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Abstract

A neural network model of boundary segmentation and surface representation is developed to

process images containing range data gathered by a synthetic aperture radar �SAR� sensor� The

boundary and surface processing are accomplished by an improved Boundary Contour System

�BCS� and Feature Contour System �FCS�� respectively� that have been derived from analyses

of perceptual and neurobiological data� BCS�FCS processing makes structures such as motor

vehicles� roads� and buildings more salient and interpretable to human observers than they are in

the original imagery� Early processing by ON cells and OFF cells embedded in shunting center�

surround network models preprocessing by lateral geniculate nucleus �LGN�� Such preprocessing

compensates for illumination gradients� normalizes input dynamic range� and extracts local ratio

contrasts� ON cell and OFF cell outputs are combined in the BCS to de	ne oriented 	lters that

model cortical simple cells� Pooling ON and OFF outputs at simple cells overcomes complementary

processing de	ciencies of each cell type along concave and convex contours� and enhances simple

cell sensitivity to image edges� Oriented 	lter outputs are recti	ed and outputs sensitive to opposite

contrast polarities are pooled to de	ne complex cells� The complex cells output to stages of short�

range spatial competition �or endstopping� and orientational competition among hypercomplex

cells� Hypercomplex cells activate long range cooperative bipole cells that begin to group image

boundaries� Nonlinear feedback between bipole cells and hypercomplex cells segments image regions

by cooperatively completing and regularizing the most favored boundaries while suppressing image

noise and weaker boundary groupings� Boundary segmentation is performed by three copies of the

BCS at small� medium� and large 	lter scales� whose subsequent interaction distances covary with

the size of the 	lter� Filling�in of multiple surface representations occurs within the FCS at each

scale via a boundary�gated di
usion process� Di
usion is activated by the normalized LGN ON and

OFF outputs within ON and OFF 	lling�in domains� Di
usion is restricted to the regions de	ned

by gating signals from the corresponding BCS boundary segmentation� The 	lled�in opponent ON

and OFF signals are subtracted to form double opponent surface representations� These surface

representations are shown by any of three methods to be sensitive to both image ratio contrasts

and background luminance� The three scales of surface representation are then added to yield a

	nal multiple�scale output� The BCS and FCS are shown to perform favorably in comparison to

several other techniques for speckle removal�
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� Introduction

Synthetic aperture radar sensors can produce range imagery of high spatial resolution under di�cult

weather conditions �Munsen� OBrien� and Jenkins� ����� Munsen and Visentin� ����� but the

image data presents some di�culties for interpretation by human observers or automatic recognition

systems� Among these di�culties is the large dynamic range �	ve orders of magnitude� of the sensor

signal �see Figures �a and �a�� which requires some type of nonlinear compression merely for an

image to be represented and viewed on a typical computer monitor� Figures �b and �b �Top Right�

show SAR images in which the logarithm of each pixel value is displayed to reduce the dynamic

range� One major problem is image speckle� which is generated by coherent processing of radar

signals� and has characteristics of random multiplicative noise�

To date� many approaches for speckle suppression have relied on simple statistical models for

the signal and the noise which are insu�cient for accurately representing natural scenes� Processing

based on these models has thus tended to suppress the signal as well as the speckles �Lee� ������

Other approaches have used the iterative application� within a small window� of nonlinear 	ltering

techniques which aim to preserve the signal while smoothing speckle noise� Our approach capitalizes

instead on the form�sensitive operations of a neural network model in order to detect and enhance

structure based on information over large� variably sized and variably shaped regions of the image�

as illustrated in Figures �d and �d� In particular� the multi�scale implementation of the neural model

reported here is capable of exploiting and combining information from several nested neighborhoods

of a given image location to determine the 	nal intensity value to be displayed for that pixel� By

�neighborhood� is here meant a region whose form varies as a function of nearby image data� not

some 	xed �weighted� radial function for all pixel locations�

� Description of the Approach

The neural network model used here is a re	nement of the Boundary Contour System �BCS� for

boundary segmentation that was introduced by Grossberg and Mingolla �����a� ����b� ����� and

the Feature Contour System �FCS� for surface representation that was introduced by Cohen and

Grossberg ������ and Grossberg and Todorovi�c ������ through an analysis of biological vision�

Several of these improvements were introduced in Cruthirds� et al� ������� Taken together� the

BCS and FCS form part of the FACADE theory of biological and machine vision �Grossberg� ������

so called because the acronym FACADE stands for the representations of Form�And�Color�And�
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Figure �� �a� Top Left� Unprocessed SAR image of upstate New York scene consisting of highway
with bridge overpass� �b� Top Right� Logarithm�transformed SAR image� �c� Bottom Left� Stage
� result averaged across spatial scales� �d� Bottom Right� Multiple scale BCS�FCS result from
processing Model II on original SAR image�
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Figure �� �a� Top Left� Unprocessed SAR image of upstate New York scene consisting of house�
trees� and road� �b� Top Right� Logarithm�transformed SAR image� �c� Bottom Left� Stage
� result averaged across spatial scales� �d� Bottom Right� Multiple scale BCS�FCS result from
processing Model II on original SAR image�
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DEpth that are suggested to occur at the 	nal FCS surface representations of the full binocular

theory�

In the present work� only monocular� or single detector� processing is described� so the model is

considerably simpler than its binocular version� As summarized in Figure �� ON cells and OFF cells

preprocess the inputs as parts of on�center o
�surround and o
�center on�surround networks� re�

spectively� Preprocessing compensates for illumination gradients� normalizes input dynamic range�

and extracts local ratio contrasts� ON and OFF cell outputs are processed in parallel by both the

BCS and the FCS�

The BCS combines the ON and OFF cell outputs to detect� regularize� and complete coher�

ent boundary representations� while suppressing image noise� using multiple�scale 	ltering and

cooperative�competitive feedback interactions� Multiple copies of the BCS are de	ned� each cor�

responding to a di
erent receptive 	eld size� Each BCS copy inputs to a corresponding copy of

the FCS at which 	lling�in of a surface representation occurs� Filling�in is initiated by normalized

input patterns from the ON and OFF cell preprocessor� Target ON and OFF cells of the FCS

are activated and di
use activity to their nearest neighbors� Topographic signals from the BCS

boundaries de	ne barriers to the di
usion process�

These 	lling�in processes are based on the ON and OFF signals that survive after preprocess�

ing compensates for illumination gradients� The 	lled�in surface representations hereby generate

perceptual constancies� such as brightness constancy� under variable illumination conditions �Gross�

berg and Todorovi�c� ������ Filled�in ON and OFF surface representations are then combined by

any of three methods to de	ne surface representations that combine both ratio contrast and image

luminance information� These surface representations at di
erent scales are then topographically

averaged to generate the output surface representation� Figure � shows the processing stages of the

