shown, with a second horizog
cutting across diagonal lines.

A B C

D E F
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corners of the square; dashed rectangular outlines represent the invisible occluders that de
edges of the apertures.

3.6.1  Visible Rectangular Occluders

Suppose that a square translates behind four visible rectangular occluders (Figure 16A) su
the corners of the square (potential features) are never visible during the motion sequ
Observers are then able to amodally complete the corners of the square and see it cons
translating southwest (Figure 16B). For computational simplicity, we can, without loss of gen
ity, consider just the top and right sides of the square (Figure 16C). When the occluders ar
ble, the extrinsic line terminators generate weak feature tracking signals that are unable to
the spread of ambiguous signals from line interiors across apertures. The southwest directio
activated from both apertures, while the other directions only get support from one of the
apertures (Figure 17A). This is because the ambiguous motion positions activate a ran
motion directions, including oblique directions, in addition to the direction perpendicular to
moving edge. The southwest direction hereby wins the interdirectional competition in MST.
down priming from MST to MT boosts the southwest motion signals while suppressing all o
(Figure 17A). Thus, in the model computer simulation, both lines appear to move in the
diagonal direction (Figure 18A). Motionintegration of local motion signals is said to occur.

3.6.2 Invisible Rectangular Occluders

This display is identical to the previous one except that the occluders are made invisible by
ing them the same color as the background (Figure 16D). This small change drastically affe
percept. Now, observers can no longer tell that the lines belong to a single object, a square,
translating southwest. The lines appear to move independently in horizontal and vertical
tions (Figure 16E). Consider only the square’s top and right sides (Figure 16F). The intrinsi
terminators of each line produce strong feature tracking signals that veto the ambiguous in
signals. Each line appears to move in the direction of its terminators. The intrinsic termin
thus effectively block the grouping of signals from line interiors across apertures (Figure 1
Motion segmentation occurs, as shown in the computer simulation in Figure 18B.

The role of inhibition between motion signals from line endings and line interiors was em

A
-
-

- -

B

FIGURE 17. Schematic of how model mechanisms explain the translating square illusion
when occluders are visible, motion integration across apertures takes place. (B) when occ
are invisible, motion segmentation occurs.
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sized by Giersch and Lorenceau (1999). They boosted inhibition through the use of lorazep
substance that facilitates the fixation of inhibitory neurotransmitter GABA on GABAA recept
This selectively affected performance in the invisible rectangular occluders case, but not
visible rectangular occluders case. Enhanced inhibition did not affect motion integration whe
occluders were visible, but it boosted motion segmentation when the occluders were invisib

3.6.3  Invisible Jagged Occluders

Lorenceau and Shiffrar (1992) showed that if the occluders are invisible as but jagged inste
rectangular, then observers can group individual line motions into a percept of a translating s
(Figure 19). Clearly, intrinsic terminators do not always generate feature tracking signals th

FIGURE 18. Model MST output for the translating square behind multiple apertures. (
Visible rectangular occluders. (B) Invisible rectangular occluders. (C) Invisible jagg
occluders. The simulations for panels (a) and (b) were done on a 33 X 33 grid of locations;
rightmost 8 columns and topmost 8 rows of the grid were cropped for figure display. T
simulation for panel (c) was done on a 37 X 37 grid of locations; the rightmost 12 colum

Frame no. 15

A B

C
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strong enough to block motion grouping across apertures. The jagged edges cause the m
the line terminators to change direction constantly. The short-range filter is then unable to
mulate enough evidence for motion along any particular direction at line endings, so stron
ture tracking signals are not produced. Signals from line interiors can again group a
apertures, as shown in the computer simulation in Figure 18C. In summary, for features s
line endings and dots to produce reliable feature tracking signals, they must be intrinsic an
erate sufficient evidence for consistent motion in a particular direction.

FIGURE 19. (A) Square translating behind invisible jagged apertures: Model input and pred
output. (B) 20B: (B) Opposite motion directions within multiple scales compete. In addit
directions within scales that represent nearer motions inhibit the same directions within scale
represent farther motions. This type of "asymmetry between near and far" is also fou
FACADE theory.

3.7  Motion Transparency

Motion transparency is said to occur when transparency is perceived purely as a result of m

INPUT SEQUENCE PREDICTED OUTPUT

Frame 1

Invisible
Occluder

Frame 4

Invisible
Occluder

Frame 1

Invisible
Occluder

Frame 4

Invisible
Occluder
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cues. A typical display consists of two fields of superimposed random dots moving in diffe
directions. Then one field of dots appears closer than the other. The motion dissimilarity be
the two fields is alone responsible for their depth segregation (Figure 20A).

Opponent-direction inhibition in MT can have the undesirable effect of suppressing ne
responses under transparent conditions and rendering the visual system blind to trans
motion. Snowdenet al. (1991) showed that the response of an MT cell to the motion of rand
dots in the cell’s preferred direction is strongly reduced when a second, transparent dot p
moves in the opposite direction. Recanzone, Wurtz, and Schwartz (1997) demonstrated th
result extended to cells in MST and can also be observed when discrete objects are substitu
whole-field motions. However, Bradley, Qian, and Andersen (1995) and Qian and And
(1994) showed that, since opponent direction inhibition occurs mainly between motion si
with similar disparities, the disparity-selectivity of MT neurons can be used effectively to ex
information about transparency due to motion cues. Our model explains how the use of mu
spatial scales, with each scale sensitive to a particular range of depths according to the si
parity correlation, achieves this functionality.

Just as the FACADE model uses multiple scales for depth sensitivity and the Motion BCS
multiple scales for speed sensitivity, the Formotion BCS model uses multiple scales for m
segmentation in depth. The transparent motion percept is bistable and attention can det

-

--

-

Near
(Scale 1)

Far
(Scale 2)

=

A

FIGURE 20. (A) Motion transparency. Note that, in this figure, shading has been used sole
identify the two fields. In the actual display, the two fields are identical in all respects except t
motion. (B) Opposite motion directions within multiple scales compete. In addition, directio
within scales that represent nearer motions inhibit the same directions within scales
represent farther motions. This type of “asymmetry between near and far” is also foun
FACADE theory.

B
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which of the two fields in seen in front of the other. Fluctuations within the system, whether d
small activation asymmetries or attentional biases, can break the symmetry and render one
tion of motion momentarily more salient. The model implements this by attentional enhance
via MST of a randomly selected motion direction, say rightward motion, within a given scale
scale 1, and inside a foveal region. Even a small advantage across direction can yield selec
the preferred direction through the cooperative-competitive interactions within and bet
model MST and MT that carry out motion capture. Attentional enhancement acts as a gain c
mechanism that adds a DC value to all cells tuned to rightward motion within the attent
locus. Consistent with recent data about attentional enhancement in MT/MST (O’Cravenet al.,
1997; Treue and Martinez Trujillo, 1999; Treue and Maunsell, 1996, 1999), the enhancemen
not change the cell tuning curves and only increases their activity.

