
Neural Networks, Vol. 7, Nos. 6/7, pp. 883-894, 1994
Copyright @ 1994 Elsevier Science Lid
Printed in the USA. All rights reserved

0893-6080/94 $6.00 + .00

0893-6080(94) EO026-H

1994 SPECIAL ISSUE

Rules for the Cortical Map of Ocular Dominance and
Orientation Columns

STEPHEN GROSSBERG AND STEVEN J. OLSON

Boston University

(Received 6 October 1993; revised and accepted 15 February 1994)

Abstract-Three computational rules are sufficient to generate model cortical maps that simulate the interrelated
structure of cortical ocular dominance and orientation columns: a noise input. a spatial band passfilter. and competitive
normalization across all feature dimensions. The data of Blasdel from optical imaging experiments reveal cortical
map fractures, singularities. and linear zones that are fit by the model. In particular. singularities in orientation
preference tend to occur in the centers of ocular dominance columns, and orientation contours tend to intersect ocular
dominance columns at right angles. The model embodies a universal computational substrate that all models of
cortical map development and adult function need to realize in some form.
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1. INTRODUCTION
Since the classical work of Hubel and Wiesel (1974)
many experimental neurobiologists have studied how
two key structural attributes of striate visual cortex
(VI) develop in the neonate and are functionally or-
ganized in the adult. These attributes are the ocular
dominance columns in which visual inputs from the
left and right eyes are juxtaposed to facilitate binocular
vision, and the orientation columns in which oriented
edges, textures, and shading in an image can selectively
activate some cells more than others. The anatomical
coordination of these attributes was first conceptualized
in the hypercolumn model ofHubel and Wiesel ( 1974).
Much subsequent experimental work has revealed a
complex organization of these interwoven attributes of
ocular dominance and orientation selectivity, one that
includes a mesh of singularities, fractures, and linear
zones. Blasdel (1992a,b) has described five general

characteristics of ocular dominance and orientation
maps:
1. there exist regions of smooth change in orientation

preference (linear zones);
2. there exist rapid changes in orientation along one

direction (fractures);
3. there exist regions at the centers of swirls of orien-

tation preference in which all orientation preferences
are present (singularities);

4. singularities tend to lie within the centers of the
ocular dominance columns; and

5. linear zones intersect the edges of ocular dominance
columns nearly orthogonally.

Figure 1 shows each of these five characteristics in a
map of orientation preference and ocular dominance
columns obtained by optical dye recordings.

Ocular dominance columns in V 1 have been studied
extensively in macaque monkeys with a wide variety
of techniques. These methods include anatomical
staining of the cortical afferents from one eye (Hubel,
Wiesel, & LeVay, 1977); imaging the differential uptake
of 2-deoxYglucose (200) in response to monocular
stimulation (Hubel, Wiesel, & Stryker, 1978; Hum-
phrey & Hendrickson, 1983; Tootel, Hamilton, Silver-
man, & Switkes, 1988); tracing retinal-cortical con-
nectivity by injecting [ 3H] proline into one eye (LeVay,
Connolly, Houde, & Van Essen, 1985); and optical dye
recordings of cortical response to monocular stimula-
tion (Blasdel, 1992a,b; Blasdel & Salama, 1986; Ober-
mayer & Blasdel, 1993). These studies reveal qualita-
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FIGURE 1. Characteristics of orientation and ocular dominance maps, revealed by optical imaging. Five key properties of cortical
maps are illustrated: 1. regions of smooth change in orientation preference (linear zones); 2. regions in which orientatioln chan~les
rapidly along one direction (fractures); 3. regions at the center of swirls of orientation where all orientations are present (singularitie!s);
4. singularities tend to lie within the centers of ocular dominance columns; 5. linear zones tend to intersect ocular dlominance
columns nearly orthogonally. ReprintE~d with permission from Obermayer and Blasdel (1993).

tively and quantitatively similar observations of the
columnar organization of eye preference columns.