BCS�FCS at a single scale for each model� Figure � shows how the scales are combined subsequent

to the FCS 	lling�in stage�

In Section �� we summarize illustrative SAR image processing results� Section � provides an

intuitive summary of the BCS and FCS processing stages� Section � describes the model equations�

along with interpretive remarks� Section � compares BCS�FCS processing with alternative methods

for processing SAR images�
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Figure �� �a� A single scale of processing in the BCS�FCS model� Di
usive surface 	lling�in by �b�
Model I� �c� Model II� and �d� Model III�
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Figure �� A multiple�scale BCS�FCS model�

� Methods and Results

The SAR images were obtained using a ���GHz synthetic aperture radar with � ft by � ft resolution

and a slant range of � km �Novak� Burl� Chaney� and Owirka� ������ Figure � shows a SAR image

and the result of the multiple�scale BCS�FCS model II applied to the image� Figure �a shows

the original SAR image� Figure �b the logarithmically transformed �log��� version of the original

image for comparison� Figure �c the Stage � center�surround processing result of the original image

averaged across spatial scales� and Figure �d the multiple�scale output of the BCS�FCS system�

The image is from upstate New York� of a highway with bridge overpass� The original ���x��� pixel

image was reduced via gray�level consolidation to ���x��� pixels before processing� Speci	cally�

when the number of pixels is reduced� each new pixel �if envisioned overlayed on the original �D

grid� is larger than the original pixels� Thus the value of a new pixel is an average of the old

pixels that it overlays� with the contribution of each of the old pixels proportional to how much

of it is overlayed� Figure � shows analogous results for an image consisting of a house with some

surrounding trees and a small road� This image was reduced from ���x��� to ���x��� pixels before

processing�

Figures � and � illustrate the main results obtained by the multiple�scale BCS�FCS system�

First� Stage � center�surround processing compresses dynamic range� performs a partial local image

normalization� and contrast�enhances local image intensities to yield a viewable image� resulting in
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the transform from Figures �a and �a to Figures �c and �c� respectively� Unlike the logarithmic

transformation� which also compresses dynamic range� yielding Figures �b and �b� Stage � output

from ON and OFF cells in Figure � contrast�enhances local structures at each spatial scale� Stage

� output is next processed with recti	ed oriented contrast�sensitive 	lters at Stages � and � of

Figure �� At Stages � to �� cooperative�competitive feedback at di
erent spatial scales enhances

and completes colinear or nearly colinear structures and thereby segments the image into regions�

Stage � output then di
uses within these region boundaries� but not between them� at Stage

�� thus smoothing over image speckle while preserving meaningful intensity di
erences between

regions� After these 	lled�in surface representations are obtained� they are combined as outlined

above to yield the 	nal output of Figures �d and �d�

� Intuitive Description of BCS and FCS

Grossberg ������ and Cohen and Grossberg ������ introduced the BCS and FCS models� Gross�

berg and Mingolla �����a� ����b� ����� developed the BCS model to simulate how the visual

system detects� completes� and regularizes boundary segmentations in response to a variety of reti�

nal images� Such segmentations can be de	ned by regions of di
erent luminance� color� texture�

shading� or stereo signals� The BCS computations for single�scale monocular processing consist of

a series of 	ltering� competitive� and cooperative stages as schematized in Figure � and reviewed

in several reports �e�g�� Grossberg� ����a� ����� Grossberg� Mingolla� and Todorovi�c� ������ The

	rst stage� schematized as unoriented annuli in Figure �� models in perhaps the simplest possible

way the shunting on�center o
�surround� and o
�center on�surround� interactions at the retinal and

LGN levels� These ON and OFF cells compensate for variable illumination and compute the ratio

contrasts in the image�

The model LGN cells generate half�wave recti	ed outputs� These outputs are received by pairs

of like�oriented simple cells �Stage � in Figure �� that are sensitive to opposite contrast polarity�

or direction�of�contrast� The simple cell pairs� in turn� pool their recti	ed and oppositely polarized

output signals at like�oriented complex cells �Stage ��� Complex cells are hereby rendered insensitive

to direction�of�contrast� as are all subsequent cell types in the model� Complex cells activate

hypercomplex cells through an on�center o
�surround network �Stage �� whose o
�surround carries

out an endstopping operation� In this way� complex cells excite hypercomplex cells of the same

orientation and position� while inhibiting hypercomplex cells of the same orientation at nearby
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positions� One role of this spatial competition is to spatially sharpen the neural responses to

oriented luminance edges� Another role is to initiate the process at Stage � called end cutting�

whereby boundaries are formed that abut a line end at orientations perpendicular or oblique to the

orientation of the line itself �Grossberg� ����a� Grossberg and Mingolla� ����b��

Output from the higher�order hypercomplex cells feed into cooperative bipole cells at Stage ��

The bipole cells initiate long�range boundary grouping and completion� Bipole cells realize a type

of statistical AND gate� since they 	re if both of their receptive 	elds are su�ciently activated by

appropriately oriented hypercomplex cell inputs� Bipole cells hereby realize a type of long�range

cooperation among the outputs of active hypercomplex cells� For example� a horizontal bipole

cell� as in Figure �� is excited by activation of horizontal hypercomplex cells that input to its

horizontally oriented receptive 	elds� A horizontal bipole cell is also inhibited by activation of

vertical hypercomplex cells� This inhibition prevents boundaries from being colinearly completed

across regions that contain su�ciently many perpendicular or oblique contrasts� a property called

spatial impenetrability �Grossberg� ����a� Grossberg and Mingolla� ����b��

Bipole cells were predicted to exist in Cohen and Grossberg ������ and Grossberg ������ shortly

before cortical cells in area V� with similar properties were reported by von der Heydt� Peterhans�

and Baumgartner ������� At around the time of the von der Heydt et al� report� Grossberg and

Mingolla �����a� ����b� used bipole cell properties to simulate and explain data about illusory

contour formation� neon color spreading� and texture segregation� among other topics� These same

properties play a role in our simulations of SAR data�

Bipole cells generate feedback signals to like�oriented hypercomplex cells within Stages � and � of

Figure �� These feedback signals help to create and enhance spatially and orientationally consistent

boundary groupings� while inhibiting inconsistent ones� In particular� bipole cell outputs compete

across orientation at each position within Stage � to select the cooperatively most favored orienta�

tion� or orientations� These outputs then undergo spatial competition that excites cells at the same

orientation and position while inhibiting cells at nearby positions� Cells which derive the most coop�

erative support from bipole grouping after these competitive selection processes thereupon further

excite the corresponding bipole cells� This cycle of bottom�up and top�down interaction between

hypercomplex cells and bipole cells rapidly converges to a 	nal boundary segmentation� Feed�

back among bipole cells and hypercomplex cells hereby drives a resonant cooperative�competitive

decision process that completes the statistically most favored boundaries� suppresses less favored

boundaries� and coherently binds together appropriate feature combinations in the image�
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Cohen and Grossberg ������ and Grossberg and Todorovi�c ������ developed the FCS model to

simulate many data about brightness perception� Arrington ������ has shown that the Grossberg�

Todorovi�c ������ model also accurately simulates the dynamics of brightness 	lling�in as reported

in the psychophysical experiments of Paradiso and Nakayama ������� The BCS produces boundary

signals that act as barriers to di
usion within the FCS in response to ON and OFF inputs from

which the illuminant has been discounted� As diagrammed in Figure �� these boundary signals

act to gate di
usion of signals from the ON and OFF cells at Stage �� That is� for image pixels

through which no boundary signals pass� resulting intensity values become more homogeneous as

the di
usion evolves� Where boundary signals intervene� however� they block the di
usion� leaving

a resulting di
erence of intensity level on either side of the boundary signal� The result of such

boundary�gated di
usion is a form�sensitive computation that adapts to each unique combination

of image inputs� rather than a correlation derived through a 	xed kernel�

The ON and OFF signals may or may not be combined to generate the 	nal FCS surface rep�

resentation� There are several related ways to do this that all lead to essentially equivalent results�

The basic idea in all cases is to combine FCS surface measures that depend upon both the ratio

contrasts and the averaged background luminances of the image� The simplest variation is the

model I whose output is summarized in Figure �� Here the ON responses themselves are used to

	ll�in surface properties �Cohen and Grossberg� ����� Grossberg and Todorovi�c� ������ That is

why model I is called the ON cell model� All the models including model I heavily use the fact

that the ON cells are the result of shunting on�center o
�surround� or cooperative�competitive� pro�

cessing that computes a measure of local ratio contrast� In addition� the excitatory and inhibitory

parameters of the cells are chosen asymmetrically in model I� so that the ratio contrasts add to

a constant background activity level which is modulated by a locally averaged luminance level in

response to dense imagery�

In order to compute a background activity level that covaries more generally with locally aver�

aged image luminances� both ON and OFF cell responses are used� Here� the OFF responses are

subtracted from the ON responses� either before or after the 	lling�in stage� This strategy was in�

troduced in Grossberg �����b� and has been applied in several studies since� e�g�� Grossberg �������

Grossberg and Wyse ������� Neumann ������� and Pessoa� Mingolla� and Neumann ������� Such

a subtraction of OFF �o
�center on�surround� signals from ON �on�center o
�surround� signal cells

is said to create double opponent cells� since it combines two successive competitive �or opponent�

interactions�
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Figure �� Processing by Model I scales of the bridge�overpass image� Compare with Model II result
in Figure �d�

In perhaps the simplest double opponent computation� that of Grossberg and Wyse �������

the OFF cells have a higher tonic� or baseline� activity than do the ON cells� When the OFF cell

responses are subtracted from the ON cell responses� there are two terms� one is sensitive to ratio

contrast and the other� which arises from the asymmetric baseline activities� increases as a function

of a low�pass nonlinearly�compressed luminance estimate� The net double opponent signal di
uses

across an FCS 	lling�in domain� or FIDO� Alternatively� the ON and OFF inputs could 	rst di
use

within their own ON and OFF FIDOs� each gated by the same boundary segmentation� before

the net ON�minus�OFF double�opponent response is computed� Let us call this the asymmetric

ON�OFF model� or model II� Figure � shows the output of model II to the same image that is

processed by model I in Figure ��

A related approach� that of Neumann ������� subtracts OFF cell outputs from ON cell outputs�

where both cell types have the same� possibly zero� tonic activity� This double opponent operation

generates a measure of relative contrast only� The recti	ed output signal from this operation is

allowed to 	ll�in within a FIDO� Likewise� recti	ed OFF�minus�ON signals 	ll�in their own FIDO�

In addition� ON plus OFF activities are added� without 	lling�in� to the 	lled�in ON�minus�OFF

activities to provide a baseline that is sensitive to background luminance� and the 	lled�in OFF�

minus�ON activities are divided from them� These di
erence �ON�OFF� and sum �ON�OFF�

operations are reminiscent of the L�M color computation and L�M luminance computation that
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Figure �� Same as Figure � for Model III�

takes place between long �L� and medium �M� wavelength retinal cone channels �Mollon and Sharpe�

������

For SAR images� combining the ON�OFF response� without 	lling�in� to the 	lled�in ON�OFF

and OFF�ON responses reintroduces image speckle and other distortions that 	lling�in helps to

overcome� We therefore modify this method by 	lling�in both the di
erence and sum responses

before combining them� Let us call this revised model the symmetric ON�OFF model� or model III�

Figure � shows the output of Model III to the same image as in Figure �� Comparison of Figures ��

�� and � shows that all three model variants produce similar outputs in response to the SAR data�

These BCS�FCS computations are computed at three di
erent scales in order to enhance image

structures of di
erent sizes� As diagrammed in Figure �� the 	lled�in surface representations of the

di
erent scales are added to yield a 	nal multiple scale output�

� Mathematical Description of BCS and FCS

��� Stage �� Shunting ON and OFF Center�Surround Networks

The 	rst processing stage performs a partial local normalization of image intensities� This is ac�

complished by two shunting center�surround systems� The 	rst� an on�center o
�surround network�

corresponds to an ON channel of the visual pathway� The second shunting network� with an o
�

center and on�surround� corresponds to an OFF channel� In each case the equilibrium activities of
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the networks contains both a DOG �Di
erence of Gaussians� term in the numerator� which detects

contrast di
erences� and a SOG �Sum of Gaussians� term in the denominator which compensates

for the level of illumination� thereby discounting the illuminant� The two networks di
er in the

sign of their responses to a given light�to�dark �left�to�right� step transition� as the ON channel re�

sponds positively on the left side of the step� and the OFF channel responds positively on the right

side of the step �negative outputs are set to zero�� The outputs of the ON and OFF cells� beside

feeding into Stage �� are also employed as the FCS signals that feed into Stage �� The unprocessed

SAR image �not logarithmically transformed� is input into the equilibrium forms of the following

shunting on�center o
�surround� and o
�center on�surround� di
erential equations that de	ne the

activities of ON and OFF preprocessing cells �Grossberg� ������

ON Opponent Cell Activation

d

dt
x
g
ij � �D�xgij � E� �

X
�p�q�

��U � x
g
ij�C

g
ijpq � �xgij � L�Sg

ijpq�Ipq� ���

OFF Opponent Cell Activation

d

dt
x
g
ij � �D�xgij � E� �

X
�p�q�

��U � x
g
ij�S

g
ijpq � �xgij � L�Cg

ijpq�Ipq� ���

In ��� and ���� the center and surround kernels are

C
g
ijpq �

C

����cg
exp

�
�
�i� p�� � �j � q��

���cg

�
� ���

S
g
ijpq �

S

����sg
exp

�
�
�i� p�� � �j � q��

���sg

�
� ���

The ON channel activity at position �i� j� and scale g is denoted by xgij in ���� and the corresponding

