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Abstract

Both animals and humans represent and compare numerical quantities, but only humans have evolved multi-digit place-value number

systems. This article develops a Spatial Number Network, or SpaN, model to explain how these shared numerical capabilities are computed

using a spatial representation of number quantities in the Where cortical processing stream, notably the inferior parietal cortex. Multi-digit

numerical representations that obey a place-value principle are proposed to arise through learned interactions between categorical language

representations in the What cortical processing stream and the Where spatial representation. Learned semantic categories that symbolize

separate digits, as well as place markers like ‘ty,’ ‘hundred,’ and ‘thousand,’ are associated through learning with the corresponding spatial

locations of the Where representation. Such What-to-Where auditory-to-visual learning generates place-value numbers as an emergent

property, and may be compared with other examples of multi-modal cross-modality learning, including synesthesia. The model

quantitatively simulates error rates in quantification and numerical comparison tasks, and reaction times for number priming and numerical

assessment and comparison tasks. In the Where cortical process, transient responses to inputs are integrated before they activate an ordered

spatial map that selectively responds to the number of events in a sequence and exhibits Weber law properties. Numerical comparison arises

from activity pattern changes across the spatial map that define a ‘directional comparison wave.’ Variants of these model mechanisms have

elsewhere been used to explain data about other Where stream phenomena, such as motion perception, spatial attention, and target tracking.

The model is compared with other models of numerical representation.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction: human and animal numerical abilities

Both animals and humans can represent and compare

numbers, but only humans can represent multi-digit place-

value numbers. Choosing a larger prey to hunt, a tree with

more fruit, or a flower with more honey illustrates how

animal survival may be enhanced by being able to estimate

and compare magnitudes and quantities. Given that many

animals can estimate numerical quantities, it is natural to

ask how this competence arose? This article describes a

Spatial Number Network, or SpaN, model whose properties

suggest that estimates and comparisons of numerical

magnitude use specializations of more primitive neural

mechanisms that have evolved in the Where cortical

processing stream for purposes of motion perception, spatial

attention, and target tracking. This explanation clarifies why

an analog spatial map for numerical representation has been

discovered in the Where stream, notably in the parietal

cortex (Naccache & Dehaene, 2001; Rickard et al., 2000).

The model also proposes how multi-digit place value

numbers have arisen in humans through a learning process

that links numerical categories in the What cortical

processing stream with the spatial number map in the

Where cortical processing stream. In particular, this learned

map links learned auditory categories for individual number

names and categories for place markers like ‘ty,’ ‘hundred,’

and ‘thousand’ with locations in the spatial number map.

Place-value numbers are an emergent property of this inter-

modality learning process.

The human capacity for mathematical thinking and

intuition has been traced to a combination of linguistic

competence and visuo-spatial representations (Dehaene,

Spelke, Pinel, Stanescu, & Tsivkin, 1999). The SpaN

model proposes a mechanistic substrate on which such

higher mathematical processes can build. Other multi-modal
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learning processes are well known to occur in the brain (Stein

& Meredith, 1993). Recently, such processes have been used

to explain phenomena as far ranging as synaesthesia,

metaphor, creativity, and language learning (Ramachandran

& Hubbard, 2001a,b). Here we note how they may play a

crucial role in initiating the peculiarly human use of multi-

digit number systems via a fusion of linguistic and visuo-

spatial representations. These results were reported in

preliminary form in Repin and Grossberg (1999a,b).

Evidence for the shared numerical estimation capabilities

of animals and humans takes several forms. In particular, for

both humans and animals, the processing of larger quantities

becomes increasingly difficult as reflected in larger reaction

times and error rates, a finding known as the Number Size

effect (Dehaene, 1997). The detection of a difference between

two groups of objects that differ only in amount becomes

easier, as reflected by faster reaction times and less errors, as

the difference between the number of objects increases, a

finding known as the Numerical Distance effect (Dehaene,

1997). These similarities in animal and human performance

suggest that common mechanisms may control shared

numerical abilities across species, and thus that the capacity

for numerical competence may be derived from more basic

neural mechanisms. The SpaN model lends support to both of

these hypotheses by showing that neural mechanisms that are

used for motion perception, spatial attention, and target

tracking in the Where cortical processing stream can be

specialized to form a spatial numerical map whose dynamics

can simulate error and temporal characteristics of human and

animal psychophysical data. No previous model known to us

has quantitatively simulated such an extensive data set, nor

shown how this competence could have arisen in the brain.

Given that animals as well as humans exhibit many

similar numerical estimation properties, it is important to

understand what processes underlie the human superiority in

forming numerical estimates. Generally speaking, human

superiority in forming numerical estimates is attributable to

usage of symbolic notation. If unable to use such a symbolic

notational system, humans may perform no better than

animals in certain estimation and comparison tasks, and task

performance of both groups is often influenced by the same

factors in a similar manner. Historically, however, it was not

written symbolic notation, but spoken language that brought

the concept of number into human life. Long before the

appearance of the first concise numerical notation, in early

Sumerian language dating from the third millennium BC,

number-words reflected the structure of the numerical

system, as shown in Fig. 1 (after Menninger, 1969).

Numerical systems were developed independently by

many civilizations in different parts of the world. The

Sumerians, who inhabited the southern part of Meso-

potamia, based on their system on gradations of the number

60, an influence that can be seen today in how time is

measured in minutes and seconds (Fig. 1, left ). The Celts in

Europe as well as the Maya and the Aztecs in Mesoamerica

used a vigesimal, or base-20, numerical system. Modern

French still bears the legacy of the base-20 that interferes

with its number-naming base-10 structure. Our modern

numerical competence has a decimal system in its

foundation that originated from Arab and Indian cultures.

Initially, most of the number systems were based on an

additive principle. Egyptian and Roman systems (Fig. 1,

middle, right) serve as good examples of how the symbols

for units or hundreds are ordered and then grouped together

such that their sum represents a new symbol for ten or

thousand, respectively. The additive principle allowed use

of a compressed representation of large numbers, such as

2374, but this representation was not as compressed and

convenient for calculations as the modern number system

based on a multiplicative principle. In a number system

based on a multiplicative principle, maximum compression

is achieved by means of place-values. Instead of having a

new symbol for each of the powers of ten, as in the case of

Egyptian hieroglyphs, the power of ten is encoded by its

place information. Such a system was used by Babylonians

as early as about 2000 BC, with only one principal

Fig. 1. Sumerian, Egyptian, and Roman number systems. The Sumerian language illustrates how the structure of a number system was reflected in their

number-words. Egyptian and Roman languages provide examples of number-systems formed according to an additive principle (see Cajory, 1928).
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difference from the modern number system: they were

lacking the concept of zero. In Babylonian notation, a

number such as 3005 could not be expressed unambigu-

ously, as the empty space was used instead of zeros. This

limitation was the source of possible confusion and slowed

down the development of mathematics.

Despite their many differences, the vast majority of

number systems had key features in common: they utilized

some form of compressed representation of an open-ended

set of numbers by means of either an additive or

multiplicative principle. Other similarities include the fact

that the number-names employed as categories for the

compressed representation often reflected the structure of

the number system, such as in case of Sumerian and Roman

systems. More importantly, even if the symbolic notation

was based on an additive principle, the linguistic structure

relied on a multiplicative relation. This is especially

surprising to find with the Romans, who had a precisely

ordered flexible verbal number sequence, but used a rather

crude and cumbersome symbolic notation (Fig. 1, right).

An analysis of the historical development of numerical

competence leads to the following conclusion: a natural task

that produces common abstract concepts and common

linguistic representations may suggest a common represen-

tation in the brain. It can be assumed that this representation

arises from the more basic representation of numerical

quantities that is shared by both animals and humans. The

SpaN model proposes how the more primitive spatial

numerical representation can be extended into a multi-digit

numerical representation through learned interactions with

number category names. These number category names are

proposed to be learned in the What cortical processing

stream as part of the normal course of language learning.

The model shows how learned associations between number

categories in the What processing stream and the spatial

numerical representation in the Where processing stream

naturally leads to place-value number representations as an

emergent property of this interaction. Thus, the emergence

of place-value number systems in many human cultures is

proposed by the model to be an example of learned What–

Where information fusion.

The article is organized into two parts to describe the data

which these Where and What–Where processes can

explain. Part I of the article describes animal and human

psychophysical data and the Where model mechanisms that

can be used to simulate them. Part II of the article describes

additional psychophysical data about multi-digit place-

value numbers and how What–Where learned associations

can explain them.

Part I: spatial mechanisms in the where processing

stream

Our development of the spatial organization and

neural mechanisms of the SpaN model was guided by

psychophysiological, neuroanatomical, and physiological

data. When the parameters of these neural mechanisms

are constrained by a small set of experimental data, the

model can quantitatively simulate error and temporal

characteristics of human and animal psychophysical data,

such as Number Size and Numerical Distance effects, as

well as number priming data. Section 2 gives an

overview of relevant data, describes previous modeling,

and puts the proposed model into the context of

contemporary research in the field. Section 3 derives

the Where mechanisms of the SpaN model in three steps

and discusses the model’s neuroanatomical and beha-

vioral implications. Section 4 provides simulations of

experimental data. Section 5 discusses the implications

of the current work within a broader framework of

modeling numerical abilities. Model equations for Where

processing properties are provided in Appendix A.

2. Experimental data and modeling approaches

Ample evidence is available on the numerical compe-

tence of various animal species (for reviews, see Dehaene,

1997; Gallistel & Gelman, 1992). For example, animals as

simple as honeybees are able to discriminate the amount and

frequency of reward in appetitive conditioning experiments

(Buchanan & Bitterman, 1998). Pigeons can abstract the

information about the relative number of items in small

visual arrays, independent of other parameters of the stimuli

(Emmerton, Lohmann, & Niemann, 1997). Modality

transfer experiments demonstrated that rats can learn the

number of events in a visual or auditory sequence (flashes

and beeps) and then respond to a mixed auditory–visual

sequence with the same total number of events (Church &

Meck, 1984). In these studies, numerosity discrimination

ability usually dropped with the increasing number of items,

thereby showing the Number Size effect.

Primates are able to perform simple arithmetic: In the

experiments by Washburn and Rumbaugh (1991), chim-

panzees chose the pair of two piles of chocolate bits that had

a bigger total number of bits, even though each individual

pile in the chosen pair had fewer pieces than the largest pile

in the second pair. More mistakes were made with

decreasing difference in the number of bits, thereby showing

the Numerical Distance effect.

Animal studies have provided the most valuable data

since they were unbiased and bore little influence of higher-

order cognitive interference. However, animal data provide

little or no chronometric information for numerical tasks.

Reaction time data have been obtained mostly through

psychophysical experiments with human subjects. Number

reading studies (Bryzbaert, 1995) and subitizing (rapid

numerosity estimation of the visual array with a small

number of items, usually up to three or four) experiments

(Mandler & Shebo, 1982) reported an increase in reaction

times for bigger numbers and larger arrays, thereby
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Table 1

Illustrative models of numerical cognition

Classification parameter Model /Author

McCloskey,

1992

Campbell and Clark,

1992

Dehaene,

1992

Ashcraft,

1992

Gallistel and Gelman,

1992

Meck and Church,

1983

Dehaene and Changeaux,

1993

Grossberg and Repin

Modeling domain

Functional level Assessment,

quantification

þ þ þ þ þ þ

Production,

retrieval

þ þ

Comparison þ þ

Calculations þ þ þ

Representation High-level, e.g.

semantic

þ þ þ þ þ

Low-level, e.g.

neural network

þ þ

Level of the

mechanism

Assessment,

quantification

þ þ þ

Production,

retrieval

Comparison þ þ

Calculations þ

Temporal structure Macrostructure,

e.g. learning,

development

þ þ þ

Microstructure,

e.g. processing

þ

Qualitative data explained

Error rates þ þ þ þ

Reaction times þ þ þ

Particular deficits þ þ þ

Quantitative data explained

Error rates Assessment,

reading

þ þ

Comparison þ þ

Reaction times Assessment,

reading

þ

Comparison þ

Priming þ

Calculations þ
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demonstrating the temporal side of the Number size effect.