Prim~te ocular dominance columns appear orga-
nized in long fairly regular bands or stripes. Stripes
corresponding to regions of high preference for the right
eye are interdigitated with stripes preferring the left
eye. Although these stripes appear to have some global
order, they are not perfectly uniform structures. Instead
individual stripes exhibit many branches and "blind
endings" (LeVay, Hubel, & Wiesel, 1975). Nevertheless,
the stripes are sufficiently regular that it is sensible to
compute the average stripe width. Hube1 et al. ( 1977)
estimated the width of a single stripe (which subserves
a single eye) to be about 300-450 11m. In their 2OG
study, Hubel, et al. (1978) corroborate this estimate.
Using reconstructions of [ 3H] proline injections studies,
LeVay et al. ( 1985) report the slightly larger estimate
of the width of a pair of stripes as 880 11m. Optical dye
measurements confirm that the width of a pair of col-
umns is on the order of822 microns (Blasdel. & Salama,
1986; Blasdel, 1992a,b; Obermayer & Blasdel, 1993).

In the macaque, Hubel and Wiesel (1974) estimate
that orientation preference changes at a rate of about
2810/mm. This corresponds to a range of about 640
,urn for a full sweep through 1800 of preference. Study-
ing 2OG uptake within macaque primary visual cortex
in response to vertical stripes, Hubel et al. ( 1978) found
a pattern of roughly interdigitated "swirling stripes with
many bifurcations and blind endings" that are similar
to the ocular dominance columns, but are less regular.
They estimate that a pair Qf stripes subtends a cortical
distance of about 570 ,urn. Stimulating with alternating
horizontal and vertical lines reduces the spacing of the
patches by a factor of 2 which confirms the notion that
there are distinct spatial representations of different
orientations on the cortical surface.

Optical dye recordings of macaque cortex (Blasdel
& Salama, 1986; Blasdel, 1992a,b; Obermayer & Blas-
del, 1993) confirm the earlier estimates of orientation
column size. They find that the typical spacing between
regions of similar orientation ( or more technically, the
dominant wavelength in the images of orientation pref-
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erence) is about 679 JLm. This value is quite close to
the values estimated earlier from electrophysiological
and 200 studies. In addition to a confirmation of the
size of the orientation columns, the optical dye record-
ings reveal the overall structure of orientation columns
in monkey cortex. Orientation preference columns
seem to be arranged in a "pinwheel" pattern around
centers with little or no orientation selectivity. Appli-
cation of a gradient operator to these images reveals
the existence of regions of rapid orientation change, or
"fractures," which tend to connect neighboring centers.

2. NEURAL NETWORK MODELS

This explosion of neural data has led to a correspond-
ingly vigorous development of neural network models
to simulate and explain them. Grossberg (1972,
1976a,b), von derMalsburg( 1973), andWillshawand
von der Malsburg (1976) introduced key associative
and competitive mechanisms for map formation, fol-
lowed by a rapidly increasing number of contributions
in the 1980s and beyond by Bienenstock, Cooper, and
Munro (1982), Kohonen (1989), Linsker( 1986), and
others (see Table 1). These models have tended to mix
two goals: to understand the functional organization of
columnar structures in primate visual cortex, and to
understand how this columnar organization forms
through a self-organizing developmental process.

Although each of these neural models shares a num-
ber of features in common, such as associative learning
and competitive decision rules, their very numbers and
continued proliferation indicates that no one model
has yet definitively been accepted. To facilitate this
process, the present article identifies three computa-
tional properties that all models need to possess in order
to explain data concerning the adult organization of
ocular dominance and orientation columns. These
properties identify a universal computational substrate
that all neural models of these structures must satisfy.

In their simplest form, the three computational
properties are: a source of noise that energizes the map
formation process; a spatial band pass filter that organ-
izes the noise into a spatial map structure; and a nor-

malization rule that constrains how multiple visual
features are competitively allocated across the two-di-
mensional map surface. These rules extend the key ob-
servation of Rojer and Schwartz ( 1990) that the first
two rules may be used to generate the map structure
of ocular dominance columns, and the related insight
of Erwin, Obermayer, and Schulten ( 1992) that neural
models of cortical maps possess ring-shaped Fourier
power spectra, given isotropic connection rules. Nor-
malization of cortical response has been considered in
a somewhat different context (Swindale, 1992b).
Swindale investigated the extent to which model cortex
(Swindale, 1992a) minimizes the local variation in the
activity of a cortical region. Table 2 shows how various
neural models realize these three mapping rules.

