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How does the brain make decisions? Speed and accuracy of perceptual decisions covary with certainty in
the input, and correlate with the rate of evidence accumulation in parietal and frontal cortical ‘‘decision
neurons”. A biophysically realistic model of interactions within and between Retina/LGN and cortical
areas V1, MT, MST, and LIP, gated by basal ganglia, simulates dynamic properties of decision-making
in response to ambiguous visual motion stimuli used by Newsome, Shadlen, and colleagues in their
neurophysiological experiments. The model clarifies how brain circuits that solve the aperture problem
interact with a recurrent competitive network with self-normalizing choice properties to carry out prob-
abilistic decisions in real time. Some scientists claim that perception and decision-making can be
described using Bayesian inference or related general statistical ideas, that estimate the optimal interpre-
tation of the stimulus given priors and likelihoods. However, such concepts do not propose the neocor-
tical mechanisms that enable perception, and make decisions. The present model explains behavioral and
neurophysiological decision-making data without an appeal to Bayesian concepts and, unlike other exist-
ing models of these data, generates perceptual representations and choice dynamics in response to the
experimental visual stimuli. Quantitative model simulations include the time course of LIP neuronal
dynamics, as well as behavioral accuracy and reaction time properties, during both correct and error tri-
als at different levels of input ambiguity in both fixed duration and reaction time tasks. Model MT/MST
interactions compute the global direction of random dot motion stimuli, while model LIP computes the
stochastic perceptual decision that leads to a saccadic eye movement.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The brain’s ability to carry out context-appropriate perceptually
based decisions in response to ambiguous and probabilistic situa-
tions plays an essential role in ensuring animal and human sur-
vival. How the speed and accuracy of decisions varies with the
ambiguity of environmental information is of particular interest
(Gold & Shadlen, 2007; Luce, 1986).
ll rights reserved.

ait@cns.bu.edu (P.K. Pilly).
rted in part by the National

fice of Naval Research (ONR
e National Institutes of Health

(NSF IIS-02-05271 and NSF
N00014-01-1-0624).
A valuable paradigm for studying decision-making, which links
psychophysics and neurophysiology, has been developed by New-
some, Shadlen, and colleagues (Roitman & Shadlen, 2002; Shadlen
& Newsome, 2001). This research studies how brain dynamics in
lateral intraparietal (LIP) area relate to saccadic behavior of mon-
keys (% accuracy, reaction time), that are based upon discriminat-
ing the motion direction of random dot motion stimuli at various
degrees of coherence.

In these experiments, two kinds of tasks were employed: fixed
duration (FD) and reaction time (RT) tasks. Macaques were
trained to discriminate net motion direction and report it via a
saccade. Random dot motion displays, covering a 5� diameter
aperture centered at the fixation point on a computer monitor,
were used to control motion coherence; namely, the fraction of
dots moving non-randomly in a particular direction from one
frame to the next in each of the three interleaved sequences
(see Appendix A.1 for details about the motion algorithm).
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Varying the motion coherence provides a quantitative way to
manipulate the ambiguity of directional information that the
monkey uses to make a saccadic eye movement to a peripheral
choice target in the judged motion direction, and thus the task
difficulty. More coherence resulted in better accuracy and faster
responses.

In the FD task (Roitman & Shadlen, 2002; Shadlen & Newsome,
2001), monkeys viewed the moving dots for a fixed duration of 1 s,
and then made a saccade to the target in the judged direction after
a variable delay. In the RT task (Roitman & Shadlen, 2002), mon-
keys had theoretically unlimited viewing time, and were trained
to report their decision as soon as the motion direction was deter-
mined. The RT task allowed measurement of how long it took the
monkey to make a decision, which was defined as the time from
the onset of the motion until when the monkey initiated a saccade.
The two monkeys in the Roitman and Shadlen (2002, p. 9476) were
shaped during RT task training to initiate the choice saccade within
‘‘�1 s” after the dots turn on. In each RT task trial, the monkeys had
to wait for a minimum of about 1 s (one monkey: 800 ms, and the
other: 1200 ms) after motion onset to receive a reward however
rapidly they responded. Human subjects in a similar RT task usu-
ally respond around 1 s from motion onset for the weakest coher-
ence without any speed instruction (Palmer, Huk, & Shadlen, 2005,
p. 385).

Neurophysiological recordings were done in LIP while the
monkeys performed these tasks. The recorded neurons had recep-
tive fields (RF) that encompassed just one target, and did not in-
clude the circular aperture in which the moving dots were
displayed. Also, they were among those that showed sustained
activity during the delay period in a memory-guided saccade task.
It was found that the speed and accuracy of perceptual decisions
covaried strongly with the rate of evidence accumulation in LIP
cells.

Several authors (Gold & Shadlen, 2001, 2007; Jazayeri & Movs-
hon, 2006; Ma, Beck, Latham, & Pouget, 2006; Rao, 2004) have sug-
gested that these data illustrate Bayesian inference in the brain.
Indeed, Gold and Shadlen (2001) have suggested that the ‘‘loga-
rithm of the likelihood ratio (logLR) provides a natural currency
for trading off sensory information, prior probability and expected
value to form a perceptual decision” (p. 10). See Section 4.2 for
their proposal. Despite their intuitive appeal, Bayesian models
heretofore have not processed the perceptual stimuli that were
used in the experiments, and have not disclosed novel brain mech-
anisms of decision-making.

Non-Bayesian models for the above dataset also exist (Ditterich,
2006a, 2006b; Mazurek, Roitman, Ditterich, & Shadlen, 2003;
Wang, 2002), but none of them clarifies how the perceptual ambi-
guity that is created by the randomly moving dots is gradually
transformed by the brain into a perceptual decision in response
to the non-randomly moving dots. In particular, previous models
have missed important brain principles and mechanisms that are
at play in the dots task by ignoring the motion processing that ex-
tracts a dynamic neural representation of the directional uncer-
tainty inherent in the random dot motion stimulus. They model
decision-making properties only after assuming that the neural
code of sensory uncertainty is provided. Section 4.3 details similar-
ities and differences between our model and previous work in the
field.

We here show how the data may be quantitatively simulated by
a biophysically realistic model of interactions within and between
Retina/LGN and cortical areas V1, MT, MST, and LIP, gated by basal
ganglia (BG). The model achieves these results when it is directly
activated by the visual stimuli that were used in the experiments
(Fig. 1). Our results have been briefly reported in Pilly and Gross-
berg (2005, 2006). These model circuits solve two general design
problems that are faced by the brain.
The aperture problem (Wallach, 1935) occurs whenever objects
move with respect to spatially limited receptive fields of neurons:
how can an unambiguous direction and speed of global object mo-
tion be determined from local motion signals that are ambiguous
at most locations on the object?

The noise-saturation problem (Grossberg, 1973, 1980) occurs
within all neurons because their activations fluctuate within a
small interval of possible values: how does a network of cells, or
cell populations, remain sensitive to the spatially distributed pat-
tern of their inputs as they vary greatly in size through time? A
special case of such networks shows how the most highly activated
cell, or cell population, is selected to make a decision.

Our model’s successful simulations of perceptual decision-mak-
ing data support the hypothesis that the brain designs which solve
the aperture problem and noise-saturation problem also underlie
perceptual decision-making during random dot motion direction
discrimination tasks. Individual moving dots do not experience
the aperture problem. However, we claim that principles and
mechanisms that have evolved in the brain to tackle the aperture
problem can also help us intuitively understand the data at hand.
The aperture problem is faced by any localized neural motion sen-
sor, such as a neuron in the early visual pathway, which responds
to a local contour moving through its aperture-like receptive field.
Only when the contour within the aperture contains features, such
as line terminators, object corners, junctions, high contrast blobs,
or dots, can the local motion detector accurately signal the direc-
tion and speed of motion.

For example, the direction of motion of a featureless straight
line seen behind an occluding aperture is thus ambiguous. When
the aperture is circular, the line seems to move perpendicular to
its orientation. When the aperture is rectangular, as during the bar-
berpole illusion (Wallach, 1935), moving lines may appear to move
in the direction parallel to the longer edges of the rectangle within
which they move, even if their actual motion direction is not par-
allel to these edges. The brain must solve this problem in order to
detect the correct motion directions of important moving objects
in the world.

To overcome aperture ambiguities, the visual cortex embodies
two complementary processes of motion integration and motion
segmentation. The former process joins nearby motion signals into
a single object, while the latter keeps them separate as belonging
to different objects. The visual cortex uses the relatively few unam-
biguous motion signals arising from image features, called feature
tracking signals, to inhibit the more numerous ambiguous signals
from contour interiors. For example, during the barberpole illusion,
feature tracking signals from the moving line ends along the longer
edges of the bounding rectangle of the barberpole compute an
unambiguous motion direction. These feature tracking signals
gradually propagate into the interior of the rectangle. This motion
capture process selects the feature tracking motion direction from
the possible ambiguous directions along the lines within the rect-
angle, and suppresses the ambiguous motion signals correspond-
ing to other directions that are generated by the moving lines
(Ben-Av & Shiffrar, 1995; Bowns, 1996, 2001; Castet, Lorenceau,
Shiffrar, & Bonnet, 1993; Chey, Grossberg, & Mingolla, 1997,
1998; Grossberg, Mingolla, & Viswanathan, 2001; Lorenceau &
Gorea, 1989; Mingolla, Todd, & Norman, 1992). When a scene does
not contain any unambiguous motion signals, the ambiguous mo-
tion signals cooperate to compute a consistent object motion direc-
tion and speed (Grossberg et al., 2001; Lorenceau & Shiffrar, 1992).

The brain thus needs to ensure that a sparse set of unambiguous
feature tracking motion signals can gradually capture a greater
number of ambiguous motion signals to determine the global
direction and speed of object motion. In the case of random dot
motion discrimination tasks, the signal dots at any coherence level
produce locally unambiguous, though short-lived, motion signals.
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The model shows how the same brain circuits that help resolve the
aperture problem can also enable a small number of coherently
moving dots to capture, as much as possible, the random motion
directions caused by a large number of unambiguous, but incoher-
ently moving, dots.

2. Model

Model processing stages are summarized in Fig. 1. Model equa-
tions and parameters are provided in Appendix A. The motion pro-
cessing stages of the model were adapted from the Motion
Boundary Contour System (mBCS) model, which clarifies how cor-
tical areas V1, MT, and MST interact together to solve the aperture
problem and create the brain’s best representation of object mo-
tion direction and speed (Berzhanskaya, Grossberg, & Mingolla,
2007; Chey et al., 1997; Grossberg et al., 2001). The output from
MST in the mBCS model is thus a perceptual representation that
is not in the correct coordinates to command eye or arm move-
ments towards a goal object.

The Motion Decision BCS (mdBCS) model, also known for
short as the MOtion DEcision (MODE) model, that is developed
herein adds an LIP decision-making circuit that discriminates
motion direction based on inputs from the distributed motion
representation of the model MST processing stage, and is gated
by a simplified basal ganglia circuit. This enhanced model con-
verts random dot motion stimuli into stochastic directional
movement commands that are sensitive to the amount of direc-
tional coherence in the stimuli. The model processing stages are
as follows.
2.1. Motion processing by V1, MT, and MST

The model change-sensitive receptors, non-directional transient
cells and directional transient cells, compute local directional sig-
nals in response to image random dot motion. In particular, when-
ever a dot shows up at a spatial location, after being either
randomly relocated or moved by a fixed displacement in the signal
direction, a non-directional transient pulse is elicited at that loca-
tion (see Appendix Eqs. (9)–(11)). This feeds into a directional tran-
sient cell network (Appendix Eqs. (12)–(14)) where local directional
signals are computed. For example, suppose a dot arrives at location
[i + 1] from the leftward location [i]. Then the rightward inhibitory
interneuron at location [i] inhibits the leftward inhibitory interneu-
ron and transient cell at location [i + 1] well enough that they can-
not recover to above-baseline firing when the dot does arrive at
location [i + 1] a little later (cf., Barlow & Levick, 1965). As a result,
the leftward transient response is not obtained (see Fig. 2). Other
directional transient cells at location [i + 1] may be activated if they
are not similarly inhibited in advance by their corresponding null
direction interneuron at the location which is one unit from [i + 1]
in the preferred direction (see Appendix A.3.2 and Fig. 3a and b).
In addition, directional inhibitory interneurons preserve direction
sensitivity at a wide range of motion speeds. Appendix A.3.2 notes
that these interneurons may be compared with starburst amacrine
cells (Appendix Eq. (12)) and thus predicts that starburst cells may
help transient cells to retain their directional sensitivity in response
to motion at variable speeds.

The directional transient cell output signals feed into the direc-
tional short-range filter in V1, which accumulates monocular and
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contrast polarity-sensitive evidence for motion in a given direction
at each position, and thereby amplifies the feature tracking (FT)
signals (Appendix Eqs. (15)–(17)). The output of the short-range
filter is thresholded so that when a dot moves in a particular direc-
tion, the short-range filter output corresponding only to that direc-
tion survives. Thus, the model shows how individual dot motion
creates unambiguous local motion signals, and hence does not suf-
fer from the aperture problem (see Fig. 3a–c).