Many studies addressed single-digit (Parkman, 1971), two-

digit (Bryzbaert, 1995; Dehaene, Dupoux, & Mehler, 1990;

Link, 1990), and multi-digit (Poltrock & Schwartz, 1984)

number comparisons that showed longer reaction times for

smaller distances between numbers for most cases, thereby

demonstrating the temporal side of Numerical Distance

effect. The amount of priming in number priming

experiments was also shown to be a decreasing function

of the numerical distance from the prime to the target

number (den Heyer & Briand, 1986).

Data from brain-lesion patients have provided important

insights about the structural composition of numerical

abilities, such as the dissociation of verbal and quantitative

knowledge, or of subitizing and counting (Dehaene &

Cohen, 1994, 1997; Dehaene et al., 1999). Together with the

psychophysical data from human infants and adults, and

various animal species, they have provided explanatory

targets for models of human and animal numerical abilities.

Table 1 summarizes some illustrative and widely cited

models. The classification is based on the domain of

application (function, mechanism and representation

addressed) and the experimental data explained. The table

also includes the new SpaN model for comparison.

The most influential and widely cited models developed

in the last 20 years include models by McCloskey and

colleagues (McCloskey, 1992; McCloskey & Macaruso,

1995), Ashcraft (1987, 1992), the encoding complex

hypothesis by Campbell and Clark (1992; Clark & Camp-

bell, 1991), and the triple-code model of Dehaene (1992).

These are functional models of numerical abilities that

generally consider high-level verbal, phonological, graphe-

mic representations and complicated cognitive tasks,

including numerical calculations. A wide variety of

human data were explained qualitatively using these

models.

The model of Gallistel and Gelman (1992), which was

based mostly on animal data, attempts to link principles of

animal cognition to human numerical competence. They

considered the implications for development of numerical

abilities and qualitatively accounted for such phenomena as

subitizing, judging the order of two digits, and retrieving

number facts. Their model used the mechanism of preverbal

counting proposed by Meck and Church (1983) for duration

and numerosity estimation. This mechanism was developed

to explain how rats transfer numerical estimation knowl-

edge between visual and auditory modalities. Wynn (1998)

used a similar mechanism in her model of infant numerical

abilities.

The Meck and Church (1983) information-processing

model of counting and timing relied on a serial mechanism

of numerical information accumulation (Fig. 2). In the

model, an endogenously active pacemaker generates

equally spaced pulses through time. Before reaching the

accumulator, these pulses are gated by a mode switch,

which operates either in a run or a stop mode for duration

estimation, or in an event mode for counting. The basic idea

is that the switch lets through a certain number of the pulses

that are endogenously generated by the pacemaker through

time. The accumulator adds up the pulses that are let

through. During the training trials, the accumulator

activation is read out to working memory, and is also stored

in a reference memory. During the test trials, the animal is

assumed to have a representation of the current accumulator

value that can be compared to the information stored as a

reference memory. The response (left or right lever press)

occurred when the current accumulator value was closer to

the value in a reference memory of a reinforced left or right

response. To the present, no neural evidence has been found

for a pacemaker with these properties.

Dehaene and Changeux (1993) proposed a neural

network model that addresses the development of numerical

competence in humans and animals (Fig. 3). In this model,

visually presented objects in a scene are coded as Gaussian

distributions, which then are projected onto a two-dimen-

sional array of Difference-of-Gaussian (DOG) filters that

represent the retina. Parallel processing by means of

Fig. 2. Functional organization of the Meck and Church model. [Adapted

with permission from Meck and Church (1983).]

Fig. 3. Functional organization of the Dehaene and Changeux model. [Adapted with permission from Dehaene and Changeux (1993).]
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a retina-like mechanism was mainly supported by evidence

from subitizing (Mandler & Shebo, 1982). The cumulative

activation of this array over all spatial locations activates

numerosity detectors that are implemented as nodes with

increasing thresholds. Different threshold levels correspond

roughly to different numerosities. The model assumes that

nodes, which are sensitive to these numerosities, are linearly

ordered in a spatial array. The model does not provide a

neural explanation of how the linear ordering arises.

Auditory input activation is assumed to come from an

echoic memory and to add up with the visual stream

activation represented by the DOG array cumulative signal.

Simulations provided quantitative results that could be

compared to response distribution data from animal and

human studies.

Additional output clusters were introduced to simulate a

number of behavioral tasks related to number discrimi-

nation. The connection strengths between numerosity and

output clusters were modified through training, where pairs

of numerosities were presented as inputs. The connection

weights were adjusted according to a Hebbian associative

learning rule modulated by reward. After the learning

process had been completed, the error rates for number

discrimination were predicted as the values of the connec-

tion strengths.

3. SpaN model spatial map

Where processing in the SpaN model is defined by a

neural network which models the spatial representation and

comparison of numerical information in the brain. There are

three key features that put the model into its own unique

niche in the field. First, it describes the dynamics of the

mechanisms of number acquisition and comparison on the

scale of milliseconds; thus it explicates the internal structure

of numerical processing, or the process microstructure, as

opposed to a learned map which only reflects the outcome of

numerical processing. Second, the SpaN model simul-

taneously provides a quantitative fit to error rate and

reaction time data. This has not been done before within any

single computational model. Finally, the neural mechanisms

used in the model are specialized combinations of

mechanisms that have previously been used to model

processes of motion perception, spatial attention, and target

tracking (Chey, Grossberg, & Mingolla, 1998; Gancarz &

Grossberg, 1999; Grossberg, 1999a; Grossberg, Mingolla,

& Viswanathan, 2001; Grossberg & Rudd, 1989, 1992). The

model hereby clarifies how numerical abilities may have

arisen as variations of more primitive processes in the

Where or How processing stream of the brain (Goodale &

Milner, 1992; Mishkin, Ungerleider, & Macko, 1983).

The SpaN model Where processing utilizes three main

processing stages: Preprocessor, Spatial Number Map, and

Comparison Wave. A block diagram (Fig. 4) shows the

main processing steps and corresponding model equations.

The following sections describe model implementation

details as well as the specific data from brain anatomy,

functional brain imaging, and psychophysical experiments

that were used to guide model development.

Stage 1: Preprocessor. The preprocessor converts

sensory input in different modalities into an analog signal,

whose amplitude is roughly proportional to the number of

items in a spatial pattern or the number of events in a

temporal sequence. For example, given a set of objects in

a visual field, the preprocessor assumes that attention shifts

serially from one object to another. When each object is

attended, a transient signal is generated. The transient

detectors enable a continuously changing input to be

transformed into a discrete series of output bursts that

have a similar size and duration independent of input

duration. These similarly calibrated bursts are then added by

an accumulator neuron or population of such neurons. Thus,

the amplitude of the accumulator activity represents the

total number of items in the spatial pattern. Fig. 5 provides

an illustrative simulation of how the preprocessor works.

This serial mechanism responds to temporal sequences of

events in the same way.

This accumulator mechanism plays a functional role

similar to the Gaussian spatial filtering used in Dehaene

and Changeux (1993), but it avoids a problem that may

arise from using Gaussian receptive fields of multiple sizes

to estimate numerosity; namely, a receptive field size may

lump together several small objects as one, or parts of a

large object may be counted as several small objects. The

SpaN preprocessor also differs from the gated pacemaker

with accumulator proposed in Meck and Church (1983).

The SpaN model preprocessor does not require an

endogenously active pacemaker, because its transient

cells create reactive ‘pulses’ in response to the events

themselves. Such transient cell responses are a common

feature at the front end of models aimed at explaining data

about visual motion perception, spatial attention, and target

tracking (Baloch & Grossberg, 1997; Baloch, Grossberg,

Mingolla, & Nogueira, 1999; Chey, Grossberg, & Min-

golla, 1998; Grossberg, 1999a; Grossberg, Mingolla, &

Viswanathan, 2001).

The preprocessor is not the key component of the model.

It is realized in a simple way in the SpaN model to portray

an early stage of sensory preprocessing and to clarify its

possible relationship to other Where stream preprocessing

mechnisms. Visual, auditory, or tactile sensory streams may

produce different analog signals that are physically

generated in different brain areas. The key issue is that the

amplitudes of these signals are related to numerical

properties of the stimuli in each modality. It is assumed in

the model that the same numerosities in different modalities

produce similar outputs after the integration of transients.

Given that the preprocessor creates an analog amplitude to

represent numerosity, the next problem is to figure out how

this scalar quantity is transformed into a spatial represen-

tation of number.
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Stage 2: Spatial number map. It has been hypothesized

for over 30 years (Fairbank, 1969; Restle, 1970) that an

analog spatial representation of number exists in the brain;

see Dehaene (1997) for an overview. The hypothesis that

this representation is modality-independent and exists at a

low cognitive level is supported by modality transfer

experiments with rats (Church & Meck, 1984) and pigeons

(Emmerton, Lohmann, & Niemann, 1997). In these studies,

animals were able to extract the numerical properties from

the stimuli in visual and auditory modalities, and then to

combine the numerical information on an abstract level to

produce correct responses. Human adults can, of course,

abstract numbers with little effort. Even 6–8-month-old

human infants are able to select visual displays that match

numerically identical auditory patterns (Starkey, Spelke, &

Gelman, 1983).

The concept of an amodal representation being dis-

tributed over several spatial locations appeared in the model

by Dehaene and Changeux (1993). Recent brain imaging

data (Dehaene et al., 1996; Pesenti, Thioux, Seron, & De

Volder, 2000; Pinel et al., 1999; Rickard et al., 2000) have

identified the inferior parietal cortex (IPC) as a convergence

zone during various numerical tasks with inputs and outputs

representing different modalities. IPC and adjacent regions

are known to play an important role in various spatial tasks,

including visuomotor integration (Nishitani, Uutela, Shiba-

saki, & Hari, 1999), navigation (Maguire et al., 1998),

location working memory (Courtney, Ungerleider, Keil, &

Haxby, 1996), and tactile object recognition (Deibert et al.,

1999). Spatial attentional deficits are also believed to be

associated with IPC damage (Buck, Black, Behrmann,

Caldwell, & Bronskill, 1997). All this evidence strengthens

the hypothesis that amodal numerosity properties are

spatially represented. In parietal cortex, spatial relations

may take the form of spatial maps (Andersen, Essick, &

Siegel, 1985). The use of transient cells to preprocess inputs

Fig. 4. Functional diagram of the SpaN model. Preprocessor: For each sensory input (pattern or sequence), a value of the integrator y is computed at each

moment in time and then uniformly fed in to the spatial number map. Spatial number map: Each activity pi of the map receives the normalized output Si that is

derived from the same integrator input y: The signal functions si that give the rise to Si have increasing thresholds and slopes at each successive map cell i:

Examples for cells 10, 50, and 100 are shown on the diagram. Each ‘bump’ on the spatial number map schematically represents the activation pattern pi for

sensory inputs with different number of items at the moment when the whole pattern is already processed. Comparison wave: Activation of both left and right

direction-sensitive cells (qleft
i or q

right
i ) receives the input from two cells of the spatial number map (pl and pl^m). Both right and left magnitudes (gleft or gright) at

each moment are computed as summed activations of corresponding direction-sensitive cells (qleft
i or q

right
i ).
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to the spatial number map is consistent with the fact that

such preprocessing of visual motion, attention, and tracking

is part of the Where cortical stream to which IPC belongs.