Taken together, the three rules allow us to simulate
the spatial organization of both cortical ocular domi-
nance columns and orientation columns, as well as their
mutual overlap, as these properties have been revealed
by experiment using optical imaging techniques (Blas-
del, 1992a,b; Obermayer & Blasdel, 1993).

Another class of models that can account for pattern
formation in biological systems are reaction-diffusion
(RD) equations (Turing, 1952). RD equations define
the time derivative of the concentration of a particular
morphogen C(x, y) as

dC= n2u2r- hr+ Rdt -' (1)

where a is the diffusion rate constant, b is the dissipation
rate constant, and R is the reaction function governing
C and may depend on the concentrations of other mor-
phogens in the system. Witkin and Kass ( 1991 ) note
that when the effects of R are small, the solution to
above the differential equation is a convolution of the
initial state of C with a Difference of Gaussians (DOG):

C/+",(x, y) = Cto(x, y) tg} G",. (2)

A similar result was used by Swindale (1980) in his
model of ocular dominance column formation. Because
a convolution with a DOG is a special case of a band
pass filter, solutions to these RD equations amount to
band pass filtered versions of the initial concentration

TABLE 1
Some Neural Models of Column Formation

Author Additional Assumptions Simulations Show

Grossberg (1976a,b)
Linsker (1986)
Meinhardt and Gierer (1974)
Miller (1992,1994)
Miller et al. (1989)
Obermayer et al. (1992)
Swindale (1992a)
von der Malsburg (1973)

Line segments as input
None
None
Nonea
Noneb
Initial orientation selectivity
Initial orientation selectivity
Line segments as input

Orientation map
Orientation selectivity
General pattern formation
Orientation map
Ocular dominance map
Orientation and ocular dominance maps
Orientation and ocular dominance maps
Orientation map

.Miller's model demands on-center and off-center "Mexican-hat" filters of random inputs.
b The input is not completely random: there exists same-eye correlation and anticorrelation.
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TABLE 2
Mechanisms That Realize Map Formation Rules

Noise SourceAuthor Band Pass Filter Normalization

Grossberg (1976a,b)

Grossberg and
Olson (1994)

Linsker (1986)

Initial orientation preference,
eye preference

Initial weights, random
(uncorrelated input)

Explicit

Bound weights between -1
and 1

Meinhardt and Gierer
(1974)

Initial responses Implicit bounded growth of
response

Miller (1992, 1994) Initial weights Limit or fix total synaptic

strength

Miller et al. (1989) Initial weights Limit or fix total synaptic

strength

Initial orientation preference.
eye preference

Initial responses

Low pass (preferential short
range connections from
one layer to the next);
learning rule generates
positive and negative

weights
Lateral inhibition + short-

range autocatalytic
activation

DOG input filter, DOG
cortical interaction
function

Short-range correlated

firing, longer-range
uncorrelated firing; DOG
cortical interaction
function

Local excitation, longer
range inhibition

Explicit

Learning law tends to
normalize

No

Obermayer et al.
(1992)

Rojer and Schwartz
(1990)

Swindale (1992a) Initial orientation preference,

eye preference

Turing (1952) Initial state of system

Limits on dominant values,
orientation vectors;

competition
Limit to maximum morphogen

concentrations

Map changes proportional
to map convolved with
DOG

Band pass filter is a
solution for RD equation
with negligible reaction

component
Excitatory and inhibitory

cells. Longer range
connections from
inhibitory cells

van der Malsburg
(1973)

Strength of afferents to
excitatory cells

Explicit weight normalization

be multiplied with images in the Fourier domain to
effect a computation identical to convolution with their
spatial kernels.

The Gaussian Ring (GR) filter is defined in the fre-
quency domain, as in Rojer and Schwartz ( 1990), as
a Gaussian-shaped pass band of standard deviation s,
centered at mean frequency lJJ:

distribution. As long as the effects of the reaction term
is small, the RD model of column formation is identical
to the bandpass filter model of column formation (Rojer
& Schwartz, 1990).

The relationship between RD equations and neural
network models was noted by Grossberg (1976a). He
pointed out that the two classes of models are com-
putationally equivalent, and that this similarity, among
other properties, can help to explain the smooth tran-
sition between prenatal and postnatal development and
learning (also see Kandel & O'Dell, 1992). Equivalent
computations may thus be performed by either chem-
ical or neural systems and both types of systems exhibit
properties of a band pass filter.