The attentional gain is applied only within the selected direction and scale and inside the
tional locus. In our simulation, the locus of attention is at the center of the display and co
6.25% of the total display area. The boost to rightward motion signals in scale 1 allows this d
tion to win the interdirectional competition across all of scale 1 via motion capture. Inters
inhibition from the near scale, scale 1, to the far scale, scale 2, within direction and at each s
location suppresses rightward motion in scale 2 (Figure 20A). This is an example of theasymme-
try between near and far(Grossberg, 1997; Grossberg and McLoughlin, 1997). Leftward mot
signals in scale 2 are disinhibited and win the interdirectional competition in this scale. Two
ferent motion directions become active at two different depths, as shown in the computer si
tion in Figure 21. Thus, by using two scales representing different depths, the model explain
a 2D input sequence can lead to the perceptual segregation in depth of two surfaces base
on motion cues. These competing directions can alternate for which appears nearer in time
the action of habituative, or depressing, transmitters in their active pathways (cf., Francis and
Grossberg, 1996a; Grossberg, 1987b).

3.8 Chopsticks Illusion: Coherent and Incoherent Plaids

In the chopsticks illusion (Anstis, 1990), two overlapping lines of the same luminance mo
opposite directions. When the lines are viewed behind visible occluders, they appear to

FIGURE 21. Model MST output for motion transparency. (A) Scale 1. (B) Scale 2.

Frame no. 15; Scale 1 Frame no. 15; Scale 2
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together as a welded unit in the downward direction (Figures 22A and 22B). When the occl
are made invisible, the lines no longer cohere but appear to slide one on top of the other (F
22C and 22D). The first case is similar to coherently moving plaids while the second rese
the percept of incoherently moving plaids. Chey, Grossberg, and Mingolla (1997) simula
variety of data concerning the conditions under which type 1 and type 2 plaids may cohere o
including the effect of varying their component angles (Kim and Wilson, 1993), durations (Yo
Wilson, 1992), and contrasts (Stone, Watson, and Mulligan, 1990). This analysis did not con
intrinsic and extrinsic terminators, or how one component moving in front of another compo
could be explained. The chopsticks display provides an excellent example of how these add
factors influence perception. It contains two kinds of feature: the line terminators of each lin
the intersection of the two lines. Of the line terminators, two move leftward while the other
move rightward. The line intersection moves downward. All these features have unambig
motion signals. The model of Yo and Wilson (1992) and Wilson, Ferrera, and Yo (1992) ana
data about plaid percepts by invoking distinct channels for processing Fourier and non-F
signals, along with a delay in the non-Fourier motion pathway. These hypotheses are not n
in the present model. The data of Bowns (1996) do not support Fourier and non-Fourier path
but do support the feature tracking explanation that we further develop herein.

FIGURE 22. Chopsticks illusion. (A,B) Visible occluders. Two overlapping lines move
opposite directions behind visible occluders. Observers see a rigid cross translating down
(C,D) Invisible occluders. Gray dashed lines depict the edges of the invisible occluders that
the edges of the apertures. Observers see two lines slide past each other.

3.8.1  Visible Occluders

When the line terminators are made extrinsic by making the occluding bars visible, their m
signals are given less importance by the visual system. The feature tracking signals due
intersection of the two lines are stronger than those due to the extrinsic line terminators
downward moving signals at the intersection win the competition in the MT-MST loop and p
agate outward to capture the motion of the lines. Both lines appear to move downward as a
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coherent unit, as shown in the simulation in Figure 23A.

3.8.2  Invisible Occluders

The percept of incoherency involves the interplay of more complicated mechanisms. We
that this percept cannot be explained by considering the motion system alone, but requires
motion interaction of the form and motion systems; see Figure 1. In this view, incoherency
combination of two percepts that occur simultaneously: (a) the perceived inconsistency o
motion velocities of the two lines, and (b) perceptual form transparency with one line perceiv
being superimposed in front of the other. The two percepts are interlinked and can each cau
other. For instance, Stoner, Albright, and Ramachandran (1990) showed that form transp
cues at the intersections of two plaids can lead to perceptual incoherency of the plaids. Thi
example of a form-to-motion interaction. However, Lindsey and Todd (1996) argued that
transparency cues are not sufficient to perceive motion incoherency. They showed that in
ency may arise from prolonged viewing, and suggested that motion adaptation may also
role. How such adaptation could explain the Lindsey and Todd (1996) data was describe
simulated in Chey, Grossberg, and Mingolla (1997), but without a simulation of incohe
motions at different depths. In the chopsticks illusion, there are no form cues that robustly le
perceptual transparency at each moment. Motion cues lead to the percept of depth segreg
the two lines. This is a motion-to-form interaction. Models that have simulated incoherent p
without a form-to-motion interaction (Chey, Grossberg, and Mingolla, 1997; Liden and P
1999) have not produced the perceived motion at  plaid intersections.

In the chopsticks illusion, when the line terminators are intrinsic (Figure 22C), their motion
nals are at least as strong as those due to the line intersection. The different motion signals
from line terminators leads to the depth segregation of the two lines (Figure 22D). When this
pens, the feature arising from the intersection of the two lines no longer perceptually exists,
the lines are processed at different depth planes. This is consistent with the data of Bressan
and Vallortigara (1993) and Vallortigara and Bressan (1991). To understand how the visual s
sees this stimulus, it is necessary to consider our model as part of a broader framework of m
that perform figure-ground segmentation within the form system and implement both form
motion and motion-to-form interactions.

Figure 1 shows the neural pathways and connections that we predict to be involved in provi
complete explanation of the incoherent chopsticks illusion. A complete simulation of this ci
is beyond the scope of the present article, since it would involve simulating the entire fig
ground separation apparatus of FACADE theory and the Formotion BCS, augmented by top
connections from model area MT to V1. A qualitative explanation can be given, based
extensive simulations of FACADE (Grossberg and McLoughlin, 1997; Grossberg and Pe
1998, Kelly and Grossberg, 2001), formotion interactions (Baloch and Grossberg, 1997; F
and Grossberg, 1996b), and top-down connections to V1 (e.g., Grossberg and Raizada
Raizada and Grossberg, 2000). This qualitative explanation proceeds as follows:

The input motion sequence appears at V1 after retinal and LGN processing. Figure-groun
cessing between V1 and V2 by FACADE mechanisms detects occlusion events in the form
junctions and assigns a depth ordering to object boundaries at the site of an occlusion. This
labelled as 1 in Figure 1, represents one source of inputs to the Formotion BCS model; see
1 in Figure 4. Form-to-motion signals from V2 to MT enables the motion stream to respond t
figure-ground separated form signals, as indicated by the simulations described above. In p
lar, the motion system can compute feature tracking signals at the intrinsic line terminators
28
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FIGURE 23. Model MST output for the chopsticks illusion. (A) visible occluders. (B
invisible occluders: scale 1. (C) invisible occluders: scale 2. The simulations for panels (
(c) were done on a 57 X 33 grid of locations. The leftmost 7 and rightmost 7 columns of t
grid were cropped for figure display of (a); the rightmost 14 and leftmost 14 columns of t
grids of panels (b) and (c), respectively, were also cropped.
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chopsticks, as well as at their intersection. This stage is labelled as 2 in Figure 1.

