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Neural control of interlimb oscillations

I. Human bimanual coordination
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Abstract. How do humans and other animals accomplish
coordinated movements? How are novel combinations of
limb joints rapidly assembled into new behavioral units that
move together in in-phase or anti-phase movement patterns
during complex movement tasks? A neural central pattern
generator (CPG) model simulates data from human biman-
ual coordination tasks. As in the data, anti-phase oscillations
at low frequencies switch to in-phase oscillations at high fre-
quencies, in-phase oscillations occur at both low and high
frequencies, phase fluctuations occur at the anti-phase in-
phase transition, a "seagull effect" of larger errors occurs
at intermediate phases, and oscillations slip toward in-phase
and anti-phase when driven at intermediate phases. These
oscillations and bifurcations are emergent properties of the
CPG model in response to volitional inputs. The CPG model
is a version of the Ellias-Grossberg oscillator. Its neurons
obey Hodgkin-Huxley type equations whose excitatory sig-
nals operate on a faster time scale than their inhibitory sig-
nals in a recurrent on-center off-surround anatomy. When
an equal command or GO signal activates both model chan-
nels, the model CPG can generate both in-phase and anti-
phase oscillations at different GO amplitudes. Phase transi-
tions from either in-phase to anti-phase oscillations, or from
anti-phase to in-phase oscillations, can occur in different pa-
rameter ranges, as the GO signal increases.

1 In-phase and anti-phase bimanual coordination

Humans and other animals effortlessly control their limbs
to accomplish coordinated movements. In particular, novel
combinations of joints can be rapidly assembled into new
behavioral units, or synergies, that are capable of moving to-
gether in in-phase or anti-phase movement patterns to carry
out complex movement tasks like tool use, dancing, piano
playing, and the like. In order to study this competence, an
experimental paradigm was previously developed in which
humans were asked to move fingers from both hands at
variable frequencies and to do so in in-phase or anti-phase
rhythms. Data from these experiments exhibit characteristic
properties which provide clues to how new combinations of
joints can be rapidly bound together to generate coordinated
movement patterns.

This article describes a neural network model that sug-
gests how novel joint combinations can be rapidly bound
together in rhythmic patterns. These patterns are emergent
properties due to network interactions. They are not explic-
itly represented or programmed in the network. The model
simulates parametric properties of human movement data as
emergent, or interactive, properties of nonlinear network in-
teractions. This network takes the form of a central pattern
generator (CP) that coordinates the movement across limb
joints when volitional input signals perturb the network.

For example, in a bimanual finger tapping task, Yaman-
ishi et al. (1980) required subjects to tap keys in time to
visual cues. The timing of the cues was varied across ten
relative phases: (0.0,0.1,0.2,... 1.0), where 0.0 = 0° and
1.0 = 360°. The authors observed two properties in the re-
sponses of their subjects. First, the subjects' fingers tended
to slip from intermediate relative phase relationships toward
purely in-phase (0.0 and 1.0) or anti-phase (0.5) relation-
ships. Second, the observed in-phase and anti-phase oscil-
lations exhibited less variability than intermediate phase re-
lationships. That is, when the subjects were asked to syn-
chronize to signals whose phase relationships varied from
0.0 to 1.0, the standard deviation of the errors was lowest
when the phase relationship was near in-phase (0.0 and 1.0)
or pure anti-phase (0.5). The standard deviation of the errors
increased as the subjects were required to move away from
the in-phase or pure anti-phase oscillations. These two prop-~
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Fig. 1. A An example illustrating both the "seagull"
effect and the tendency to slip from intermediate phase
relationships toward purely in-phase and anti-phase re-
lationships (reprinted with permission from Yamanishi
et al. 1980), B The model eJthibits the "seagull" ef-
fect: intermediate phase relationships are more variable
than purely in-phase or purely anti-phase relationships,
The standard deviation (SD) of the observed relative
phases is plotted against the required relative phase.
The model exhibits the tendency to slip from interme-
diate phase relationships toward purely in-phase and
anti-phase relationships. This plot shows the mean of
the (obser\'ed-required) phase, There are 145 points per
mean
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anti-phase to in-phase movements (Kelso 1984; Kelso and
Scholz 1985).