Numerical organization in humans is known to have both

ordering and directional properties. The experiments by

Dehaene and colleagues (Dehaene, Bossini, & Giraux,

1990; Dehaene, Dupoux, & Mehler, 1993) demonstrated

that left-hand responses were faster than right-hand for the

smaller numbers within a given set of numbers, and

conversely for the larger numbers. This effect, called

SNARC (Spatial-Numeric Association of Response

Codes), implies that left-to-right representation exists for

numbers going from small to large, at least for subjects

raised in Western cultures, while for Middle Eastern

subjects (e.g. Iranians) the effect was less pronounced or

reversed. A similar directional dependence was reported by

Bryzbaert (1995), who found that subjects were faster to

respond to the left-to-right ordered pairs (24, 26) than to the

same pairs ordered inversely (26, 24).

Several studies have reported subjects actually seeing a

vivid image of an ordered structure or a regular geometric

shape when performing operations with numbers. In the

work of Seron, Pesenti, Noel, and Deloche (1992),

approximately 10% of all subjects used some sort of spatial

representation, ranging from a one-dimensional line-like to

a three-dimensional spiral-shaped structure, when mentally

manipulating with numbers up to number values of about

100. The vast majority of these subjects reported ‘seeing’

the numbers used in numerical tasks. These results are

consistent with the SpaN model hypothesis, mentioned in

Section 1 and developed in Part II, that inter-modal learning,

notably learning between language representations of

numerical categories and the spatial number map, are used

by humans during numerical tasks. Before turning to this

learning process, it is first necessary to model how the more

primitive spatial map arises on which it builds.

Taking into account the above evidence about the analog

nature of the numerical representation, its directional

properties, and data from the IPC studies, it is reasonable

to assume that a topographically organized spatial map is

used to represent numerical information. In the SpaN model,

such a spatial number map is implemented using well-

known neural mechanisms; namely, every cell receives its

input through a nonlinear signal function before activating

excitatory and inhibitory on-center off-surround kernels.

How do such commonplace neural mechanisms generate a

spatial map? In particular, how can they translate a scalar

output signal from the Preprocessor, whose amplitude

increases with numerical size, into a spatial map whose

position of maximal activation changes as the number

increases? How can the Number Size and Numerical

Distance effects arise from such basic mechanisms?

The SpaN model predicts that this is accomplished for

the spatial number map using the same strategy that has

been used to model other spatial brain maps that convert a

scalar magnitude into a positional shift across the map. In

particular, the model predicts that both the thresholds and

the slopes (or sensitivities) of the signal functions increase

from the left to the right side of the map (Fig. 4). This

Position-Threshold-Slope hypothesis was also used to

derive a spatial map from an analog signal by Grossberg

and Kuperstein (1986/1989) in their model of saccadic eye

movement control, which is another example of a Where

stream process. Neurophysiological data wherein thresholds

and slopes covary across cells involved in eye movement

control have been reported by several investigators (Luschei

& Fuchs, 1972; Robinson, 1970; Schiller, 1970). Such a

correction between Position, Threshold, and Slope converts

Fig. 5. Computer simulations of the preprocessor operation through time according to Eqs. (A1)–(A3).
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an increasing analog input into a topographical shift across

the spatial map in the following way. The scalar input

excites all signal functions equally. A small input can

strongly activate only cells which receive inputs from signal

functions having small thresholds. Such cells are clustered

towards the left end of the map. As the input increases, the

cells whose signal functions have small thresholds fire more

vigorously. However, cells whose signal functions have

somewhat larger thresholds also start to fire. In addition, the

rate of firing by cells with larger thresholds overtakes and

exceeds that of the cells with smaller thresholds, because the

slopes of their signal functions are larger, even though their

thresholds are also larger. As the input increases even

further, the cells with even larger thresholds start to fire

more than all the others, nd so on. The location of the

maximally activated cells hereby shifts across the map as

the input increases.

Because larger inputs can activate cells with both smaller

and larger thresholds, the number, and the spatial span, of

active cells can increase with input amplitude even as the

peak response shifts to the right. This tendency is called the

Weber law property, which also prevails in numerical data,

notably the Number Size effect (Dehaene, 1997). In order to

control this distributed activation pattern, competitive

interactions between the cells, notably on-center off-

surround interactions among cells that obey membrane

equations, respond to the inputs received through the array

of signal functions by normalizing and spatially sharpening

them (Grossberg, 1973, 1980).

These qualitative properties were turned into quantitative

data fits by using the response probability curves observed

in the classical Mechner (1958) experiments; see Fig. 6.

The thresholds and slopes of the spatial map were selected

such that the difference (in a least mean square sense)

between the experimental and simulated response probabil-

ities was minimized. The probability of response as

simulated in the SpaN model is related to the activity

distribution in the spatial number map. For a full description

of how the model simulates experimental data, see Section 4.

Stage 3: Comparison wave. How are the relative sizes of

two numbers compared using the Spatial Number Map?

Clearly such a comparison process will generate a wave-like

redistribution of activation across the map. The SpaN model

shows that such a wave can be directly used to simulate

many data about numerical comparison. An exciting aspect

of this hypothesis is that a homologous wave has been used

to explain many data about motion perception, spatial

attention shifts, and target tracking (Baloch & Grossberg,

1997; Francis & Grossberg, 1996; Grossberg, 1999a;

Grossberg & Rudd, 1989, 1992). Thus the numerical

comparison process may be homologous to other, more

primitive, Where stream processes. Link (1992) has used a

random walk process to generate comparisons between

stimuli. Such a random walk has some properties of a

comparison wave, and his hypothesis takes on new meaning

using the neural mechanisms that will now be described.

Presentation of two or more numerical inputs causes a

redistribution of activation across the spatial number map.

For example, suppose that a small number is presented first

and produces activation on the left side of the map (Fig. 7).

A larger number presented next would build its activation at

some location to the right of the smaller one, while some

signal remaining from the small number is still decaying.

The map activations due to both inputs are added. The sum

of this correlated, but spatially displaced, growth and decay

of activation is a bell-shaped activation whose maximum

moves continuously from the location of the first input to

that of the second input. This traveling wave of activation is

called a comparison wave because the properties of this

dynamical redistribution of activation naturally explain data

about numerical comparison.

To selectively detect the direction and amplitude of the

comparison wave, another population of cells receives input

from the spatial number map. Each cell in this population is

sensitive to either the right or the left direction of motion

across the spatial number map. Such ‘directional transient

Fig. 6. Data: Rats were trained to press a lever a fixed number of times

before switching to another lever in order to get a reward. Data points

(diamonds, circles) represent the proportion of responses made to match

one of the four required fixed numbers of lever presses (4, 8, 12, or 16), see

text for description of the experimental paradigm. [Adapted with

permission from Mechner (1958)]. Model: Solid lines show equilibrium

activities pið1Þ of the spatial number map for four inputs corresponding to

4, 8, 12, and 16 events.

Fig. 7. Computer simulation of the dynamic redistribution of activation

across the spatial number map through time (pi). Different curves

correspond to different times, calibrated in integration step units.
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cells’ are also familiar in neural models of motion

perception; e.g. Baloch et al. (1999), Chey, Grossberg, &

Mingolla (1998) and Grossberg, Mingolla, & Viswanathan

(2001). The activations of all right direction-sensitive cells

are added up to yield the right comparison wave output,

while outputs from all left direction-sensitive cells add to

yield the left comparison wave output. If the comparison

wave to the left is larger, then ‘smaller’ is the judgment; if

the right wave wins, then ‘larger’ is the judgment. Fig. 8A

depicts a simulation in which a larger number followed by a

smaller number gives rise to a larger wave to the left. In

addition, greater distances between the inputs to the spatial

number map give rise to bigger comparison waves, thereby

producing a more easily discriminated difference. This

property of comparison waves helps to explain the

Numerical Distance effect. See Fig. 8B for an illustrative

simulation. Most brain-imaging techniques, such as PET

and fMRI, do not yet possess a sufficient temporal resolution

(on the order of 10–100 ms) to support or disprove this

hypothesis. Several ERP studies (Ullsperger & Grune,

1995) have, however, detected smaller P300 amplitudes for

smaller numerical distances.

4. Simulation results

Two types of psychophysical experimental paradigms

were simulated with the SpaN model. In the first, the task

was to recognize the numerical stimuli. Reaction time was

recorded as the time interval from the stimulus onset until

the response was initiated. In the SpaN model, the reaction

time was simulated as the moment when the maximum

activation of the spatial number map (maxi¼1…120 ðpiÞ in Eq.

(A6)) reached a threshold value. In the second experimental

paradigm, two numerical stimuli were compared and

reaction time was measured from the onset of the second

stimulus or of both stimuli if they were presented

simultaneously. The SpaN model assumed serial internal

preprocessing even in case of simultaneous stimulus

presentation. The probability of response in SpaN was

presumed to be proportional to the comparison wave

magnitude (gleft or gright in Eq. (A10) or (A11)) at the time

of the response. The reaction time was determined as the

moment when the comparison wave magnitude

max{gleft; gright} reached a threshold value. For both

paradigms, this value was fixed for the set of model runs

simulating a single experimental setup but could differ for

different experiments.

In the SpaN model simulations, it was assumed that

preprocessing takes the same amount of time for each

numerical stimulus. This assumption is consistent with the

use of numerical categories as the inputs in many numerical

experiments with adult humans, since the vast majority of

number reading and comparison reaction time data come

from human subjects presented with Arabic numbers in

visual format. This format does not require numerical

accumulation mechanism for most experiments when adult

subjects are involved. Rather, when the number is

recognized, it activates the corresponding number category

which, in turn, activates the spatial representation. Modeling

of the interaction between preprocessing, learned categori-

cal representations, and the spatial representation is given in

Part II of this article.

The simulations were implemented in MATLAB

environment and run on a 300 MHz PentiumII PC. An

array of 120 cells was used for both the spatial number map

and the comparison wave direction-sensitive cells.

Throughout the simulations, all free parameters in Eqs.

(A1) – (A12) were fixed; see Appendix A for these

parameter values. All target data were plotted as dashed

lines, and all model results were plotted as solid lines. In

evaluating model fits to data, as with all neural models, it is

appropriate to evaluate how many processes, not how many

parameters, are used. In the present simulations, an

accumulator based on transient cell responses, a spatial

map based on correlations between cell threshold and

sensitivity, and a comparison wave induced by the times of

numerical occurrence provide a conceptually simple

description of the underlying brain processes, by using

variations of processes that play multiple roles in the Where

Fig. 8. Computer simulation of the comparison wave. The second input is

smaller than the first one, so the wave moving to the left ðgleftÞ wins (dashed

line). (A) The second input is significantly smaller than the first one; thus, a

larger left wave is produced. (B) The second input is a little smaller than the

first one; thus, a smaller left wave is produced, which is still larger than the

right wave. The model response is computed from the shaded area under

the curve (see Appendix A for details).
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cortical stream. In addition, all data fits in the present model

are based upon emergent, or interactive, properties of these

processes, which makes it difficult to optimize data fits. This

is particularly true with the data that are fit using the

comparison wave, as will be noted in greater detail below,

so getting the degree of quantitative fit that is herein

exhibited illustrates how robust the model mechanisms

really are.

4.1. Response distribution

The most informative experimental studies provide not

only error rate data, but also the complete response

distribution. In the work of Mechner (1958), rats were

trained to press a lever for a fixed number of times before

switching to another lever in order to get a reward. Data

points (Fig. 6) represent the proportion of responses made to

match one of the four required fixed numbers of lever

presses of 4, 8, 12, or 16 (dotted lines). The animal’s task in

each block of trials was to perform a fixed number of bar

presses (either 4, 8, 12, or 16) on one lever, and then switch

to press a second lever. If the number of presses before the

switch was correct, the animal was rewarded. If incorrect,

then no reward was given. Because animals made counting

errors, their performances were distributed among the

correct number and either fewer or more responses. Thus,

the experiment produced four distributions, which are

reprinted in Fig. 6. The abscissa represents the number of

pre-switch bar presses and the ordinate is the proportions of

trials (in a given block) on which that number was observed.