The grouping and priming MT-MST loop, labelled as 3 in Figure 1, corresponds to Level 5 o
Formotion BCS model. This process detects the lack of a clear directional winner due to the
flicting motion signals from the line terminators. In the MT-MST feedback loop, these conflic
signals propagate from the line terminators to the intersection. At any point of one of the c
sticks, including their intersection, it is assumed that top-down attention in MST random
volitionally enhances one of the two chopsticks. As noted in our simulation of motion trans
ency, even a small asymmetry in activation, whether due to attention or some other inter
external fluctuation, is sufficient to break such a deadlock. For definiteness, let us assume
attentional fluctuation is the cause. Then attentional enhancement of the motion signals can
agate along the form boundaries of the attended chopstick, just like feature tracking signa
This top-down attentional priming effect from MST to MT can then propagate to V1 via top-d
MT-to-V1 signals, labelled 4 in Figure 1.

The motion-to-form interaction from MT-to-V1 along pathway 4 in Figure 1 is predicted to
like a top-down ART-like attentional prime (Grossberg, 1999a). This proposal is supporte
neurophysiological data showing that feedback connections from MT-to-V1 help to differen
figure from ground (Hupéet al., 1998). Feedback facilitates V1 responses to moving object
the center and inhibits responses in the surround, as also occurs in the model. Attention am
the boundaries formed at the attended chopstick, much as increasing the contrast of that ch
would do.

Such an activity difference in processing two overlapping figures, in which one figure par
occludes another, is known to cause figure-ground separation (Bregman, 1981; Kanizsa,
FACADE theory explains how such an activity difference can activate figure-ground separati
the boundaries corresponding to the two chopsticks, through V1-V2 interactions (Gross
1997). The boundaries of the two chopsticks are then processed on two different depth
within the form system. The theory explains how the boundaries of the favored chopstick are
cessed on the nearer depth plane, leading to a visible, or modal, percept of the occluding
stick. FACADE also explains how the form system amodally completes the boundaries o
"far" chopstick behind the occluding chopstick. Once the boundaries are separated, they ca
motion processing on different depth planes in MT via a V1-V2-MT interaction. The attenti
bias hereby propagates in an MST-MT-V1-V2-MT loop. Once figure-ground separation is
ated, another pass through the model MT-MST interactions, using the separated chopstic
their motion signals as inputs, can determine the perceived motion directions of the lines a
depth. This second loop is simulated in Figures 23B and 23C, which shows a percept of hori
incoherent motion of the two chopsticks on two depth planes.

3.9  Illusory Contours from Translating Terminators

A related type of experiment can also benefit from a full simulation of the entire formotion sys
outlined in Figure 1. In the ingenious experiments of Gurnsey and von Grünau (1997), arra
aligned terminators moving in the direction of their orientation could give rise to either a per
of veridical motion in the real direction of terminator motion, or to a percept of motion in
direction perpendicular to the illusory contours that are formed at the ends of the terminators
idical motion was more easily seen when terminators (1) were created in low-frequency ca
(2) terminated short lines, and (3) moved slowly. In the complementary high-frequency, long
and fast movement conditions, illusory contour motion was seen. Part of these results c
explained by mechanisms whereby real and illusory boundaries are created in the form proc
30
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stream. In this regard, Gurnsey and von Grünau (1997) cite and build upon the articles by G
berg and Mingolla (1985) and Grossberg (1987) that introduced the type of "rectified doub
ter" model from which many later boundary and texture filter models of other authors grew
which formed the foundation for the 3D boundary mechanisms of FACADE theory. The rect
double-filter model is not sufficient to explain how illusory contours are formed in respons
sparse inducers, but the strength of its output signals do tend to covary with the strength
illusory contours that may be generated by them, other things being equal.

Properties (1) and (2) are consistent with the hypothesis that increasing the density and len
inducers can strengthen the illusory contours, and thus the probability of perceiving motion
pendicular to the orientation of the illusory contours, other things being equal. The fact
increasing the density and length of inducers can strengthen illusory contours is familiar
studies of stationary illusory contours (e.g., Lesher and Mingolla, 1993; Shipley and Kell
1992; Soriano, Spillman, and Bach, 1996) and has been simulated by the FACADE model (G
berg, Mingolla, and Ross, 1997; Ross, Grossberg, and Mingolla, 2000). With regard to pro
(3), Gurnsey and von Grünau (1997) note that, on the assumption that "the spatial offset be
two filters is proportional to their sizes, then it is natural that [they] should be tuned to fa
speeds" (p. 1021). This sort of property is a basic assumption of the Motion BCS (Chey, G
berg, and Mingolla, 1997, 1998), which shows that a larger response threshold within larger
range filters (see Figure 4 and Section 2.3) helps to make them speed-sensitive. As a resul
scales selectively respond to higher speeds. Thus the combination of properties (1)-(3) m
linked to known properties of FACADE illusory contour formation, formotion inputs of real a
illusory contour signals to the motion system, and known speed-sensitive properties of the M
BCS.

The rectified double-filter model is insufficient in another way too. Gurnsey and von Grü
(1997) note that, in two conditions called the 75% White and 25% White conditions, when
sory contour motion determines the percept, the illusory contours appear to form part of
occluding surface that moves over a stationary background. This is perceived whether the o
ing surface or the background is defined by the array of lines. The double-filter model ca
explain this result. FACADE theory shows how the strongest boundaries form bounding con
of occluding surfaces, and the rest of the scene is perceived at a slightly farther depth.

Gurnsey and von Grünau (1997) also studied how two arrays of line terminators, with diff
orientations and moving in different directions, could give rise to the percept of either coh
plaid motion or incoherent component motion. When the two illusory contours were aligned,
jects almost always reported seeing coherent downward motion. As the phase shift betwe
two illusory contours increased, there was a decrease in the tendency to see coherent moti
authors note that "this result suggests that the responses are combined so that spatially co
responses increase the salience of the translating contour" (p. 1023). The authors specul
the responses to both filters should be combined to yield the desired result and that
responses help to extract occlusion boundaries. In FACADE, the strength of real or illusory
tours increases with the cumulative strength of their inducers, a property calledanalog coherence
(Grossberg, 1999a), and the strongest boundaries initiate a figure-ground process that t
make them boundaries of occluding figures.

3.10  Adapting Coherent and Incoherent Plaid Motions

Related data can also be qualitatively explained by the Formotion BCS. Von Grünau and
(1993) studied how adaptation to plaids which are seen to be coherent can reduce the tim
31
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coherence is seen relative to incoherent component motion, and conversely. They also show
adaptation to motion direction per se is not sufficient to explain these results, because adap
say, a horizontal component grating moving downwards does not fully adapt the coherent d
ward plaid motion percept that is derived from two component motions. They state that
underlying processes are adapted independently" (p. 199) even though the data show a sig
amount of adaptation (their Figure 4), but one that is less than complete. Chey, Grossber
Mingolla (1997) simulated how adaptation could clarify plaid coherence data showing that gr
adaptation is needed to produce incoherent motion for smaller differences between the com
orientations. The adaptation in these simulations was proposed to take place from cortica
MT to MST; that is, as part of the motion grouping process. Even with only this adaptation
incomplete adaptation might occur in the von Grünau and Dubé (1993) experiments if
because the perceived speed of the horizontal motion and of the coherent plaid motion may
ferent, and would therefore adapt different speed-sensitive MT-to-MST connections. Beyon
precaution, there is also the fact that adaptive sites may exist at multiple levels in the form
motion systems, and have already played a crucial role in simulations of other form, formo
and motion data; e.g., Baloch and Grossberg (1997), Baloch, Grossberg, Mingolla, and No
(1999), Francis and Grossberg (1996), Grossberg (1987b). As soon as any site prior to the
MST pathway is made adaptive, incomplete adaptation would prevail, because the directi
the plaid components would not adapt the coherent plaid direction in these pathways.