GR(x) = e-«x-.,)2/s2). (3)

The DOG filter, defined by the convolution kernel

h(x, y) = e-{(X2+y2)/2S~} -e-{(X2+y2)/2s~}

in the spatial domain, becomes

DOG(x, y) = 21r( s~e-(..~..;)/2-("~";)/2

22 22 )-s~e-(S2"'x)/2-(S2"'y)/2 ( 4 )

in the Fourier domain. The ideal filter is simply a step

3. BAND PASS FILTERS

At least three different forms of band pass filters, the
GR filter, the DOG filter, and the ideal filter, are suf-
ficient to generate the desired results. These filters may
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a) b) c)

FIGURE 2. Cross sections of the three band pass filters, averaged over all directions. The power of each filter as a function of

spatial frequency is shown. (a) GR filter, (b) DOG filter, (c) ideal filter.

function that passes only spatial frequencies that lie
within 15 of the mean frequency (I):

4. COMPEnTlVE NORMALIZATION
ACROSS FEATURE DIMENSIONS

[ 1 iflx-"'1 <fI
Ideal(x) = (5)

0 otherwise.

Figure 2 illustrates the filters defined by eqns (3 )- (5 )
with parameters chosen to emphasize their similarity.
These figures are the average cross sections of each of
the filters, computed directly from their digital image
representations. Due to the discretization of the digital
image, the average cross section of the ideal filter does
not closely resemble the step function by which it was
defined. The circular annulus described by eqn (5)
cannot be precisely represented by a discrete rectan-
gular array.

Figure 3 shows the result of applying each band pass
filter to the same noise source. Band pass filters that
closely resemble one another in the frequency domain
thus have a similar effect on noise. The DOG filter is
of particular interest because DOG filters and their ap-
proximations are used to carry out competitive decision
making in essentially all the neural network models.

A competitive normalization property is found, either
explicitly or implicitly, in each of the neural network
models sketched above. The models of Linsker ( 1986),
Miller, Keller, and Stryker ( 1989), and von der Mals-
burg (1973) include explicit normalization of the
adaptive weights that undergo learning. Grossberg
(1976a,b), Grossberg and Kuperstein (1986), Kohonen
( 1989), and Obermayer, Blasdel, and Schulten ( 1992)
present models that obtain normalization as an emer-
gent network property due to the action of lateral in-
hibition. Normalization is necessary to prevent un-
bounded weight growth and helps the network to learn
a feature map in a stable way.

A normalization constraint can be rationalized in
higher dimensional systems if the various feature inputs
or "dimensions" interact via a mass action or shunting
competitive interaction (Grossberg, 1973). Competitive
normalization is shown below to generate a key rela-
tionship in the physiological data (Blasdel, 1992a,b):
spatial loci that correspond to large values of one dimen-

a) b) c)

FIGURE 3. Application of each of the band pass filters to an initial two-dimensional noise image. (a) GR filter, (b) DOG filter, (c)
ideal filter.
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X3sion correspond to small values of the competing di-
mension(s). This relationship is expressed by the
following equation:

n
l' A(Xk) = K (6)
k-1

where each functionik(x) is an increasing function of
x, and Kis the maximum response.

FIGURE 5. Two angles a and {J uniquely determine a vector
(x" x2, x3) on the surface of the unit sphere.

(a, (3) which together uniquely determine a single
point on the surface of the unit sphere (see Fig-
ure 5).

.Coordinates (a, (3) correspond to coordinates XI, X2,
and X3 such that

5. SIMULATIONS OF CORflCAL MAPS

To simulate cortical maps of orientation and ocular
dominance columns we let the number of dimensions
n = 3, select the transfer function

fk(x) = x2, (7)

and choose K = 1. By eqns (6) and (7),

xi + x~ + x~ = 1 (8)

which is equivalent to requiring each vector (XI, X2,
X3) to lie on the unit sphere. Using these parameters
we generate simulated cortical maps with the following
procedure (depicted graphically in Figure 4):
.Select two maps of uniformly distributed angles XI = COS IX cos fJ; X2 = sin IX cos fJ; X3 = sin fJ (9)

on the unit sphere (8).
.Each image XI' X2, and X3 is band pass filtered to

yield simulated response maps Yl' Y2, and Y3' Spe-
cifically, each image Xi is transformed into the fre-
quency domain with a fast Fourier transform (FFT),
multiplied by the annular-shaped two-dimensional
band pass filter, and transformed back into the spatial
domain using the inverse FFT. As indicated by the
vertical line in Figure 4, there are separate modules
for computing ocular dominance and orientation
maps. Relaxing the initial constraint that the same
filter be used for both systems allows richer model
characteristics and closer fits with physiological data.