The CPG model reliably reproduces all four effects in
our simulations; see Figs. 2 and 3. In order to simulate these
four properties, the model was presented with a pulsed wave
anti-phase oscillatory input to each channel, as shown in
Fig. 2A. These pulsed inputs represent the descending voli-
tional commands to move the fingers as required. The square
waves were either equal to a constant input level when on,
or set to zero when off. The input level and the duration of
the "on" portion of the signal were held constant for each of
the simulations. For each simulation, only the frequency of
these pulses was varied. The duration of the "on" portion of
the signals was 2.0 in all simulations. Shorter duration sig-
nals did not reliably produce oscillations in both channels.
In order to generate .Fig. 2, we computed, for 145 points,
the relative phases of the output signals using the times at
which they exceeded a threshold. As the frequency was var-
ied, the model showed a switch from anti-phase (Fig. 2B)
to in-phase (Fig. 2D) oscillations. The system also exhibited
fluctuations in which no clear phase relationship dominates
in between these regimes (Fig. 2C). As in the data, the re-
verse transition in response to in-phase inputs did not occur

(Fig. 3).

2 The CPG model

The CPG model uses ubiquitously occumng physiological
mechanisms, notably model nerve cells, or cell populations,
that obey membrane equations (Hodgkin 1964), also called
shunting equations (Grossberg 1982). These neurons are con-
nected by a recurrent on-center off-surround network, a de-
sign that is also ubiquitous in the nervous system (Grossberg
1982; Kandel et al. 1991; Kuffler 1953; Ratliff 1965; Yon

erties were also observed by Schoner and Kelso (1988) and
by Tuller and Kelso (1989). The appearance of the plot of the
standard deviation of the errors has been called the "seag-
ull effect" (Tuller and Kelso 1989); see Fig. lA. The CPG
model exhibits the seagull effect, as well as the slip toward
pure in-phase and pure anti-phase oscillations (Fig. IB).

Kelso (1981) described a related experimental task in
bimanual coordination which involved moving fingers or
limbs in in-phase or anti-phase oscillations. For example,
adduction of the right index finger simultaneously with ab-
duction of the left index finger is an anti-phase movement.
Concurrent abduction (or adduction) of both fingers is an
in-phase movement. The rate of movement of the fingers
was signaled by a metronome. The following fundamental
qualitative behaviors emerge from the body of the bimanual
finger movement data for normal subjects:

(1) Subjects are capable of producing a variety of rel-
ative phases at low frequencies. However, the underlying
oscillation generation mechanism is biased in favor of in-
phase and anti-phase relationships (Yamanishi et al. 1980)
as shown by the seagull effect described above and by a ten-
dency to slip from intermediate phase relationships toward
in-phase or anti-phase relationships.

(2) Subjects are capable of performing purely in-phase
movements at both low and high frequencies for biman-
ual wrist movements (Kelso 1984) and for bimanual finger
movements (Tuller and Kelso 1989).

(3) Subjects do not have complete conscious control over
their movements under the conditions of the bimanual co-
ordination experiments. In particular, though subjects could
perform anti-phase movements at low frequencies, they ex-
hibited a spontaneous switch to an in-phase relationship at

higher frequencies (Kelso 1984).
(4) The relative phase of the movement produced by the

subject often fluctuates during a spontaneous switch from
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phase oscillation in response to anti-phase in-
puts of increasing frequency. The anti-phase
inputs Ii in A give rise to the anti-phase os-
cillation in B. The input frequency in A is
low, 0.1 pulses per unit time (a pulse turns
on every 10 time units); C at intermediate in-

put frequencies (0.65), fluctUations occur; D
at high input frequencies (0.85), in-phase os-
cillations are obtained. A = 1.0, B = 1.1,
C = 2.5, Dii = 0.8, Dij = 0.45, i f j,
E = 1.0, F. = 9.0, G. = 3.9, F2 = 0.5,
G2 = 0.5. The duration of each pulse was

2.0. The integration step size was 0.00 I. The
initial conditions were reset to zero before
each run. The LSODA numerical integration

package (Petzold and Hindmarsh 1987) pro-
vided accurate numerical integration through-

out. LSODA "solves systems * = f with
full or bounded Jacobian when the problem
is stiff, but it automatically selects between
non-stiff (Adams) and stiff (BDF) methods. It
uses the non-stiff method initially, and dy-
namically monitors data in order to decide
which method to use." (Isoda. netlib docu-
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ically active nonspecific signal of the same amplitude that is
input equally to all the cells. Such a nonspecific input may
be called an arousal or GO signal. It represents the simplest
type of volitional signal that can activate network oscilla-
tions. The model's ability to resolve a temporally changing
input signal is inversely related to its frequency. Suppose
that the model exhibits a prescribed phase response to a sus-
tained GO signal. Then the output of the system converges to
this response when increasing high-frequency inputs of the
same amplitude are used, irrespective of the phase relation-
ships among the inputs. How such a GO signal influences
model dynamics is thus studied below.