4.  Discussion

The Formotion BCS model successfully performs the conflicting tasks of integration and
mentation of motion cues into a unified global percept. Interconnections between neurons
model (Figure 1) are consistent with, and functionally clarify, currently known data on the
nectivity between cortical areas devoted to visual motion processing such as the retina, V
MT, and MST. The model extracts feature tracking signals from a 2D motion sequence wi
explicit feature detection or feature matching. The model combines unambiguous motion s
from features with ambiguous signals that arise from the aperture problem. The two types o
nals are computed by the same mechanisms. Competition between motion signals from
tracking regions and other parts of the scene determines the final 3D percept. Simulations
how a range of challenging percepts can be explained by a single model.

4.1 The Motion Boundary Contour System

The Motion Boundary Contour System (BCS), which has been further developed in this pap
a Formotion BCS model, was introduced by Grossberg and Rudd (1989, 1992), who sim
data on short-range and long-range apparent motion, including beta, gamma and reverse-c
gamma, delta, reverse, split, and Ternus and reverse-contrast Ternus motion. Grossberg
1998) extended this model to explain how a moving target can be tracked when it is intermit
occluded by intervening objects. Grossberg and Mingolla (1993) further extended the mo
suggest a solution to the global aperture problem.

Baloch and Grossberg (1997) and Francis and Grossberg (1996) integrated this version
Motion BCS model with FACADE boundary-formation mechanisms to explain data wh
depend upon interaction of the form and motion systems. This was the first Formotion
model, and it was used to explain and simulate the classical Korté’s laws, as well as th
motion illusion, motion induction and transformational apparent motion. This version of
32
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model did not, however, simulate feature tracking signals or the aperture problem.

To overcome these gaps, Chey, Grossberg, and Mingolla (1998) elaborated the role of tra
cells beyond the Grossberg-Rudd model, and added multi-scale dynamics to the model to e
the size-speed correlation and to simulate data on how visual speed perception and discrim
are affected by stimulus contrast, duration, dot density and spatial frequency. Chey, Gros
and Mingolla (1997) extended this model to stimulate data about motion integration, notably
ditions under which components of moving stimuli cohere into a global direction of motion, a
barberpole and Type 1 and Type 2 plaids. This model also simulated the temporal dynam
how unambiguous feature tracking signals from line terminators spread to and capture amb
signals from line interiors. Balochet al. (1999) showed how adding interactions between ON a
OFF cells could simulate both first-order and second-order motion stimuli, including the rev
of perceived motion direction with distance from the stimulus (gamma display), and data a
directional judgments as a function of relative spatial phase or spatial and temporal frequen

This paper extends the model further to perform motion integration as well as motion segm
tion by combining figure-ground mechanisms (areas V1 and V2) and formotion interactions (
V2 to MT) with motion mechanisms (areas V1, MT, and MST). Together these mechanism
distinguish intrinsic vs. extrinsic terminators, and show how feature tracking signals and am
ous aperture motion signals can influence each other by propagating across space.

It is reasonable to ask whether the Formotion BCS model, in its present form, can simulate
the data which previous versions of the model have already simulated with a single set of pa
ters. Such a re-simulation would be an enormous undertaking, which is perhaps best carr
only after the model achieves it final form. One can, however, assert with some confidence th
model can simulate all of these data, for the following reasons. The formotion inputs to
Motion BCS via V2-to-MT connections do not change the mechanisms and parameters
which the Motion BCS responds to motion data via its direct V1-to-MT pathway. This addi
does not, therefore, impair the simulations that used the Motion BCS alone.

The Motion BCS, in turn, has been developed in an evolutionary way, such that previous m
nisms are preserved while new mechanisms are added. For example, Grossberg and Rudd
1992) emphasized the short-range and long-range filters to explain data about long-range a
motion. Chey, Grossberg, and Mingolla (1997, 1998) refined the transient cell filter that feed
short-range and long-range filters, but did not disrupt the key properties of these filters
explained the data targeted by Grossberg and Rudd, but also showed how these filters p
important role in amplifying feature tracking signals. Likewise, the Balochet al. (1999) addition
of OFF cells to the transient cell filter did not destroy its earlier properties. Taken together
family of Motion BCS and Formotion BCS models explains an unrivaled set of neural and
chophysical data about motion perception. Additional neurophysiological data that suppo
model and comparisons with alternative motion models are summarized below.

4.2  Neurophysiological evidence

4.2.1  Level 2: Transient Cells

Directionally sensitive cells, similar to those in Level 2 of the model, have been found both i
retina of rabbit (Barlow, Hill, and Levick, 1964) and in simple and complex cells in V1 (Hu
and Wiesel, 1968), as well as in later stages in the visual processing stream. Barlow and L
33
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(1965) first suggested that directional sensitivity in ganglion cells of the rabbit retina is mai
result of the lateral spread of inhibition in an asymmetric fashion, so that it blocks excita
which subsequently arrives on one side of it, but not on the other. This forward inhibition h
certain rise time and decay and serves to veto cell responses to the null direction. This ap
argues against the Reichardt (1961) hypothesis that directional selectivity is achieved b
cross-correlation of a signal with delayed excitation from one side.

The Barlow and Levick (1965) proposal has received considerable support. Pharmacologica
ies of the retinae and primary visual areas of rabbits, cats and monkeys (Ariel and Daw,
Sato, Katsuyama, Tamura, Hata, and Tsumoto, 1995; Sillito, 1975, 1977; Wyatt and Daw,
conclude that antagonists to the inhibitory neurotransmitter gamma-aminobutyric acid (GA
abolish or greatly reduce directional selectivity. Ariel and Daw (1982) observed that a poten
of the excitatory neurotransmitter acetylcholine (ACh) leads to excitation which overcome
outlasts the null direction GABA inhibition. The spatial extent of GABA inhibition is asymmet
to and larger than the spatial extent of ACh excitation.

Other physiological studies (Emerson, Citron, Vaughn, and Klein, 1987; Emerson and Cole
1981; Emerson and Gerstein, 1977; Ganz, 1984; Ganz and Felder, 1984) compared respo
single static flashes at various receptive field locations in either the preferred or the null dire
with responses to sequence pairs of static flashes at those same locations. They found
response to a single bar was smaller when it was preceded by a stimulus from the null side.
mond and Kim (1994) and Innocenti and Fiore (1974) mapped excitatory and suppressive
tive fields and found that their profiles were spatially offset, especially along the prefe
direction such that, for stimuli moving in the non-preferred direction, the inhibition lay ahea
the excitation. Ganz and Felder (1984), Goodwin, Henry, and Bishop (1975a, 1975b) and H
lund (1984) argued against Hubel and Wiesel’s (1959, 1962) hypothesis that directional se
ity can be explained on the basis of a linear combination of responses from adjacent ON an
regions of the neuron. Several of these neurophysiological studies (Barlow and Levick,
Emerson, Citron, Vaughn, and Klein, 1987; Emerson and Gerstein, 1977; Ganz, 1984; Gan
Felder, 1984) agree about the existence of direction-selective subunits distributed acro
receptive field and contributing their inputs to a directionally selective neuron.