Such local directional processes can be fooled when there are
multiple dots in each frame, some dots move incoherently, or inde-
pendent random dot motion sequences are interleaved through
time. The directional transient cells generate local directional sig-
nals between any two dots that occur with an appropriate spa-
tio-temporal displacement, and the directional short-range filter
integrates directional evidence from any active directional tran-
sient cells that occur within its directionally selective receptive
field. Typically some directions will be amplified more than others
by the short-range filter. However, lower motion coherence, higher
dot density, and more interleaving of stimulus frames increase the
probability that incorrect directional signals will be generated in
the short-range filter, and thereby reduce the impact of correct lo-
cal groupings (see Fig. 3d–f and g–i) in determining a clear motion
directional percept. Apart from being few in number, these correct
directional signals also have a short life span because a new set of
signal dots are chosen every frame. Therefore, the motion stream
must somehow enable a relatively sparse set of short-lived and
correct feature tracking signals to gradually discount the more
numerous incorrect local directional groupings.
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Spatial and opponent directional competitions (Appendix Eqs.
(18)–(21)) further selectively strengthen FT signals, weaken
ambiguous motion signals, and create speed-sensitive receptive
fields. These cells are predicted to be a Where cortical stream ana-
log of the simple cells for form perception that are well known to
occur in the What cortical stream. A long-range filter then gives
rise to true directional cells by pooling output signals with the
same, or nearly the same, directional preference that survive the
competitive stage (Appendix Eqs. (22)–(27)). Within each direc-
tion, these signals are pooled over multiple orientations, opposite
contrast polarities, both eyes, and a larger spatial scale. The cells
that receive inputs from the directional long-range filter are also
predicted to be depth-selective. They are predicted to occur in
MT, and to be analogous to complex cells in the form pathway. Nei-
ther of the properties of sensitivity to speed, and pooling across
multiple orientations, opposite contrast polarities, both eyes, and
a range of depths, is needed in our current simulations of direction
discrimination. Also, form–motion interactions between V2 and
MT (Berzhanskaya et al., 2007) are not invoked because motion
processing is rate-limiting in response to random dot motion
stimuli.

The directional cells activate a directional grouping network,
proposed to occur within cortical area MST (more specifically,
MSTv), within which all directions compete to determine a winner
at each position (Appendix Eq. (28)). Enhanced feature tracking
signals typically win this competition over ambiguous motion sig-
nals at their positions. Motion capture begins when model MST
cells that encode the winning directions feed back to model MT
cells via a top-down spatial filter (Appendix Eq. (23)), where they
indirectly boost directionally consistent cell activities by suppress-
ing inconsistent directional cells over the spatial region to which
they project. Our simulations were performed with and without
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internal cellular noise in both MT and MST in order to assess the
effects of such noise on the model’s stochastic decision-making.

This shift in the spatial locus of unambiguous feature tracking
signals continues to propagate across space as the MST-to-MT
feedback process cycles through time. The action of this feedback
loop was predicted to solve the aperture problem, and to generate
a representation of global object direction and speed (Berzhans-
kaya et al., 2007; Chey et al., 1997; Grossberg et al., 2001). Pack
and Born (2001) have reported neurophysiological data which sup-
port this prediction.

The rate and strength of motion capture by the MT/MST feed-
back loop is reflected in the decision-making properties of model
LIP, as it receives its inputs from MST. Model LIP hereby simulates
the temporal dynamics of decision-making in the neurophysiologi-
cal and behavioral data. The intuitive idea is that the feedback loop
needs more time to capture the incoherent motion signals, and
cannot achieve as high a level of asymptotic response magnitude,
when there are more of them competing with the emerging win-
ning direction. A key point of this article is thus that the effective-
ness of the motion capture process depends on the input coherence
and exposure duration. LIP converts the spatially distributed direc-
tional motion signals from MST into an eye movement command,
in the manner noted below, and thereby enables the monkey to re-
port its decision via a saccade.

2.2. Probabilistic decision-making by LIP with BG gating

As noted above, the motion information from the model MST
stage (Fig. 1) is spatially distributed and needs to be converted into
a form where it can command an eye movement to the choice tar-
get that corresponds to the judged net motion direction. These tar-
gets are present at a specific eccentricity in the respective
directions of the motion during both the training and the recording
phases of the experiments. In these experiments, LIP cells do exhi-
bit decision-related activity that correlates with a saccadic eye
movement to one of the two or more possible choice targets. The
model LIP circuit (see Appendix Eqs. (29)–(34)) converts the spa-
tially distributed directional motion signals into the activation of
cells that code for saccadic eye movements in specific directions.

This LIP circuit is modeled using a kind of decision circuit that
has become classical in the neural modeling literature; namely a
network of cells that obey membrane equation, or shunting,
dynamics and interact via a recurrent on-center off-surround net-
work (Grossberg, 1973, 1980). Such a network is often called a
recurrent competitive field (RCF), and its variants have been used
by a number of authors to model the dynamics of perceptual or
motor decisions in both deterministic models (e.g., Brown, Bullock,
& Grossberg, 2004; Chey et al., 1997; Francis, Grossberg, & Mingo-
lla, 1994; Francis & Grossberg, 1996a, 1996b) and stochastic mod-
els (Boardman, Grossberg, Myers, & Cohen, 1999; Cisek, 2006;
Grossberg, Boardman, & Cohen, 1997; Grossberg & Myers, 2000;
Usher & McClelland, 2001). It should be noted that even a deter-
ministic RCF typically describes the temporal evolution of popula-
tion mean activities and cell firing frequencies. It is only when
properties that depend upon the variance of cell firing become
rate-limiting that explicit noise terms add explanatory power.

There is another sense in which RCFs, and indeed all shunting
on-center off-surround models, embody probabilistic properties.
The shunting dynamics of a RCF lead to automatic gain control
and self-normalizing properties, so that the total activity of a pro-
cessing channel in such a model is often approximately conserved.
This total activity plays the role of a real-time probability distribu-
tion. Self-normalization enables such a network to maintain its
sensitivity in response to distributed inputs whose total number
and size can vary wildly through time. This property is useful when
estimating the directional coherence of inputs whose total number
and distribution can vary randomly through time, as occurs in the
experiments that are simulated in this article. This robustness is
illustrated by the fact that model properties remain qualitatively
unchanged when cellular noise is added to MT and MST, as illus-
trated in Fig. 15.

The RCF that models LIP herein has the following properties (see
Fig. 4 and Appendix Eqs. (29) and (34)):

(1) Each cell activity (yd) corresponding to movement direction
d in the LIP RCF is associated with the peripheral choice tar-
get within its response field.

(2) Each LIP cell gets excited by the spatially distributed popula-
tion activity of the foveal MST pool of neurons coding its pre-
ferred motion direction (see term Sd in Appendix Eqs. (29)
and (34)). It is assumed that these pro-saccade connections
are gradually strengthened as a result of extensive operant
conditioning on the task. As a result, each cell’s activity pre-
dicts that the global motion of the random dots is in the
direction from the fovea to its choice target.

(3) Each cell also receives a bottom-up excitatory input due to
the presence of a choice target within its response field
(see term TC in Appendix Eqs. (29) and (34)). This input pro-
duces the above-baseline activity observed before the onset
of the dots.

(4) Each cell receives recurrent self-excitation (f(yd)) via a sig-
moidal signal function, and recurrent inhibition (h(yD)) from
other cells via another sigmoidal signal function (Grossberg,
1973, 1980).

(5) Each LIP cell is subject to an individual internal noise process
that influences stochastic choice dynamics (see term W in
Appendix Eqs. (29) and (34)). A similar hypothesis has been
used to quantitatively simulate the temporal dynamics of
speech categorization data (Boardman et al., 1999; Gross-
berg, Boardman, et al., 1997; Grossberg & Myers, 2000). This
noise process contributes to the known variability in the
read-out from sensory to motor areas. Model simulations
show that the LIP cellular noise, in combination with the
randomness of the moving dot stimuli, can explain the var-
iability in saccadic decision-making, whether or not there is
noise at the MT and MST processing stages.

(6) During the RT task, when one of the competing LIP cells first
reaches a fixed decision threshold (C1), a directional decision
is initiated by opening a basal ganglia (BG) movement gate
that increases the gain of the corresponding cell’s self-exci-
tation (see gd in Appendix Eq. (29)) to a high value (see gBG

in Appendix A.3.6). This event triggers the final stage of LIP
firing, namely pre-saccadic enhancement that is indepen-
dent of motion coherence. LIP hereby transitions from the
sensory mode to the motor mode. All LIP cells continue to
integrate their sensory inputs, but the selected cell popula-
tion does so at a higher self-excitatory gain. A saccade to
the associated target is initiated when the winning cell’s fir-
ing rate reaches a criterion level (C2). The reaction time (RT)
is the time from stimulus onset to when the choice saccade
is made, not the time when the decision is initiated. Both
decision time and RT are emergent properties, and covary
with each other.

(7) As noted in Section 1, Roitman and Shadlen (2002) delayed
reward until �1 s after motion onset during RT task training.
During the RT task, mostly during weaker coherence trials,
cells in the RCF may take longer than 1 s to reach the deci-
sion threshold. If none of the activities sampled at a random
time between 1000 and 1100 ms has crossed the decision
threshold (see term Gd in Appendix Eq. (29)), then a voli-
tional top-down signal boosts the LIP cell with the largest
activity. A choice made in this manner is termed a ‘‘forced
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choice”. Section 3.2 cites evidence that support this hypoth-
esis. The model monkey is also simulated without this voli-
tional mechanism, and can still make coherence-sensitive
choices, but some longer RTs are generated as a result.

(8) Cell activities decay faster in the FD task, in keeping with the
experimental observation that the gain of the LIP response is
smaller in the FD task than in the RT task (Roitman & Shad-
len, 2002, p. 9485), and also that LIP responses tend to satu-
rate during the viewing duration in the FD task.

(9) During the FD task, at the end of the viewing duration of 1 s,
the model chooses the motion direction corresponding to
the maximally active LIP cell, by increasing the self-excit-
atory gain of this cell (see term gdelay in Appendix A.3.6). This
event causes a persistent and slow buildup activity during
the variable delay period after the input from motion areas
shuts off. The basal ganglia increase this gain further (term
gd in Appendix Eq. (34) jumps to gBG), resulting in coher-
ence-independent pre-saccadic enhancement, as in the RT
task.

(10) After a saccade begins, all LIP cells receive a strong inhibitory
signal. In vivo, the source of this signal is possibly from fron-
tal eye field (FEF) post-saccadic cells (Brown et al., 2004;
Bruce, Goldberg, Bushnell, & Stanton, 1985) (see term GI in
Appendix Eqs. (29) and (34)).

Section 3 discusses in detail how these LIP RCF properties help
to explain the simulated data.

3. Results

3.1. Data summary

The recorded LIP neurons show visuo-motor responses. They
have properties of both buildup and burst cells (Munoz & Wurtz,
1995a) that are found in superior colliculus (SC). First, visual tar-
gets present in the receptive fields contribute to above-baseline
LIP firing before the dots turn on. Even though the motion stimulus
is not presented within their classical receptive fields, these neu-
rons still respond with direction selectivity, probably because of
extensive training on the tasks during which new stimulus–re-
sponse associations are learned (Bichot & Schall, 1996). This prop-
erty has also been observed for SC neurons in monkeys trained to
perform an FD task (Horwitz, Batista, & Newsome, 2004a; Horwitz
& Newsome, 2001a).

On correct trials during the decision-making period, more
coherence in the preferred direction causes faster LIP cell activa-
tion, on average, in both the tasks (Fig. 5), and also higher maximal
cell activation in the FD task (Fig. 5c–f). More coherence in the
opposite direction causes faster cell inhibition in both the tasks,
and also lower minimal cell activation in the FD task. Thus on cor-
rect trials, the instantaneous difference in average LIP activity be-
tween judgments of net motion being towards the receptive field
(Tin choices) and judgments of motion being away from the recep-
tive field (Tout choices) increases with coherence. In other words,
the correct trial predictiveness of LIP cell responses is proportional
to % coherence.

The temporal dynamics of LIP decision neurons also correlate
with behavioral properties of perceptual decision-making (Fig. 6).
In both FD and RT tasks, more coherence in the motion translates
into more accurate decisions (Fig. 6a and b). Also, RT task accuracy
at weaker coherence levels is slightly better than FD task accuracy.
The psychometric function ranges from about chance level to 100%
accuracy as the dot coherence varies from 0% to 100%, respectively.
In addition, a longer viewing duration in the FD task tends to im-
prove performance at all motion strengths (Fig. 2A and B in Gold
& Shadlen, 2003), revealing a speed–accuracy trade-off (Fig. 7)
wherein performance asymptotes at shorter durations for higher
coherences. More coherence also results in faster reaction times



Fig. 5. Temporal dynamics of LIP neuronal responses during the fixed duration (FD) and reaction time (RT) tasks. (a) Average responses of a population of 54 LIP neurons
among correct trials during the RT task (Roitman & Shadlen, 2002). The left part of the plot is time-aligned to the motion onset, and includes activity only up to the median RT,
and excludes any activity within 100 ms backward from saccade initiation (which roughly corresponds to pre-saccadic enhancement in firing). The right part of the plot is
time-aligned to the saccade initiation, and excludes any activity within 200 ms forward from motion onset (which corresponds to initial transient pause in firing). (b) Model
simulations replicate LIP cell recordings during the RT task. In both data and simulations for the RT task, the average responses were smoothed with a 60 ms running mean. (c)
Average responses of a population of 38 LIP neurons among correct trials during the 2002 FD task (Roitman & Shadlen, 2002), during both the motion viewing period (1 s) and
a part (0.5 s) of the delay period before the saccade is made. (d) Model simulations mimic LIP cell recordings during the 2002 FD task. (e) Average responses of a population of
104 LIP neurons among correct trials during the 2001 FD task (Shadlen & Newsome, 2001), during both the motion viewing period (1 s) and a part (0.5 s) of the delay period
before the saccade is made. (f) Model simulations emulate LIP cell recordings during the 2001 FD task. In (a–f), solid and dashed curves correspond to trials in which the
monkey correctly chose the right target (Tin) and the left target (Tout), respectively. Cell dynamics (rate of rise or decline, and response magnitude) reflect the incoming
sensory ambiguity (note the different colors; the color code for the various coherence levels is shown in the corresponding data panels), and the perceptual decision (solid: Tin

choices, dashed: Tout choices). Note that for 0% coherence, even though there is no correct choice per se, the average LIP response rose or declined depending on whether the
monkey chose Tin or Tout, respectively. [Data in (a,c) and (e) is reprinted with permission from Roitman and Shadlen (2002) and Shadlen and Newsome (2001), respectively.]
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in the RT task (Fig. 6c and d). Moreover, the monkey responds with
relatively slower reaction times on error trials when compared to
correct trials. Reaction time standard errors of mean (SEM) de-
crease with coherence on correct trials, and increase with coher-
ence on error trials. Error trial SEMs are greater than those for
correct trials (Table 2 in Roitman & Shadlen, 2002).