.We interpret these maps much as Blasdel (1992b)
interpreted his physiological data of visual cortex.
We take YI and Y2 to represent orientation preference
and orientation selectivity. At a unique horizontal
and vertical position there exists a single scalar value
(pixel) in each of the YI and Y2 maps, YI(h, v), and
Y2(h, v). The magnitude of the 2-dimensional vector
[Yl(h, v), Y2(h, v)],

M(h, v) = VY1(h, V)2 + Y2(h, V)2 (10)

represents orientation selectivity at a given position,
and half of the angle of the vector,

a)

b)

..c)

Orientatioo Orientation Ocular
Pref~nce Selectivity Dominance
(phase/2) (Magnitude)

FIGURE 4. (a) Two maps of random angles (a and fJ) uniquely
determine a map of vectors on the unit sphere. (b) The Carte-
sian coordinates (x1, X2, x3) of each vector are computed from
the maps of a and fl. (c) A spatial band pass filter is applied
to each of the coordinate maps to generate maps of simulated
response vectors (y" Y2' Y3). (d) Maps y, and Y2 are combined
to yield maps of orientation preference and orientation selec-
tivitYi map Y3 is interpreted as ocular dominance.

d)

6(h, v) = angie(y(h, v» (11)

where

(12)
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represents orientation preference. We restrict the an-
gle to lie between -1r / 2 and 1r / 2 because orientation
preference is defined only on this range.

.The final map of eye dominance, E, is represented
bYY3:

E(h, v) = Y3(h, v) (13)

Positive values of E(h, v) represent preference for
one eye, and negative values represent preference for
the other eye. Values of E(h, v) near 0 represent an
absence of eye preference.

6. SIMULATIONS WITH THE SAME
FILTER FOR ORIENTATION AND

OCULAR DOMINANCE

In order to study this model in some detail, we begin
with the restriction that the same filter is applied to all
three random maps Xi. We will discuss the strengths
and limitations of the model under this restriction be-
fore relaxing the constraint to encompass more realistic
cases. Figure 6a shows a simulated ocular dominance
map. The range [-1, 1] of the E map is shown as a
grey-scale image. Light regions correspond to map val-
ues near 1 and to regions that "prefer" input from one
eye. By contrast dark regions correspond to map values
near -1 and to regions that prefer input from the other
eye. Grey regions correspond to values near 0 and prefer
input from neither eye.

The binocularity map, shown in Figure 6b, is gen-
erated by taking the absolute value of each element of

the ocular dominance map. Thus regions with values
near 0 in the binocularity map correspond to regions
that prefer neither eye, and regions with values near 1
in the binocularity map correspond to regions that pre-
fer one eye or the other. This map in the range of
[0, 1] is once again shown as a grey-scale image. Light
regions show preference to one eye or the other (mon-
ocular regions), and dark regions represent approxi-
mately equal response to either eye (binocular regions).

Figure 7 shows simulated maps of orientation selec-
tivity. As described above, this map is constructed from
the magnitude of the vector [y,(h, v), Y2(h, v)] for
each position (h, v) in the band pass filtered maps y,
and Y2. Regions with small vector magnitudes corre-
spond to areas of low selectivity: regions that respond
equally well to many different orientations. In the ori-
entation selectivity map image these regions are rep-
resented as dark regions. Regions with large vector
magnitudes correspond to areas of high selectivity, and
these sharply tuned regions are represented as light re-
gions in the orientation selectivity map.

One-half of the angle of the vector [y,(h, v),
Y2 (h, v)] represents orientation preference in our sim-
ulations. Contours of isoorientation preference of a
simulated orientation preference map are shown in
Figure 8. Notice that this map is qualitatively similar
to contour maps of physiologically measured orienta-
tion preference, shown in Figure 1. Like the observed
map, the simulated map possesses singularities, frac-
tures, and linear zones.