However, another theory for directional selectivity exists (Dean and Tolhurst, 1986; DeAng
Ohzawa, and Freeman, 1993a, 1993b; Jagadeesh, Wheat, and Ferster, 1993; Jagadeesh
Kontsevich, Tyler, and Ferster, 1997; McLean and Palmer, 1989; McLean, Raab, and P
1994; Movshon, Thompson, and Tolhurst, 1978; Reid, Soodak, and Shapley, 1987, 1991).
referred to asspatiotemporal inseparability(Adelson and Bergen, 1985). According to th
hypothesis, differences in excitatory response timing across the receptive field causes dire
sensitivity. A stimulus moving in the preferred direction would activate faster and faster respo
which summate optimally if the stimulus speed matches the shift in response time course
recent study on alert fixating macaque monkeys, Livingstone (1998) suggested that delayed
metric inhibition may contribute to the shifting excitatory response time course. Her data su
that asymmetric forward inhibition is the major determinant for directionality in V1 cells. S
shows how the morphology and connectivity of Meynert cells, that are large, direction-sele
MT-projecting cells in layer 6 of V1, can be used to explain the role of inhibition in directi
selectivity. A Meynert cell has asymmetrical basal dendrites extending in one direction w
layer 6. It receives excitatory inputs from its distal dendrites and relatively denser inhib
inputs from the synapses formed by inhibitory interneurons with its cell body. This struc
ensures that the cell receives excitatory and inhibitory inputs from different regions of the v
field. Besides, due to dendritic conduction delays, excitatory inputs from distal dendritic
34
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would arrive at the cell body later than the inhibitory inputs from interneurons. These sim
properties enable the cell to use asymmetric inhibition to achieve directional selectivity.

4.2.2  Level 4: Spatial Competition and Opponent Direction Inhibition

Several neurophysiological studies confirm that the opponent direction inhibition used in Le
of the model exists in MT but has not been found in V1 (Bradley, Qian, and Andersen, 1995;
ger, Boynton, Demb, Seidemann, and Newsome, 1999; Qian and Andersen, 1994; Reca
Wurtz, and Schwarz, 1997; Snowden, Treue, Erickson, and Andersen, 1991).

4.2.3  Level 5: Long-range Directional Grouping and Attentional Priming

Several studies show that MT cells are directionally selective (Albright, 1984; Maunsell and
Essen, 1983a; Zeki, 1974a, 1974b). They respond more strongly to moving stimuli, irrespec
direction of contrast, than to static stimuli. Psychophysical evidence using heterogeneou
plaids (Stoner and Albright, 1992) shows that motion signals are integrated irrespecti
whether they were produced by first-order or second-order form cues. The discovery of two
of MT neuron, those that respond to component motion and those that respond to pattern m
of plaids (Movshon, Adelson, Gizzi, and Newsome, 1985; Rodman and Albright, 1989) sup
the hypothesis that MT is the first cortical area in the visual processing stream where motion
gration cues occurs.

Outputs from MT feed into MST (Desimone and Ungerleider, 1986; Maunsell and van Es
1983b). MST cells are directionally selective and have large receptive fields. The dorsal p
MST, MSTd, responds selectively to expansion, contraction, and clockwise or countercloc
rotation (Saitoet al., 1986) and favors movements of a wide textured field like those cause
observer movements over those of moving objects (Duffy and Wurtz, 1991a, 1991b; Komats
Wurtz, 1988; Orbanet al.,1992; Tanaka and Saito, 1989). Grossberg, Mingolla, and Pack (19
modeled how MSTd may control visually-based navigation using optic flow stimuli. The ven
part of MST, MSTv, prefers object movements to whole-field movements. This is the so
motion processing that we have used in our model of MT-MST directional selection and a
tional priming. Pack, Grossberg, and Mingolla (2001) have shown how MSTv cells can repr
predicted target speed during smooth pursuit tracking.

Treue and Maunsell (1996, 1999) demonstrated a strong modulatory influence of attenti
motion processing in the directionally selective cells of MT and MST in macaque monkeys. U
fMRI on humans subjects, O’Cravenet al. (1997) found greater activation in MT/MST in the
presence of voluntary attention. Further, attention acts as a nonspecific gain control mech
that enhances responses within the locus of attention without narrowing direction-tuning c
(Treue and Martinez Trujillo, 1999). As noted in Section 2.5, these attentional data are cons
with the predicted relationship between preattentive motion capture and directional atten
priming, but does not directly test this key prediction.

4.3  Comparison with other motion models

Several theories of motion perception have been proposed in the literature. Most of these
explanations for either motion integration or motion segmentation, but not both, and few of
describe neural mechanisms for all model stages. Although the data about motion integratio
segmentation are challenging, since these processes exhibit contradictory yet complem
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goals, it is more difficult to develop a theory that can handle both types of data with the sam
of mechanisms. We describe models below that have treated a subset of these data and c
them to our approach. A summary of this analysis is presented in Table 1.

The IOC model of motion integration attempts to explain the perceived motion direction of co
ent plaids (Adelson and Movshon, 1982). IOC predicts that observers always see the ve
motion of a coherent plaid pattern. However, a growing body of data suggests that this is n
case (Bowns, 1996; Bressan, Ganis, and Wallortigara, 1993; Cox and Derrington, 1994
rington and Ukkonen, 1999; Ferrera and Wilson, 1990, 1991; Rubin and Hochstein, 1993; V
tigara and Bressan, 1991). Features such as dots, line terminators, object corners an
intersections can determine the global direction of motion in both plaid displays (Alais, Bu
and Wenderoth, 1996; Alais, van der Smagt, Verstraten, and van de Grind, 1996; Bowns,
Bressan, Ganis, and Wallortigara, 1993; Burke, Alais, and Wenderoth, 1994; Derrington
Ukkonen, 1999; Vallortigara and Bressan, 1991; Wenderothet al.,1994) and non-plaid multiple-
aperture displays (Alais, van der Smagt, van der Berg, and van der Grind, 1998; Lorencea
Shiffrar, 1992; Mingolla, Todd, and Norman, 1992).