Cell responses on error trials and 0% coherence trials during
both FD and RT tasks reveal that LIP firing reflects the perceptual
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bRT = 1.3466, aFD = 9.5544, and bFD = 1.2379. Note that aRT

aFD
< 1. (c) Reaction time data (ms) as a function of motion coherence (% certainty) is linear fit using a weighted, least-

squares estimate (as per the convention in Fig. 3B of Roitman and Shadlen, 2002). The plot is prepared from the data for Tout (left target) choices in Table 2 of Roitman and Shadlen
(2002). Data for Tin (right target) choices gives a similar plot. Less ambiguity implies a faster decision. Solid line corresponds to correct trials, and dashed line to error trials. Error
bars shown are standard errors of mean (SEM). SEMs decrease with coherence on correct trials, but increase with coherence on error trials. Moreover, error trials have relatively
higher SEMs. (d) Model simulations emulate the RT data on both correct and error trials. Note in particular that the model is able to produce slower error trial RTs, unlike the
alternative model in Mazurek et al. (2003). Also, the behavior of SEMs with respect to coherence and correctness of trials is captured in the simulations. The number of trials is 500.
In (a–d), the abscissa is in the log10 scale. [Data in (a) is reprinted with permission from Mazurek et al. (2003).]
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decision, regardless of the true direction and strength of the ran-
dom dot motion stimulus (Figs. 8 and 9). This becomes particularly
apparent on weaker motion strength trials when the monkey is
prone to making wrong decisions. It is this feature that distin-
guishes the so-called ‘‘decision” LIP responses from ‘‘sensory” MT
and MST responses. However, the error trial predictiveness of LIP
cells decreases as coherence increases. That is, on error trials, the
difference in average LIP activity between Tin and Tout choices is in-
versely proportional to percent coherence (see Fig. 9 in particular).
Also, the gain, or rate of growth, of average LIP responses for erro-
neous Tin choices is reduced when compared to that on correct tri-
als, and is further reduced with coherence. This is also true for the
rate of decline in average LIP activity for Tout choices. To observe
these interesting properties, please compare solid color (Tin cor-
rect) with dashed gray (Tin error) curves in Fig. 8 (RT task), and so-
lid black (Tin correct) with dashed black (Tin error) curves in Fig. 9
(FD task).

Moreover, on trials resulting in correct Tin choices, coherence
does not differentiate the final stages of LIP firing, �100 ms before
the saccade begins, when motor signals dominate the LIP response
(see Figs. 5, 8, and 9; top right portion of the plots). On the other
hand, for correct Tout choices in the RT task, coherence has a sys-
tematic influence on the LIP cell response throughout the trial
(see Fig. 5a and b, bottom right portion).

An analysis of the relationship between LIP response and RT re-
veals that LIP encodes not only ‘‘where, but also when, to move the
eyes” (Roitman & Shadlen, 2002, p. 9485), since RT correlates with
the rate of buildup in LIP response for correct Tin choices (Fig. 10) at
each motion strength.

Another interesting characteristic of LIP physiology is the coher-
ence-independent dip and then rise in activity, lasting about
100 ms, that begins approximately 90 ms after motion onset in
the RT task (Fig. 5a). Interestingly, this stimulus-insensitive tran-
sient pause in LIP firing is not that prominent in the FD task; see
Fig. 5c and e.

When both FD and RT tasks are conducted on the same set of
monkeys in alternating block of trials, LIP neuronal recordings re-
veal that the gain of the LIP response is smaller in the FD task than
in the RT task (Roitman & Shadlen, 2002), and also that LIP re-
sponses tend to saturate during the fixed viewing duration in the
FD task. Compare Fig. 5a and b with c and d.

Mazurek, Hanks, Yang, and Shadlen (2005) manipulated prior
probability in the RT task. As the odds of one direction being cor-
rect in a block of trials was increased, the monkey responded with
relatively more accuracy and faster RTs to motion in the more
probable direction, and less accuracy and slower RTs to motion
in the other direction at all coherence levels. The rate of growth
or decay in LIP activity modulated as if there was some extra
coherent motion in the biased direction. This bias also caused a
slight positive offset in the activity of the corresponding LIP popu-
lation before motion onset (reported in Shadlen & Newsome, 2001
too). The effect of varying the number of choices has also been
studied (Churchland, Tam, Plamer, Kiani, & Shadlen, 2005), with
more choices resulting in relatively slower reaction times, lesser
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accuracy, and lower firing rates at the beginning of the decision-
making epoch.

Recordings from MT and MST neurons with random dot motion
presented within their receptive fields revealed roughly linear rela-
tionships with positive and negative slopes between response
magnitude and coherence of motion in the preferred and null
directions, respectively (Britten, Shadlen, Newsome, & Movshon,
1993; Celebrini & Newsome, 1994); see Fig. 11.

3.2. Data explanations

This section explains the data properties that have just been
summarized. Section 2 discusses how the random dot motion stim-
ulus causes local directional ambiguity, similar in many respects to
the aperture problem, in the short-range filter stage (V1), and how
recurrent processing in the MT–MST circuit allows the locations
with aperture ambiguities to be captured by FT signals. The main
new explanatory concept in analyzing the current dataset is that,
in the dots task, the effectiveness of this motion capture process
is limited by the coherence of the moving dots, and also by the
viewing duration. This effectiveness is reflected in a bigger contrast
or difference in activity among MT/MST directional cell popula-
tions (Fig. 11). This section explains how better performance and
faster reaction time may proportionally be derived from this dy-
namic difference. The time course of the activities in model MT
and MST are consistent with those recorded in MT (Britten et al.,
1993). One interesting point in Fig. 11 from both data and simula-
tions is that the motion-sensitive neurons are active well above the
baseline for a 0% coherence stimulus. This can be explained by not-
ing that, if there is no stimulus-induced directional bias, as is the
case at 0% coherence, then random local groupings are formed
equally in all directions.

Although MT and MST provide the trial-to-trial neural basis of
directional ambiguity on which decisions are made, they exhibit
low choice probabilities (MT: Britten, Newsome, Shadlen, Celebrini,
& Movshon, 1996; MST: Celebrini & Newsome, 1994); that is, they
‘‘covary only weakly with what the animal decides” (p. 1930 in
Shadlen & Newsome, 2001) especially at weaker coherences. When
monkeys are trained to report the perceived direction through a
saccadic eye movement, the recorded dynamics of appropriate
LIP cells correlate strongly with decision-making behavior. It is
on most error trials that MT/MST (‘‘sensory”) and LIP (‘‘decision”)
cells differ in their winning direction. The current consensus in
neuroscience is that some sort of a noisy accumulation of sensory
signals is the basic mechanism underlying perceptual decision-
making in the brain (Smith & Ratcliff, 2004; see Section 4.3 for
more references).

In our model, LIP is modeled as a recurrent competitive field in
which individual cells are selective for motion directions of foveal
stimuli presented outside their response fields. Distinct targets that
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followed. (a) Average responses from 54 LIP neurons on correct and error trials during the RT task for 3.2% coherence. (b) Model simulations replicate LIP cell recordings on
error trials of the RT task for 3.2% coherence. (c) Average responses from the same population of LIP neurons on correct and error trials during the RT task for 6.4% coherence.
(d) Model simulations again capture the data. In (a–d), the colored curves represent correct trials, and the gray curves represent error trials. Solid and dashed curves
correspond to input stimuli whose motion is towards or away from the right target (Tin)/receptive field, respectively. LIP responses on error trials show that LIP reflects both
the choice the monkey makes, and also the true direction and strength of the dots. Gray curves in the left portion of the plots show that the rates of buildup and decline in
average LIP activity are relatively lower on error trials. Also, note that the median RT is relatively more on the error trials. [Data in (a,c) is reprinted with permission from
Roitman and Shadlen (2002).]
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are visible at a specific eccentricity around the foveal locations,
where the dots are displayed, guide the possible alternatives of mo-
tion direction the monkey has to choose from. Each LIP cell popula-
tion receives convergent excitatory directional inputs from spatially
distributed cells in foveal MST. This distributed activation provides
evidence for the perceptual decision that the global motion is in the
direction from the fovea towards its response field. Operant condi-
tioning from foveal MST neurons to these non-foveal LIP neurons is
assumed to strengthen the corresponding fovea-to-response field
connections. This learning process is not simulated here.

In the model, a choice target creates an excitatory input whose
magnitude is enough for the cells to achieve above-baseline activ-
ity before the dots turn on (see Fig. 5 and Appendix Eq. (31)). While
each LIP cell gets excited, it is also inhibited by other active LIP
cells in the recurrent competitive field. Since a higher percent
coherence in a particular direction, on average, causes faster and
more widespread captured motion signals in MST cells, it also
causes in LIP cells faster activation via the recurrent on-center
and faster inhibition via the recurrent off-surround for the pre-
ferred and non-preferred LIP cells, respectively (Fig. 5).

The model’s LIP-BG loop (Figs. 1 and 4) gates the release of
choice saccades during both the FD and RT tasks. It is well known
that such a BG gate controls the release of saccades in vivo; e.g.,
Hikosaka and Wurtz (1983, 1989). In the RT task, a decision is
made after either directional LIP activation exceeds a threshold.
In particular, stronger motion strength results in faster rise of
activity for one of the LIP cells to the threshold, causing faster deci-
sions, and thereby faster reaction times (Fig. 6c and d). In the FD
task, monkeys are trained to wait to move until the fixation point
is extinguished. In the model, fixation point extinction triggers a
GO signal. Thus, for a saccade to be initiated from the fixation point
to the chosen target in either task, the basal ganglia need to first
open the gate that releases the final decision stage in the target
LIP cell population. This is computationally achieved in the model
by switching the gain of self-excitation of the selected LIP cell to a
higher value. Strong recurrent self-excitation then gets activated
which manifests as steep pre-saccadic enhancement, or burst, in
LIP firing just before the eyes move. In the model, this gain
switches to a high enough value such that the recurrent signal out-
weighs any differential sensory excitation. This property is what
makes the LIP cell firing for correct Tin choices independent of per-
cent coherence in the post-threshold-crossing (RT task, Fig. 5a and
b) or post-GO signal (FD task, Fig. 5c–f) stage. This is when LIP
switches, as it were, from the sensory driven mode to the motor
decision mode. For correct Tout choices, coherence plays a role even
in the final stages of LIP firing in the RT task because the model BG
do not similarly increase the gain of recurrent inhibition from the
selected cell (Fig. 5a and b).

This simple BG mechanism is consistent with detailed models of
how basal ganglia gates may be dynamically controlled when mon-
keys learn to do a range of saccadic eye movement tasks (Brown
et al., 2004). The LIP burst response is transformed into the execu-
tion of the appropriate saccadic eye movement further down-
stream in the brain. Several modeling articles about saccadic and
smooth pursuit eye movements detail these subsequent eye move-
ment stages (Gancarz & Grossberg, 1998, 1999; Grossberg, Sriha-
sam, & Bullock, submitted for publication; Srihasam, Bullock, &
Grossberg, 2008).
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Fig. 9. Temporal dynamics of LIP responses during error trials in the 2001 FD task (Shadlen & Newsome, 2001). (a, c, e, and g) Average responses of LIP neurons on correct and
error trials during the FD task for the coherence levels: 3.2%, 6.4%, 12.8%, 25.6%, respectively. Data is from trials in which the viewing duration was 2 s. (b, d, f, and h) Model
simulations of 2001 FD task (1 s viewing duration) capture the data features. In (a–h), the left portion of the plots correspond to mean responses during the motion viewing
period, and the right portion of the plots correspond to those during the delay period, 500 ms backward from saccade initiation. Solid curves represent correct trials, and
dashed curves error trials. Black and gray curves correspond to trials in which the motion was decided to be towards and away from the right target/receptive field,
respectively. Cell dynamics on error trials show that LIP codes both the perceptual decision and the stimulus. The rate of buildup in response and the response magnitude
(black dashed curves) are relatively lower on error trials, and so is the rate of decline in activity (gray dashed curves). On error trials, especially at higher coherences, LIP
activity takes relatively more time to become ‘‘predictive” of the decision. [Data in (a,c,e,g) is reprinted with permission from Shadlen and Newsome (2001).]
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High choice probability in LIP is possible because the internal
noise in each LIP cell, modeled as a Brownian motion process
(Appendix Eqs. (29) and (34)), enables the LIP cells to proportion-
ately make erroneous choices at lower coherence levels. Stronger
motion strength implies a relatively stronger bottom-up excitatory
input from MST to the preferred LIP cell, which dilutes the effect of
noise fluctuations on its dynamics at each time instant. In such a
case, the noise does not hinder the LIP cell from firing faster and
reaching higher levels of firing, on average. The noise has relatively
more influence on the moment-by-moment dynamics of LIP re-
sponse at weaker coherences.

An error trial occurs when a non-preferred LIP cell manages to
be the first to reach the decision threshold in the RT task, or to have
the highest activity by the end of the viewing duration in the FD
task. This can occur because of two reasons or a combination of
both: (a) On an error trial, the net sensory evidence in MT/MST it-
self may be biased in favor of a non-preferred direction because of
randomness inherent in the random dot motion stimulus. (b) Even
though MT and MST fire the most for the signal direction, the mo-
ment-by-moment noise fluctuations that drive the evolving LIP re-
sponses may eventually result in a non-preferred LIP cell being
chosen. Low choice probabilities of MT and MST are typically
determined by (b). The possibility of both (a) and (b) decreases
with increase in percent coherence. Hence performance in both
the tasks improves with coherence (Fig. 6a and b).