OFF channel activity is denoted by x
g
ij in ���� Term Ipq is the input to position �p� q� of both

channels� Note that the center kernel �C� and the surround kernel �S� of the ON cells in ��� are

reversed in ��� to become the surround and center kernels� respectively� of the OFF cells� The cell

activities are evaluated at equilibrium and recti	ed� yielding the ON and OFF output signals�

ON Opponent Output Signal

X
g
ij �

�
DE �

P
�p�q��UC

g
ijpq � LS

g
ijpq� Ipq

D �
P

�p�q��C
g
ijpq � S

g
ijpq� Ipq

��
� ���
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OFF Opponent Output Signal

X
g
ij �

�
DE �

P
�p�q��US

g
ijpq � LC

g
ijpq� Ipq

D �
P

�p�q��C
g
ijpq � S

g
ijpq� Ipq

��
� ���

where

���� � max��� ��� ���

The ON and OFF channels have a DC level that is determined by a baseline activity level E or E�

respectively �Grossberg and Wyse� ������

Equations ��� and ���� respectively� compute on�center o
�surround� and o
�center on�surround�

normalized ratio contrasts of the input image� The equations are applied at three spatial scales�

�cg and �sg � g � �� �� �� which are de	ned by the standard deviations of the center and surround

Gaussian kernels in ��� and ���� See Table �� The center kernels are small and constant across

scales to yield high spatial frequency detail at all scales� while the surround kernels increase with

scale in order to modulate the center response with lower spatial frequency information at larger

scales� Other parameters are for models I�III are found in Tables ���� For example� large SAR

image values� having ranges of approximately ����������� and ����������� in Figures �a and �a�

respectively� necessitate the large �decay� parameter value of D � ���� in ��� and ��� in order to

prevent information about a local image intensity from being completely normalized�

With E and E chosen so that equilibrium ON and OFF activities are positive� subtraction of

the OFF channel output from the ON channel output yields

ON Double Opponent Cell Activation

d
g
ij � X

g
ij �X

g
ij �

�U � L�
P

�p�q��C
g
ijpq � S

g
ijpq�Ipq

D �
P

�p�q��C
g
ijpq � S

g
ijpq� Ipq

�
D�E �E�

D �
P

�p�q��C
g
ijpq � S

g
ijpq�Ipq

���

Likewise� the OFF double opponent cell activation is de	ned by

d
g
ij � X

g
ij �X

g
ij � ���

Equation ���� and likewise equation ���� shows that the e
ects of subtracting OFF from ON

activities result in an activation pro	le whose 	rst term is sensitive to the ratio�contrasts in the
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Table �� Parameters for Model II

Name Description Value Equation�s�

Stage �� Shunting ON and OFF Center�Surround Networks
�cg � g � �� �� � Center blurring space constants ��� ���
�s� Surround blurring space constant ��� ���
�s� Surround blurring space constant ��� ���
�s� Surround blurring space constant ���� ���
C� S Center and Surround coe�cients ��� �������
U Polarization constant ��� �������
L Hyperpolarization constant ��� �������
D Activation decay ������ �������
E ON baseline activity level ��� ���
E OFF baseline activity level ��� ���
Stages � and �� Simple and Complex Cells
�v� Blurring space constant ���� ����
�v� Blurring space constant ��� ����
�v� Blurring space constant ��� ����
�hg � g � �� �� � Blurring space constants ��vg ����
A Scaling factor ����� ����
B Complex cell threshold ���� ����
Stage �� Hypercomplex Cells	 Competition I
�cg � g � �� �� � Center blurring space constants ��� ���������
�s� Surround blurring space constant ��� ���������
�s� Surround blurring space constant ��� ���������
�s� Surround blurring space constant ��� ���������
D Activation decay ������ ���������
U Polarization constant ��� ���������
L Hyperpolarization constant ��� ���������
T Tonic input ���� ���������
E� Feedback scaling factor ����� ����
E� Feedback scaling factor ����� ����
E� Feedback scaling factor ����� ����
Stage 
� Hypercomplex Cells	 Competition II

�c� g � �� �� � Center blurring orientation constant ��� ����
�s Surround blurring orientation constant ��� ����
C Center coe�cient ��� ���������
S Surround coe�cient ���� ���������
U Polarization constant ��� ���������
L Hyperpolarization constant ��� ���������
D Activation decay ��� ���������
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Table �� Parameters for Model II 	Cont�d

Name Description Value Equation�s�

Stage �� Bipole Cells	 Long�Range Cooperation

C� Bipole 	lter size �� ���������
C� Bipole 	lter size �� ���������
C� Bipole 	lter size �� ���������
� Bipole lobe divisive constant ����� ����
� Distance fall�o
 coe�cient ��� ����
	 Curvature fall�o
 coe�cient ���� ����

 Orientational selectivity ���� ����
A� Output threshold ���� ����
A� Output threshold ���� ����
A� Output threshold ���� ����
Stage �� HypercomplexBipole Cells	 Feedback Competition II

Stage �� HypercomplexBipole Cells	 Feedback Competition I
�v�� �h� Blurring space constants ���� ����
�v�� �h� Blurring space constants ��� ����
�v�� �h� Blurring space constants ��� ����
Stage �� Filling�in
D Activation decay ���� ���������
� Permeability numerator factor ���� ���������
� Permeability denominator factor ������ ���������

Table �� Parameters Unique to Model I

Name Description Value Equation�s�

Stage �� Shunting ON and OFF Center�Surround Networks
L Hyperpolarization constant ��� �������
E ON baseline activity level ��� ���
E OFF baseline activity level ��� ���
Stages � and �� Simple and Complex Cells
A Scaling factor ������ ����
B Complex cell threshold ��� ����
Stage �� Bipole Cells	 Long�Range Cooperation
A� Output threshold ���� ����
A� Output threshold ���� ����
A� Output threshold ���� ����
Stage �� Filling�in
� Permeability denominator factor ������ ���������
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Table �� Parameters Unique to Model III

Name Description Value Equation�s�

Stage �� Shunting ON and OFF Center�Surround Networks

L Hyperpolarization constant ��� �������
E ON baseline activity level ��� ���
E OFF baseline activity level ��� ���
Stages � and �� Simple and Complex Cells
A Scaling factor ������ ����
B Complex cell threshold ��� ����
Stage �� Bipole Cells	 Long�Range Cooperation