Paper Type of model Type of data simulated

Adelson and Bergen (1985) spatiotemporal energy directional and speed sensitivity

Adelson and Movshon (1982) intersection of constraints (IOC) motion integration: coherent pla

Del Viva and Morrone (1998) feature tracking motion integration and segmenta

Fennema and Thompson (1979) gradient directional and speed sensitivity

Hildreth (1984) regularization / smoothing motion integration

Horn and Schunck (1981) regularization / smoothing motion integration: optic flow

Jasinschi, Rosenfeld and Sumi
(1992)

correlational and IOC motion integration and segmentatio

Jin and Srinivasan (1990) gradient directional and speed sensitivity

Johnston, McOwan and Benton
(1999)

gradient motion segmentation: static noise

Johnston, McOwan and Buxton
(1992)

gradient first- and second-order motion

Koch, Wang and Mathur (1989) regularization / smoothing motion integration

Lappin and Bell (1972) correlational apparent motion

Liden and Pack (1999) feature tracking motion integration and segmenta

Loffler and Orbach (1999) feature tracking motion integration: coherent plaid

Marr and Ullman (1981) gradient directional and speed sensitivity

Marshall (1990) adaptive learning neural network motion integration: barber-pole

Nowlan and Sejnowski (1994) spatiotemporal energy motion segmentation: transpare

Poggio, Torre and Koch (1985) regularization / smoothing motion integration: barber-pole

Qian, Andersen and Adelson (1994) subtractive and divisive inhibition motion segmentation: transpar

Reichardt (1961) correlational low-level vision

Sachtler and Zaidi (1995) center-surround shearing motion segmentation

van Santen and Sperling (1985) correlational directional and speed sensitivity

Wang (1997) adaptive learning neural network motion integration and segmenta
36
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TABLE 1. Comparison of previously presented motion models.

Given that the motion signals from features plays an important role, we are still faced wit
problem of how to compute this motion. Correlational models (Lappin and Bell, 1972; Reich
1961; van Santen and Sperling, 1985) suggest that this is done by a pair of receptors separ
some physical distance such that the delayed output of one receptor is multiplied by the ou
the other receptor. This matching of corresponding points in succeeding frames can be d
two levels. Feature matching models (Reichardt, 1961; van Santen and Sperling, 1985)
salient features and match corresponding features to compute image velocities. Global ma
models (Lappin and Bell, 1972) perform template matches over larger regions of space by s
images in subsequent frames to obtain optimal matches. Both kinds of correlational mod
susceptible to thecorrespondence problem; namely, how to establish correspondences across s
cessive frames, especially when the similarity of objects in the images suggests that mor
one kind of correspondence is possible (Anstis, 1980). Clearly, velocity estimates in the
depend crucially on which correspondence is chosen. We therefore need a method of com
the motion of features without explicitly detecting and matching features.

Spatiotemporal motion energy models (Adelson and Bergen, 1985; Watson and Ahumada,
are similar to correlational models in that they recover speed and direction estimates from
tiotemporal information in the scene. To do this, they use linear filters whose Fourier transf
are oriented in space-time. Velocity sensitivity is achieved through orientation sensitivit
space-time. Motion energy models are formally equivalent to elaborated Reichardt detect
that they compute identical outputs for any given input (van Santen and Sperling, 1985). Em
Bergen, and Adelson (1992) presented neurophysiological evidence that the responses o
tionally selective complex cells in the cat’s striate cortex are consistent neither with correlat
models (Reichardt, 1961; van Santen and Sperling, 1985) nor with an opponent combinat
motion energy models (Adelson and Bergen, 1985; Watson and Ahumada, 1985).

Gradient models (Fennema and Thompson, 1979; Jin and Srinivasan, 1990; Marr and U
1981) compute velocity by using local spatial and temporal derivatives of the image’s spatio
poral luminance profile. Speed sensitivity is coded by the magnitudes of the gradients.
derivatives are computed at single spatial locations, gradient schemes successfully bypass
respondence problem. However, they succumb to the aperture problem since the expressio
to compute velocity in the case of moving 1D bars is ill-conditioned. In an attempt to solve
problem, Johnston and colleagues (Johnston and Clifford, 1995; Johnston, McOwan, and B
1999; Johnston, McOwan, and Buxton, 1992) proposed a model that combines a gradient s
with the IOC procedure to detect first-order and second-order motion in the presence or ab
of static noise. The resulting multi-channel gradient model can detect the motion of a gr
superimposed on a static random binary noise pattern. The model is consistent with the data
and Sperling (1995) whose experiments using contrast-modulated noise patterns found n
dence for feature tracking in first-order and second-order motion detection. However, when
trast-modulated sine-wave gratings are substituted for contrast-modulated noise patterns, s
order motion detection is disrupted by the superimposition of a pedestal, thus suggesting th

Watson and Ahumada (1985) spatiotemporal energy directional and speed sensitivit

Yo and Wilson (1992) Fourier and non-Fourier channels motion integration

Yuille and Grzywacz (1988) regularization / smoothing motion integration: motion captu

Zemel and Sejnowski (1994) adaptive learning neural network motion segmentation

Paper Type of model Type of data simulated
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motion of contrast envelopes is detected by a mechanism that tracks features (Derringto
Ukkonen, 1999). Although the multi-channel gradient model is well-conditioned for velocity c
ing, it fails in the same way as IOC in explaining data on Type 2 plaids. The Motion BCS m
of Balochet al. (1999), which is consistent with the Formotion BCS model, explains such fi
order and second-order motion percepts within the present modeling framework.

Regularization theories (Hildreth, 1984; Horn and Schunck, 1981; Koch, Wang and Mathur, 1
Poggio, Torre, and Koch, 1985; Yuille and Grzywacz, 1988) minimize a cost function by appl
a smoothness constraint to the velocity field. They make the assumption that real-world o
have smooth surfaces, whose projected velocity field is usually smooth. Such techniqu
robust to noise and are good for motion integration, but can perform motion segmentation o
explicitly detecting discontinuities in the motion field, such as when the spatial gradient o
velocity field between two neighboring points is larger than some threshold. Further, the ite
minimization of the cost functional is computationally expensive, subject to getting trappe
local minima for non-quadratic functionals, and difficult to intepret biologically.

Marshall (1990) and Wang (1997) presented adaptive neural networks in which weights an
nections between neurons are modified during an iterative training phase in which motions o
ious directions and speeds are presented. However, it remains to be seen whether the perce
motion illusions such as those presented in this paper is the result of adaptive learning.

Other models primarily address the problem of motion segmentation (Nowlan and Sejno
1994; Qian, Andersen, and Adelson, 1994; Sachtler and Zaidi, 1995; Zemel and Sejno
1994). They detect local motion discontinuities and use these to segment the scene. They
integrate motion signals across discontinuities that arise from noise in the stimulus.

Computational models of feature tracking have traditionally faced two problems: (1) What co
tutes a feature? How should features be detected in a scene? Definitions of features have ty
been vague. Dots, line terminators, object corners and plaid intersections are examples of
detectable features. However, corners of objects formed by subjective contours can also con
features and these are considerably harder to detect. (2) Even if features can be reliably d
in a scene, how should features in one frame of a motion sequence be matched to feature
next frame? This is the correspondence problem discussed earlier.

Jasinschi, Rosenfeld, and Sumi (1992) proposed a model that combines a feature ma
scheme similar to that of correlational models with IOC to explain motion transparency
coherence. The model uses a velocity histogram that combines votes from the velocities o
tures such are corners and line endings (computed by template matching) with those fro
intersections of all possible constraint lines due to the motion of image contours. The mode
ceeds in explaining motion transparency; namely, how two velocities can be perceived at the
spatial location, as well as the bistability of motion transparency and coherence in plaid dis
However, the use of global correlational matching as well as IOC makes the model suscept
the drawbacks of both types of scheme.