In each block, the animal’s modal performance was the

target number of responses, and the proportions represent-

ing errors fell off smoothly on both sides.

The basis of numerical representation in the model is the

spatial number map. Its patterns of activation reflect the

differences of processing of different numerical judgments.

When the stimulus is present for a sufficient amount of time,

and the required response has to be produced without any

time constraints, the model assumes the response distri-

bution to be directly related to the equilibrium activation

pattern of the map. Said in other way, it is assumed that the

subject randomly samples from the spatial number map

distribution with a probability that is proportional to the

map activity. The solid lines in Fig. 6 show the SpaN map

activation for the four stimulus magnitudes related as

4:8:12:16. The patterns for bigger numerosities are more

distributed along the map (Weber law), as in the data. There

is also a small bias towards larger stimuli, which is reflected

in the asymmetry of the distributions: they have more

activation to the right of the mean than to the left. The

model’s ability to qualitatively fit these data, notably the

Weber law properties, arises directly from the model

hypothesis about covariation of signal function thresholds

and slopes, followed by intercellular normalizing compe-

tition. The quantitative fit of model to data was achieved by

selecting particular spatial number map parameters, which

were then held fixed to simulate all the other experiments.

4.2. Error rate data

The Numerical Distance effect exhibits itself through

experiments wherein two stimuli with different numerical

properties are used in each trial. The response error rate is

evaluated as a function of the numerical distance between

numbers or quantities of objects, which is varied throughout

the experiment. These studies demonstrate that the error rate

is higher for adjacent numbers and then goes down as

numbers are chosen further apart. Fig. 9A shows the data for

humans comparing two-digit numbers and chimpanzees

selecting the larger of two piles of chocolate bits.

In the SpaN model, presentation of two inputs in a single

trial generates a comparison wave as a result of the

transition between the successively activated input rep-

resentations within the spatial number map. Both left and

right waves may appear during the process of redistribution

of activation across the map, but the wave with larger

magnitude wins and thereby provides the information about

the direction of the comparison process. A larger distance

between the two numbers results in a greater spatial

separation of the corresponding activations of the spatial

number map (Fig. 6), and the redistribution of the activation

Fig. 9. (A) Data showing error rate for chimpanzees selected the larger pile

of chocolate bits (solid diamonds, dotted line is the best cubic fit) [Adapted

with permission from Washburn and Rambaugh (1991).] and people

comparing two-digit numbers to a fixed standard of 65 as a function of the

numerical distance from the target (open circles, dashed line is the best

cubic fit). [Adapted with permission from Dehaene et al. (1990).] Model

simulations: Average predicted error rate for humans comparing number-

inputs (open stars, solid line is the best cubic fit). (B) Model simulated error

rate for a set of number pairs ð2; 6Þ to ð10; 6Þ; calculated as the inverse of

Gmax (Eq. (A12)) as a function of distance between the first and the second

inputs.
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occurs between the spatially separated positions along the

map as opposed to activation decay and rise at almost the

same position in the map. Presence of a substantial along-

the-map component of activation redistribution produces a

larger amplitude of the comparison wave. The SpaN model

hypothesizes that, the larger the amplitude of the compari-

son wave in one direction with respect to the other direction,

the more reliable and accurate is the response. In particular,

the model hypothesizes that the error rate covaries with the

inverse of the maximum amplitudes of the two waves. Due

to the dynamic nature of the comparison waves, it is very

difficult to optimize the inverse of the maximum amplitude

of the two waves to fit these data. Model parameters were

therefore selected by trial-and-error.

The first input (equal to 6 units) was presented to the

network for a fixed time (450 time steps). After a brief delay

(100 time steps), the second input was presented. Accumu-

lation of signals from directional-sensitive cells started at

the same time lasts for a fixed number of time steps Tr for

each input (Eq. (A12)). Fig. 9B shows the plot of the inverse

of Gmax
j for different pairs of inputs, where a numerical input

6 was always presented first followed by one of the inputs 2,

3, 4, 5, 7, 8, 9, or 10. The smallest comparison waves

(largest inverse values of Gmax
j ) occurred for the inputs

closest to input 6, with the fall-off slowing down with

increasing distance from input 6. The slowing-down effect

results from a decreasing correlation of the fall and rise of

the activations of the two inputs as the distance between

them on the spatial number map increases. That is why the

difference between the waves that occur in ð6; 9Þ and ð6; 10Þ

comparisons is smaller than that of for ð6; 7Þ and ð6; 8Þ

comparisons. The results of these simulations exhibit

similar properties to those found in the experimental data

(Fig. 9A).

4.3. Chronometric data

Because the SpaN model is a real-time model that

incorporates time as an explicit independent variable, it can

simulate the microstructure of the processes underlying

numerical abilities, including data about reaction times. For

each of the simulated experimental paradigms, the reaction

time was determined as RT ¼ tfixed þ ð1=2Þtmodel: The time

interval tfixed was assumed equal for all the input stimuli. It

includes the times needed for a motor response (e.g. a key

press) or verbal response required by the experimenter, or

for visual processing of a one-digit number. The value of

tfixed was individually selected for each of the various

experimental conditions. The output of the model tmodel was

determined as the time when the comparison wave

activation Gmax (Eq. (A12)) reached a fixed threshold

value. In number reading experiments, this threshold was

applied to the activation of the spatial number map; for

numerical comparison, it was applied to the activation of the

comparison wave. Different threshold values were used for

each of the two paradigms above (threshold values and

values of tfixed are reported in the figure captions). The

scaling factor of 1=2 was used to convert model output from

integration time step units into milliseconds.

In the current simulation setup, the reaction time for

comparison tasks depends the rate of the comparison wave

built-up. This rate can vary as a function of stimulus

magnitude, the difference between consecutive stimulus

magnitudes, and the interstimulus interval (ISI). The first

two factors simulate the target distance and size effects,

while the last one brings up a more challenging issue that is

considered in Section 5.

In many experimental paradigms, number-reading times

can be assessed with the help of an eye-tracking technique.

The duration of fixation on the numerical stimuli can be

used to estimate the time used for cognitive processing

after the visual system processing time is subtracted. The

latter is assumed to be equal for all single-digit numbers in

Arabic form. Fig. 10(diamonds, dashed line) displays the

first-gaze duration (FGD) times in Arabic number reading

experiments (Gielen, Bryzbaert, & Dhont, 1991). Here, the

Number Size effect yields an approximately linear increase

in reading time with number magnitude. Fig. 10 shows

simulation results for inputs with magnitudes ranging from

1 to 10 (circles, solid line). The results are comparable to

experimental data and exhibit a similar linear increase in

reaction time with increasing stimulus magnitude.

This effect emerges from the fact that the spatial number

map signal functions have thresholds and slopes that

increase from the left (smaller numbers) to the right (larger

numbers) side of the map (Fig. 4). In particular, lower

threshold and slope values yield faster activation build-up

for smaller numbers than larger threshold and slope values

for the larger numbers. The linear fit is, however, an

emergent property of interactions across the entire spatial

Fig. 10. Number reading times. The data (diamonds, dashed line, a best

linear fit) measure first-gaze durations (FGD) during number reading

experiments. [Adapted with permission from Gielen, Bryzbaert, and Dhont

(1991).] Model simulations: circles, solid line, a best linear fit. Total RT ¼

tfixed þ ð1=2Þtmodel; where tmodel is the time when max(pi) reached a fixed

threshold Th. Simulation parameters: tfixed ¼ 205 ms; Th ¼ 0:13:
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map, and is not obvious from an inspection of any subset of

the chosen parameters.

Experiments wherein the two stimuli are presented

with a short delay between them allow estimation of

priming effects. For numerical stimuli, two types of

priming are known. The first one is semantic priming,

where the response time for number–number pairs is

contrasted with that of number–letter pairs. The second

type of priming is observed for number–number pairs,

when the numerical distance between the numbers in

each pair is varied. The second type of priming is related

to the temporal side of the Numerical Distance effect and

has been demonstrated experimentally (Bryzbaert, 1995)

to be a linear function of a prime-target (Fig. 11A,

diamonds, dotted lines).

Number priming results are obtained from the dynamics

of the spatial number map. The first input (prime) is selected

from the set of inputs of 1 through 15, and is presented for a

fixed time (450 time steps). The second input (target) is

presented after a brief delay (100 time steps). Reaction time

is measured from the onset of the target input to the moment

when the spatial number map activation reaches a fixed

threshold. Simulation results for two target inputs 5 and 8

are shown in Fig. 11B. Priming is a linear function of the

distance from target in a limited region around the prime.

Then it flattens out for bigger distances.

These trends are due to the following model properties.

Target input starts to build up when the activation of the

prime is still present. The activation level of the prime and

its position in the spatial number map (Fig. 6) are the two

factors that control the magnitude of the priming effect.

Prime inputs that are closest to the target produce the largest

residual activation at the position of the target. A larger

distance between the positions of the prime and the target

activations along the spatial number map result in a

decreasing priming effect. Even if the prime input has a

higher absolute level of activation at its position on the map,

its residual activation at the position of the target, which

gives rise to priming, is smaller than for the number that has

a lower absolute level of activation but is closer to the target

position. A rationale for why the effect may not flatten out in

vivo is proposed in Section 5.

The Number Size and Numerical Distance effects may

also be derived from temporal characteristics of the

numerical comparison process. Experimental data of Park-

man (1971) show that, for a given distance between the pair

of numbers, the comparison time increases as the magnitude

of the numbers increase. Thus, to compare ‘3’ and ‘5’ takes

less time than to compare ‘6’ and ‘8.’ Fig. 12 plots data

(filled diamonds, dashed line) which demonstrate the effect

for single-digit number comparisons.

To simulate this effect, two inputs were presented to

the SpaN model. The first input was presented for a fixed

time (450 time steps), the second one followed with a

100 time step delay. Number pairs in the range from

ð3; 5Þ to ð10; 12Þ with a constant distance of two units

between them served as the inputs. Eight input pairs

Fig. 11. Number priming. (A) Best linear fit (dashed line) to the data of

Bryzbaert (1995). [Adapted with permission from Bryzbaert (1995).] (B)

Model simulations for number targets 5 (circles) and 8 (diamonds). Total

RT ¼ tfixed þ ð1=2Þtmodel; where tmodel is the time when max{pi} reached a

fixed threshold Th. Simulation parameters: tfixed ¼ 360 ms; Th ¼ 0:13:

Fig. 12. Number comparison times as a function of number magnitude. Data

(solid diamonds, dashed line, best linear fit) from humans comparing one-

digit numbers. [Adapted with permission from Parkman (1971).] Model

simulations: solid lines (best linear fit); open circles show the right

comparison wave results, open diamonds those from the left comparison

wave. Total RT ¼ tfixed þ ð1=2Þtmodel; where tmodel is the time when Gmax

(Eq. (A12)) reached a fixed threshold Th. Simulation parameters: tfixed ¼

320 ms; Th ¼ 65:0:
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were presented to the network in both ascending ð3; 5Þ

and descending ð5; 3Þ order. Fig. 12 gives the times

determined from the comparison wave magnitude build-

up rate for both right and left directions (open circles:

right, open diamonds: left; solid lines). The lower

maximum levels of the spatial number map activation

for larger numbers (Fig. 6) yields a weaker effect of

activation redistribution. This results in a smaller

comparison wave between a pair of larger numbers

than between a pair of smaller numbers that are

separated by the same distance. The reaction time

increase is linear with number magnitude, as in the

empirical data.