In the FD tasks, the decision is made at the end of motion view-
ing. The monkeys are trained to remember the choice during a var-
iable delay period before the choice saccade can commence. During
this period, the selected LIP cell response is sustained, despite the
loss of motion excitation, and also builds up slowly. This is another
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intervals (CI). [Data in (a,c) is reprinted with permission from Roitman and Shadlen (2002).]
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difference with sensory neurons. In the model, the gain of recur-
rent excitation of the winning LIP cell switches to a value which
is just high enough to not only compensate for the input from mo-
tion areas getting shut off, but also to help its activity to grow
slowly during the delay period for all motion strengths. The recur-
rent self-excitatory interactions within the LIP recurrent competi-
tive field thus enable persistent activity for the chosen LIP cell after
the motion offset. This gain increase hypothesis is consistent with
data showing that an intention to saccade to a particular location
results in the deployment of some attention to that location (Bisley
& Goldberg, 2003). Similar anticipatory activity is seen in superior
colliculus (SC) buildup neurons in delayed saccade tasks (Gross-
berg, Boardman, et al., 1997; Grossberg, Roberts, Aguilar, & Bullock,
1997; Munoz & Wurtz, 1995a, 1995b). The fact that the LIP re-
sponses in the FD task have a slower rate of growth and a tendency
to saturate when compared to the RT task (Fig. 5) is explained in
the model by using a slightly higher passive decay rate parameter
for the FD task. This parameter change may reflect a task-sensitive
change in the monkey’s LIP responsiveness given the difference in
the two experimental conditions (see p. 1930 in Shadlen & New-
some, 2001). The tendency of LIP responses to saturate in the FD
task may, in turn, explain the tendency of performance as a func-
tion of viewing duration to saturate, especially at higher motion
strengths (see Fig. 7).

A ‘‘forced choice” is made in the RT task in the manner noted in
Section 2; namely, if no choice is made within a random time be-
tween 1000 and 1100 ms, then a volitional top-down signal is acti-
vated at the LIP cell with the most activity (see term Gd in
Appendix Eq. (29)). Fig. 12 shows the model’s RT distributions with
this top-down signal at work. The fraction of simulation trials in
which a choice needs to be forced decreases with coherence (see
Fig. 12d). Fig. 13 shows that the model also works without this
top-down mechanism, but allows for some longer RTs to occur in
the 1500–2000 ms range.

Our proposed mechanism underlying ‘‘forced choices” is com-
patible with a different mechanism for the same purpose described
in Ditterich (2006b), in which the gain of MT signals into LIP cells
monotonically increases with time, and with physiological data re-
cently reported by Churchland, Kiani, and Shadlen (2007) of a stim-
ulus-independent time-varying signal, which increases with time
in each LIP population.

The basic idea behind these mechanisms is to trigger a decision
despite only a partial resolution among LIP cells as time passes.
Ditterich (2006b) argued that this may be important for a monkey
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Fig. 11. Average responses in motion-sensitive areas as a function of stimulus co-
rrelation. (a) Mean responses of an MT neuron at different coherence levels across
several trials for motion in both its preferred and anti-preferred directions (Britten
et al., 1993). (b) Average activity in a model MT cell pool across 500 trials at diff-
erent coherence levels for motion in both its preferred and anti-preferred direc-
tions. (c) Average activity in a model MST cell pool across 500 trials at different
coherence levels for motion in both its preferred and anti-preferred directions. Thus
(b) and (c) demonstrate the analog sensitivity of the model to the direction and
strength of random dot motion stimuli. In (a–c), closed and open circles show
responses to preferred and anti-preferred random dot motion stimuli, respectively.
Solid and dashed lines correspond to least-squares estimated linear and quadratic
fits, respectively. The quadratic function describes the data better than the linear
function. For each quadratic fit, the ratio of the quadratic coefficient to the linear
coefficient is computed, and is shown near the fit. The value of this ratio gives a feel
for the degree of non-linearity in the function relating the coherence of the dots to
the mean response of the motion-sensitive area. In (b) and (c), the standard errors
of mean (SEM) were too small to report in the plots. [Data in (a) is reprinted with
permission from Britten et al. (1993).]
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who tries to obtain a reward in each trial. On a weak coherence
trial, extended motion viewing may be necessary before the direc-
tion of the dots can be correctly determined, but this requires
maintained fixation in order for the trial not to be aborted. Given
that the possibility of breaking fixation increases with time for
both monkeys and humans alike, there is a trade-off between
continuing to look at the dots to make a correct choice leading to
reward, and forcing a choice to prevent loss of reward due to a
break in fixation.

As in the data, the simulations also show that the RT task per-
formance is better than that of the 1 s FD task at weaker motion
strengths (Fig. 6a and b). This may happen because the monkey
has as much access as it needs to sensory information in ambigu-
ous trials in the RT task, unlike in the FD task (Roitman & Shadlen,
2002). Simulated reaction time (RT) histograms in fact reveal that a
greater number of correct trial reaction times are in excess of 1 s at
lower coherence levels (see Fig. 12a and c). It is noteworthy that
the matches between data and model of RT distributions
(Fig. 12), the differences between correct and error trial LIP re-
sponses (Figs. 8 and 9), RT properties (Fig. 6), and the relationship
between LIP response and reaction time (Fig. 10) are emergent
properties of the model that were not specifically sought in the
model design and parameter choices.

We have already seen how noise influences LIP model cells to
make erroneous choices. This happens because the variance of a
Brownian motion process increases with time as individual white
noise samples are integrated by cell dynamics. The system hereby
becomes more noisy as time elapses, thereby increasing the likeli-
hood of errors with time. This is why the simulated average error
trial RTs are longer than those of correct trials (Fig. 6). Also, obser-
vations of error trial LIP cell responses in both tasks (Figs. 8 and 9)
indicates the rate of change in activity is lower on error trials when
compared to correct trials, which correlates well with longer RTs,
as the analysis in Fig. 10 shows.

Fig. 14 provides some samples of the entire time course of sim-
ulated LIP responses during both correct and error trials in the FD
and RT tasks. Note in particular the distinct visual and saccadic
components present in the LIP response dynamics, and also the
sustained component in the variable delay period of FD tasks.

The LIP recurrent competitive field (RCF) helps to solve the
noise-saturation problem because its cells self-normalize the net-
work’s total activity, even if their inputs vary greatly in size, with-
out losing their sensitivity to the relative sizes of each input. In
vision, this property is often called contrast normalization. This
self-normalization property plays a role akin to computing real-
time probabilities. Thus, an RCF shows how distributed pattern
processing by networks of cells, or cell populations, can behave like
a real-time probability calculus. When the recurrent interactions
between the cells are controlled by faster-than-linear signal func-
tions (e.g., power laws), or sigmoid signal functions, they can cause
contrast enhancement and noise suppression (Grossberg, 1973,
1988) of their input pattern, including the limiting case of selecting
a single winning cell (winner-take-all). RCFs, and simplifications
thereof, have been used to model many different types of deci-
sion-making over the years since their discovery, including percep-
tual and cognitive decision-making (Chey et al., 1997; Francis et al.,
1994; Usher & McClelland, 2001) and reach decisions in dorsal pre-
motor cortex (Model: Cisek, 2006; Data: Cisek & Kalaska, 2005).

Self-normalizing competition, present in other stages too
(although in different forms), helps to amplify coherent motion
signals while suppressing incoherent motion signals. For example,
lower dot coherence renders population activities of neurons in MT
and MST that are tuned to opponent directions more indistinguish-
able, thus generating a distributed neural representation of high
input motion ambiguity. Strengthening one directional pool either
by bottom-up input or by microstimulation (Ditterich, Mazurek, &
Shadlen, 2003) results in weakening the pools coding the other
directions, the null direction in particular (see Fig. 11). When mo-
tion coherence is high, there is less ambiguity, so fast feedforward
processing (cf., Thorpe, Fize, & Marlot, 1996) can occur in the MT/
MST circuit. Low coherence slows down processing because activ-
ities of all conflicting groupings are reduced by self-normalizing
competition, and it takes longer for any one of them to exceed out-
put thresholds. These normalized spatial activity distributions
hereby behave like real-time probabilities that reflect system
uncertainty. Feedback is automatically engaged from MST to MT
that helps to choose among these ambiguous alternatives, and to
contrast enhance the strongest grouping. At all model V1, MT,
MST, and LIP stages, selected cells respond to more coherence in
the input by increasing their activities more rapidly to higher levels
of firing, thereby generating faster and more accurate decisions as
described earlier in this section. This self-organizing system thus
trades accuracy against speed, and illustrates how cortical dynam-
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Fig. 12. Reaction time histograms from simulations of the RT task. In (a), RT statistics from the correct trials are shown. We can observe that as the coherence increases, the RT
histogram becomes narrower and shifts to the left. Also, as the coherence decreases, quite a number of trials have RTs in excess of 1000 ms. This may explain why RT task
accuracy is slightly better than that of 1s FD task at weaker coherence levels. In (b), RT histograms from the error trials are shown. The model monkey does not make any
errors at stronger coherences: 25.6% and 51.2%. Note the fraction of trials in each panel for the corresponding condition. The bin-width used in generating the histograms is
50 ms. The RT distribution data from Roitman and Shadlen (2002) experiments is available in Ditterich (2006a). Panel (c) plots the proportion of correct trials with reaction
time greater than 1000 ms in the simulated RT task at each motion strength. (d) Forced choice task design requires the model to make a choice in each RT task trial however
ambiguous the stimulus is. Sometimes, at low coherences in particular, increased viewing duration does not sufficiently clarify the direction of the dots. In such cases, the
model is forced to make a choice via term Gd in Appendix Eq. (29). In this plot, open circles indicate the proportion of trials (out of 500), when a forced choice was invoked, as a
function of motion strength. This fraction falls off linearly with respect to log10 scale of percent coherence. Open diamonds and squares refer to correct and error decisions,
respectively. The forced choices turn out to be correct at slightly better than chance, implying they are not ‘‘pure” guesses.
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Fig. 13. Simulations of the RT task without the mechanism to force a decision within about 1 s; that is, with term Gd in Appendix Eq. (29) set equal to zero through the trial.
(a) Correct trial RT distributions for each non-zero coherence level. Given there is no restriction on the amount of time to make a response, a few RTs fall in the 1500–2000 ms
range, unlike in the earlier simulations shown in Fig. 12. (b) Error trial RT distributions for the three lower non-zero coherences. The model did not make errors at the two
higher motion strengths. (c) Correct (solid) and error (dashed) trial RT statistics. (d) Psychometric function. Other results for the RT task remained intact (not shown here).
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ics go beyond Bayesian concepts, while clarifying why probability
theory ideas are initially so appealing (see Section 4.2).

Experiments in which prior probability is manipulated (Mazur-
ek et al., 2005) can be explained by top-down priming from pre-
frontal cortex (PFC), which can leaky integrate the number of
occurrences of a particular choice, and feed it back to LIP as a mod-
ulatory attentional prime (Grossberg, 2003; Miller, Erickson, &
Desimone, 1996; Srihasam et al., 2008), both before and after mo-
tion onset. This hypothesis predicts that prior probabilities will
play a lesser role if PFC working memory storage is reset or other-
wise weakened between consecutive trials in a block. The effects of
MT microstimulation (Ditterich et al., 2003) are similar to those of
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prior probability on the accuracy and reaction time of perceptual
decisions. They can be modeled by adding a steady excitatory input
to each cell in a subset of model MT for the duration that the stim-
ulation was applied. Within the model, microstimulating a partic-
ular MT or MST directional pool clearly has the same effect as
increasing coherent motion in the corresponding direction (Cele-
brini & Newsome, 1995; Salzman, Murasugi, Britten, & Newsome,
1992).

The influence of more potential choices on LIP responses, and
hence behavior (Churchland et al., 2005), can also be explained
by self-normalization in the RCF. More choice targets create more
recurrent inhibition on an LIP cell from other LIP cells, which im-
plies a smaller initial activity for the selected LIP response. Increas-
ing the number of alternatives is thus similar to decreasing the
motion strength in a two-alternative, forced choice (2AFC) task.
As a result, more choices, on average, predict slower reaction times
and more errors in decision-making.

Additional considerations are needed to understand the first
200 ms of the LIP cell responses after motion onset. The coher-
ence-insensitive initial dip and rise in activity (Fig. 5a) is explained
as follows: before motion onset, attention is divided among the
two peripheral choice targets (covert) and the foveal fixation point
(overt). The abrupt appearance of the motion dots in the foveal re-
gion may automatically attract all attention (Egeth & Yantis, 1997),
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thereby rapidly creating a strong foveal transient signal (Bisley,
Krishna, & Goldberg, 2004) that inhibits both peripheral LIP popu-
lations. The foveal transient is independent of the strength of the
moving dots. The coherence-independent rise in activity results
from the offset of the initial burst, and the time when LIP activities
start fanning-out is when the discriminative motion signals start
reaching the LIP choice network. Such lateral inhibition is also con-
sistent with recent experimental data and modeling of transient
pauses in SC neuronal firing induced in part by shape-changing
cues occurring in a region well outside the movement field (Li,
Kim, & Basso, 2006). Unlike in the RT task, the interval between
the onset of choice targets and that of dots is fixed in the FD task
(see p. 9476 in Roitman & Shadlen, 2002), thus effectively eliminat-
ing the ‘surprise’ element. The lack of transient pause in LIP firing
during the FD task (Fig. 5c and e) may be a result of this difference.
4. Discussion

4.1. Noise in perceptual decision-making

Cellular noise in LIP influences temporal dynamics and thus the
variability in the accuracy and reaction time of perceptual deci-
sions that LIP controls. Model simulations to this point are deter-
ministic until the MST stage. In this form, the model
approximates all internal neuronal noise from Retina to LIP by
noise that drives just the LIP output stage. Trial-to-trial variability
in the model until MST is elicited only by the randomness inherent
in the random dot motion stimuli. However, both MT and MST
have been shown to exhibit response variance even if the same se-
quence of random dots is input again and again (Britten et al.,
1993; Celebrini & Newsome, 1994).

