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SCHIZOPHRENIA: POSSIBLE DEPENDENCE OF ASSOCIATIONAL SPAN,

BOWING, AND

PRIMACY VS. RECENCY ON SPIKING THRESHOLD

by Stephen Grossbergt and James Pepe, Department of Mathematics, M.1.T.

INTRODUCTION

THE hypothesis has been advanced that
certain schizophrenic patients are in a
continual state of overarousal, leading to
poor attention, and perhaps to schizophrenic
punning (Kornetsky and Eliasson, 1969;
Maher, 1968). Physiological factors that can
vield overarousal include a pathological re-
duction in spiking thresholds of cells that
send signals to many other cells, or alterna-
tivelv a reduction in the strength of lateral
inhibitory interactions between these cells.
Even low energy but persistent peripheral
excitation can under these circumstances
build up high internal noise levels, because
signals between the cells will not be suffi-
ciently damped by the threshold or inhibi-
tory mechanisms.

This note announces the occurrence of
analogous phenomena in a rigorously defined
learning network having a suggestive psy-
chological, neurophysiological, anatomical,
and biochemical interpretation (Grossberg,
1969a—c). We study in this network the
serial learning of a long list of behavioral
events as it depends on spiking threshold. In
normal subjects, one characteristically finds
such phenomena as bowing (middle of the
list harder to learn than the ends) and pri-
macy dominating recency (beginning easier
to learn than the end) (Grossberg, 1969d).
Altering the spiking threshold of the net-
work systematically alters these effects.

For example, as the spiking threshold de-
creases, recency gradually gains strength
over primacy until finally recency prevails.
This phenomenon is due to the buildup of
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background noise as a result of the persistent
presentation of events in the serial paradigm.
As ever more serial events are presented, the
associational strengths near the list’s be-
ginning are eventually competitively in-
hibited by incorrect associations that form
due to inadequate threshold cut-offs. Corre-
sponding difficulties in ‘“‘paying attention”
to long behavior dependencies also occur,
and “punning” based on low-order associa-
tions becomes plausible.

A NEURAL LEARNING NETWORK

Let n cell bodiesv;, ¢ =1, 2, --+ , n, be
given. (Alternatively, interpret each v; as a
cell body cluster.) Let each cell v; send a
directed axon e;; to every distinct cell v;,
j- # 1. Denote the synaptic knob of e;; by
Nij.

Denote the average membrane potential of
v at time ¢t by x:(t), and denote the average
amount of available excitatory transmitter
substance in N; at time ¢ by 2x:(f), 7 # k. At
every time ¢, let v, create a spiking frequency
proportional to [zx(t) — T|* in ew, ¢ # Kk,
where [w]* = max (w, 0) for every real num-
ber w, and T is the spiking threshold of es; .
Suppose that this signal reaches Ni; at time
t + 7, and thereupon causes release of excita-
tory transmitter from Nj; at a rate propor-
tional to [xx(f) — Tltzu:(t 4+ 7). Let all such
signals from cells vz, ¢ # k, combine addi-
tively at v; , and cause a proportional altera-
tion in z:(¢ + 7)’s rate of change; that is, in
Z:(t + 7). Also let z; decay at an exponential
rate @, and perturb r; with the experi-
mental input I;. These rules are equivalent
to the system of equations

(1) ii(t) = —a.l‘i(t)
-+ Bké [xp(t—7) = T)tzr:(t)
+ I, 1=

1,2, -+, n.
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The amount z;;(t) of available transmitter
in N;; 1s determined jointly by the presynap-
tic spiking frequency from v;and the post-
synaptic potential of v;, as in

(2) 2i(t) = —vzi(0)
+ 5[U,(t — 'T) - I‘]*x,-(t), 1 % j.

Systems of Types 1 and 2, known generi-
cally as embedding fields, have been mathe-
matically proved capable of discriminating,
learning, and performing complicated tasks
(Grossberg, 1969, f; 1970a,b). The mathe-
matical success of these systems, and their
derivation from simple psychological hy-
potheses (Grossberg, 1969a) lends some
weight to the as yet hypothetical Iiquation 2
for regulation of transmitter production. All
the results of this note also depend strongly
on joint pre- and post-synaptic control of
transmitter production. The results to be
announced are rigorously derived elsewhere
(Grossberg and Pepe, 1970) and extend pre-
vious results for the case T' = 0 (Grossberg,
1969d).

PSYCHOLOGICAL INTERPRETATION

The variables x;(t) and z;;(t) have psycho-
logical labels which are defined as follows.
Let occurrence of the psychological event »;
at time ¢ = T create a brief input pulse at v;
with onset time ¢ = 7. Then x;(f) is called
the stimulus trace of r; at time ¢, and z;;(t) 1s
the associational strength of the behavioral
transition r; — r; at time ¢. Our results dis-
cuss the functions .