A� Output threshold ���� ����
A� Output threshold ���� ����
A� Output threshold ���� ����
Stage �� Filling�in

� Permeability denominator factor ������ ���������
Stage ��� Combination of Scales
N ON double�opponent contrast coe�cient ��� ����
P OFF double�opponent contrast coe�cient ��� ����
M Activation decay ���� ����

image� with parameters U and L factored out� If E  E� then the second term in ��� increases as

a function of a low�pass 	ltered and nonlinearly compressed transformation of image luminance�

as in Method II of Grossberg and Wyse ������� If E � E� then this luminance�dependent term

vanishes� In the case E � E � �� Neumann ������ proposed that the contrast term be combined

with a luminance term

l
g
ij � X

g
ij �X

g
ij �

�U � L�
P

�p�q��C
g
ijpq � S

g
ijpq�Ipq

D �
P

�p�q��C
g
ijpq � S

g
ijpq�Ipq

� ����

If the di
erence d
g
ij in ��� were simply added to the sum l

g
ij in ����� then the result would

be �Xg
ij � which reduces to model I of Grossberg and Todorovi�c ������� When U  L� model I

generates responses similar to those of models II and III for the SAR imagery studies herein �see

Figure ��� In Neumann ������ and Pessoa� Mingolla� and Neumann ������� the di
erence and sum

terms are not merely added� Rather they are combined using a shunting equation

d

dt
b
g
ij � �Mb

g
ij � l

g
ij �NS

g
ij � PS

g
ij � ����

where Sg
ij and S

g
ij are 	lled�in representations of the recti	ed variables dgij and d

g
ij � respectively� See
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equations ���� and ���� below� At equilibrium�

b
g
ij �

l
g
ij �NS

g
ij

M � PS
g
ij

� ����

In ����� ON and OFF double opponent contrasts modulate the baseline luminance in an upward

and downward direction� respectively�

Figures � and � illustrate the result of using both ON and OFF channels in models II and III�

respectively� on a ���x��� pixel example image �taken from the ���x��� bridge�overpass image

shown in Figure �a�� at small� medium� and large scales from left to right� The top row shows the

recti	ed ON channel response ���� the middle row the recti	ed OFF channel response ���� and the

bottom row the net ON�minus�OFF double opponent response ����

��� Stage �� Simple Model Cells

The oriented simple cells model the 	rst stage of oriented 	ltering in visual cortex� They use both

the ON and OFF channels to gauge oriented contrast di
erences at each image location� An edge

elicits a strong response in the ON channel to one side and a strong OFF channel response on the

other side� The simple cell 	lters are not just edge detectors� however� While they do produce

an ampli	ed response to abrupt edges� they are also capable of responding to relatively shallow

image gradients� Simple cell outputs at scale g� position �i� j�� and orientation k are modeled by

the equations

s
Rg
ijk � ��Rg

ijk � L
g
ijk� � �R

g
ijk � L

g
ijk��

�� ����

s
Lg
ijk � ���Rg

ijk � L
g
ijk� � �R

g
ijk � L

g
ijk��

�� ����

where

R
g
ijk �

X
�p�q�

G
g

�p�q�
�vg

�
�k�

Xg
pq� ����

R
g
ijk �

X
�p�q�

G
g

�p�q�
�vg

�
�k�

X
g
pq� ����

L
g
ijk �

X
�p�q�

G
g

�p�q�
�vg

�
�k�

Xg
pq� ����
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Figure �� In Model II� �a� Recti	ed ON cell responses at small� medium� and large scales from left
to right� �b� Recti	ed OFF cell responses� �c� Double�opponent ON�minus�OFF responses�
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Figure �� In Model III� �a� Recti	ed ON cell responses at small� medium� and large scales from left
to right� �b� Recti	ed OFF cell responses� �c� Double�opponent ON�minus�OFF responses�
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L
g
ijk �

X
�p�q�

G
g

�p�q�
�vg

�
�k�

X
g
pq� ����

and

G
g
�p�q�k� �

�

���hg�vg
exp

��
���

�

	


�
p cos��k�� �� q sin��k�� �

�hg

��

�

�
p sin��k�� � � q cos��k�� �

�vg

��

A
��
� � ����

Equations ���� and ���� describe pairs of Stage � simple cells �see Figure �� that are sensitive to

opposite directions�of�contrast� Figure �a shows the 	lters corresponding to the three spatial scales

of a horizontally oriented �k � �� simple cell sLgijk in ����� Open circles denote where ON cells are

weighted more strongly than OFF cells� and black circles the reverse� with circle area corresponding

to the magnitude of the weighting di
erence between ON and OFF cells� Each simple cell thus

receives excitatory input from an oriented array of ON cells and a spatially displaced but like�

oriented array of OFF cells �Cruthirds et al�� ����� Ferster� ����� Liu et al�� ����� Miller� ������

Pairs of simple cells that are sensitive to opposite contrast polarity� or direction�of�contrast� then

compete �Figure �b� to generate the net output signals in ���� and ����� This competition removes

baseline activity di
erences in ON and OFF cells and weighs the relative advantage of opposite

polarity simple cells� In the limiting case where there is no image contrast� there is no output from

these cells�

The use of both ON and OFF cells to form boundaries overcomes complementary de	ciencies

of each detector in responding to changing contour curvatures and to dark or light noise pixels

�Carpenter� Grossberg and Mehanian� ����� Grossberg and Wyse� ������ The net output signals

in ���� and ���� include input from both ON and OFF cells within each oriented 	lter lobe� thus

maximizing simple cell sensitivity to a given direction�of�contrast across the full range of ON and

OFF cell activations� Stage � parameters consist of the standard deviations of the oriented 	lter

de	ned in ����� which are �vg and �hg � � �vg for g � �� �� �� See Table ��

��� Stage �� Complex Cells

A complex cell at scale g� position �i� j�� and orientation k pools oriented contrast for both contrast

polarities� or directions�of�contrast� Pooling is accomplished by summing the half�wave recti	ed

outputs of simple cells at the same position and orientation but with opposite direction�of�contrast

sensitivities�

c
g
ijk � s

Lg
ijk � s

Rg
ijk � ����
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�a�

�b�

Figure �� �a�� Horizontal orientational 	lters used for Stage � simple cells at three spatial scales�
Open circles denote where ON cells are weighted more strongly than OFF cells� and black circles
the reverse� with circle area corresponding to the magnitude of the weighting di
erence between
ON and OFF cells� �b�� Circuitry for ON and OFF cell input to oriented simple cells of opposite
direction�of�contrast�
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Equation ���� can be expressed directly in terms of Stage � ON and OFF cell outputs as

c
g
ijk �

������
X
�p�q�

�Gg

�p�q�
�vg

�
�k�

� G
g

�p�q�
�vg

�
�k�
� �Xg

pqk �X
g
pqk�

������ � ����

The top row of Figures �� and �� show the result of Stage � complex cell processing at small�

medium� and large scales in response to models II and III� respectively� Here� image intensity

represents the total activity summed across orientation of the complex cells at each position�

��	 Cooperative�Competitive Loop

The complex cell output is passed into the Cooperative�Competitive Loop� This nonlinear feed�

back network detects� regularizes� and completes boundaries while suppressing image noise� The

algorithm that implements the CC Loop iteratively applies six sequential processing stages to

strengthen and complete consistent �i�e�� colinear or near�colinear� boundary contours while de�

forming� sharpening� and thinning them �i�e�� reducing variance across neighboring positions and

orientations�� The output of the six processing steps �Figure �� are fed back into the 	rst processing

step to complete a single iteration of the loop� Five iterations of the CC Loop were used because

functionally e
ective boundary completion could thereby be accomplished for the image resolution

used�

The CC Loop was run independently at the three spatial scales� The Stage � hypercomplex

output following 	ve CC Loop iterations is shown in row two of Figures �� and ��� Here� intensity

represents the total amplitude
P

k y
g
ijk of cell activity at each position� Compare the complex cell

activities in row � of Figure �� or �� with the hypercomplex cell activities after CC Loop feedback

in row �� The boundaries in row � are obviously sharper and more complete� The CC Loop is

realized by the following processing stages�

����� Stage �� Hypercomplex Cells	 Competition I �On
Center O�
Surround Inter


action Across Position�

Output from Stage � as well as feedback from Stage � of the CC Loop are input into the equilibrium

form of the following di
erential equation� in which cells of the same orientation at nearby positions
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Figure ��� Top Row� Stage � complex cell processing at three scales of Model II� Intensity of each
pixel depicts the total activity of the oriented complex cells at that position� Middle Row� Stage �
hypercomplex cell processing at three spatial scales� Intensity of each pixel depicts the total activity
of the cells at that position� Bottom Row� Stage � processing result at three di
erent scales on
example image� A linear combination of these images is used to obtain the 	nal multiple�scale
output in Figure �d�
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Figure ��� Same as Figure �� for Model III�
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compete to help select the positionally best localized boundary�

d

dt
w
g
ijk � �Dwg

ijk �
X
�p�q�

��U � w
g
ijk�C

g
ijpq � �wg

ijk � L�Sg
ijpq�f�c

g
pqk� � T � h�vgijk� g�� ����

where Cg
ijpq and S

g
ijpq are the center and surround Gaussian 	lters de	ned by ��� and ����

f��� � A�� �B�� and h��� g� � Eg�� ����

and v
g
ijk is de	ned in ���� below� The recti	ed equilibrium output signal generated by ���� is

W
g
ijk �

�
P

�p�q��UC
g
ijpq � LS

g
ijpq�f�c

g
pqk� � T � h�v

g
ijk��

�

D �
P

�p�q��C
g
ijpq � S

g
ijpq�f�c

g
pqk�

� ����

The feedforward spatial competition in the brackets of equation ���� realizes the endstopping

operation that converts model complex cells into model hypercomplex cells� Parameter values

for the three models are found in Tables ����

����� Stage �� Hypercomplex Cells	 Competition II �On
Center O�
Surround Inter


action Across Orientation�

The second competitive stage of hypercomplex cells occurs across di
erent orientations at the same

position to select the most favored boundary orientations� Here�

d

dt
yijk � �Dygijk �

X
r

��U � y
g
ijk�Ckr � �ygijk � L�Skr�W

g
ijr� ����

where

Ckr �
Cp
����c

exp

�
�
�k � r��

���c

�
����

and

Skr �
Sp
����s

exp

�
�
�k � r��

���s

�
� ����

The equilibrium form of ���� is

y
g
ijk �

P
r�UCkr � LSkr�W

g
ijr

D �
P

r�Ckr � Skr�W
g
ijr

� ����

See Tables ��� for parameter values�
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The positions and orientations selected by the feedforward competitive interactions among

hypercomplex cells bias the cooperative grouping interactions among bipole cells that occur at Stage

�� Feedback from the bipole cells can� in turn� modify the orientations and positions selected by

the feedforward competitive interactions via term h�vgijk� in ����� Thus� positions and orientations

that receive only modest support directly from Stage � 	lters can win the competition at their

position if they receive stronger net positive feedback from the CC Loop�

���� Stage �� Bipole Cells	 Long
Range Cooperation �Statistical And�Gates�

The cooperative grouping of the CC Loop is performed at Stage � by bipole cells that act like long�

range statistical AND gates� In order for a horizontally oriented cooperative bipole cell to 	re� both

the left and right receptive 	elds of the cell need to receive input signals from the hypercomplex

cells of Stage �� When a bipole cell 	res� it sends a top�down signal through Stages � and � to

the hypercomplex cells of Stage �� where it is combined with bottom�up information� This type of

boundary completion can occur simultaneously across all orientations at all positions�

The oriented cooperation stage uses the �bow�tie� shaped bipole 	lters to achieve nonlinear

cooperation between spatially separated cells having colinear or near�colinear orientations� The

	lters are sensitive to a range of orientations which increases with distance from the 	lter center�

The amplitude of 	lter response also decreases with distance from the center� as well as with

deviation from colinearity� Su�cient input must reach both lobes of the bipole cell for it to respond

above threshold� thereby completing boundaries inwardly from pairs� or greater numbers� of input

inducers� The oriented cooperation is accomplished via the di
erential equation

d

dt
z
g
ijk � �zgijk � h�Ag

ijk� � h�Bg
ijk�� ����

which is implemented in the equilibrium form�

z
g
ijk � h�Ag

ijk� � h�Bg
ijk�� ����

where

h��� �
����

K � ����
� ����
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�a�

�b�

Figure ��� �a�� Horizontal bipole 	lters at three spatial scales� The length of each oriented line
segment is proportional to the 	lter coe�cient at that location and orientation� �b�� Horizontal
feedback intra�orientational spatial sharpening 	lters at three spatial scales�

and �using the notation �r for the orientation perpendicular to r��

A
g
ijk �

X
�p�q�r�

��ypqr�
� � �ypq	r�

���Z��p�Cg��q�Cg�r�k��
�� ����

B
g
ijk �

X
�p�q�r�

��ypqr�
� � �ypq	r�

����Z��p�Cg��q�Cg�r�k��
�� ����

Z�p�q�r�k� � sgnfpg expf���p� � q��g exp

�
�	

�
q

p�

���
�

cos�
�
�k � r��

K
� sgnfpg arctan

�
�q

p
� p

��
� ����

Equation ���� is composed of three parts which determine how the bipole 	lter values decrease