The above simulations support the hypothesis that noise in LIP,
plus the randomness in the stimulus itself, which generates ran-
dom cell responses throughout the motion processing stages, is
sufficient to quantitatively simulate key data properties. In order
to test this directly, we also ran our simulations introducing similar
noise processes in both MT and MST (see Appendix Eqs. (23) and
(28)), in addition to the noise in LIP. We tried two different stan-
dard deviations (r0) for the internal noise in MT and MST: one
comparable to that used in LIP, and the other five times greater.
In both cases, all our results remained qualitatively the same (see
illustrative Fig. 15). For the higher MT and MST noise condition,
the psychometric function seems to shift slightly to the right, as
one would expect by virtue of more overall noise in the system
(threshold ratio aRT;r0¼0:1=aRT;r0¼0:5 ¼ 0:893 < 1; see Appendix
A.3.7 for how threshold a is defined). Our data explanations still re-
main the same. These simulations show that the absence of cellular
noise in the motion processing system is not a rate-limiting factor
as long as there is cellular noise in the model’s LIP output stage.

4.2. Bayesian inference in the brain?

The probabilistic nature of decision-making has led to the pro-
posal that classical statistical concepts, such as the Bayes rule, may
apply to decision-making in the brain (Gold & Shadlen, 2001, 2007;
Knill & Pouget, 2004; Pouget, Dayan, & Zemel, 2003). It is typically
argued that variability in neuronal responses and the fact that prior
knowledge or information influences what we see and how we be-
have implies explicit Bayesian inference in the brain. Bayesian and
other general statistical concepts formalize aspects of the uncon-
scious inference hypothesis of Helmholtz (2000); namely, that vi-
sual system works by making inferences about the world based
upon probable interpretations of incomplete or ambiguous data.
Kanizsa (1979) and his disciples have, in contrast, described many
visual percepts that cannot be explained by unconscious inference.
The Helmholtz vs. Kanizsa perspectives exemplify top-down vs.
bottom-up approaches to visual perception, as two extremes in a
continuum. The neural model proposed herein characterizes and
joins together both bottom-up and top-down processes to explain
challenging behavioral and brain data.

The Bayes rule, and related statistical concepts, are so general
that they may be applied to problems in any science. In particular,
the Bayes rule follows from writing the probability of any two
events I and S, namely p(I,S), in two different ways and then divid-
ing both sides of this identity by a term on one side of the equa-
tion; see Eqs. (1) and (2) below. This generality is part of its
broad appeal, but is also its weakness in not providing enough con-
straints to discover new models of any particular science. In partic-
ular, it does not in itself help to discover the brain design principles
and mechanisms that can effectively process ambiguous motion
stimuli. The present article proposes how the brain may make per-
ceptual decisions in response to motion stimuli by using organiza-
tional principles and detailed neuronal mechanisms that go
beyond a general Bayesian formulation, and clarifies why a Bayes-
ian approach may initially seem so appealing.

In the Bayesian framework, given a stimulus I which falls on the
Retina, the Bayesian model, or ideal observer, asks what percept S
is most likely to have caused it. The basic idea is to find the S that
maximizes the posterior probability p(S/I) via the Bayes rule:

pðS=IÞ ¼ pðI=SÞpðSÞ
pðIÞ : ð1Þ

To derive Eq. (1), the probability p(I,S) of the events I and S is writ-
ten in two different ways:

pðI; SÞ ¼ pðI=SÞpðSÞ ¼ pðS=IÞpðIÞ; ð2Þ

and then divided by p(I). The specific usage depends on which of I
and S is observable. I could be a spatial input (static image), or a
spatio-temporal input (video). S could be either a distributed pat-
tern of neuronal firing in some low or mid-level brain region (con-
tour, motion, or depth perception, etc.), or a symbolic percept in
some high-level brain region (face, house, or object recognition,
etc.). Typical psychophysical experiments require subjects to detect
or discriminate a perceptual feature and/or estimate its strength.
The likelihood p(I/S) assigns a probability to each percept S depend-
ing on the amount of consistency with the image I, the prior p(S) is
the probability of the scene description S, and p(I) acts as a normal-
izing factor (Kersten, Mamassian, & Yuille, 2004; Kersten & Yuille,
2003). For example, Bayesian models of speed perception assume
a prior that slower speeds are more frequently perceived (Stocker
& Simoncelli, 2006; Weiss, Simoncelli, & Adelson, 2002).

Bayesian and other general statistical approaches do not ad-
dress how the units of stimulus I and percept S are generated by
the brain, such as illusory contours, which are emergent properties
not explicit in the luminance levels of an inducing image. Bayesian
models also do not explain percepts of environments whose statis-
tics change through time, where there is no obvious likelihood p(I/
S), or novel rare percepts, where there is no obvious prior p(S).
Most importantly, it does not explain the brain processes whereby
we perceive.

How might Eq. (1) be applied to motion direction discrimina-
tion? Gold and Shadlen (2001) propose that the brain may accu-
mulate the logarithm of the posterior ratio (logPR) in a sensory-
motor association area such as cortical area LIP. In this situation,
the brain has to discriminate between opponent motion directions,
say S1 and S2, given the spatio-temporal input I

*

. The posterior ratio
is defined as:

PR ¼ pð I
*

=S1ÞpðS1Þ

pð I
*

=S2ÞpðS2Þ
: ð3Þ
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Fig. 15. Simulations of the RT task with noise in both MT and MST. See Appendix Eqs. (23) and (28). The level of noise was about the same as that used in LIP (see Appendix).
(a) Correct trial LIP cell dynamics for all motion strengths in either motion direction. Same conventions as in Fig. 5a are used. (b) Correct (solid) and error (dashed) trial RTs at
various coherences. (c) Psychometric function. Noise in MT and MST also did not affect other RT task results (not shown here). (d–f) Simulations of the RT task with more
noise in MT and MST. The level of noise was five times greater than that used in the simulations shown in (a)–(c).
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Taking a logarithm on both sides yields a difference of two logs:

log PR ¼ log pð I
*

=S1ÞpðS1Þ � log pð I
*

=S2ÞpðS2Þ: ð4Þ

When both directions are equally probable, p(S1) = p(S2), logPR re-
duces to log-likelihood ratio (logLR):

log LR ¼ log pð I
*

=S1Þ � log pð I
*

=S2Þ: ð5Þ

Gold and Shadlen (2001, 2007) suggest that the difference in activ-
ities of two populations in middle temporal area (MT) that are
tuned to opponent directions approximates a scaled version of
logLR. Motion opponency is known to occur in MT (Albright, Desi-
mone, & Gross, 1984; Heeger, Boynton, Demb, Seidemann, & New-
some, 1999; Snowden, Treue, Erickson, & Andersen, 1991), and
plays a role in our model as well (Figs. 1 and 4), but its proposed
theoretical equivalence with logLR does not add to our understand-
ing of the neuronal dynamics during perceptual decision-making in
response to a wide variety of perceptual stimuli. In particular, it is
not clear how the concept of logLR extends to multiple-choice tasks,
and any log approximation to neuronal activations and firing is bio-
logically implausible because the log grows without bound, unlike
cellular activations and firing, as its argument increases.

Given these concerns, it is natural to ask if such general statis-
tical formulations provide the best currently available approach to
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modeling perception and decision-making? As illustrated herein
and in a growing number of other studies, biophysically detailed
models of visual cortex can quantitatively simulate neurophysio-
logically recorded dynamics of identified cells in anatomically sup-
ported circuits, and the perceptual and behavioral data that they
generate as emergent properties. Moreover, these models embody
new design principles, mechanisms, local circuits, and global archi-
tectures that are proposed to solve fundamental problems facing
the brain. The present model shows how brain circuits may carry
out hypothesis-testing and decision-making in response to both
statistically changing and novel rare events.

It should also be noted that any filtering operation, such as the
short-range and long-range filters (see Appendix Eqs. (15) and
(22)), may be interpreted as a prior (namely, the current neural sig-
nal) multiplied by a conditional probability or likelihood (namely,
the filter connection strength to the target neurons). Likewise, a
contrast-enhancing operation, such as the LIP recurrent on-center
off-surround network (see Appendix Eq. (29)), that responds to
such a filter may be viewed as maximizing the posterior. These in-
sights have been discussed in the neural modeling literature for a
long time; e.g., Grossberg (1978). However, as Fig. 1 and the total
set of model equations illustrate, such local processes do not, in
themselves, embody the design principles and computational
intelligence of a behaviorally competent neural system.

In order to contribute to the characterization of how the brain
carries out motion processing and decision-making, the present
work further develops and integrates models that have been grad-
ually elaborated to explain and simulate increasingly large data
bases about motion-based percepts and behaviors through the
years. This emerging motion model, which is often called the 3D
FORMOTION model, has simulated a large number of motion per-
cepts (see Fig. 16 for two examples). These percepts include aspects
of barberpole illusion; motion capture; spotted barberpole illusion;
triple barberpole illusion; occluded translating square illusion; mo-
tion transparency; chopsticks illusion; short-range and long-range
apparent motion, including beta, gamma, reverse-contrast gamma,
delta, split, ternus, and reverse-contrast ternus motion; visual iner-
tia; Korté’s laws; second-order motion; form-motion interactions,
including the line motion illusion, motion induction, and transfor-
mational apparent motion; how component angles, contrasts, and
durations influence barberpole and (type 1 and type 2) plaid coher-
ence and incoherence; the effects on perceived speed of stimulus
contrast, duration, dot density, orientation, length, and spatial fre-
quency; and the effects of parvocellular and magnocellular lateral
geniculate nucleus lesions on motion perception (Baloch & Gross-
berg, 1997; Baloch, Grossberg, Mingolla, & Nogueira, 1999; Berzh-
anskaya et al., 2007; Chey et al., 1997, Chey, Grossberg, &
Mingolla, 1998; Francis & Grossberg, 1996b; Grossberg et al.,
2001; Grossberg & Rudd, 1989, 1992). The parameters in this model
are chosen within a robust parameter range to enable all of the pro-
cessing stages to contribute their share to the disambiguation of lo-
cally ambiguous motion direction.

The fact that the current explanations and simulations of the
temporal dynamics of decision-making in response to probabilisti-
cally defined displays of moving dots may be added to this com-
pendium of results, without explicitly involving Bayesian
concepts, provides additional evidence that specific brain designs
to solve the aperture problem and the noise-saturation problem
are indeed at work.

4.3. Stochastic decision models

Various sorts of stochastic reaction time models have long been
used in cognitive psychology to account for both psychometric and
chronometric functions of human subjects in a number of percep-
tual and cognitive tasks (e.g., Busemeyer & Townsend, 1993; Luce,
1986; Ratcliff, 1978, 1980; Ratcliff, van Zandt, & McKoon, 1999;
Ratcliff & Smith, 2004; Smith, 1990, 2000; Smith & Vickers,
1988). Most of these models are variants of a diffusion model, or
a random-walk model in discrete-time. In the race or accumulator
model for multiple-choice RT tasks, an accumulator cell yd for each
possible alternative d gradually integrates its corresponding noisy
evidence until one of the cell activities first rises to a decision
threshold, thereby deciding both the choice and the decision time.
The reaction time is computed by adding to the decision time an
independent, random non-decision time to account for sensory
and motor latencies. All diffusion models make assumptions
regarding how perceptual stimuli map into internal sensory repre-
sentations, which in turn are converted into decision variables (yd)
as follows:

dyd

dt
¼ Sd þ r

dW
dt

; ð6Þ

where Sd is called the drift rate of the diffusion process for alterna-
tive d, which is an increasing function of its internal signal, and the
stimulus-independent parameter r scales the standard deviation of
the Brownian motion process W. The noise term r dW

dt controls choice
and decision time variability. In an FD task, the choice is typically
governed by the decision cell with the greater activity at the end
of the fixed duration (Ratcliff, 1978).

This simple model can fit the psychometric function, RTs on cor-
rect trials, and effects of speed–accuracy trade-off by adjusting the
decision threshold based on priority instructions (Reddi & Carpen-
ter, 2000), but needs extensions to tackle relative error trial RTs
(Palmer et al., 2005). Some of the variations include dynamic drift
rate (Ratcliff, 1980), trial-to-trial variability in drift rate, which can
simulate longer error trial RTs (Ratcliff & Rouder, 1998), and trial-
to-trial variability in the starting point of integration, which can
simulate faster error trial RTs in the urgency condition (Ratcliff
et al., 1999). Other variants include leaky integration (Smith,
2000; Usher & McClelland, 2001), differences between alternative
internal signals in the sensory read-out stage (Ditterich, 2006a,
2006b; Mazurek et al., 2003), and lateral inhibition among accu-
mulator cells (Usher & McClelland, 2001).

Neural correlates of decision-making have only recently been
investigated in both primates (Glimcher, 2003; Gold & Shadlen,
2007; Platt, 2002; Romo & Salinas, 2001; Schall, 2003) and humans
(Heekeren, Marrett, Bandettini, & Ungerleider, 2004). Accordingly,
general diffusion models have begun to model both behavioral and
neurophysiological data in, for example, LIP (Mazurek et al., 2003)
and SC (Ratcliff, Cherian, & Segraves, 2003). Studies such as Ratcliff
et al. (2003) provide good fits to neurophysiological data from
buildup cells in the deeper layers of the SC during a two-choice
decision task. Although such a diffusion model is more dynamical
than a general statistical model, it is a formal model that does not
embody the brain mechanisms that characterize neural decision
processes.