The influence of the numerical distance on the compari-

son time was studied in experiments of Link (1990),

wherein two-digit numbers in Arabic notation were visually

presented to human subjects. The data plotted in

Fig. 13(diamonds, dashed lines) show the longest compari-

son times for nearby numbers, and a rapid decrease for

bigger interstimulus distances. In the SpaN model, presen-

tation of the pairs of inputs ð2; 6Þ; ð3; 6Þ; ð4; 6Þ; ð5; 6Þ and

ð6; 7Þ; ð6; 8Þ; ð6; 9Þ; ð6; 10Þ to the network were used to

simulate comparison time dependence on the interstimulus

distances. The same temporal characteristics of the stimuli

as in the previous simulation were used. Response times

were determined from the larger (left or right) comparison

wave magnitude. A larger numerical distance produces a

larger separation between the input activations on the spatial

number map, resulting in a larger comparison wave

magnitude. The larger wave reaches the fixed threshold

chosen for this simulation faster than does the smaller wave.

Fig. 13(circles, solid lines) demonstrates that the reaction

time drop was faster closer to the common stimulus (input

equal to six units) and slowed down further away from it in

the same fashion as in the experimental data.

5. Discussion of Where processing properties

The SpaN model proposes a real-time neural architecture

for modeling basic facts of numerical competence that are

shared by human and animals. The model uses specialized

versions of mechanisms—such as transient cells, spatial

maps, and comparison waves—that have also been used to

model other types of data concerning the Where cortical

processing stream. Using these mechanisms, key exper-

imental paradigms about numerical estimation and com-

parison can be simulated, and quantitative estimates for

error rates and reaction times can naturally be obtained as

emergent properties of these mechanisms.

Overall, the SpaN model explains a similar set of error

rate data as the model of Dehaene and Changeux (1993). On

the other hand, the comparison wave mechanism that we

propose is a conceptually different approach from the one

proposed by Dehaene and Changeux. In their model, the

discrimination is based on the value of connection weights

that are proposed to be learned during multiple presentations

of the same pairs of numerosities over a longer time scale. In

particular, Dehaene and Changeux propose that learned

weights connect each of the three layers of their network

(numerosity detectors, memory clusters, and matching

clusters) to the output clusters. These connection weights

were modified during training in such a way that “the

network had to activate one output cluster if N2 was larger

than N1, and another output cluster if N2 was smaller than

N1” using a reward to strengthen a connection if the

predicted output was correct. This approach raises a number

of questions about how the output clusters could themselves

be self-organized to represent the comparison being made,

and also about whether reinforcement learning is needed to

make all comparisons of larger and smaller pairs of

numbers. Independent of such concerns, one can imagine

that a comparison based on dynamic properties of the Where

stream and higher-level associative learning mechanisms

are not necessarily mutually exclusive. The comparison

wave shows how the microstructure of the spatial number

map itself, on a millisecond time scale, may yield these

effects when these dynamics are sensed by directionally

selective populations of output cells.

In addition to error rates, the SpaN model goes beyond

the scope of previous models by accounting for four

different types of chronometric data. A common temporal

scale that integrates inputs in real time was used in all

simulations. This is an important feature, since the same

transformation of integration time steps into milliseconds is

used in each case, thus providing a common linking

hypothesis between the two types of data.

One of the subtleties in the data explained concerns the

approximately linear increase in number reading times

(Fig. 10) that was similar to gaze duration times for single

digit reading (Gielen, Bryzbaert, & Dhont, 1991). Some

psychophysical studies have reported logarithmic behavior

with respect to number magnitude, such as subitizing

Fig. 13. Number comparison times as a function of numerical distance.

Data (diamonds, dashed lines) from people comparing two-digit numbers

presented in visual Arabic notation. [Adapted with permission from Link

(1990).] Model: circles, solid lines. Total RT ¼ tfixed þ ð1=2Þtmodel; where

tmodel is the time when Gmax (Eq. (A12)) reached a fixed threshold of Th.

Simulation parameters: tfixed ¼ 584 ms; Th ¼ 65:0:
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experiments (Mandler & Shebo, 1982) and two-digit

number reading experiments (Bryzbaert, 1995). We suggest

that other properties of the stimuli than their magnitude

could have contributed to the results in some cases. For

example, there could be parallel rather than serial visual

processing mechanisms operating in the subitizing and the

number of digits studies, including effects of verbally

mediated categorization, using mechanisms such as those

described in Part II of this article.

In the subitizing case, processing of a visual array of

items is unlikely to be a serial process, as reflected by a

disproportionally small reaction time increase when the

number of items in the array changes from one to three. The

serial-parallel processing dilemma related to the mechanism

of subitizing has been presented in the literature for many

years, attributing subitizing to a process of pattern

recognition (Mandler & Shebo, 1982) or preverbal counting

(Gallistel & Gelman, 1992). The present work does not

concentrate on the investigation of subitizing. Rather, it

assumes that whatever the mechanism is, it activates a

certain representation (the SpaN model preprocessor) that

reflects the number of items in a subitizable array. In the

two-digit number reading experiments, processing of a two-

digit number involves verbally mediated categorization that

is possibly superimposed onto the number-magnitude

related effect.

Most of the simulations captured the behavior of a

psychophysical variable in the whole range of the stimuli

employed (Section 4). The exception was the priming data

(Fig. 11). Here, only a range of numbers, centered at the

stimulus-prime, exhibited the experimentally demonstrated

linear increase in reading time, while larger prime-target

distances resulted in no or little priming in the model, as

opposed to the linear priming that is experimentally

observed (Bryzbaert, 1995). The following hypothesis

provides a possible explanation of this discrepancy:

cognitive processing of two-digit numbers may depend on

the other properties of the stimuli, like the number of digits

(indicated in Bryzbaert, 1995). This may imply that the two-

digit number is not processed all at once. Rather, a

dissociation may occur between the processing of each of

the two digits. If this hypothesis is correct, then the priming

effect cannot be fully attributed to number magnitude,

because part of the effect may come from a categorical

perception of numbers that is due to interactions between

the separate processing of each digit. Given the above

assumptions, which are supported by our simulations of

multi-digit number data, in Part II of this article, the model

results can be interpreted as a genuine magnitude-related

priming, which is valid for small numbers, or for a certain

range of numbers, and that is not influenced by composite

categorical-magnitude processing.

In both number priming and number comparison

experiments, the response time may depend on the interval

between the presentation of the two consecutive stimuli,

namely, the ISI. In the experiments by Gielen, Bryzbaert,

and Dhont (1991), the gaze duration is used to estimate the

time interval needed by the subjects to process a numerical

stimulus under no time stress. This interval ranged from 200

to 600 ms for one-digit and two-digit numbers. An ISI of

less than 200 ms for single-digit numbers is thus likely to

introduce some kind of interference in the processing of the

first stimulus and lead to disappearance or even reversal of

the Numerical Distance effect in the comparison task

(Bryzbaert, 1995). The SpaN model uses ISIs of about

250 ms in the simulations. In this parameter range, the

redistribution through time of spatial number map acti-

vations produces the comparison wave, leading to a genuine

distance effect. This effect was also demonstrated by Link

(1990) in his numerical comparison experiments with even

larger ISIs (1500 ms). Very long ISI (seconds) may produce

a complete decay of the activation produced by first

stimulus, and when the second stimulus comes in, it may

become necessary to somehow recall the first stimulus from

memory. On the other hand, a very short ISI, or

simultaneous stimuli presentation, may not significantly

influence the pattern of results, as demonstrated in

Bryzbaert (1995) for ISIs of 0, 200, and 400 ms, which

may be interpreted as support for the hypothesis of serial

processing of each stimulus.

The brain area within the Where processing stream that

seems to be used for numerical representation is the IPC

(namely, the areas around the inferior-parietal–occipital

junction (Dehaene et al., 1996; Pesenti et al., 2000; Pinel

et al., 1999; Rickard et al., 2000). The SpaN model predicts

that this area has a topographic organization that has an

ordering related to numerical properties of the stimuli that it

processes. This map is predicted to arise through a

combination of correlated cell activation thresholds and

sensitivities, followed by normalizing on-center off-sur-

round competition. Such correlated signal function

thresholds and slopes have also been used to explain other

types of data, and have experimental support in several parts

of the brain. For example, models of saccadic eye move-

ment (Grossberg & Kuperstein, 1986, 1989; Grossberg et al.,

1997), consonant processing during speech perception

(Cohen & Grossberg, 1997; Grossberg, 1970), and binocular

surface brightness perception (Grossberg & Kelly, 1999) all

exploit correlated properties of signal function thresholds

and slopes. So do models of adaptively timed learning.

Fiala, Grossberg, and Bullock (1996) model adaptively

timed classical conditioning of the eyeblink reflex using a

calcium gradient across a spatially distributed population of

cells in the cerebellar cortex, and summarize biochemical

data to support this hypothesis. Here, the calcium gradient

causes different cells to respond at different rates to a shared

analog input signal. A Weber law also occurs in these

adaptive timing data, and can be explained as an emergent

property of intercellular interactions across these spatially

distributed cells. The adaptive timing example may be

viewed as a temporal analog of the spatial mapping

principles that are shared in the previous examples. In all,
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the basic mechanism that gives rise to the spatial number

map may reflect a more general brain design.

The use of a comparison wave is natural wherever a

shift of spatial attention is commanded by a sequence of

events. Grossberg and Rudd (1989, 1992) described the

simplest example of such a wave; namely, when the

Gaussian activation across space due to one input is

decreasing as the activation across a spatially overlapping

Gaussian due to a second input is increasing, then such a

wave can occur. The properties of such a wave

qualitatively simulate many data about long-range

apparent motion perception and clarify how motion

perception may be related to shifts of spatial attention

and target tracking (Grossberg, 1999a). In these

examples, some of the cell properties that create the

wave can habituate when the cells are activated. If these

processes are entirely homologous, then it is sensible to

ask if similar habituation may occur in the numerical

comparison wave? If it does, then this property would

predict that multiple repetitions of a wave, say, from 2 to

6, might habituate properties of a wave, say, from 3 to 5.

A good quantitative fit for reaction time data was

obtained from information that is read out from different

parts of the model: from the spatial number map for reading

times and priming, and from the comparison wave for

numerical comparison tasks. We hypothesize that these two

output pathways are used to process different sorts of

information about numerical estimation and comparison,

much as the form and motion systems of the visual cortex

are used to estimate different types of information about

individual and sequential visual scenes. This proposal

predicts that different output pathways may be used for

numerical representation in numerical acquisition and

retention tasks versus numerical comparison tasks. Recent

functional imaging studies are consistent with this proposal

(Pesenti et al., 2000; Rickard et al., 2000) but do not probe

the predicted neural mechanisms.

Part II: What number categories and What-to-Where

associative mapping

With this background of experimental and modeling

results about Where processing contributions to numerical

representation and estimation, we can now discuss how

What numerical categories, when combined with What-to-

Where learned associations to the Spatial Number Map, can

lead to multi-digit representations that give rise to a place-

value number system as an emergent property.

6. Three types of models for multi-digit number

comparison

Psychophysical data related to multi-digit number

processing include studies on number reading, comparison,

and simple arithmetic. A major controversy arising from the

data concerns the response times in numerical comparison

experiments (Brysbaert, 1995; Dehaene et al., 1990;

Hinrichs, Yurko, & Hu, 1981; Poltrock & Schwartz, 1984).

All results agree on the general trend when the numbers are

compared to a fixed standard: response time becomes longer

as the difference between the presented number and the

standard becomes smaller. This trend reflects the temporal

side of the Numerical Distance effect (Dehaene, 1997). In

addition to these response time differences, the Numerical

Distance effect is exhibited in an increasing error rate as the

difference between the numbers being compared decreases.