Before turning to a discussion of GO signal control, a
remark about how afferent feedback may alter the present
results is in order. Including an afferent feedback signal from
the limbs, say from tactile sensations, proprioception, or joint
receptors, may not necessarily improve the ability of such
a CPG to stay phase-locked to a time-varying input signal.
The afferent signal will either overlap in time with the input
signal or it will not. If it does overlap, suppose to be def-
inite that it increases the amplitude of the input. Increased
amplitude has not, in our simulations, improved the ability
of the model to accurately follow the phase of the input.
On the other hand, if the efferent signal lags the input, then

Bekesy 1968) and that has been used to explain other types
of motor behavior (Pearson 1993). In particular, the cells ex-
cite themselves via fast feedback signals while they inhibit
themselves and other populations via slower feedback sig-
nals (Fig. 4). Such slow inhibition is well-known to occur in
sensory-motor systems; see, for example, Dudel and Kuffler
(1961) and Kaczmarek and Levitan (1987). When a subset
of model cells is driven by anti-phase inputs or by in-phase
inputs of increasing frequency, as in Figs. 2 and 3, then
the network interactions generate the observed properties of
variable frequency finger movements as emergent proper-
ties of the entire network. Our main result is thus to show
how the emergent properties of ubiquitous physiological and
anatomical mechanisms give rise to behavioral properties of
movement. This approach is distinguished from models that
are expressed directly in tenns of operating characteristics
of the data, such as the phase angle of the limbs (Kelso et
al. 1988; Schoner et al. 1990; Yamanishi et al. 1980; Yuasa
and Ito 1990).

The Kelso data and our simulations suggest the predic-
tion that this type of opponent cpa acts as a kind of nonlin-
ear low pass filter; that is, at high frequencies of stimulation,
the output of the system converges to the response obtained
from the network when pulsed inputs are replaced by a ton-

! 
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Fig. 3.-\-D. As the frequency of the in-phase
inputs is parametrically increased. the oscilla-
tor output also stays in-phase: No bifurcations
occur. The in-phase input shown in A pro-
duces the output shown in B. The in-phase
output for inputs with higher frequency in-
phase oscillations are shown in C and D. The
parameters and input frequencies are as in
Fig. 2. except the input is always in-phaseC> 20 4-<:> ~C>
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Fig. 4. The central pattern generator (CPG) is defined by a recurrent on-
center off-sun'ound network whose cells obey membrane, or shunting, equa-
tions. See text for details

this signal tends to increase the frequency of the total input
to the oscillator, both afferent and efferent, and thus helps
to favor the rhythm that would be generated by a tonically
active GO signal.

In the limit of high input frequencies, afferent signals
could alter the dynamics of the system, since the type of
oscillation that is produced by a GO signal does depend upon
its amplitude, as will be shown below. This effect, however,
does not improve the system's ability to remain phase-locked
to the input, since the amplitude of the GO signal, not the
phase of the inputs, would determine the result.

GO signal control has been used in other models of bio-
logical motor control, notably ones of how the brain controls
variable-speed reaching behaviors (Bullock and Grossberg
1988, 1991). In these models, the GO signal calibrates the
speed of a phasic reaching movement by a limb such as
an ann. In the present example, the GO signal calibrates
movement speed by increasing oscillation frequency. The
same GO signal can also trigger bifurcations between dif-
ferent oscillatory patterns, or gaits. Thus, GO signal con-
trol is of interest for understanding both the high-frequency
movements in response to temporally oscillatory inputs as
well as the gaits generated at all frequencies in response to
temporally steady inputs. Whenever the volitional signal is

realized by a single GO signal, we call the model a GO gait
generator, or G3 model.