Neural models currently exist that quantitatively simulate the
temporal dynamics of both burst and buildup cells in the SC (Gan-
carz & Grossberg, 1999; Grossberg, Roberts, et al., 1997). Unlike the
diffusion model, the SC neural model clarifies the different func-
tional roles of both cell types, notably how they help to adaptively
recode the several types of SC inputs (retinotopic visual inputs,
head-centered auditory inputs, and planned prefrontal inputs) into
the same coordinate representation wherein all the inputs can
competitively choose the next saccadic decision. The current
MODE model attempts to provide a similar functional and mecha-
nistic neural understanding of motion-based decision-making.

Four other models (Ditterich, 2006a, 2006b; Mazurek et al.,
2003; Wang, 2002) have discussed the Shadlen and Newsome data.
We now highlight similarities and differences between our model
and these alternative models.



Fig. 16. The 3D FORMOTION model (Berzhanskaya et al., 2007; Chey et al., 1997, 1998; Francis & Grossberg, 1996a, 1996b; Grossberg et al., 2001) helps to explain many
temporally evolving motion percepts in addition to those derived from random dot stimuli. (a) Data (adapted from Fig. 2c in Pack and Born, 2001) show that MT gradually
solves the aperture problem with time. When monkeys are shown stimuli which comprised a field of white bars moving coherently in a fixed direction on a black background,
MT cells are tuned initially to the direction perpendicular to the orientation of the bars, but eventually reflect the true motion direction. (b) Simulations from Chey et al.
(1997) predicted these observations. Here the stimulus is a horizontally moving line tilted at 45� from vertical. (d) Simulations from Chey et al. (1997) also account for data
from Castet et al. (1993) shown in (c). Here a line moves in a fixed direction at a fixed speed for a fixed duration (167 ms). The longer the line, and the more its orientation is
tilted from the orientation perpendicular to movement direction, the slower the line seems to be moving. These data can be understood as the effect of feature tracking signals
at the line ends propagating into the interior of the line, and gradually selecting the consistent feature motion direction there, while being averaged with the directions and
speeds of ambiguous motion signals along the length of the line. The feature tracking signals gradually select the consistent motion direction and speed through time, much
as they do in (a). [Data in (a) is reprinted with permission from Pack and Born (2001), and panels (b,c,d) from Chey et al. (1997).]
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In Ditterich (2006a, 2006b), several variations of a diffusion
model are presented that attempt to fit the psychometric function,
the correct trial RTs, the relatively longer error trial RTs, the
roughly symmetric RT distributions, and some aspects of the aver-
age LIP responses on correct trials in the RT task. In addition to sta-
tionary versions of the diffusion model, different kinds of non-
stationarities were also tested: trial-to-trial variability in the drift
rate, time-variant decision threshold, time-variant additive signal,
and time-variant sensory gain. Based on the overall quality of the
best possible fits for each variation (see Table 1 in Ditterich,
2006a), it was proposed that a diffusion model with time-variant
sensory gain is most likely the underlying mechanism in LIP that
makes decisions in the dots task. Model structure has a difference
read-out from two opponent MT pools to two LIP cells, with uncor-
related Gaussian noise in each MT directional pool.

This model describes mean MT responses (Britten et al., 1993;
see Fig. 11) by linear functions of the coherence and direction of
random dot motion. It also assumes a logistic function for the
time-variant sensory gain to explain slower error RTs without
altering the signal-to-noise ratio, and a normally distributed non-
decision time (see Fig. 6a in Ditterich, 2006a). To fit the more con-
straining LIP neural data, Ditterich further assumes that the two
sensory difference signals that feed LIP decision cells are not per-
fectly anti-correlated, that an LIP choice cell stops integrating after
reaching the decision threshold while the other LIP cells continue
accumulating, and also that the activities of the LIP cells do not in-
crease beyond a limited span by clipping them.

Analysis of the estimated residual times from the various con-
sidered models led to the conclusion that integration in LIP could
be quite leaky (p. 998 in Ditterich, 2006a). An interesting point of
this model, as noted in Section 3.2, regards how the time-variant
sensory gain hypothesis helps the monkey to maximize its reward
rate (Ditterich, 2006b). Section 3.2 details a different mechanism in
our model that realizes the same property.

Mazurek et al. (2003) presented a stationary diffusion-type
model (also considered in Ditterich, 2006a, 2006b) with most of
above assumptions, and applied it to both the FD and RT tasks. In
order to account for data from the FD task, they proposed that
the LIP cells freeze their activities when one of them reaches the
decision threshold, and that there is a delay in the detection of a
threshold-crossing before the activities can freeze (p. 1263). Even
with these assumptions, model simulations do not show the ob-
served shift in the psychometric functions of 1 s FD and RT tasks
(their Fig. 6B). Their model also exhibits faster error trial RTs, con-
trary to data (their Fig. 4B).

Wang (2002) and Wong and Wang (2006) developed an attrac-
tor neural network model that was used to simulate the current
dataset. It has properties of decay, recurrent self-excitation and
inhibition like our model LIP. Assumptions are made similar to
those of Ditterich (2006a, 2006b) and Mazurek et al. (2003) to ob-
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tain MT responses. Unlike Mazurek et al. (2003), Wang generates
persistent activity in LIP cells in the FD task using strong recurrent
excitation within the same network that integrates noisy evidence
in the initial period of the trial. As noted previously, our model LIP
RCF employs self-excitation too, but also in the RT task to explain
the steep, coherence-independent motor preparatory activity, and
for quantitative simulations of LIP cell dynamics in the FD task
through the entire trial, the delay period in particular (compare
our Fig. 5d and f to Fig. 9A in Wong & Wang, 2006).

Both Mazurek et al. (2003) and Wang (2002) employ the same
decision rule in both FD and RT tasks, namely the same decision
threshold-crossing. In Wang’s FD task simulations, if none of the
attractor cells wins (that is, reaches the threshold) within the given
duration, a random choice is made. It is not clear in Mazurek et al.
(2003) about what happens if no threshold-crossing occurs within
the fixed duration.

As we have seen in the RT task, the average LIP responses for Tin

choices, when aligned to saccade onset and grouped by coherence
level, reveal a firing level, or decision threshold, above which
coherence does not differentiate the dynamics (see Fig. 5a). Even
if it is assumed that FD task choices are also based on a thresh-
old-cross, as in the RT talk, the disparate response ranges during
the decision formation epoch in the two tasks (compare Fig. 5a
(RT task) and 5c (FD task): data from the same monkeys) at least
rule out a common threshold value. As a result, the Mazurek
et al. (2003) model does not match the recorded LIP response range
during motion viewing in the FD task (their Fig. 7C), despite its spe-
cialized hypotheses for the FD task. Wang (2002) avoided this issue
by emphasizing that model simulations are only qualitative. In
contrast, our model makes FD task choices based on the maximally
activated LIP cell at the end of the viewing duration (as proposed in
Gold & Shadlen, 2003, p. 635), and also simulates the task-depen-
dent changes in LIP responses.

Our MODE model shares with these alternative models the
hypotheses that decisions are made in LIP by accumulating noisy
motion signals from MT/MST, and that noise influences the errone-
ous choices made by LIP. Our model does not, however, need to
make many of the special hypotheses of the other models because
it explicitly represents the spatially distributed neural dynamics of
motion and decision processing in response to the stimuli used in
the experiments.

Leakage and lateral inhibition are modeled in the leaky compet-
ing accumulator (LCA) model (Usher & McClelland, 2001) that sim-
ulates human behavioral data from other perceptual tasks in
both FD and RT paradigms. Its simulations show how leakage alle-
viates the need for trial-to-trial variability in drift rate (Ratcliff,
1978; Ratcliff & Rouder, 1998) to explain how improvement in per-
formance due to more exposure duration stops at longer durations.
Usher and McClelland use a Grossberg Additive Model with thresh-
old-linear competitive signals that have been proved capable of
making decisions (cf., Grossberg, 1978, 1988). The model also
incorporates a noise term to simulate stochastic decision data:

dyd

dt
¼ �AYd þ kSd � g

X
D6¼d

YD þ r
dW
dt

; and Yd ¼ ½yd�
þ
: ð7Þ

Usher and McClelland (2001, p. 553) acknowledged these anteced-
ents to their use of the Additive Model, and also (p. 555 and 557)
that they do not incorporate recurrent excitation in Eq. (7), which
plays an important role of selecting winners in response to inputs
that can vary widely in size (Grossberg, 1973, 1978). Our model
LIP (Appendix Eqs. (29) and (34)) uses a recurrent competitive field,
or RCF, also called a Grossberg Shunting Model, that has properties of
automatic gain control, self-normalization, and self-maintenance of
activity between maximum and minimum levels, unlike the Addi-
tive Model (Grossberg, 1973, 1978, 1988). As noted above, the
Shunting Model embodies these properties in a network with recur-
rent excitation and inhibition. They enable our LIP RCF to respond
without a loss of sensitivity to spatially distributed inputs from a
brain region like MST whose cell activations can vary widely in
number and size through time, and can thereby control effective
choice behavior.

The biggest departure of our model from previous ones is that it
describes the spatially distributed dynamics of multiple brain areas
(Retina/LGN, V1, MT, MST) in the motion pathway leading to LIP,
and interactions of the basal ganglia with LIP to make decisions.
In particular, we show how principles and mechanisms that have
evolved in the brain to tackle the aperture problem and the
noise-saturation problem may also explain data about the dots
task. Our model also meets the challenge of directly processing
the random dot motion experimental stimuli as real-time inputs
at 60 Hz, and its emergent properties fit the widest range of deci-
sion-making data in this paradigm of any available model.

Model simulations are consistent with the interpretation of
Newsome, Shadlen, and colleagues regarding the different roles
of ‘‘sensory” MT/MST and ‘‘decision” LIP cells in the motion tasks
(see Discussion in Shadlen & Newsome, 2001). In particular, model
MT/MST cells are involved in motion capture and resolve the verid-
ical direction of the kinetic dots as much as possible, irrespective of
the choice made in each trial by LIP cell dynamics. Accordingly, we
propose a lower choice probability in LIP if, for example, the mon-
key were to shows its decision using a hand movement (Fig. 7 in
Nichols & Newsome, 2002), not an eye movement, or if the task
prevents saccade planning during the motion viewing period (Gold
& Shadlen, 2003; Horwitz, Batista, & Newsome, 2004b).

The model can also explain how microstimulation to MT and
MST influences the accuracy of perceptual decisions (Celebrini &
Newsome, 1995; Salzman et al., 1992), how MT microstimulation
influences correct and error trial RTs (Ditterich et al., 2003), and
the effects of prior probability (Mazurek et al., 2005) and multiple
choices (Churchland et al., 2005). The model also simulates the
influence of viewing duration on performance at each motion
strength, and thereby the psychometric function (Gold & Shadlen,
2003).

In addition, our model goes beyond alternate models by: incor-
porating the difference in LIP responsiveness to the two task condi-
tions, in particular that the ‘‘gain of the LIP response is greater in the
RT version of the task” (p. 9485 in Roitman & Shadlen, 2002); con-
sidering the visual contribution to LIP response due to the presence
of the choice target in the receptive field (p. 1931 in Shadlen & New-
some, 2001); simulating the entire time course of LIP responses
during both FD and RT tasks on both correct and error trials for
all experimented coherences and directions, in particular the pre-
motion onset period activity, the pre-saccadic enhancement (for
Tin choices) and post-saccadic inhibition in activity (for both tasks),
and the variable delay period activity (for FD task); and highlighting
the important role of BG in contextually gating the saccadic re-
sponse, depending on whether the task is an FD or an RT type.

4.4. Some model predictions

The MODE model explains and simulates the major data prop-
erties derived from the popular random dot motion discrimination
experiments in terms of how the brain solves the aperture problem
by using feature tracking signals to provide the best estimates pos-
sible of object motion directions. The motion processing stages of
the model are capable of handling arbitrary motion stimuli. We
predict that several stimulus manipulations should shift the psy-
chometric function to the right, increase reaction times, and have
influences on MT, MST, and LIP responses similar to those that oc-
cur due to lowering the motion strength. These manipulations in-
clude using higher dot density, more interleaved sequences, briefer
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signal dots, and more spatial displacement of signal dots between
frames.

Another prediction regards the lack of coherence-independent
initial transient pause in LIP activity in the FD tasks that can be seen
in Fig. 5c and e, unlike in the RT task (see Fig. 5a), due to the predict-
ability of motion onset after the choice targets turn on. Self-normal-
ization of the recurrent competitive field predicts lower LIP pre-
motion onset period activity in multiple-choice experiments that
use more choice targets (cf., Basso & Wurtz, 1998).

The model hypothesis that a volitionally activated top-down
signal can help to make a ‘‘forced choice” in difficult RT task trials
is a prediction that already has some support from recent data
(Churchland et al., 2007). Also testable is the model explanation
for how the average LIP responses in the RT task for correct Tout

choices continue to be influenced by motion strength, even in
the final stages before the saccade is initiated.

4.5. Outstanding issues

All oculomotor areas have been shown to be ‘‘choice-predictive”
in the direction discrimination experiments discussed in this arti-
cle. This is usually understood by the fact that the monkeys were
trained to indicate their perceptual decision using a saccadic eye
movement, and not some other response. In particular, cells in
other saccadic areas (SC, FEF, Area 46), whose response fields con-
tain just one choice target, exhibit direction-selective and decision-
related activity (Horwitz & Newsome, 2001b; Kim & Shadlen,
1999) similar to those in LIP. Given the extensive reciprocal con-
nectivity among these areas, it remains to analyze in each particu-
lar experimental paradigm which saccade-related area selects the
target and relays it to other areas. The locus of the ‘‘decision-
maker” is of particular interest in ‘‘abstract” versions of the basic
direction discrimination task, which dissociate the decision-mak-
ing process from programming of the movement that leads to re-
ward (Gold & Shadlen, 2003; Horwitz et al., 2004b). In these
experiments, the targets are not present during motion viewing,
and appear only after motion offset and at unpredictable locations.
Hence, a choice target cannot be selected and the saccade vector
cannot be computed until after the kinetic dots shut off, unlike in
simpler tasks in which the saccade can be planned while the mo-
tion cues are still on. Involvement of the prefrontal cortex is likely
in such memory and rule-based planned movements.