The controversial portion of the data is related to how the

reaction times behave at a decade boundary (for two-digit

numbers). Experiments on two-digit (Dehaene et al., 1990)

and multi-digit (Poltrock & Schwartz, 1984) number

comparisons reported no fine-grain patterns in the reaction

time data beyond the conventional Numerical Distance

effect. In contrast, the study by Hinrichs et al. (1981)

mentioned a statistically significant increase in the reaction

time change for the two boundaries between the decades

(49–50 and 59–60) versus the adjacent intervals in the

number comparison experiment with stimuli ranging from

11 to 99 and a fixed standard of 55. The experiments by

Bryzbaert (1995) demonstrated a reverse distance effect

(reaction time increase for larger numerical distance) for the

two-digit numbers across the decades boundaries (Fig. 14).

Neither Hinrichs et al. (1981) nor Bryzbaert (1995) proposed

a mechanism to explain these observed paradoxical results

for numerical comparison between decades or on decades

boundaries.

Traditionally, explanations of psychophysical data about

multi-digit number comparison were based on information

about the symbolic and linguistic structure of numbers—

called the lexicographic approach—or the magnitude

Fig. 14. Decision times for two-digit number comparison as a function of

the absolute distance between the target and comparison numbers, whether

or not the target and the standard shared the same decade. Open circle:

different decade; solid star: same decade. [Adapted with permission from

Bryzbaert (1995).]

S. Grossberg, D.V. Repin / Neural Networks 16 (2003) 1107–11401122



representation of numbers—called the holistic approach—

or a combination of both. The lexicographic approach

predicts numerical comparison times based solely on the

leftmost digit information (the decades digit in the case of

two-digit numbers), completely ignoring the other infor-

mation (Poltrock & Schwartz, 1984). The holistic

approach—in which the symbolic numerical notation first

would be converted to a magnitude representation and only

then would the two numbers be compared—is supported by

the experiments by Dehaene et al. (1990). A combination of

the two approaches above was proposed in Hinrichs et al.

(1981). According to their hypothesis, for two-digit

numbers, the result of the units comparison could influence

the result of the decades comparison that, by itself, was

providing the correct result. The Hinrichs et al. (1981)

hypothesis, called the interference model, was questioned

by Dehaene et al. (1990), based on the results of their

experiments with asynchronous presentation of decades and

units digits during the two-digit number comparison task.

These experiments yielded no difference in the error rates

and reaction times for the conditions when either decades or

units digits were presented 50 ms earlier than the other digit.

In ruling out the interference model in favor of the holistic

model, a strong emphasis was placed on the relative

processing speed of the units and decades digits. According

to the Dehaene et al. (1990) argument, the earlier

presentation of the units digit should have increased the

reaction time, while the earlier presentation of the decades

digit should have reduced the reaction time, results which

have not been observed in the experiments.

As noted above, the present work develops a model of

cognitive numerical representation in the human brain that

incorporates both lexicographic and holistic components.

The lexicographic mechanisms begin to explain the

complex structure of the modern numerical system,

including the place-value principle that allows a compressed

representation of the open-ended set of numbers. This

aspect of the model shows how learned number-name

categories are involved in numerical representation, and

thus clarifies how cognitive processes begin to enter the

symbolic number system. The holistic approach provides a

basis for the spatial representation of numerical information

in the brain and fundamental mechanisms underlying the

number comparison processes. Why does not a spatial

representation alone have the capacity to represent arbi-

trarily large finite quantities? One reason is that an extended

linear array of spatially represented numbers would run out

of space in the brain. A deeper reason is that such a linear

array exhibits a Weber law property (Figs. 4 and 6), wherein

larger numbers have an ever coarser resolution, thereby

leading to increasingly inaccurate operations with them.

In reality, people can deal with arbitrarily large numbers

without losing much accuracy. Therefore, additional means

for creating an adequate representation for numerical

information are required. We suggest herein how the

higher-level cognitive process of categorical perception is

closely related to the symbolic structure of any number

system. Our model posits learned interactions between

number categories (that are themselves learned within the

brain’s What processing stream for language acquisition) and

the spatial representation of numbers that was modeled in

Part I (that is part of the brain’s Where processing stream for

spatial representation and action). The model hereby predicts

that symbolic numerical abilities arise through a What–

Where interstream interaction. It is through learned inter-

actions between cognitive number categories and the primal

spatial number representation that the SpaN model can show

why and how the open-ended nature of numerical represen-

tation, and thus the edifice of human mathematics, arises. In

order to conceptually distinguish the Where SpaN model

mechanisms from the model’s What-to-Where mechanisms,

we call the latter model the Extended SpaN, or ESpaN,

model.

The ESpaN model uses the same parameters of the SpaN

model, so can simulate all the data described in Part I of the

article. ESpaN also provides a quantitative fit to both terror

rate and reaction time data for multi-digit numbers. It

simulates the reaction times and suggests an explanation of

the paradoxical reversed Numerical Distance effect

observed in Bryzbaert (1995) and partly indicated in

Hinrichs et al. (1981). The model also simulates the

numerical comparison results for two-digit numbers in the

asynchronous digit presentation paradigm and points out

some differences between two-digit number comparisons

for different language structures, such as English (24 is

pronounced as twenty-four) versus Dutch (24 is pronounced

as four-and-twenty). This aspect of the model is restricted to

humans, because as far as we know, animals do not have

names for numerical categories. Section 7 describes the

structure of the ESpaN model, focusing on the interaction

between number-name categories and the spatial number

map through learning. The model is then used in Section 8

to simulate the reaction time and error rate data in a multi-

digit number comparison task as well as the example with

asynchronous digit presentation. In Section 9, we discuss

the evolutionary implications of the proposed model, its

relationship to other multi-modal fusion phenomena in the

brain, and its limitations.

7. The ESpaN model

The essence of the ESpaN model is the learned

association of verbal categories for number-words and

spatial analog numerical representation, which may be

considered as a fusion of What and Where information

streams (Fig. 15). Recent neurophysiological data have

begun to demonstrate the existence of such What-to-Where

interactions in the primate brain (Rainer, Asaad, & Miller,

1998). Behavioral and functional imaging data also support

this hypothesis (Dehaene et al., 1999). In the present

example, the Where stream is represented by the spatial
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number map which has a brain correlate in the IPC, as

summarized in Part I. Part I also noted that this spatial

number map could be activated by sensory inputs coming

from visual, auditory or other modalities. Here, we

acknowledge that it can also be activated by cognitive

categorical inputs originating in other cortical areas, notably

areas that process spoken language. The What stream is

represented by a set of verbal categories that are learned

from speech representations in the temporal and prefrontal

cortical areas that have projections from the auditory cortex

(Grabowski, Damasio, & Damasio, 1998; Gruber, Kleinsch-

midt, Binkofski, Steinmetz, & von Cramon, 2000). The

verbal categories are connected to the spatial map by

adaptive memory weights via associative learning, and are

activated by phonetic number-names.

In the SpaN model, the spatial numerical representation

was given by a one-dimensional map. This one-dimensional

map is extended to a two-dimensional spatial map in the

ESpaN model. The original one-dimensional map structure

is unchanged. It is extended by spatial gradients of

activation that decrease in a direct perpendicular to the

original one-dimensional map. Thus the original one-

dimensional map is extended to strips of cells that represent

the same number in the two-dimensional map, albeit with

different levels of activation. Strips of feature-specific cells

have been posited to exist in models of other Where stream

processes, notably to explain how humans can process

multiple auditory streams during auditory scene analysis in

order to solve the Cocktail Party Problem (Grossberg,

1999b). Such redundant strip representations may thus

reflect a more general Where stream design.

How the two-dimensional number map is used to

represent multi-digit numbers may be understood through

the following example: The number two-hundred requires

categories two and hundred in order to activate the

corresponding region in the spatial number map. Before

What-to-Where learned associations form, the basic spatial

number map has a one-dimensional structure that is

represented by extended strips across the map (Fig. 16A).

What-to-Where learning converts these strips into localized

regions that represent multi-digit numbers (Fig. 16B). Using

this learned representation, the ESpaN model can explain

numerical abilities for the number system based on both

additive and multiplicative principles, as long as there are

learned categories for number names. In order to demon-

strate and test the ESpaN What-to-Where learning hypoth-

esis, we have simulated the model using examples of

English number naming and the decimal place-value

number system.

7.1. Number categories and spatial organization

The EspaN model preserves the primary one-dimen-

sional spatial number map, with activations of the smaller

numbers towards the left side of the map, and of larger

numbers towards the right side. The EspaN model extends

the one-dimensional map to a two-dimensional map by

using a Gaussian gradient along the strips perpendicular to

the primary number map (Eq. (B4)). Neural connections

from linguistic number categories can be tuned through

learning to any locations on this two-dimensional spatial

number map. In English, these categories include the

single digits from one to nine, group categories such as

hundred or thousand, and specific phonetic markers such

as ty, that denotes tens in twenty or thirty. The schematic

Fig. 15. What–Where information fusion is a key hypothesis of the ESpaN

model. Previously learned phonetic categories in the What stream become

associated with corresponding locations of the spatial number map in the

Where stream. These learned What-Where associations are essential for

building a number-system based on the place-value principle.

Fig. 16. Schematic representation of the spatial number map and learned What–Where associations. (A) The striped area on the left shows the location of the

primary (units) weights strip. (B) An example of where the association for seven-ty is formed in the spatial map. The size of the solid circles encodes weight

magnitude; the strongest association for seventy is arises at the spatial location where both the associations for categories seven and ty are present.
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operation of the model during the learning phase is shown

in Fig. 17. Numerical inputs may activate both the analog

and the categorical input channels. A number input like

seventy-four is, for example, assumed to activate such

categories as seven, ty (for the tens), and four. The number

categories may be more complex, such as in French or

Basque, reflecting the mixture of base-10 and base-20

systems. Phonetic number-categories may also exactly

reflect the decimal structure of the number system with the

exception of eleven and twelve in the teens and awkward

structures such as twen-ty instead of two-ten as in modern

Chinese.

Human infants who are only a few months old are

capable of distinguishing small quantities (Wynn, 1998),

suggesting early development of a basic spatial number

map. With the acquisition of language, the number words

that denote the small single-digit numbers begin to influence

the number representation process. During learning within

the model, these learned number categories are associated

with the area of the spatial number map that has the highest

activation level at the time when the number category input

is active. For one-digit numbers, this area represents the

original, or the primary, number line. Later in map

development, when learning more complex two- or three-

digit numbers, new categories such as teen, ty, and hundred

are learned and become associated with areas of the number

map that have smaller activation than the primary number

line. Learning of categories ty or hundred occurs in the

presence of a single-digit category; for example, seven for

seven-ty or seven hundred. This means that weights for ty or

hundred in the case of seven-ty or seven hundred will be

learned within that portion of the map gradient, where seven

is active (Fig. 16). If a gradual exposure to more complex

numerical structures is assumed, and tens tend to be learned

before hundreds, then the categories corresponding to tens

will be learned at approximately the same values of

the gradient orthogonal to the primary number line. Thus,

the structure of the spatial number map after learning both

one- and two-digit numbers will represent a strip of a primary

number line corresponding to the learned one-digit numbers

and another strip, somewhat parallel to it, corresponding to

the tens, or the ty, category. Such a strip structure of a spatial

number map may not be very regular, but it tends to have a

topology where one dimension represents the analog

quantitative scale and the other dimension spans a certain

number of categories that expand the numerical system with

progressively larger number of digits.