3 The ElIias-Grossberg oscillator

The G3 model belongs to a more general class of CPG
models that is closely related to the model of Ellias and
Grossberg (1975). In the Ellias-Grossberg model, the exci-
tatory signals but not the inhibitory signals are coupled to
a membrane equation, or shunting, interaction. We found it
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Fig. S. A plot of the oscillatory regions at different arousal levels for vari-
ous choices of inhibitory coefficients. The relative phases were determined
automatically by an algorithm which compared the relative times when the
channels exceeded an output threshold, set here to 0.35. The initial condi-
tions were not reset to 0 as I increased, but only at the beginning of each
run, when the inhibitory coefficients were changed. The other parameters
(A = 1.0, B = 1.1. C = 2.5, E = 1.0, FI = 9.0, GI = 3.9, F1 = 0.5,
G2 = 0.5) were chosen as in Fig. 2

term a(xi) and approaches a voltage-dependent asymptote
fJ(Xi), both of which increase with voltage Xi.

The notation in (5) and (6) is consistent with the follow-
ing biophysical interpretations of (1) and (2). Variable Xi
computes the activity, or potential, of an excitatory neuron,
or neuron population, and Yi is the activity, or potential, of an
inhibitory interneuron, or interneuron population. Equations
(1) and (2) may also be given an intracellular interpreta-
tion wherein Yi controls a slow inhibitory intracellular con-
ductance, rather than a separate inhibitory interneuron. As
noted above, the excitatory and inhibitory activities obey a
membrane or, shunting, equation (Grossberg 1982; Hodgkin
1964). The excitatory and inhibitory feedback signals f(Xi)
and g(Xj), respectively, are rectified sigmoids, as in (4). Each
Xi excites only itself, whereas inhibition may occur via the
lateral inhibitory coupling terms Dijg(Yj) in (1). The in-
put terms Ii represent volitional input signals. When only a
scalar GO signal perturbs the network, all Ii = I.

Oscillations in such a network occur only when the in-
hibitory interneuronal rate E in (2) is sufficiently small. In-
deed, when E is sufficiently large, Yi tracks Xi in (2). Then
Yi may be replaced by [Xi]+ /(1 + [Xi]+) in (I), and the net-
work (1) approaches an equilibrium point under very general
conditions on f and 9 if the coefficients Dij are symmet-
ric (Cohen and Grossberg 1983; Hirsch 1989). Addition of
the shunting term -Yi[Xi]+ in (2), that makes a(Xi) voltage-
dependent in (6), is needed to generate some gait transitions,
such as the transition from the walk to the run in bipeds that
is simulated in Pribe, Grossberg, and Cohen (1997).

4 Simulations of bidirectional phase reversals
as the GO signal increases(1)

and

(2)

where
[UJ]+ = max(UJ,O) (3)

and

As noted in Sect. I, coordinated finger movements can
switch from anti-phase to in-phase oscillations as the os-
cillation frequency increases. It is known, more generally,
that interlimb oscillations can bifurcate between anti-phase
and in-phase oscillations in either direction. As in the case of
finger movements, Grillner and Zangger (1979) have shown
that, in the deafferented spinal cat, hind limbs move from
anti-phase to in-phase movement as a function of increasing
level of stimulation. However, the phase relationship of the
transverse limbs of a free roving quadruped can switch from
in-phase movement to anti-phase movement with increasing
speed, as when a switch from a trot to a pace occurs; see
Pribe, Grossberg, and Cohen (1997). How can a single CPG
generate transitions both from in-phase to anti-phase move-
ments and from anti-phase to in-phase movements as the
oscillation frequency increases with increases in volitional
signals, particularly a single GO signal?

For this to occur in a quadruped, control of four limbs
or movement channels is required. Here, we first show how
this can happen in a simpler two-channel CPG, as in Fig. 4,
where I I = h = I = the GO signal. Such a two-channel
CPG network can exhibit both in-phase and anti-phase os-
cillations such that anti-phase oscillations precede in-phase,
or vice versa, in different parameter ranges (Fig. 5) as the
oscillation frequency increases. As illustrated in the com-
puter simulations shown in Fig. 6, a change in the inhibitory
cross-coupling strengths Dij' i # j, coupled with an in-

d
d'iYi = a(Xi)[,8(Xi) -Yi] (6)

where a(Xi) = 1 + [Xi]+ and (3(Xi) = [Xi]+ /(1 + [Xi]+). Thus,
the slow conductance Yi is gated by a voltage-dependent rate

necessary for both the excitatory and the inhibitory signals
to be coupled to shunting membrane processes to simulate
all the data patterns that are presented below and in Pribe,
Grossberg, and Cohen (1997). Such a CPG model obeys the
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Fig. 6. Frequency plots for: A in-phase
to anti-phase oscillations (Dii = 0.8.
Dij = 0.45) and B anti-pha.~ to in-
phase oscillations (Dii = 1.3. Dij =
0.55) as I increases. The initial condi-
tions were reset at each I increment.
and other parameters are as in Fig. 5.
The system approaches an equilibrium
point between its in-phase and anti-
phase regimes in A