Another issue concerns how the monkey learns the task strategy
within an operant conditioning framework (Born, 2004; Uka &
DeAngelis, 2004)? In the experiments simulated herein, monkeys
had to choose between two peripheral choice targets based on mo-
tion information extracted from the foveal display. It is likely that
only those pools of foveal neurons in MT and MST that compute
either right or left motion direction gradually get associated with
appropriate populations in several oculomotor structures because
of extensive training on the task. As a result, LIP cells are able to
show direction selectivity to motion stimuli presented well outside
their classical receptive fields (Shadlen & Newsome, 2001). A mon-
key whose brain is well-shaped for this particular task may not be
able to immediately perform an almost identical task requiring, in-
stead, an up vs. down direction discrimination, because the relay
links of the pertinent sensory representation to the applicable
choice networks, wherever they are present, are not yet learned
(Freedman & Assad, 2006). If, moreover, a monkey has been trained
to do both the above tasks, interesting issues of task strategy-
switching that can be triggered by contextual cues come to the fore.

This is in contrast to human subjects who can perform any ver-
sion of the task, even the abstract ones, just by a mere instruction,
probably because of facilitation by language. Explaining the neural
mechanisms whereby language achieves such flexibility is a large
theoretical challenge.
The model hypotheses about how the basal ganglia may gate
movement decisions are highly simplified. A more thorough anal-
ysis of how laminar prefrontal cortical circuits interact with the ba-
sal ganglia, sensory cortices, and other subcortical structures to
learn and perform movement tasks is provided by the TELOS model
of Brown et al. (2004). Here, after the model incrementally learned
five different movement tasks that monkeys have been trained to
perform, it quantitatively simulated the neurophysiologically re-
corded dynamics of seventeen different cell types in these brain re-
gions when those tasks were performed. Future modeling work
will incorporate a more complete representation of such prefrontal
and basal ganglia interactions with sensory cortices.

Appendix A. Model equations and parameters

A.1. Inputs

Model inputs were random dot motion sequences at varying
levels of coherence. They were generated in MATLAB 7.1 as de-
scribed in the neurophysiological experiments being simulated;
see http://cns.bu.edu/~advait/RDMstimuli.html. Three indepen-
dent two-dimensional movie sequences were first produced, and
then interleaved to obtain the actual input, which was presented
to the model in real time at the frame rate of 60 Hz. Each frame
was a 60 � 60 grid with 100 white dots (intensity = 255) of size
1 � 1 on a black background (intensity = 0). The number of dots
per frame may appear to be more than 100 because of visual per-
sistence. In the first frame in each of the three sequences, the dots
were randomly placed. For the subsequent frames, a fixed fraction
of dots (% coherence) from the immediately previous frame were
randomly chosen, and displaced by 1 pixel in the signal direction
(either left or right), and the remaining dots were relocated ran-
domly. Thus in every frame, a new fraction of dots was chosen to
move in the signal direction. Varying this fraction hence controls
the motion strength of the dot display. Given the three frames
interleaving and 60 Hz refresh rate, the effective speed of the signal
dots was 20 pixels/s, and there was systematic correlation among
the temporary signal dots with a phase of three frames. If any sig-
nal dot moved out of the grid, then it was wrapped around to ap-
pear from the opposite side and thus be within the grid.

The phenomenology of the inputs thus created was confirmed
by testing informally with many human subjects. The simulation
experiment comprised 500 trials at each of six coherence levels,
which were as follows: 0%, 3.2%, 6.4%, 12.8%, 25.6%, and 51.2%.
Zero-percent coherence corresponds to no correct global motion
direction. For all non-zero coherences, the correct direction was al-
ways ‘‘Right” for the sake of simplicity. In the monkey experiments,
trials were randomly and equally distributed between the ‘‘Left”
and the ‘‘Right” directions both to prevent monkeys from develop-
ing a bias towards either direction and to study how the non-se-
lected target cells would respond (see Section 3). This is not an
issue in the simulations because we explicitly model two LIP pop-
ulations which prefer the two opponent motion directions (see
Appendix A.3.6). The model was found to work also for the input
frame rate of 75 Hz (Results not included). Note that the model
integration time-step Dt = 0.001 s is much smaller than 1/
60 = 0.0167 s or 1/75 = 0.0133 s (inter-frame duration) so that
information embedded in inter-frame transitions is registered.

A.2. Shunting and habituative dynamics

Each cell in the network is modeled using a membrane equation
(Grossberg, 1973; Hodgkin & Huxley, 1952), which can be written as:

dV
dt
¼ a½�bV þ ðc� VÞIex � ðV þ dÞIin�: ð8Þ

http://cns.bu.edu/~advait/RDMstimuli.html
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In Eq. (8), V represents the cell membrane potential; dV
dt is the rate at

which V changes; parameter a scales cell response speed; parame-
ter b controls the passive decay rate; parameters c and �d are the
saturation, or maximum and minimum, potentials, respectively;
and Iex and Iin are total excitatory and inhibitory inputs, respec-
tively. Eq. (8) thus represents a leaky interaction between time-
varying excitatory and inhibitory signals. Membrane or shunting
equations additionally have properties of automatic gain control
and self-normalization. Some model cells exhibit additive dynam-
ics, which is a special case of the shunting equations where gain
control effects are not significant, and one type has habituative
dynamics. The model network obeys a large system of simulta-
neous first-order, nonlinear differential equations, so analytic solu-
tions are not feasible. Instead, cell dynamics were numerically
integrated in MATLAB 7.1 using the forward Euler method with a
fixed time-step of 0.001s. This time-step was small enough to guar-
antee numerical stability. In particular, the activity of each cell V in
the model was monitored through time to check if it remained
within its firing range, namely between �d and c, in order to detect
any potential divergences, and we never found any. Model stages
until MST (see Fig. 1) are organized in a columnar architecture,
with each column processing eight equally spaced directions at a
spatial location. A total of about 180,000 cells were engaged for
the simulation of each trial, and a total of 3000 trials were simu-
lated (500 trials/coherence, 6 coherences).

A.3. Model processing stages

The following cell types and interactions model the processing
stages from Retina to cortical area LIP that are summarized in
Fig. 1. The design of the cells in the motion processing stages of
the model (i.e., model stages until MST) are adapted from Berzh-
anskaya et al. (2007) and Grossberg et al. (2001). The activities of
all cells at rest are initialized to zero unless otherwise noted. The
notation [ ]+ is used to denote half-wave rectification.

A.3.1. Change-sensitive receptors: Non-directional transient cells
Model non-directional transient cells (Grossberg et al., 2001)

simplify how magnocellular cells in Retina and lateral geniculate
nucleus (LGN) transiently respond to temporal luminance changes
in the visual input. Magnocellular ON and OFF cells give transient
responses to bright stimulus onset and offset or dark stimulus off-
set and onset, respectively (Baloch et al., 1999; Schiller, 1992).
Non-directional ON transient cell activities bij at each spatial loca-
tion (i,j) are modeled as follows:

bij ¼ ½xijzij � hb�þ: ð9Þ

In Eq. (9), cell activities xij perform shunted, and thus bounded, lea-
ky integration of input luminance increments Iij:

dxij

dt
¼ A1ð�B1xij þ ð1� xijÞIijÞ: ð10Þ

The output from cell activity xij is gated by a habituative transmitter
zij which is initially fully accumulated at 1. Non-zero activation xij

results in habituation, or depression, of the transmitter gate zij

according to the following equation (Grossberg, 1972, 1980):

dzij

dt
¼ A2ð1� zij � K2xijzijÞ: ð11Þ

When a non-zero input Iij turns on, xij in Eq. (10) approaches 1 with
a rate proportional to (1 � xij)Iij, balanced by passive decay to 0 at a
rate proportional to �B1xij. As xij grows, the transmitter zij begins to
habituate, or depress. When Iij shuts off, xij returns to 0, whereas zij

recovers to 1. These inverse changes in xij and zij create a transient
pulse of activation in their product xijzij in Eq. (9). The output
threshold hb in Eq. (9) ensures that the duration of a typical non-
directional transient cell signal is roughly about 50 ms (Kaplan &
Benardete, 2001). Parameters are A1 = 1, B1 = 10, A2 = 1, K2 = 50,
and hb = 0.1.

These transient responses are sensitive to the contrast of the
moving dots; i.e., the magnitude of Iij, but are insensitive to the
duration for which stimulus turns on or off beyond a critical dura-
tion (see Fig. 2). ON and OFF transient cells code the leading and
trailing edges, respectively, of a moving bright object (Schiller,
1992). Here, only ON cells sensitive to luminance increments are
simulated for simplicity. Modeling OFF cells and their cross talk
with ON cells becomes crucial if the model primate were to judge
the direction of second-order motion, such as contrast-reversing or
reverse-phi motion stimuli (Anstis, 1970; Anstis & Rogers, 1975;
Baloch et al., 1999; Chubb & Sperling, 1989).

A.3.2. Directional transient cells
Two cell types interact to realize directional selectivity at a

wide range of speeds, directional transient cells, which generate
output signals, and directional inhibitory interneurons which influ-
ence these directional output signals (Grossberg et al., 2001). This
predicted interaction is consistent with rabbit retinal data concern-
ing how bipolar cells interact with inhibitory starburst amacrine
cells and direction-selective ganglion cells, and how starburst cells
interact with each other and with ganglion cells (Fried, Münch, &
Werblin, 2002). The predicted role of starburst cells in ensuring
directional selectivity at a wide range of speeds has not yet been
tested. The motion circuits in the model are sensitive to 8 equally
spaced directions (Right, Top Right, Top, Top Left, Left, Down Left,
Down, Down Right).

Directional inhibitory interneuron (cf., starburst amacrine cell)
activities cd

ij integrate transient cell inputs bij as follows:

dcd
ij

dt
¼ A3ð�cd

ij þ C3bij � K3½cD
XY �
þÞ: ð12Þ

In all equations starting now, superscript d denotes the directional
preference of the cell. These interneurons receive excitatory inputs
from transient non-directional cells bij at the same position, and
inhibition from directional interneurons ½cD

XY �
þ of opposite direc-

tional preference D at the position (X,Y) which is offset by 1 unit
from (i,j) in the direction d. For example, for the direction of motion
/ ¼ p

4, X = i + 1, Y = j + 1, and D refers to / ¼ 5p
4 . Inhibition is a lot

stronger than excitation (K3 > C3) so that a directional signal can
be vetoed or at least greatly suppressed if the stimulus arrives from
the null direction (Barlow & Levick, 1965). This arrangement results
in excitation that lags behind inhibition temporally. Parameters are
A3 = 5, C3 = 5, and K3 = 20.

Directional transient cell (cf., ganglion cell) activities ed
ij in the

next layer combine transient inputs bij with inhibitory interneuro-
nal signals ½cD

XY �
þ.

ded
ij

dt
¼ A4 �ed

ij þ C4bij � K4½cD
XY �
þ

� �
; ð13Þ

and they generate rectified output signals:

Ed
ij ¼ ½ed

ij � he�þ: ð14Þ

This circuit is depicted in Fig. 8 of Grossberg et al. (2001). Parame-
ters are A4 = 50, C4 = 5, K4 = 20, and he = 0.2. Output threshold he in
Eq. (14) ensures that the duration of directional transient cell out-
puts is about 70 ms. Directional inhibitory interneurons operate
on a slower time-scale (A3 < A4) so that directional selectivity is ex-
tracted despite slower speeds.

A.3.2.1. Directional short-range filter. Short-range filter cell activi-
ties f d

ij in V1 spatio-temporally accumulate motion in each direc-
tion d as follows:
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df d
ij

dt
¼ A5 �f d

ij þ
X
XY

Ed
XY Gd

XYij

 !
: ð15Þ

In Eq. (15), Ed
ij is the rectified directional transient cell output (Eq.

(14)), and Gd
XYij is an anisotropic Gaussian kernel whose major axis

is aligned with the preferred direction of motion d, and centered
at (i,j):

Gd
XYij ¼

G
2prxry

exp �0:5
½X � i� cosð/Þ þ ½Y � j� sinð/Þ

rx

� �2
  

þ �½X � i� sinð/Þ þ ½Y � j� cosð/Þ
ry

� �2
!!

; ð16Þ

where the kernel has values G = 100, rx = 2, ry = 0.5, and / ¼ d�1
4

� �
p.

Short-range filter cells are thresholded and rectified:

Fd
ij ¼ ½f d

ij � hf �þ ð17Þ

with output threshold hf = 0.5. This threshold value ensures that,
when a dot moves, only the true direction of the dot survives. The
short-range filter can thus accumulate directional evidence from a
succession of individually activated directional transient cells.
Parameter A5 = 0.5.

A.3.3. Spatial and opponent directional competition
Directional signals are influenced by two types of competition,

which help to amplify feature tracking signals especially at motion
discontinuities: spatial competition within each direction contrast
enhances more active cells within a spatial range that is defined by
an on-center anisotropic Gaussian kernel Jd

XYij, and an off-surround,
offset isotropic Gaussian kernel KXYij. Directionally opponent cells
at each location compete as well, generating a push–pull effect. Both
types of competition act through shunting terms that divisively
normalize cell activities. These competing cell activities hd

ij obey:

dhd
ij

dt
¼A6 �hd

ijþð1�hd
ijÞ
X
XY

Fd
XY Jd

XYij�ðh
d
ijþ0:5Þ

X
XY

Fd
XY KXYijþK6FD

ij

" # !
:

ð18Þ

The anisotropic excitatory kernel Jd
XYij obeys:

Jd
XYij ¼

J
2prxry

exp �0:5
X � i
rx

� �2

þ Y � j
ry

� �2
 ! !