Del Viva and Morrone (1998) detect features by computing peaks of spatial local energy func
and compute feature velocities using a spatiotemporal motion energy scheme. Such a tec
fails to detect features formed by subjective contours. Loffler and Orbach (1999) presen
model of motion integration in coherent plaids which uses two parallel pathways (Fourier
non-Fourier) to perform feature tracking without the explicit use of feature detectors such as
stopped cells. As noted in Section 2.5, Yo and Wilson (1992) also proposed that two such p
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pathways exist. However, there is psychophysical evidence against the existence of two pa
(Bowns, 1996; Cox and Derrington, 1994). Moreover, none of the models described so fa
explain how the intrinsic-extrinsic classification of features influences the global motion per
For instance, intrinsic line terminators have unambiguous motion signals while the motio
extrinsic terminators is discounted by the visual system; while the former can block mo
grouping across apertures, the latter fail to do so (Lorenceau and Shiffrar, 1992).

Liden and Pack (1999) proposed a neural network model of motion integration and segmen
that consists of two separate but interacting systems of cells, one specialized for integratio
the other for segmentation. The model takes into account the relative strengths of intrins
extrinsic features by hypothesizing that local motion signals near T-junctions signalling occlu
are masked. In this way, the motion signals generated by extrinsic features are excluded
computations of global motion while those of intrinsic features are preserved. This mecha
predicts the existence of a form-to-motion interaction whereby form cues such as T-junc
inhibit motion signals at nearby locations. The nature of the interaction between the integ
and segmentation networks precludes the possibility of two motion velocities being active
same spatial location. Therefore, the model cannot explain motion transparency.

Our model suggests that a single system is capable of performing the dual tasks of motion in
tion and segmentation. The model performs neither feature detection nor feature matching
circumventing both the problems faced by most feature tracking models. Nevertheless, w
reliably compute feature tracking signals by accumulating evidence at short-range and long
spatial filters and through the use of competitive mechanisms. For a motion signal at a give
tial location to be attributed to the motion of a feature, it is sufficient that the signal be consi
and have few competitors both across direction at the same spatial location and across spa
similar directions. Model dynamics then ensure that these signals are made strong enough t
inate the final percept. Our model differs from that of Liden and Pack (1999) in that only f
cues are inhibited at T-junctions, leaving motion cues intact. The use of multiple spatial s
makes it possible for distinct motion velocities to be active at the same spatial location but a
ferent scales, thus allowing an explanation of depth segregation due to motion transparenc

4.4 Model Complexity and Robustness

It is sometimes claimed that neural models of vision "contain a lot of parameters". Counting
parameters does not make a lot of sense, since even a well-known and simple neural mech
like an on-center off-surround network, uses several parameters. Rather, it makes sense
count the number ofmechanismsor processing stages;to assess whether removal of any sta
prevents the explanation of key data; to survey experimental evidence for the neural existe
these stages; to test whether the mechanisms that realize the stages are robust within a co
ally meaningful parameter range; and to make predictions that test these properties.

In the case of the Formotion BCS model, all of these criteria were realized. In particular
model was found to be robust within parameter ranges in which its main mechanisms ha
functional effects for which they were included. For example, if the short-range filter is no
enough to amplify feature tracking signals, then motion capture will not occur. If the off-surro
within the top-town MST-to-MT feedback pathway is not strong enough to inhibit ambigu
aperture signals from the long-range filter, then motion capture will not occur. And so on. Ea
these mechanisms has a clear conceptual and functional interpretation. This is often not th
in purely formal models of perception, for which issues about whether one is "just" fitting
with functionally rather meaningless parameters or form factors is a very real issue.
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As to predictions of the Formotion BCS model, every one of its processing stages, the m
nisms used to realize them, and its predicted role in generating motion percepts constit
series of predictions. Here we wish to focus on the particularly exciting prediction that the
back interaction within MT-MST that is predicted to realizepreattentive motion captureis the
same circuit by which the brain achievesattentive directional priming. This prediction suggests
that cooling ventral MST will prevent MT cells from exhibiting motion capture in the apertu
ambiguous interiors of moving objects. It also predicts that an attentive directional prime
reorganize the preattentive motion capture process. A third prediction derives from the fac
the top-down feedback is predicted to carry out ART matching (Carpenter and Grossberg,
Grossberg, 1980, 1999b), which clarifies how directional receptive fields can develop and
tain themselves. The model predicts that pharmacological inhibition of the MT-to-MST bot
up adaptive weights can prevent directional MST cells from developing, and inhibition of
MST-to-MT adaptive weights can destabilize learning in these bottom-up adaptive weights.

Grossberg (1999a) also predicted how top-down ART attention is realized within the lamina
cuits of cortical areas from V2-to-V1, and by extension from MST-to-MT. Arguing by analo
from the V2-to-V1 situation, we predict that an attentional pathway may exist from layer 6 of
tral MST to layer 6 of MT (possibly by a multi-synaptic pathway from layer 6 of MST to laye
apical dendrites of layer 5 MT cells that project to layer 6 MT cells) followed by activation o
modulatory on-center off-surround network from layer 6-to-4 of MT. Thus, preattentive mo
capture signals, as well as directional attentional priming signals, from MST are predict
strongly activate layer 6 of MT, but to only modulate excitation within the on-center of laye
MYcells, while strongly inhibiting layer 4 cells in the off-surround. Without such a detailed n
ral model, such predictions would be inconceivable, and the means whereby the brain gives
visual behaviors would remain an impenetrable mystery.

5.  Appendix: Model Equations

We first describe the symbols and notations used in the network equations. Each cell acti
denoted by a variable whose letter indicates the cell type. Subscripts indicate the spatial p

of the cell. Superscripts indicate the directional tuning and scale of the cell. For example

indicates the activity of a thresholded short-range filter cell at spatial location (i,j), directional

preferenced and scales. The notation stands for half-wave rectification. Sim

ilarly, denotes rectification with threshold att. The outputs of every level of the mode

are rectified before being fed into the next level. The notation indicates the size of theS.

Some equations involve interactions between opponent directions. We compute the directio

exactly opposite to the direction  as follows:

(A1)

where is the total number of discrete directions used in the simulation and is the

ulo operator. All simulations use 8 directions, so . The motion transparency and c
sticks simulations use 2 scales; all others use a single scale. These two simulations are d
from the others in that they require interscale competition. Other than this difference, all sim

Fij
ds

w[ ]+
max w 0,( )=

w t–[ ]+

S

D
O

d

D
O

d
ND
2

--------+ 
  mod ND( )=

ND mod

ND 8=
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tions used the same parameters. Only the inputs are varied between simulations.

5.1  Level 1: Input

The input consists of a series of static frames each of which represents a time slice of a m
sequence. As mentioned in Section 2.1, the boundary representations at the farther depth
puted by FACADE at each frame of the sequence, serve as the inputs, , to the Formotion

Model. Input dimensions for each simulation are listed in Table 2.

TABLE 2. Input dimensions for all simulations.