(3) yis(l) = 2Dk 2 (O]

which measure the strength of the associa-
tion r; — 7; relative to the strength of all
competing associations r; — e, 1 # b # j,
through time. y;;(f) is thus a measure of the
distinguishability of the association r; — r;
during recall trials; strong competing asso-
ciations r; — 1, can annihilate behavioral
effects of r; — »; via lateral inhibition if
y:;(t) is too small (Grossberg, 1969b, 19700).

A network closely related to Equations 1
and 2 will be exposed below to a single trial
of a serial learning experiment using the list
L = rrs---rpqr. of behavioral events.
Cumulative effects of successive trials have
been discussed (Grossberg, 1969d). Suppose
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that r is presented at ¢t = 0, 72 1s presented at
, and 7, 1s presented at ¢ =
(L — 1)r. This paradigm defines inputs
I,(t) to v; which satisfy

Ii+l(t+7)’
=19 -, L1,

0,ifft =L+ 1,L+2 - n.

To simplify notation, let I,(t) = J(t), where
J (t) is positive throughout, and only in, the
interval (0, \).

The effects of serial inputs on the relative
associational strengths y;;(t) can be directly
computed if higher-order nonlinear effects
are ignored. The computation is carried out
using Equations 2, 3, 4 and

(5) Ci?i(t) = —al‘i(l) + Ii(t)

instead of (1),7z = 1,2, --- , n. This system
1s called the bare field of the network. The
computation also uses convenient restric-
tions on the parameters, which can be re-
moved yielding obvious modifications;
namely,

t = 7, -

@) L) =

(a) The network is initially at rest and in a
state of maximal ignorance; that is, all
zi(t) = 0 for —+ £t =0, and all 2;;(0) =
e> 0,7 #j;

Oy N < 7

(¢) J() is continuous and has a single
maximum;

(d) fﬁ =0 J(p) dv > T and

(¢) v = 0: the decay rate of associa-
tions is small compared to the time scale
of the transients to be studied.

ASSOCIATIONAL SPAN

Under these conditions, a precise study is
possible of the associational span, primacy
vs. recency, and bowing as a function of
spiking threshold T. The associational span
is defined heuristically as the maximum du-
ration during which associations can be
formed between a given r; and other events
ri . Alternatively, it ean be defined as the
number of r; with which »; can form an asso-
ciation. We choose to use the following sim-
ple definition. Let Ty = inf {t:21(¢) > T} and
T» = sup {t:2y(t) > T}. Ty and T are finite
since by Equation 5 and Condition (a),

t

f eI (0) de,

0

(L) =
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and thus z;(\) > T by Condition (d). In
fact, 2, (t) > T for Ty < t < T} by Condition
(¢). By Equation 2 and Conditions (a) and

(e),

D) = 48 [ Il = 1) = TV
which implies

2i(1) = e+ 8 fo la(v — i)

— (v — (j— D7) dv

for 1 < 4,7 < L, by Equation 4 and Con-
dition (a). Thus z;;(t) can grow only during
times when 2;(6 — 47) > T, or only if T} +
ir < t < Ty 4+ ir. The interval (Ty + 77,
To + 1r) is therefore called the associational
interval of r; , and S = Ty — T is called the
assoctational span of r;.

Note that if J(¢) is a rectangular input
pulse of intensity ./, then

S=)\+llog[<i]——1>-
a al’
(1 - e—a)‘)_l]y

which is monotone decreasing in I'. The in-
terpretation of this fact is not trivial. For T
too small, S becomes so large that response
interference greatly diminishes the relative
strength of correct associations r; — 741 .
Tor T too large, however, even though no
associations of the form »; — riyx, £ > 1,
can compete with »; — 7,41, [x:i(t) — Tt is
usually zero or small in value, so little learn-
ing occurs. Thus there exists an optimal re-
gion of threshold choice that reduces re-
sponse interference and supplies enough
energy to form the correct association.
Notice in Equation 5 that decreasing J has
the same qualitative effects as increasing T'.
The interplay between J and inhibitory in-
teraction strength is, by contrast, often far
more subtle (Grossberg, 1970b).

BOWING

Bowing cannot occur for all choices of T.
I'or example, again choose I' so large that
[x:({) — T]* = 0 whenever z;(t) > 0 and
J > 1 4+ 1. Then no future associations
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ri — Tizk, £ > 1, can ever form. Conse-
quently as the list position increases, the
major effect on the association r; — 741 18
to increase response interference due to in-
creasing numbers of backward response
alternatives. Apart from this degenerate
case, however, bowing always occurs in the
bare field.