: ð19Þ

For horizontal motion directions / = 0 and / = p, the kernel has val-
ues rx = 3 and ry = 1. Kernels for other directions are obtained by
rotation as in Eq. (16). The isotropic inhibitory kernel KXYij is:

KXYij ¼
K

2pr2 exp �0:5
ðX � i0Þ2 þ ðY � j0Þ

2

r2

 ! !
ð20Þ

with r = 4. The center (i0,j0) of the off-surround kernel KXYij is offset
from (i,j) by 1 U in the direction D which is opposite to the cell’s pre-
ferred direction d. This arrangement results in inhibition that trails
excitation spatially. The activities hd

ij are half-wave rectified to gen-
erate the output signals:

Hd
ij ¼ ½h

d
ij�
þ: ð21Þ

Parameters are A6 = 5, K6 = 1, J = 75, and K = 75.

A.3.4. Directional long-range filter
Middle temporal area (MT) cells md

ij receive a combination of
excitatory bottom-up inputs Nd

ij that filter the output signals from
the competition stage Hd

ij through a long-range anisotropic Gauss-
ian filter Ld

XYij:

Nd
ij ¼

X
XY

Hd
XY Ld

XYij; ð22Þ
and top-down matching signals ½Te
XY �
þ from medial superior tempo-

ral area (MST):

dmd
ij

dt
¼ A7ð�md

ij þ ð1�md
ijÞN

d
ij � ðmd

ij þ 0:5Þ

�
X

e

X
XY

wde½Te
XY �
þPXYijÞ þ r0

dW0

dt
: ð23Þ

In Eq. (23), W0 is a Brownian motion process that injects noise into
MT dynamics, and parameter r0 scales the standard deviation of the
Brownian process. A similar noise process influences MST responses
too (Eq. (28)). The simulations in Figs. 5–14 did not activate noise in
MT/MST, and hence r0 was set to zero. In the simulations shown in
Fig. 15, MT/MST had their noise terms activated. Two different val-
ues of r0 were used: 0.1 and 0.5. The first value is about the same as
that used in LIP (r = 5), but scaled for the different activity ranges

5� ð80�0Þ
ð1�ð�0:5ÞÞ ¼ 0:0938 � 0:1

� �
.

The long-range filter Ld
ijXY for horizontal motion directions / = 0

and / = p obeys:

L/¼0;p
XYij ¼

L
2prxry

exp �0:5
X � i
rx

� �2

þ Y � j
ry

� �2
 ! !

ð24Þ

with rx = 10 and ry = 3. The major axis of the kernel is along the pre-
ferred direction d. Kernels for other directions are obtained by rota-
tion as in Eq. (16). Note that the long-range filter Ld

XYij is larger in
spatial scale than the short-range filter Gd

XYij. The spatial extent of
top-down MST feedback is determined by an inhibitory Gaussian
filter PXYij:

PXYij ¼
P

2pr2 exp �0:5
ðX � iÞ2 þ ðY � jÞ2

r2

 ! !
ð25Þ

with r = 8. Biased competition among all motion directions, which
is important for aperture problem resolution, happens within MT
and MST. Accordingly, inhibition is received from all directions ex-
cept d. The inhibitory weight wde in Eq. (23) between direction d
and another direction e is given by:

wde ¼
0; e ¼ d

1; e 6¼ d;D

2; e ¼ D

8><
>: ; ð26Þ

where D is the direction opposite to d. Since the excitatory input Nd
ij

is from the preferred direction, this directionally asymmetric inhibi-
tion tends to amplify d and suppress other motion directions,
including the opponent direction D. MST-to-MT feedback is thus
modeled by a modulatory on-center, off-surround network, a type
of top-down attentive matching signal that can also explain how
directional selectivity is learned (Grossberg, 2003). As a result of
this process, the degree to which a direction at a given location is
directly suppressed or indirectly boosted depends on the spatial
distance from a feature tracking signal, and its consistency with
the feature tracking direction. Surviving directional signals from
MST try to select the consistent direction in MT and propagate that
direction across space via the inhibitory kernel PXYij. In the dots task,
the effectiveness of this selection and propagation process depends
on percent coherence or motion strength. The output signals from
the long-range filter stage obey:

Md
ij ¼ ½md

ij�
þ
: ð27Þ

Parameters are A7 = 10, L = 10, and P = 1.
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A.3.5. Directional grouping
MST activity Td

ij is described by

dTd
ij

dt
¼A8 �Td

ijþð1�Td
ijÞC8Md

ij�ðT
d
ijþ0:5Þ

X
e

X
XY

wde½Te
XY �
þPXYij

 !

þr0
dW0

dt
: ð28Þ

In Eq. (28), the bottom-up input Md
ij is the rectified MT output.

Recurrent MST inhibitory connections help to select a winning
direction to be fed back to MT. The spatial extent and directional
asymmetry of this inhibitory interaction are again defined by kernel
PXYij and weighting coefficients wde in Eqs. (25) and (26), respec-
tively. Parameters are A8 = 10 and C8 = 10. As in Eq. (23), MST was
subjected to cellular noise via term W0 in the simulations reported
in Fig. 15.

The self-normalizing directional activities in MT and MST are
sensitive to the ambiguity inherent in the random dot motion
stimulus, as shown by model simulations (see Fig. 11). They are
spatially distributed, as are the moving dots that excite them. LIP
processing receives these spatially distributed directional signals
and converts them into probabilistic directional eye movement
commands, as follows.

A.3.6. Decision cells and decision gating
Lateral intraparietal area (LIP) firing rate dynamics are related

to the speed and accuracy of perceptual decisions in random dot
motion direction discrimination tasks. LIP shows decision-related
activity because monkeys have been trained to communicate their
decision about the motion direction with an eye movement to the
appropriate choice target. LIP is known to be an association area,
where visual, cognitive, and saccadic signals all play a role. We
model two LIP populations representing the two choice targets
using a recurrent competitive field (RCF). The LIP equation for
the RT task (Roitman & Shadlen, 2002) is as follows:

dyd

dt
¼ � A9yd þ ðB9 � ydÞ kSd þ TC þ gdf ðydÞ þ Gd½ � � yd½g2hðyDÞ þ GI�

þ r
dW
dt

; ð29Þ

where yd is the activity of the LIP population that codes direction d,
Sd represents the population activity of the foveal MST pool tuned to
direction d, namely:

Sd ¼
X
XY

½Td
XY �
þ
; ð30Þ

TC is the bottom-up input due to the presence of the visual target
within the receptive field of each LIP population, f(yd) is the recurrent
on-center feedback signal, Gd is an excitatory, higher level input
which is only invoked to make a forced choice, especially after a rea-
sonable time has elapsed without a decision, yD is the activity of the
LIP population with the opponent motion preference, h(yD) is the
recurrent off-surround feedback signal, GI is an inhibitory, higher le-
vel signal which causes inhibition after the eyes start moving, W is a
Brownian motion process that simulates the stochastic components
of LIP activity, r2 scales the variance of the Brownian motion process,
and gd and g2 are gains of the recurrent on-center and off-surround
terms, respectively. The value of the visual signal TC is chosen so that
the two LIP population activities equilibrate at an activity h before the
onset of the dots, as in the data:

TC ¼
h½A9 þ g2hðhÞ�

B9 � h
� gdf ðhÞ: ð31Þ

The above-baseline activity h is attributed to the presence of the
choice target within the receptive field of the LIP population. The
excitatory recurrent signal is defined by:
f ðxÞ ¼ xn

ln þ xn
: ð32Þ

Basal ganglia (BG) gate both the competing saccade plans from real-
ization. When the activity of either population (say direction d)
reaches the decision threshold C1, the BG are assumed to open a
movement gate that switches the gain gd to gBG. As a result, the activ-
ity of that population is rapidly amplified, thereby simulating the
pre-saccadic enhancement in activity seen for about 100 ms before
the eyes start moving. The inhibitory recurrent signal is defined by:

hðxÞ ¼ xm

lm þ xm
: ð33Þ

Parameters are A9 = 1, B9 = 80, k ¼ 5
60�60 ¼ 1:39� 10�3, gd = 2, g2 = 5,

gBG = 10, l = 50, n = 5, m = 10, C1 = 55, r = 5, and h = 35 (estimated
from data).

Inputs Gd and GI in Eq. (29) are initially equal to zero. When
either activity (yd or yD) reaches C2 = 70 (see Figs. 7, 9, and 11 in
Roitman & Shadlen, 2002), the eyes begin to move, as can be seen
in the data. Post-saccadic suppression from FEF post-saccadic cells
now comes into play by turning GI on from 0 to 30. Reaction time
(RT) in each trial is recorded as the time from motion onset until
when either activity yd or yD crosses C2; that is, when the choice
saccade is actually initiated. The random dot motion display turns
off upon saccade onset. We assume post-saccadic suppression, and
decay due to loss of sensory inputs, reset LIP activities to zero be-
fore a new trial begins. The value for the parameter B9 is chosen as
C2 + 10, so that the LIP cell activity yd can exceed criterion level C2.
The value of C1 is also chosen from data by identifying the level of
firing in the RT task for correct Tin choices, after which differences
in input motion strength do not seem to play a role.

Sometimes, neither activity can reach threshold C1 in a reason-
able time (about 1 s). The model is then forced to make a choice, as
follows: if for some random time between 1000 ms and 1100 ms,
the model has not taken a decision, then the direction d corre-
sponding to the greater LIP activity is chosen by turning on Gd from
0 to 2gd. Simulations done without this volitional mechanism at
work are reported in Fig. 13.

Since the Brownian motion process W(t) in Eq. (29) is an inde-
pendent increments process, the increments [W(t) �W(s)] are
zero-mean, Gaussian random variables with variance t � s for
t > s. Thus at each time step (Dt = 0.001s) of numerical integration,
a zero-mean, Gaussian random variable of variance r2Dt is added
to the evolving LIP activity. The same is true in Eq. (34) below.

The FD task simulations use the same equation:

dyd

dt
¼ �A9yd þ ðB9 � ydÞ½kSd þ TC þ gdf ðydÞ� � yd½g2hðyDÞ þ GI�

þ r
dW
dt

: ð34Þ

The various parameters here have the same meaning as those de-
scribed for the RT task. Experimental data from two FD tasks (Roit-
man & Shadlen, 2002; Shadlen & Newsome, 2001) are simulated.
First, we model the 2002 FD task which was done on the same ma-
caques in alternating blocks of trials with the RT task. In this task,
the dots turn off after 1 s of viewing. The monkey needs to make
a choice based on all evidence accumulated in the 1 s. Thus, the
model monkey basically chooses that direction with the greater
LIP activity at the end of the motion viewing period. The passive de-
cay rate A9 is given a slightly higher value (4.5) for the FD task; see
Section 3.2. In the 2002 FD task, the monkeys have to remember
their choice during an ensuing delay period, whose duration is var-
ied randomly between 500 ms and 1500 ms, before the fixation
point is extinguished, which cues the monkey to go ahead with
the chosen saccade. This is enabled by a jump in the recurrent
on-center gain gd of the judged direction d to gdelay at the end of
the motion stimulus viewing period. As a result, activity yd is pre-
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vented from being attenuated during the delay period, and also
builds up slowly, as observed in the data. When the fixation point
turns off, the basal ganglia are assumed to open the gate for the
appropriate saccade plan, which results in the typical pre-saccadic
enhancement in activity. This is realized by a further, instant gain
boost for the on-center gain gd to gBG. Post-saccadic inhibition is
triggered when yd crosses C2 = 70 by turning on GI from 0 to 30 just
as in the RT task. Parameters gdelay and gBG are 9 and 35.

The 2001 FD task recorded from different monkeys and hence
different LIP populations. The LIP responses during the task were
therefore somewhat different, for example in the dynamic range
of firing (0 � C2 Hz), and in the above-baseline firing due to the
presence of the target before the onset of dots (h). Accordingly,
the simulated LIP decision circuit was the same as that of the
2002 FD task, but some parameters were not: A9 = 5, B9 = 60,
k ¼ 3

60�60 ¼ 8:33� 10�4, gd = 2, g2 = 7.5, l = 25, n = 5, m = 10, r = 5,
h = 15, C2 = 50. The values for h and C2 were again chosen from data
(see Figs. 8 and 12 in Shadlen & Newsome, 2001), and B9 = C2 + 10.
In this FD task, the delay period duration is randomly chosen be-
tween 200 ms and 2000 ms. The recurrent on-center gain gd asso-
ciated with the chosen direction d jumps from 2 to 5.5 (gdelay) at
the start of the delay period, and then to 25 (gBG) when the FP is
turned off. As in the other task simulations, post-saccadic inhibi-
tion begins when yd crosses C2, which turns on GI from 0 to 30.

A.4. Psychometric function

For each task, the simulated proportion correct data, p(C), de-
fined to be the fraction out of 500 trials at each percent coherence
C, is fit with a cumulative Weibull distribution function for two-
alternative, forced choice tasks:

pðCÞ ¼ 1
2
þ 1

2
1� exp � C

a

� �b
" # !

ð35Þ

using a maximum likelihood estimation procedure presented in
Myung (2003). Parameter a is the threshold of the psychometric
function, and corresponds to the coherence level that elicits �82%
accuracy. Parameter b controls the steepness of the psychometric
function. Since there are just two alternatives, the Weibull function
yields a chance performance of 0.5, or 50%, at 0% coherence
pð0Þ ¼ 1

2

� �
.
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