Compare the maps in Figures 6-8. Notice the qual-
itative similarity between these figures and those of

a) b)
FIGURE 6. Two-dimensional maps generated by applying GR filter to normalized random map X3 (see text). (a) Simulated ocular
dominance map Y3. Dark regions correspond to preference for one eye, light regions to preference for the other eye (see text).
(b) Simulated binocularity map, absolute value of map Y3. Dark regions correspond to preference for neither eye (binocular regions),
light regions to preference for one eye or the other.
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We therefore have a map of orientation gradient vec-
tors

V8(h, v). (16)

.Compute the gradient of the ocular dominance
map, resulting in a similar map of ocular dominance
gradient vectors

\1E(h, v). (17)

.Locally average both gradient maps over a "bio-
logically significant" region with radius 100 JI,m. This
appropriate averaging radius for the simulated maps
is obtained by requiring that the ratios of the aver-
aging sizes and the average periodicities in the sim-
ulated and observed maps be equal. Thus

x lOOJI,m "O'=
., \10J40 pixels 700 p.m

which shows that the averaging radius for the simu-
lated maps should be apprbximately 6 pixels. Maps
of averaged gradient vectors

--
yr£J(h, v), yr E(h, v) (19)

are hereby obtained.
.Define poP, after Obermayer and Blasdel ( 1993), as

the magnitude of the orientation gradient vector,
normalized across the entire map:

poP = I YVB;2 + V8;21. (20)

FIGURE 7. Simulated orientation selectivity map extracted from
GR-filtered maps. Orientation selectivity is defined as the mag-
nitude of each two-dimensional vector in the map (y" Y2). Light
regions represent areas of high !;electivity, and dark regions
represent low selectivity.

.Subtract the averaged map of orientation gradient
from the averaged map of ocular dominance gradient
to yield a map of angular intersection:

fracture

singularity

physiologically measured maps. In particular notice the
existence in the simulated maps of the features ofphys-
iological maps identified earlier: linear zones, fractures,
and singularities. In addition note that the singularities
in the orientation preference map tend to correspond
to the centers of the ocular dominance columns, as
shown in Figure 9. This is equivalent to the observation
that the singularities in the orientation preference map
tend to correlate with regions of low binocularity. These
qualitative features of these maps are not dependent
upon the specific band pass filter used. Our simulations
show that simulated cortical maps generated with either
the GR filter or the ideal filter are qualitatively similar
to the maps shown above.

The fifth property identified by Obermayer and
Blasdel ( 1993) is the tendency of isoorientation con-
tours to intersect ocular dominance contours at right
angles. Figure 9 shows simulated orientation contours
plotted along with the borders of the simulated ocular
dominance columns. By inspection alone, it is unclear
if the tendency observed by Obermayer and Blasdel is
present in the simulated maps as well. In order to
quantify this relationship, we compute the angle of in-
tersection of the maps following the procedure outlined
by Obermayer and Blasdel:
.Compute the gradient of the orientation map (also

a map). At each position in the map the gradient of
orientation is a vector defined by its two components:

linear zone

FIGURE 8. Simulated orientation preference map extr21cted from
GR-filtered maps. Orientation preference is defined as half the
angle determined by each two-dimensional vector in the map
(YI, Y2). Contour lines are drawn along regions of constant
orientation. Examples of a singularity, a fracture, and a linear
zone are identified.

V8(h, v) = 8(h + I, v) -8(h -I, v) (14 )

V82(h, v) = 8(h, v + 1) -8(h, v-I), (15)
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FIGURE 9. Simulated orientatiolrl preference contours superimposed on simulated ocular dominance column boundarie~; (generated
with an isotropic filter) do not demonstrate a striking tendency of the contours to intersect the boundaries at right singles. Solid
lines show isoorientation contours, dashed lines show boundaries of ocular dominance columns.

--'Y(h, v) = angle(V8(h, v)) -angle(V E(h, v). (21)

To examine the angle of intersection at different
subregions of the simulated maps, the measure of par-
allelism poP, defined above, is used to divide the maps
into five regions. poP is small in regions where there is
a significant "disagreement" of preferred orientation,
and is close to 1.0 in regions where orientation pref-
erences line up with one another.