as a function of ��� the distance from the center of the 	lter� expf���p� � q��g� ��� spatial

deviation from colinearity� exp

�
�	

�
q
p�

���
� and ��� orientational deviation from colinearity�

cos�
n
�k�r��

K � sgnfpg arctan
�
�q
p � p

�o
� The CC Loop is run independently at three di
erent scales�

with bipole 	lters de	ned by ���� sampled at sizes of Cg� g � �� �� �� given in the Tables� Figure ��

shows these three bipole scales at the horizontal orientation �k � ��� In Figure ��a� each line orien�

tation represents 	lter orientation� and line length represents 	lter magnitude at the corresponding

position�



May ��� ���� ��

The output of each cooperative bipole cell is given by

f�zgijk� � �zgijk � Ag�
�� ����

The bipole cell outputs are next orientationally and spatially sharpened in order to compensate for

the orientational and spatial fuzziness of the bipole cells receptive 	elds�

����� Stage �� Hypercomplex�Bipole Cells	 Feedback Competition II �On
Center

O�
Surround Interaction Across Orientation�

The cooperative bipole cells compete across orientation at each position to select the cooperatively

favored orientations� Speci	cally� Stage � output is passed to the equation

u
g
ijk �

P
r�UCkr � LSkr� f�z

g
ijr�

D �
P

r�Ckr � Skr� f�z
g
ijr�

� ����

where all parameter values are the same as in Stage ��

����� Stage �� Hypercomplex�Bipole Cells	 Feedback Competition I �On
Center O�


Surround Interaction Across Position�

A 	nal competitive feedback stage is used to achieve spatial sharpening while selecting the most

favored spatial positions among all the nearby cooperative cells that are tuned for the same orien�

tation� This is accomplished by convolving each oriented output from Stage � with an anisotropic

DOG 	lter� elongated in the preferred orientation� Speci	cally�

v
g
ijk �

X
�p�q�

u
g
pqkF

g
ijpqk� ����

where F is an oriented 	lter made up of the di
erence of a center and two  anking Gaussians�

F
g
ijpqk � G

g
�i�p�j�q�k� �

�

�

�
G
g
�i�p�j�q��v�k�

�G
g
�i�p�j�q��v�k�

�
����

where Gg
�p�q�k� is the Gaussian kernel de	ned in ����� See Tables ��� for parameter values� Figure

�b shows horizontal F 	lters at the three spatial scales� The output vgijk from the 	nal CC Loop

stage feeds back to the 	rst CC Loop stage� as in ����� The bottom�up and top�down CC Loop

signals hereby resonate to choose the statistically most favored boundary segmentation�
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��� Stage 
� Filling�In

The BCS produces boundary signals that act as barriers to di
usion within the FCS� As in Gross�

berg and Mingolla �����b�� BCS output signals are derived from Stage � of the CC Loop� Those

boundary signals act to gate di
usion of signals in the 	lling�in domains of Stage � that are activated

by ON and OFF cell output of Stage �� For image pixels through which no boundary signals pass�

resulting intensity values become more homogeneous as the di
usion evolves� Where boundary sig�

nals intervene� however� they inhibit the di
usion� leaving a resulting activity di
erence on either

side of the boundary signal� These boundary signals are organized into a form�sensitive mesh that

is called a boundary web �Grossberg� ����a� Grossberg and Mingolla� ������ Boundary webs can

track the statistics of edges� textures� and shading� This is how boundary�gated 	lling�in achieves

its sensitivity to the form of each unique con	guration of image inputs� After ON and OFF 	lling�in

occurs� the outputs are combined as in Figure �b�d to generate the net surface representation of

that scale�

Inputs from Stage � undergo a nonlinear di
usion process at State � within compartments

de	ned by boundary signals� In particular� boundary signals create high resistance barriers to

	lling�in� The di
usion equations in response to individual ON and OFF cell outputs are �Cohen

and Grossberg� ����� Grossberg and Todorovi�c� ������

ON Filling
In

d

dt
s
g
ij � �Dsgij �

X
p�q�Nij

�sgpq � s
g
ij�P

g
pqij �X

g
ij � ����

where Xg
ij is de	ned by ����

OFF Filling
In

d

dt
s
g
ij � �Dsgij �

X
p�q�Nij

�sgpq � s
g
ij�P

g
pqij �X

g
ij � ����

where X
g
ij is de	ned by ���� At equilibrium�

s
g
ij �

X
g
ij �

P
p�q�Nij

sgpqP
g
pqij

D �
P

p�q�Nij
P
g
pqij

� ����
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and

s
g
ij �

X
g
ij �

P
p�q�Nij

sgpqP
g
pqij

D �
P

p�q�Nij
P
g
pqij

� ����

The boundary�gated permeabilities obey

P
g
pqij �

�

� � ��ygpq � y
g
ij�

� ����

where

y
g
ij �

X
k

y
g
ijk � ����

Note that the permeability P g
pqij decreases as the boundary signals y

g
pq and y

g
ij from Stage � increase�

In other words� the di
usion gate closes as the boundary gets strong� The nearest�neighbor sources

and sinks of di
usion in ��������� are�

Nij � f�i� j� ��� �i� �� j�� �i� �� j�� �i� j� ��g� ����

In model I� the 	lled�in ON activities s
g
ij are used to form the outputs� In model II� the

	lled�in OFF activities sgij are subtracted from the 	lled�in ON activities sgij to derive the outputs�

Alternatively� the net double�opponent response Xg
ij � X

g
ij in ��� could be used to 	ll�in a single

di
usion network� In model III� all the terms dgij in ���� d
g
ij in ���� and l

g
ij in ���� are used to 	ll�in

net ON� OFF� and luminance responses�

d

dt
S
g
ij � �DSg

ij �
X

p�q�Nij

�Sg
pq � S

g
ij�P

g
pqij � �dgij�

�� ����

d

dt
S
g
ij � �DS

g
ij �

X
p�q�Nij

�S
g
pq � S

g
ij�P

g
pqij � �d

g
ij �

�� ����

d

dt
L
g
ij � �DLg

ij �
X

p�q�Nij

�Lg
pq � L

g
ij�P

g
pqij � l

g
ij � ����
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which are simulated in equilibrium form�

S
g
ij �

�dgij�
�P

p�q�Nij
Sg
pqP

g
pqij

D �
P

p�q�Nij
P
g
pqij

����

S
g
ij �

�d
g
ij �

� �
P

p�q�Nij
S
g
pqP

g
pqij

D �
P

p�q�Nij
P
g
pqij

����

L
g
ij �

�lgij�
� �

P
p�q�Nij

Lg
pqP

g
pqij

D �
P

p�q�Nij
P
g
pqij

����

Equations ���� and ���� are implemented for ��� iterations� The 	lling�in parameter values

are D � ����� � � ����� � � ������� n � ���� The net outputs for the three scales g � �� �� ��

are shown for models II and III in row � of Figures �� and ��� Note that� although the medium

and large scale BCS boundaries in row � of Figure �� and �� cannot distinguish the small posts

on the bridge� these posts are recovered in all the FCS 	lled�in surface representations� including

the medium and large scale images� This is true due to two properties operating together� ��� A

narrow on�center is used to discount the illuminant across all scales� and thus to distinguish the

posts across all scales at the ON and OFF cell outputs depicted in Figure �� ��� The medium and

large scale boundaries �cover� the post locations� and thus trap their local contrasts within their

boundary web� See Grossberg and Mingolla ������ and Grossberg and Todorovi�c ������ for related

uses of boundary web properties�

��� Stage �� Combination of Scales

The 	nal output image is attained by a weighted combination of 	lled�in double�opponent surface

representations at di
erent scales� Weighting coe�cients are selected so that the variances of the

three 	lled�in double�opponent component images are approximately equal� The multiple�scale

output surface is thus computed as

Model I�

Oij � s�ij � s�ij � s�ij ����
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Model II�

Oij � ��s�ij � s�ij� � ��s�ij � s�ij� � ��s�ij � s�ij�� ����

Model III�

Oij �
�X

g
�

L
g
ij �NS

g
ij

M � PS
g
ij

����

The quality of the 	nal output image is not sensitive to the exact values of the respective weight�

ing coe�cients� We chose values such that each scale has an approximately equal contribution �by

eye� to producing the 	nal combined�scale output� A more sophisticated multiple�scale interaction

which has been proposed to achieve 	gure�ground separation lays the foundation for future research

�Grossberg� ������

� Comparison with prior methods

The BCS�FCS results were compared with previously published methods for speckle noise reduc�

tion� To facilitate comparison� the unprocessed SAR values I were passed through the compressive

function

f�I� �
I

D � I
� ����

where D � �� ���� in order to produce imagery of roughly the same grey�level distributions as

the BCS�FCS Stage � output� before processing by the alternative noise reduction methods� The

alternative methods considered are� smoothing with a median 	lter �Scollar� Weidner� and Huang�

������ adaptive averaging with a sigma 	lter �Lee� ������ and smoothing with a geometric 	lter

�Crimmins� ������ The parameters of these methods are set to obtain a similar net amount of

smoothing!as determined by informal observation!as the BCS�FCS� in order to evaluate how

well they remove noise while retaining actual image features� Because it tends to suppress outliers�

the median 	lter is a sensible method for reducing speckle noise �Scollar� et al�� ������ A �x� median

	lter was applied for � iterations� Alternatively� averaging with a mean 	lter blurs real edges too

much� This problem is addressed with the sigma 	lter� which only averages those pixels with

intensity within two standard deviations of the center pixel� However� this approach leaves many

outliers� which are due to speckle noise� untouched� This problem is addressed by locally averaging
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Figure ��� Comparison of speckle noise reduction methods� �a� Top Left� SAR image �compressed
for viewing� of scene with overpass over New York State Thruway� taken from image in Figure ��
�b� Top Middle� Multi�scale BCS�FCS� �c� Top Right� � iterations of �x� median 	lter� �c� Bottom
Left� Adaptive averaging using � iterations of �x� sigma 	lter� �d� Bottom Middle� � iterations of
geometric 	lter� �e� Bottom Right� � iterations of geometric 	lter�
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Figure ��� Comparison of BCS�FCS and geometric 	lter� Top Left� SAR image �compressed
for viewing� of cars lined up in parking lot� Top Middle� a house with shadow� Top Right� a
mixture of trees and shadows� with grass below and a road on the left� Second row� Corresponding
BCS�FCS results� Third row� Corresponding geometric 	lter results� with � iterations� Fourth
row� Corresponding geometric 	lter results� with � iterations�
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Figure ��� Geometric 	lter results� with �� iterations� corresponding to Figure ���
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those pixels for which K or fewer other pixels in the averaging window lie within two standard

deviations �Lee� ������ Adaptive averaging is done for � iterations� using a �x� sigma 	lter� with

the standard deviation estimated at a relatively  at image region� and a threshold of K � � for

removing spot noise �see Lee� ������ Another method for speckle noise reduction� the geometric

	lter� iteratively enforces a minimum constraint for curvature� in pixel intensity space� between

neighboring pixels �Crimmins� ������ Each iteration of the geometric 	lter involves two successive

applications of four nearest�neighbor intensity curvature rules� in four directions �� degrees apart�

horizontally� diagonally� vertically� and diagonally� The 	rst application reduces the curvature from

above� 	lling in holes or narrow valleys� The second application reduces curvature from below�

reducing spikes or narrow ridges�

Figure �� �top left� shows a section of the image from Figure � following compression of signal

values by ����� used as input to the noise reduction methods� This image contains an overpass of

the New York State Thruway� Note that the detail of the overpass guardrails is maintained by the

BCS�FCS �top middle�� while regions that are homogeneous with the exception of speckle noise

are smoothed over� The median 	lter method �top right� and adaptive averaging method �bottom

left� do not do as well at maintaining important detail while smoothing away noise� The geometric

	lter� after � iterations �bottom center�� and � iterations �bottom right�� also does a good job at

smoothing noise while maintaining detail�

Because the BCS�FCS and geometric 	ltering methods do the best at speckle noise reduction on

the image in Figure ��� they alone were evaluated on additional images� Figure �� �top left� shows

a SAR image of cars lined up in a parking lot� Figure �� �top middle� a house with shadow� and

Figure �� �top right� a mixture of trees and shadows� with grass below and a road on the left� The

second row of Figure �� shows the corresponding BCS�FCS results� the third row the geometric

	lter results with � iterations� and the four row the geometric 	lter results with � iterations�

Comparing the three systems� the BCS�FCS arguably produces results that are smoother while

being more true to the actual imagery� An important consideration in evaluating the alternative

approaches is that the BCS�FCS reliably produces results like those shown in Figure ��� whereas

the geometric 	lter iteratively smooths the image� Therefore� when using a geometric 	lter� the user

must choose how many iterations to apply to achieve the desired level of smoothness for each set

of images� Crimmins ������ reported that �� iterations of the geometric 	lter seem to be optimal

for the imagery of that study� However� when applied to the imagery of Figure ��� �� iterations

produces extremely washed�out looking results� as shown in Figure ��� Thus the BCS provides a
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more robust method for generating boundary and surface representations that do not degrade as

the number of iterations increases�
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