(B)(A)

(8)

-(a + x2)[D219(Yt) + D229(Y2)] (9)

and

crease in the self-inhibitory coupling strength Dii tend to
move the system from in-phase-+anti-phase transitions to
anti-phase-+in-phase transitions as the GO signal I is para-
metrically increased. In addition, there is a tendency in some
parameter ranges for anti-phase oscillations to occur at ex-
treme values of I which bracket the intermediate I values
at which in-phase oscillations occur; see Fig. 5.

Figures 7 and 8 illustrate the temporal response of the
oscillator to different levels of arousal I. The same values of
I are used in both figures. Each figure illustrates the effect
of the inhibitory coefficients, chosen as in Fig. 6A and 6B,
respectively, as I is increased. In Fig. 7, in-phase oscillations
(Fig. 7 A-C) precede anti-phase oscillations (Fig. 70,E) as
arousal frequency increases. In Fig. 8, anti-phase oscillations
(Fig. 8A,B) precede in-phase oscillations (Fig. 8C-E). Note
the sharp peaks in the anti-phase waveform in Fig. 8A and B
and compare these with the broad plateau waveforms of the
anti-phase waveform of Fig. 70 and E. In our simulations,
anti-phase oscillations which precede in-phase oscillations
consistently tend to have sharp peaks and those which oc-
cur after in-phase oscillations tend to be plateau-like. This
property illustrates that, in addition to phase and frequency,
waveform shape could be used to differentiate and control
transitions between different gaits which have the same rel-
ative phase, but different qualitative behavior. This property
is used in Pribe, Grossberg, and Cohen (1997) to simulate
differences between a human walk and run, and an elephant
amble and walk. This analysis suggests that anti-phase wave-
form shape may be a useful observable index for where the
system lies in parameter space.

5 Oscillations of a two-channel CPG
with asymmetric parameters

d +dtY2 = E[(1 -Y2)[X2] -Y2] (10)

In such a network, each channel excites itself via terms f(Xi)
and inhibits the other channel, via terms Dijg(Yj), as well
as itself via term Diig(Yi). A casual inspection of such an
opponent organization between channels might have lead to
the erroneous conclusion that it can, at best, generate anti-
phase oscillations. As noted in Figs. 6-8, such a G3 model
can produce both in-phase and anti-phase oscillations as the
GO signal I = II = h is increased, and can do so in either
direction.

Our analysis of how this can happen was based on the
mathematical results of Ellias and Grossberg (1975), who
studied a similar system with symmetric inhibitory cou-
pling (DII = D22 and DI2 = D21), uniform initial data
(Xi(O) = x > 0 and Yi(O) = Y > 0), and uniform inputs
(Ii = I). By symmetry, XI = X2 = X and YI = Y2 = Y for
all time, so the system behaves like the one-channel network
shown in Fig. 9. Ellias and Grossberg (1975) used the Hopf
bifurcation theorem to prove the existence of an oscillatory
regime at intermediate values of I for the one-channel net-
work, and thus the existence of in-phase oscillations in the
two-channel symmetric network. The one-channel network
and two-channel symmetric networks approach equilibrium
at smaller and larger I values.

To design a CPG with both in-phase and anti-phase os-
cillations, one can use a one-channel oscillator as a building
block for constructing a two-channel network that reduces to
the one-channel oscillator when all initial data and parame-
ters are symmetric. To accomplish this, choose the inhibitory
weights Dij in (7) and (9) so that }:::j Dij = D, where D
equals the inhibitory coefficient of the one-channel network

The two-channel CPG model in Fig. 4 is defined by the

equations:

(7)-(a + x\)[D\19(Y,) + D\29(YV]
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and rium is re-established. In the symmetric two-channel ver-
sion of this network, the variables oscillate in-phase (viz,
x = Xl = X2 and Y = Yl = Y2) until an I is reached where
they converge to a stable equilibrium point. One way to gen-
erate a system with both in-phase and anti-phase oscillations

d
dtY = E[(l -y)[x]+ -y] (12)