Fig. 18 presents an example of the dynamics of the

simulated two-dimensional weight pattern connecting

number categories with the spatial number map during the

learning phase. To roughly portray the first steps of how the

child may learn numbers, only one-digit numbers were

presented to the network at first. Fig. 18(top row) shows

how the weights for number-categories from one to nine

evolve with presentation of more and more inputs. The

growing strip of large weights connect single-digit cat-

egories to the locations of the spatial number map along the

primary number line. This strip will be referred as the units

strip later on. As with a child learning numbers from simple

to more complex, the two-digit numbers were then added to

the training set of the ESpaN network.

Fig. 18 (rows two and three) shows that once the

category weights near the primary number line have

saturated, weights corresponding to the new inputs, the

tens, are learned within the strip that is parallel to the

primary number line and located to the right of the units

strip. This tens strip represents how the weights from

single-digit categories from 1 to 9 are associated with the

decades digit of the two-digit numbers.

In our simulation example, we used the English

language, which does not possess the most optimal

structure of number naming, and bears odd artifacts of

Fig. 17. ESpaN model in the learning mode. During initial development the analog input channel provides the necessary numerical input that drives the

formation of the primary strip in the spatial number map. Later in development, with the acquisition of language, number-words reflecting learned number-

categories provide the input for the other channel: The activation of the primary strip due to the analog channel propagates down the gradient across the spatial

map. When both input channels are active, the weights are learned in the locations of the spatial map activated simultaneously by both the number-category

input and the gradient of activation.
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the past such as eleven and twelve, and to a lesser extent,

the whole structure of teens. One may argue that numbers

11 and 12 fall out of the teen linguistic structure. In this

case, these two numbers may be assigned individual

categories eleven and twelve that would be learned further

to the right from the basic numbers (1–9) on the primary

number line. The latter case does not contradict the model

hypothesis, as we know that primary number line does not

have to end at 9, but may extend as high as 50 for some

animal species (Rilling & McDiarinid, 1965).

The formation of the strip structure of the weights to the

spatial number map is clarified in Fig. 19 in the example of

how the weights are learned from each category. It

illustrates the change of the weights connecting the

number-category five to the spatial number map. When

only one-digit numbers are presented, the weight patterns

with each number line resemble the activation produced by

the analog representation of the input corresponding to five

items or events as a result of processing by basic

mechanisms of the SpaN model (Fig. 19, top three panels).

Fig. 18. Computer simulation of learned weight amplitudes for different categories: magnitude is coded by the shades of gray from dark (small) to light (large).

(A) Learning progress for weights connecting categories one through nine to the spatial number map; weight patterns for categories one through nine are

plotted together on each panel. (B) Learning progress for only the weights connecting category ty to the spatial map; no learning for category ty occurs when

only single-digit numbers are present in the training set. C: learned weight pattern for recurrent ESpaN formulation for categories one through nine plotted

together; this weight pattern represents the same stage of network learning as the bottom right panel of part A of this figure.
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Incorporation of two-digit numbers into the learning process

leads to formation of the part of the tens strip that

corresponds to the number-category five (Fig. 19, bottom

three panels). The structure of the weight pattern deviates

from the regular bell-shaped activations obtained from in

the SpaN model due to competitive interstrip interactions

during the learning process and the stochastic nature of

weight initialization and ordering of the training set.

In addition to the weights from single-digit categories,

the weights connecting ty (or the tens) category to the spatial

number map are also learned. No learning for the ty category

occurs when only the single-digit numbers are presented.

When the two-digit numbers are included in the training set,

a strip of weights spanning the numbers from 2 to 9 along

the primary number line dimension is learned in approxi-

mately the same location as the strip that corresponds to the

category ty (Fig. 18B). Note that numbers from 11 to 19 do

not contribute to the learning of the tens strip, since in

English they are formed by a separate phonetic structure

such as teen, as in four-teen, and represent a separate

category. Model equations for the map learning are given at

the end of the article. In order to make the map learning

simulations manageable, the map was simulated with many

fewer cells than would occur in the corresponding map in

the brain. Due to this coarse spatial resolution, the learning

simulations exhibit larger random fluctuations than would

be expected in vivo. With the simulated spatial resolution,

each learning trial still took 3–5 h on a PII 300 MHz

computer.

7.2. Multi-digit number comparison

The second part of the ESpaN model embodies a

mechanism by which the proposed spatial number map

gets incorporated into simple operations with numbers. This

mechanism extends the comparison wave proposed in the

SpaN model of Part I. The original comparison wave was

able to model successfully such properties of human and

animal numerical comparison as reaction times and error

rates. In the ESpaN model, multiple comparison waves exist

to represent the redistribution of activation patterns across

the two-dimensional spatial number map in a direction

parallel to the primary number line. In other words, if one

looks at the spatial number map as a set of number lines that

are parallel to the primary number line, then multiple

comparison waves occur within the individual number lines.

The ensemble of all these waves determines judgements in

the manner described below.

The operation of the ESpaN model in the comparison

mode is described by the diagram in Fig. 20. Here, the

number comparison process is assumed to take place after a

sufficient amount of learning has been accomplished, and

a weight pattern from number-categories to the two-

dimensional spatial number map (similar to the example

in Fig. 18) has been formed. The learning stage of the

ESpaN model (and the original SpaN model) assumes that a

signal whose amplitude is proportional to the numerical

input is generated in the analog input channel. After the

weight pattern connecting number categories to the spatial

map has already been learned, the input to the analog

channel does not have to be present. For example, as

children learn more, they become less dependent on the

primitive process of counting on fingers. They rely more on

numbers that are expressed in their symbolic form with the

help of spoken number-names or written number-symbols.

Similarly, the ESpaN model assumes that category-based

input channel takes a major role in number processing after

learning has been completed. It is then sufficient for

Fig. 19. Computer simulation of the learning process for category five. When only 1-digit numbers are present in the training set (top three panels), weights in

the primary strip are learned. Presence of 2-digit numbers results in weights growing further from the primary number line, in the ty strip (bottom three panels).

The irregularities of the weight patterns observed in the figure are due to the initialization of weights to small random numbers and random order of training

examples in the training set.
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the number-inputs to directly activate the number-cat-

egories that project through the weights onto the spatial

number map, producing activation patterns similar to the

ones that would have been produced through the analog

input channel alone. As in the case of development of

mathematical skills, when children start to operate without

difficulty with both multiplication tables learned in verbal

format and Arabic number-symbols, the model assumes that

numerical information in both visual and auditory mod-

alities can activate the category input channel and thus the

corresponding number maps and comparison waves.

Simulated comparison waves for number pairs ð32; 55Þ and

ð38; 55Þ are shown in Fig. 21. In both examples, the processing

of the decades digit starts before the units digit as reflected in

the input temporal structure. Separate comparison waves

occur within the tens and units strips of the spatial number

map. In case of 32 and 55, waves to the right in the tens strip

ð3 , 5Þ and in the units strip ð2 , 5Þ are larger than waves to

the left. When these waves are added up, the cumulative

comparison wave moving to the right is significantly larger

than the one moving to the left (bottom portion of Fig. 21).

This result corresponds to the judgment that 55 is larger than

32. Such an interaction between the comparison waves is

assumed to occur during the output processing stage or shortly

before the response is produced. In case of 38 and 55, the right

wave in the tens strip ð3 , 5Þ is again larger than the left one,

Fig. 20. ESpaN model in the comparison mode. Multi-digit numerical input activates categories in the number-category space. These categories activate

specific regions within corresponding strips of the spatial number map via connection weights formed during learning. Dynamic redistribution of activation

across the spatial number map is detected with the help of the comparison wave cell layers. The direction of comparison (right or left) is determined from the

interaction of comparison waves that occur in different strips.

Fig. 21. Simulation of the comparison wave for number pairs 32 , 55 (left) and 38 , 55 (right) presented in the numerical comparison task. Two top lines on

each panel illustrate the time course of a two-digit number presentation: units digit follows the decades digit after a short delay. Middle graph shows that

comparison waves occur in both tens and units strips in both directions. Note that only the comparison wave that occurs after the onset of the second input

contributes to the response. The comparison wave before 500 time steps is a by-product of the growth and partial decay of the activation of the first input. The

inter-strip interaction results in a cumulative left and right comparison wave (bottom graph). The comparison wave with a larger magnitude wins and

determines the response: if the larger wave to the right, then the second number is larger; if the larger wave is to the left, then the second number is smaller.
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but the opposite situation occurs in the units strip ð8 . 5Þ;

where the wave moving to the left wins. The cumulative right

comparison wave is still larger for this pair of inputs because

of the assumption that attention more heavily weight the tens

strip; see Eqs. (B10) and (B11), where the weighting

coefficients modulate the level of attention. The difference

between the left and the right is, however, smaller than for the

number-pair 32 and 55, thereby leading to more errors and

slower RTs. Model equations for the comparison wave

process are given at the end of the article.

8. Data simulations

The ESpaN model allows simulation of the two-digit

number comparison experiments and thereby offers

an explanation of reaction time data (Bryzbaert, 1995) about

the reversed distance effect. A decades-units interaction

mechanism based on the cumulative properties of multiple

comparison waves is predicted to underlie this paradoxical

effect. In the simulated paradigm, a pair of two-digit numerical

stimuli were presented to the subject with a stimulus onset

asynchrony (SOA) between the first and the second ranging

from zero to several seconds. Even for the zero SOA, serial

processing of the stimuli assures that processing of the second

number starts after the first number has already begun to be

processed. Processing of a composite stimulus such as a two-

digit number was treated as a mixture of parallel and serial

mechanisms in the following fashion: the input signal

corresponding to the tens digit started a few milliseconds

before the input signal corresponding to the units digit. After

this brief delay (denoted UTA, Units-Tens Asynchrony), both

tens and units inputs were present simultaneously.

The simulations were implemented in MATLAB

environment and run on a 300 MHz PentiumII PC. An

array of 120 £ 50 cells (along number lines £ across

number lines) was used for both the extended spatial

number map and the comparison wave direction-sensitive

cells. Throughout the simulations, all parameters in the

model equations were fixed. The presence of a stochastic

component due to initialization of the spatial map weights to

small random numbers at the beginning of the learning

process resulted in learned weight patterns that deviate from

an ideal bell-shaped profile across the map. Therefore, the

simulation results of the both error rates and the reaction

times do not always exhibit an entirely regular structure. As

noted above, the amount of irregularity in the simulations is

greater than that expected in the brain due to the smaller

number of cells in the simulations than in the corresponding

brain regions. All experimental data were plotted as dashed

lines, and all model results were plotted as solid lines.

8.1. Error rates

In the simulations, two-digit numbers from 21 to 89 were

compared to a fixed standard of 55. As in the SpaN model,

the error rate was determined by the comparison wave

amplitude. The ESpaN results reported here thus include and

extend the results simulated by the SpaN model. It is assumed

that the larger the relative amplitude of the comparison wave

in the left or right direction, the more reliable and accurate the

response. The cumulative comparison wave was generated

from the waves that occur in the units and the tens strips. The

cumulative wave is assumed to be a linear combination of the

waves that occur in the tens and units strips. The contribution

of the wave in the units strip is thus the same for each decade,

e.g. X1 , 55;X2 , 55;…;X8 . 55;X9 . 55: Thus, if the

error rates are averaged within each decade, the difference in

the comparison wave magnitudes across the decades is

determined solely by the decades digit. ESpaN simulations

are shown in Fig. 22A, along with the experimental data. In

these experiments (Hinrichs et al., 1981), the subjects were

simultaneously presented with a pair of two-digit numbers

(one was always a standard of 55) on a projection screen.

Subjects were instructed to respond as quickly as possible by

pressing the button associated with either smaller or larger

response. Both data and simulations demonstrate the

Numerical Distance effect; that is, an increase in the error

rate as the stimuli get closer to the standard. In the ESpaN

model simulations, the larger distance between the two

decades digits resulted in a greater spatial separation of the

corresponding activations of the spatial number map along

the number line dimension. Larger spatial separation of

the activations caused a more pronounced redistribution of

the activation between the spatially separated positions along

the number lines within the tens strip, thus producing a larger

cumulative comparison wave.