5.2  Level 2: Transient cell network

Undirectional transient cell activities, , are computed by:

, (A2)

where simple cell activities, , perform leaky integration of their inputs as follows:

(A3)

and  are habituative transmitter gates defined by:

Simulation Display
Width

(in pixels)

Display
Height

(in pixels)

No. of frames
in the motion

sequence

Other input specific
parameters

Classic Barber Pole 60 30 15 No. of horizontal terminators
No. of vertical terminators = 2

Motion Capture 60 30 15 No. of horizontal terminators =
No. of vertical terminators = 2
No. of dots = 4

Spotted Barber Pole 60 30 15 No. of horizontal terminators
No. of vertical terminators = 2
No. of dots = 4

Line Capture 71 71 10 None

Triple Barber Pole 60 90 15 No. of horizontal terminators
No. of vertical terminators = 6

Translating Square: None

Visible Rectangular Occluders 33 33 15

Invisible Rectangular Occluders 33 33 15

Invisible Jagged Occluders 37 37 15

Motion Transparency 20 20 15 No. of dots = 20

Chopsticks 57 35 15 None

I ij

bij

bij xij zij=

xij

td

dxij 10 xij– 2 xij–( )I ij+[ ]=

zij
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. (A4)

The constants outside the brackets in (A3) and (A4) depict the rates of change of the simp
activities, , and the transmitter gates, , respectively. In (A3), the constant 2 represen

maximum value that the simple cell activities can reach. The term in (A4) signifies tha

transmitter gate can reach a maximum value of 1. The term in this equation

that transmitter habituates in proportion to the strength of the signal passing through the gat
100 being the constant of proportionality. Thus, accumulates at a constant rate to a finite

imum value and habituates, or is inactivated, at a rate proportional to the strength of the s

The undirectional transient cell responses, , in (A2) are the gated signals of (A4). Thes

activities correspond to the lowest layer of cells in Fig. 8.

Directional interneurons, , perform a time-average of undirectional transient cell activities

. (A5)

Each cell acquires a preferred direction as follows: Each cell receives excitatory input, ,

the undirectional transient cell at the same spatial location, and inhibitory input, , from

directional interneuron tuned to the opposite direction at a location that is spat

offset from by one unit along the preferred direction, . For example, a directional in

neuron tuned to leftward motion at location receives inhibitory input from the directio
interneuron one unit to its left and tuned to rightward motion (see Fig. 8). The inhibition is st
ger than the excitation; cf., coefficient 10 in (A5).

The dynamics of directional transient cell activities, , are similar to those of directional in

neurons. These cells receive excitatory input from undirectional transient cells, , and inhib

input from directional interneurons, :

. (A6)

In Equations (A5) and (A6), direction is the direction opposite to directiond and is computed

by (A1). The output of Level 2 is rectified before being sent to Level 3: .

Equations (A5) and (A6) implement a vetoing mechanism through spatially asymmetric in
tion. The need for inhibitory directional interneurons is not only biologically motivated, as
cussed in Sections 2.2 and 4.2.1, but is also functionally essential. A veto mechanism based
on inhibitory connections between neighboring transient cells is insufficient because vetoed

td

dzij 0.03 1 zij– 100xij zij–[ ]=

xij zij

1 zij–

zij 100xij zij–

zij

xij
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sient cells are incapable of further vetoing their neighbors. This problem is solved by introdu
inhibitory interneurons that are capable of maintaining their activities independently of the
sient cells that they veto. Besides, interneurons can operate over a time scale different from
the transient cells. Vetoing can thus be performed robustly at a variety of speeds. Mutual i
tion between interneurons is necessary to construct transient cells that respond preferentia
range of directions of motion and whose response is essentially invariant with input speed
preserve the speed tuning of the short-range filters at higher stimulus speeds.

5.3  Level 3: Short-range filter network

The short-range filter cell activities, , perform space- and time-averaging of directional

sient cell responses. Each activity, , receives excitatory input from directional transient

tuned to the same direction and within a Gaussian receptive field, , that is oriented alon

preferred direction,d, of the cell. The scale,s, of each cell determines the size of its recepti
field:

. (A7)

The Gaussian kernel, , for upward and downward motion is:

, (A8)

where , and . The kernels for the other motion directio

are obtained by rotating kernel (A8) and aligning it with the current motion direction. Short-ra

filter cell outputs, , result from a self-similar threshold applied to . This thresh

increases linearly with filter size. Each scale is then activated by a different speed rang
increases with scale size:

. (A9)

5.4  Level 4: Competition network

Competition cell activities, , implement spatial competition within each direction and op

nent directional inhibition within each scale. Shunting gain-controls cell responses:

.

f ij
ds

f ij
ds
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ds
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ds
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Direction is the direction opposite to directiond. The excitatory and inhibitory Gaussian ke

nels,  and , for upward motion  are:

(A11)

and

. (A12)

The excitatory kernel, , is spatially anisotropic with  and . The inhi

tory kernel, , is spatially isotropic with , but it is offset from the cell’s sp

tial location  by one unit in the direction opposite to the preferred direction of the cell;
is, by one unit in the downward direction. Thus inhibition spatially lags behind excitation a
the preferred direction. As with (A8), kernels for the remaining motion directions are comp
by aligning the kernels in (A11) and (A12) parallel to the desired direction. The simulation

this paper all use 8 directions. The kernels for north-east motion are obtained by rot

kernels (A11) and (A12) clockwise by 45o. Level 4 activity is rectified before outputing to Leve

5: .

5.5  Level 5: Long-range Directional Grouping and Attentional Priming

The long-range filter summates competition cell outputs over large spatial extents:

. (A13)

In (A13),  is an isotropic Gaussian kernel centered at position  and defined by

, (A14)

where . Each model MT cell activity, , receives bottom-up excitation fro

the long-range filter and top-down inhibition from model MST cells, , tuned to all directi

 other than the preferred direction  of the cell:

. (A15)
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5.5.1  Case I: Without Interscale Competition

Except for motion transparency and the chopsticks illusion, all simulations used only one
without interscale competition. Here MST cells obey:

. (A16)

By (A16), each model MST cell activity, , receives excitation, , from model MT cells a

lateral inhibition from model MST cells tuned to all directions other than the preferred di

tion of the cell. Competition between model MST cells chooses a winning direction w
boosts activities in model MT cells tuned to the same direction, via Equation (A15).

5.5.2  Case II: With Interscale Competition: Motion Transparency and Chopsticks

The motion transparency and chopsticks simulations use two scales that compete with each

In addition to the competition in Equation (A16), the equation for model MST cell activities,

includes asymmetric inhibition from smaller to larger scales:

. (A17)

In (A17),  is an isotropic Gaussian kernel defined by

, (A18)

where . is a kernel that ensures that inhibition between opponent d

tions is greater than that between any other two directions:

. (A19)

is attentional enhancement that is specific to both direction and scale and directed to a

region of space. No attentional enhancement was used for the chopsticks simulation. F

motion transparency simulation, attention was directed to a particular direction, say ,
specific scale, sayS, within a given rectangular region of space centered at the center of the

play , and with half-width and half-height . Direction is the direc

tion for which the total activity in the long-range filter in the rectangular region is maximum.
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:
assume that attention is always allocated to the closest depth; i.e., the smallest scale, so,

. (A20)

S 1=

Aij
ds 0.01
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i CX– RX≤ j CY– RY≤ d, , D

A
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