Let I in (II) be increased from the values at which there are
one-channel in-phase oscillations to values at which equilib-

o_)~: ~\
c--.
><

~O.2S [-1



139

out\~ each channel in place of a single arousal or GO signal, as
shown in Fig. 2A. These pulsed inputs represent the descend-
ing volitional commands to move the fingers as required.
The square waves were either equal to a constant input level
when on, or set to zero when off. The input level and the
duration of the "on" portion of the signal \vere held con-
stant for each of the simulations. For each simulation, only
the frequency of these pulses was varied. The duration of
the "on" portion of the signals was 2.0 in all simulations.
Shorter duration signals did not reliably produce oscillations
in both channels. In order to generate Fig. 1B, we computed,
for 145 points, the relative phases of the output signals us-
ing the times at which they exceeded a threshold. As the
frequency was varied, the model showed a switch from anti-
phase (Fig. 2B) to in-phase (Fig. 2D) oscillations. As in the
data, it did not show the reverse transition in response to in-
phase inputs (Fig. 3). The system also exhibited fluctuations
between the anti-phase and in-phase regimes (Fig. 2C). It
should also be noted that parameters can be chosen so that
the system locks into the anti-phase pattern independent of
the phase of the pulsed input pattern.

GO

~ ,;!...
+\~

is to break the system's symmetry so that it can generate
anti-phase oscillations when XI ¥ X2 and YI ¥ Y2 (viz., "off
the diagonal") at I values that are either too small or too
large to generate symmetric in-phase oscillations.

Several neurophysiologically plausible operations can be
used to break symmetry. The first operation makes a slightly
asymmetric choice of inhibitory coefficients Dij, as occurs
in the bilaterally asymmetric organization of many neu-
ral systems (Bradshaw 1989). Such asymmetric coefficients
can bias the system towards generating specific asymmetric
gaits. The second operation uses the GO signal, I, to break
symmetry. This can be done in two ways: (I) Choose one
GO input stronger than the other; that is, let II = I in (7)
and h = I + 6 in (9). (2) Choose inputs with equal am-
plitudes but slightly asynchronous onset times; that is, let
II(t) = I and I2(t) = I(t -6). Mechanism (I) produces a
spatial asymmetry in the oscillator, mechanism (2) a tem-
poral asymmetry. Both asymmetries are small enough to be
caused by random variations in network parameters during
morphogenesis, if not more pervasive asymmetries in neural
organization. The temporal asymmetry automatically scales
with the GO amplitude I. Such a temporal asymmetry can,
for example, be robustly designed into the network using an
extra interneuron to the cells with delayed signals. We used
a temporal asymmetry in the simulations of the two-channel
oscillator shown in Figs. 6, 7, and 8 where the lag 6 = 0.00 I.
As shown in Fig. 5, this small asynchrony in the GO arrival
time produces anti-phase oscillations for many values of the
parameters. The only parameters that were- varied in these
simulations were the inhibitory coefficients (Dii and Dij)
and the arousal level I. It is shown in Pribe, Grossberg, and
Cohen (1997) that temporal, but not spatial, asymmetry is
capable of controlling rapid gait transitions in some regimes.
Our results thus suggest that measurements which test for the
bilateral asymmetry of GO onset times be undertaken in the
CPGs that control oscillatory movements.

7 Discussion

The opponent CPG model shows how an ubiquitously occur-
ring neural design -a recurrent on-center off-surround net-
work whose cells obey membrane equations -can give rise
to activation patterns characteristic of coordinated rhythmic
movements. The patterning of inputs organizes the network
to behave as if it possesses special linkages between par-
ticular joints, whereas in reality, the inhibitory connections
can be widespread and nonspecific. The model hereby illus-
trates how neural interactions can coordinate novel move-
ment combinations that are not specified in the wiring dia-
gram of the brain.

The anatomical location of the network that is rate-
limiting in transforming the volitional input pulses into os-
cillations which exhibit the four properties summarized in
Sect. I is not yet established. It could, in principle, be lo-
cated anywhere on the pathway from the motor cortex to
the spinal cord. In this regard, Jacobs and Donoghue (1991)
have reported widespread inhibitory interactions among so-
matotopic representations in motor cortex that are consistent
with model properties. If these representations are the gen-
erators of the observed pattern, then they would provide an
example of a cortical representation that may be transformed
into a CPG by the patterning of its inputs.
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