Rigorously expressed, bowing is a prop-
erty of the function B(z, T') = lim s« y:,i11(f),
1 =1,2, .-+, L. Grossberg and Pepe (1970)
prove that for any fixed T' > 0, B(: T') either
first decreases and then increases as 7 in-
creases from 1 to L, or the degenerate case
occurs in which B(z, T') 1s monotone decreas-
ing. By definition, for fixed T, the bow occurs
at the list position K(T') for which B(z, T') is
a minimum. In the bare field, K(T') is a
monotone increasing function of T'. I'urther-
more, K(0) = 15(L — 1) if L is odd and
K(0) = 4L if L is even (Grossberg, 1969d).
In the degenerate case above, K(T') = L for
sufficiently large T'. Thus maximal difficulty
in learning can occur at any list position
greater than the list’s numerical middle.
Since “normal” learning requires a positive
I', the bow will occur nearer to the end than
to the beginning of the list, and the bowed
curve will therefore be skewed. This also
occurs in vivo (Grossberg, 1969d).

The above remarks describe, strictly
speaking, ‘“‘asymptotic”’ bowing, since t =
o, Letting B(i, T, {) = y;,:1(t), suppose
min; B(z, T, t) occurs at list position K(¢, I')
for every fixed ¢ and I'. It can be shown that,
for every fixed T' > 0, K(¢, T") ultimately de-
creases from K(f,T) = Lto K(t,T) = K(TI)
as t increases from the time at which 7. 1s
presented to infinity. This happens because
the mnon-occurrence of the events r.41,
Tre2, -+, Tn gradually decreases response
interference at the end of the list. Thus
skewing depends both on I' and on the in-
tertrial interval (Grossberg, 1969d).

PRIMACY VS. RECENCY

The function fi () = yw(e)yzin(<)
measures the relative dominance of primacy
over recency at large times ¢. In the bare
field, f1.(0) < 1 (recency dominates pri-
macy), f1.(I') is monotone increasing in
T' > 0, and there exists a critical threshold
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T = Iy < « such that fi,(I) > 11 T > Ty
(primacy dominates recency). Thus as T' de-
creases, all but the most recent inputs are
lost in background noise as the serial presen-
tation of events proceeds. Consequently, the
network cannot “pay attention” to long be-
havioral dependencies. Virst order associa-
tional connections therefore dominate the
behavioral record, as is suggested also in
schizophrenic punning.

CONCLUSION

Decreasing spiking threshold increases
associational span, thereby passing from a
region of slow learning to good learning, and
finally to massive response interference and
difficulties in “paying attention”. Simulta-
neously, asymptotic learning difficulty
moves from the end toward the middle of
the list, and primacy eventually loses its
battle with recency. Grossberg (1969¢) dis-
cusses related mechanisms for ‘“‘paying at-
tention” that use explicit inhibitory interac-
tions. Grossberg (1969d) also discusses other
serial effects in the case T = 0, such as
whether the bowed curve is raised or lowered
in specific situations.

The dependence of learning phenomena on
spiking threshold illustrates that local
changes in membrane properties—say due to
changes in Ca** binding as a result of mas-
sive nutritional deficiencies (Vitamin D)
(Schacter, 1969)—can in principle yield pro-
found behavioral alterations. Entirely dif-
ferent causes can yvield similar behavioral
effects. As in Equation 5, creating a per-
sistent source of diffuse overarousal can
yield effects similar to reducing thresholds.
For example, traumatic behavioral experi-
ences might create such an overarousal by
being conditioned to control cells which sub-
serve diffuse anxiety. Effective treatment of
these two problems might be quite different,
however, since overarousal is not the source
of the problem in the latter case. The fact
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that learning and performance can be pro-
foundly altered by local chemical changes is
compatible with the principles of ortho-
molecular psychiatry (Pauling, 1968).

The above model is clearly a highly 1deal-
ized representation of possible neural events,
Moreover, serial experiments on suitable
mentally ill patients might be very hard to
perform. Nonetheless, significant challenges
can be approached by comparing the general
learning behavior of normal and abnormal
subjects as it depends on threshold size and
inhibitory strength: help abnormal subjects
by isolating more of the parameters that
cause them learning difficulties; sharpen
general categories for pooling serial data by
attending to underlying physiological differ-
ences; and provide more indirect psycho-
logical information concerning whether or
not transmitter production is jointly de-
pendent on pre- and post-synaptic influences.
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[ ]

I am content to see what is, and have never troubled myself to
think what ought to be. One of the most formidable obstacles to the
real progress of knowledge is this insane rage for presuming, and
proceeding to decide upon presumption. It is ridiculous that we,
with so limited a knowledge, should pretend to determine the laws

of nature.
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