Figure 10 shows the distribution of poP. There is
obviously a significant bias toward lower values, which
translates to a decreased likelihood of strong local
"agreement" in the orientation gradient map. Figure
11 shows the distribution of angles of intersection be-
tween ocular dominance and orientation gradients,
'Y( h, v), for different values of poP. In contrast to the
physiological maps, which show a tendency for orthog-
onal intersection of orientation and ocular dominance
gradients, the maps generated by the band pass filter
model under the restriction of identical orientation and
ocular dominance filters show an even distribution of
intersection angle.

7. SIMULATIONS WITH ISOTROPIC
ORIENTATION FILTER AND

ANISOTROPIC OCULAR
DOMINANCE FILTER

The restricted model is able to account for the existence
of four of the five key qualitative properties of orien-
tation and ocular dominance maps, as described above.
However, using an isotropic filter to generate a model
ocular dominance map results in a patchy ocular dom-
inance map, rather than a stripe-like map as seen in
the physiological maps. The physiologically observed
property is also obtained by replacing the isotropic filter
that generates the ocular dominance map with an an-
isotropic filter.

An anisotropic filter was generated by multiplying
the annular isotropic filter by a one-dimensional
Gaussian:

AN(x, y) = DOG(x, y)e-SY (22)

where the parameter s controls the anisotropy of the
filter. This results in a two-lobed filter rather than the
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0 1.0
pOP

FIGURE 10. Distribution of the (normalized) magnitude of the

gradient of orientation preferenCE!. The bias toward smaller
values is not echoed in the physiological data.

will form sharply tuned regions of a specific orientation
preference after filtering. In contrast, vectors in small
regions with many different angles tend to cancel with
one another as a result of filtering, yielding small regions
in which the vectors all have small magnitude and many
orientations. In a contour plot of orientation preference,
these regions show up as singularities, and correspond
to regions of low orientation selectivity. Removal of
low frequencies leads to a spatial anticorrelation of
slightly more distant regions, and increases the regu-
larity of the spatial pattern.

Linear zones and fractures develop according to
similar principles. It is helpful to think about fractures
and linear zones as the endpoints of a continuum. Sim-
ilar nearby regions in the initial angular map interact
to form regions in the final map with a range of rates
of spatial orientation change. Nearby regions with
slightly different orientation preferences yield linear
zones. Nearby regions with drastically different initial
orientation preference form fractures. The initial dis-
tribution of angular differences produces the wide range
of orientation changes, punctuated by linear zones and
fractures, that is seen in simulated maps.

The physiologically observed tendency of orientation
preference singularities to lie at the centers of ocular
dominance columns is explained by the normalization
constraint. Vectors near the centers of ocular domi-
nance columns have large Y3 coordinates and small Yl
and Y2 coordinates; vectors with a small Y3 coordinate
have [Yl, Y2] subvectors with large magnitudes. Thus
vectors near the centers of orientation columns have
small orientation selectivity, a necessary condition for
singularities in the orientation preference map. Con-
versely, vectors away from the centers of orientation
columns have larger orientation selectivity: therefore

annular isotropic filter. Applying the filter AN (x, y) to
the noise source, X3, as in Figure 4, results in stripe-
like map of ocular dominance, which closely resembles
macaque ocular dominance maps (Figure 12). This
observation was first made by Rojer and Schwartz
( 1990) who demonstrated that a wide variety of stripe-
like patterns could be created by varying the parameters
of the filter.

Not only does replacing the isotropic filter with an
anisotropic filter yield maps that more closely resemble
the patterns observed in monkey cortex, but the pre-
viously discussed problem of the orthogonal intersec-
tion of orientation and ocular dominance contours is
alleviated as well. Figure 13 demonstrates the marked
tendency of orthogonal intersection for different values
of poP. This tendency is especially pronounced for
higher values of poP, just as is the case in the physio-
logically observed maps. Thus it seems that orthogonal
intersection emerges from anisotropy in the ocular
dominance map.

pOP

0.8-1.0 n r-, ~ ~ r-, ~ c=J r-1 n n
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0.6-0.8 nnr--lr--lnnnnnn

0.4-0.6 n n n n n n n n n n

0.2-0.4 n n n n n n n n n D

nnnnnnnnnn0.0-0.2 90

0

All of the properties of orientation and ocular domi-
nance maps identified by Obermayer and Blasdel
( 1993) can be accounted for by properties of the current
model. Thus the characteristics of the physiological
maps may be thought of as emerging from the dynamics
of a complex self-organizing system that embody the
initial disorder, normalization, and filtering properties
of the current model.

Singularities are determined by the topology of the
interaction of all three components. The Xl andx2 maps
are selected from orthogonal components of a map of
random angles. After filtering, high spatial frequencies
are removed, resulting in local spatial correlation. Thus
small regions that contain vectors with similar angles

Intersection angle (degrees)

FIGURE 11. Distribution of the angle of intersectionl for five
ranges of poP. Simulated ocular dominance map was created
with an isotropic filter. No tendency toYlard orthogonal inter-
section is apparent.
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pOP

0.8-1.0 , ,, , r-I r-l rl r-l r--, n n n

0.6-0.8 r--. r-I r-, rl /l /l n n DO

0.4-0.6 r=1 r-, r-l /l rl nn n DO

singularities as a rule do not lie away from the centers
of the ocular dominance columns.

As described above, orientation contour lines run
between pairs of singularities. Because singularities
show a strong tendency to line up with the centers of
ocular dominance columns, these contour lines are
constrained to run from the center of one ocular dom-
inance column to the center of a neighboring column,
or roughly along the center line of a single ocular dom-
inance column. It is not well understood why the con-
tours that connect orientation centers exhibit a pref-
erence for intersecting the ocular dominance contours
at right angles. However, the current model suggests
that orthogonal intersection property results from an-
isotropy in the map of ocular dominance. Based upon
this model, we can make the prediction that isotropic
ocular dominance systems (such as those in the cat)
will not show a tendency toward orthogonal intersec-
tion.

0.2-0.4 r-lr-lnnnnnono

nnonnnnnno0.0-0.2 90

0
Intersection angle (degrees)

FIGURE 13. Distribution of the angle of intersection for five
ranges of pOP. Simulated ocular domlinance map 1Nas created
with an anisotropic filter. For larger values of poP there is a

distinct bias toward orthogonal inter!;ection, as in the physio-
logically observed maps.

9. CONCLUSION
The similarity between the synthetic and the exper-

imental maps suggests that the cortex performs a band
pass filter of noise and competitive normalization across
feature dimensions. Such mechanisms could be due to
neural interactions. This is the type of explanation given
by all the neural network models reviewed above. On
the other hand, other types of mechanisms with similar
computational properties could also generate the ob-
served results. In one of the articles that founded the
theory of self-organizing cortical feature maps, Gross-
berg (1976a) noted that model neural mechanisms of
postnatal feature map tuning share computational
properties with model morphogenetic mechanisms of
prenatal feature map formation. These computational
homologs enable postnatal map tuning to refine pre-
natally developed maps in a computationally consistent
way. For example, in the morphogenetic models, mor-
phogens cooperate and compete among cells that obey
mass action reaction-diffusion equations, thereby
achieving competitive normalization. In addition, fea-
ture tuning by postnatal mechanisms of activity-de-
pendent synaptic modification obey mathematical rules
like those that model prenatal growth of intercellular
connections. Similar morphogenetic signals and growth
rules are also capable of modeling a variety of non-
neural developmental data (Grossberg, 1978).

Our simulation results suggest that whatever com-
bination of genetically and environmentally controlled
mechanisms for cortical mapping exists, it needs to in-
corporate computations that behave like a noise input,
a spatial band pass filter, and competitive normalization
across feature dimensions. The computational similar-
ity of neural and morphogenetic models also suggest
that some of these same properties may be sought in
examples of nonneural morphogenetic maps.

This conceptually and computationally simple class of
models is capable of explaining the key observations
made by physiological imaging of primary visual cortex
with 200 and optical recordings. The qualitative
structures of the orientation preference, orientation se-
lectivity, and ocular dominance columns emerge, as do
the observed topographical relationships among these
maps.

FIGURE 12. Simulated ocular dominance stripes using an an-
isotropic filter. Continuous map has been thresholded to em-
phasize difference between eye preference stripes. Light re-
gions represent preference for one eye, dark regions represent
preference for the other eye.
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