The Numerical Distance effect was the only reliable effect

related to the error rates that was reported in the experimental

data known to us. The regular intra-decade pattern of error

rates (error increase at the end of the decade for numbers

smaller than 55, error increase at the beginning of the decade

for numbers larger than 55) was generated by the ESpaN

model as a result of the decades and units comparison wave

interactions. This fine structure has not yet been reported in

the experimental data, unlike the data about reaction times

that are discussed in the next section. Experiments with more

subjects and more trials may be necessary to clarify this issue.

To illustrate the argument about the fine structure of the error

rates, ESpaN simulation data are shown along with Dehaene

et al. (1990) data in Fig. 22B. In the study by Dehaene et al.

(1990), the same experimental paradigm as in Hinrichs et al.

(1981) was employed with the exception of a cathode-ray

tube used instead of a projection screen.

8.2. Reaction times

The reaction times (RT) for a two-digit number compari-

son task were simulated for the same set of two-digit number

pairs from 21 to 89 that were compared to a fixed standard of

55. The RTs were computed according to Eq. (B14). Fig. 23

shows the reaction times simulated with the ESpaN model
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(panels A and B) and psychophysical data (Hinrichs et al.,

1981, panel C) and (Dehaene et al., 1990, panel D).

The general trend of the RT curve reflects the temporal

side of the Numerical Distance effect; namely, the RT

increases for the inputs closer to the standard. In the model,

the larger distance between the two numbers results in a

greater spatial separation of the corresponding activations in

a single number line, and the redistribution of the activation

Fig. 22. Simulated and experimental error rates. In the experimental paradigm, a pair of two-digit numbers was presented (one of them 55) and a key-press

response to a larger (or smaller) number on the right (or left) was required (see text for more details). Top: error rate data averaged across decades; both

experimental and simulated data demonstrate a general decrease of the number of errors with increasing distance from the standard of 55. Bottom: error rate

data for all numbers presented; experimental data demonstrate no regular pattern besides the general decrease away from the fixed standard.

Fig. 23. Reaction times for two-digit numbers compared to 55. (A) ESpaN simulations, learning as described by Eq. (B1); (B) ESpaN simulations, learning as

described by Eqs. (B1a) and (B1b); (C) Hinrichs et al. (1981) data; (D) Dehaene et al. (1990) data. [Reprinted with permission from Hinrichs et al. (1981),

Dehaene et al. (1990).] Simulation parameter: Th ¼ 125:
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occurs between the spatially separated positions along the

number line as opposed to activation decay and rise at

almost the same position in the number line. Presence of a

substantial along-number-line component of activation

redistribution produces a larger amplitude of the compari-

son wave.

In order to provide evidence in support of the ESpaN

hypothesis about the decades–units interaction within the

comparison wave, also referred to as the interference model

in Dehaene et al. (1990), one must analyse the intra-decade

structure of the simulated RT data that extend beyond the

conventional distance effect. As already mentioned, most

experiments reported no fine structure within the individual

decades in the reaction time data in number comparison

experiments. Some evidence for the RT discontinuity on the

decade boundaries appeared in the study by Hinrichs et al.

(1981), who mentioned a statistically significant increase in

the reaction time change for the two boundaries between the

decades (49–50 and 59–60) with respect to the adjacent

intervals. The most reliable experimental results have been

obtained by Bryzbaert (1995), who found a pattern of

reaction time that increased for smaller numerical distance

for two-digit numbers across the decades boundaries,

therefore exhibiting a reversed Numerical Distance effect.

In these experiments, two-digit numbers were presented

side-by-side in a computer screen. The two numbers

appeared asynchronously, with an SOA of 0, 200, 400,

and 600 ms. Subjects were required to respond by pressing a

button on the side of the smaller number. The reversed

distance effect was observed for all SOAs, and was the most

pronounced for the SOA of 200 ms.

In the ESpaN model simulations (Fig. 23, panel A or B ), a

regular structure of the intra-decade reaction times is

observed. For the inputs smaller than the standard, an

additional RT increase occurs towards the end of the decade

with the peak at X8 or X9: For the inputs larger than the

standard, a similar increase is present towards the beginning

of the decade, peaking at X1 or X2: This intra-decade effect is

explained by the dynamics of the interaction of the

comparison waves between the tens and units strips. For

numbers of the same decade, say 40–49, compared to a

standard of 55, the largest comparison wave occurs within the

tens strip and goes from left to right ð4X , 5XÞ: The right

comparison wave (which is larger than the left) that occurs in

the units strip propagates in the same direction as the tens

wave for the numbers from 40 to 44 (4X , 5X and

40,…,44 , 45), adding more to the cumulative right wave.

The opposite happens for the numbers from 46 to 49

(4X , 5X; but 46,…,49 . 45), when the units right wave

is smaller than the left wave, thus adding less to

the cumulative tens and units right wave. The observed

intra-decade pattern of reaction times that increase at the end

of the decade for numbers smaller than 55, and at the

beginning of the decade for numbers larger than 55, is

produced due to the contribution of the units digit. In other

words, the comparison wave in the units strip moving to

the right is larger (so it reaches a fixed threshold Th faster) at

the beginning of the decade than at its end (40,…,44 , 45 vs.

46,…,49 . 45). When the cumulative comparison wave is

generated by adding both decades and units waves together,

the difference of the units waves for different units digits

affects how fast the total wave builds up, which is translated

into a regular intra-decade pattern of the reaction times.

8.3. Asynchronous presentation

The experiments with asynchronous presentation of

decades and units digits were used by Dehaene et al.

(1990) as the main argument in favor of the holistic model of

multi-digit number comparison. The ESpaN model assumes

that the two-digit number input is fully processed after the

categories corresponding to both units and decades digits are

activated. Therefore, in order to simulate the asynchronous

input presentation, the time-delay between the onset of the

decades and units digits was varied. In this paradigm,

decades category input always preceded the units, thereby

reflecting the structure of number naming in contemporary

English. Fig. 24 shows the reaction time patterns generated

for decades leading units with large delay (100 time steps)

between them (top panel), medium delay (60 time steps) that

roughly reflects a synchronous presentation (middle panel),

and a zero delay implying units leading decades in the

presentation order (bottom panel). A zero delay in the latter

simulation reflects the case when the units digit has been

already processed, and only awaits the remaining decades

part of the two-digit to activate its corresponding category

and trigger the comparison process. Both the experimental

(Dehaene et al., 1990) and the simulated reaction time data

demonstrate similar trends. Based on the fact that the

response pattern did not depend on the digit order and the

delay between digit presentation, Dehaene et al. (1990)

proposed that they had disproved the possibility that any

mechanism involving interaction between decades and units

digits (interference hypothesis) controls the number com-

parison process. Based on these ESpaN simulation results,

we suggest that the presence such a mechanism (Section 7.2)

does not contradict the experimental data, and that the

interference hypothesis may thus remain as a plausible

explanation for the reaction time patterns observed.

9. Discussion of multi-digit data and simulations

At present, no brain imaging or single-cell recording data

are available to either support or disprove the hypothesis

that a two-dimensional spatial map with a learned strip

organization underlies the representation of multi-digit

numbers in the brain. On the other hand, other experimen-

tal and theoretical evidence for the existence of mechan-

isms that link numerical competence to spatial attention

and motion detection abilities have been described in

various sources, and reviewed in Part I above. The simplest
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version of spatial organization, a one-dimensional one,

cannot suffice for large numbers, if only because the

accuracy of such a representation would drop dramatically

because of the Weber law property. In reality, people are

able to perform various mental operations with large

numbers without a significant decrease in the performance

they demonstrate with smaller numbers. Combining the

concept of a spatial map organization with the categorical

representation of large numbers in language, leads to the

extended spatial number map structure that is modeled

herein. In this framework, number category labels supply

the additional information that allows learned formation of

a compressed and open-ended representation of numbers

through interactions with the spatial map. These inter-

actions suggest how units, teens, tys, hundreds, thousands,

etc. may be organized in a natural map representation that

accommodates the order-of-magnitude increase in numer-

osity with each successive place value.

In earlier discussions of the role of lexicographic and

holistic approaches for the explanation of the number

processing (Dehaene et al., 1990), the emphasis was always

made on the interaction between the processing of decades

and units digits. In the ESpaN approach, this interaction may

be controlled by an attentional mechanism that determines

how much attention is paid to the decades comparison wave

relative to the units comparison wave. In one version of this

concept, the interaction between decades and units occurs just

before response generation, or during a post-processing stage

with respect to the comparison stage. Another possibility is

that decades and units interact in the pre-processing stage.

The post-processing stage gives more attention to one of the

comparison wave outputs (see the attentional weighting

coefficients Runits and Rtens in Eqs. (B10) and (B11)). The pre-

processing stage gives more attention to the stage where the

category input is fed into the spatial number map. Attention

could, for example, increase the decades input ðIkÞ in Eq. (B7)

relative to the single digit category input, and the attentional

weights in Eq. (B10) and (B11) would be equal ðRunits ¼

RtensÞ: Moving the attentional mechanism from post- to pre-

processing stage produces almost identical simulation results

in Fig. 25. Additional experimental studies are required in

order to dissociate the two possibilities and choose which

mechanism, pre- or post-processing attentional modulation, is

responsible for the behavioral patterns observed in the data.

A possible experimental paradigm that may clarify this

issue may exploit the number-naming differences in different

languages, such as Dutch versus English. Different pronun-

ciation of two-digit number names such as four-and-twenty

in Dutch and twenty-four in English may lead to dissociation

of processing the number-stimuli during the input or output

stages. A study performed by Bryzbaert (1995) with Dutch

subjects suggested a possible interaction of phonetic and

spatial representations in the post-processing stage. In that

study, the subjects were asked to name the target number

after being presented with both prime and target numbers in a

visual Arabic format. The main effects observed were

the Number Size (RT increase with the number absolute

value increase), the Numerical Distance, and the SNARC

Fig. 24. Reaction times for two-digit numbers compared to 55. Left: ESpaN simulations for zero, medium (60 time steps) and large (100 time steps) delay

between the presentation of units digit following the decades digit. Right: experimental data from Dehaene et al. (1990), where two-digit numbers were

presented with units leading decades by 50 ms, synchronously, and with decades leading units by 50 ms. [Reprinted with permission from Dehaene et al.

(1990).]
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(Spatial-Numeric Association of Response Codes) effects.

The SNARC effect (Dehaene et al., 1993) demonstrated that

left-hand responses were faster than right-hand for the

smaller numbers within a given set of numbers, and

conversely for the larger numbers. These effects in the

reaction time data were interpreted as evidence for the

interaction between a spatial representation and number-

names at the response stage. Therefore, a psychophysical

experiment similar to the Bryzbaert (1995) paradigm applied

to both, say, Dutch and English subjects (to account for the

decades-units order in the number naming structure) may

help to determine the actual place where the interaction

between phonetic and spatial representation occurs in vivo.
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Appendix A. Span model equations

A.1. Preprocessor

The transient cell response is calculated as the product xz;

where the cell activity x increases as a function of input I; and

the transmitter gate z habituates, or depresses, as a function of

x (Abbott, Varela, Sen, & Nelson, 1997; Baloch et al., 1999;

Francis & Grossberg, 1996; Francis, Grossberg, & Mingolla,

1994; Grossberg, 1972, 1980; Markram & Tsodyks, 1996;

Ögmen & Gagné, 1990). In particular, the time-averaged

activity x is computed by a leaky integrator with a time

constant A; where the input I takes the form of a rectangular

pulse and a is a constant tonic level:

dx

dt
¼ 2Ax þ I þ a: ðA1Þ

Fig. 25. ESpaN simulation of reaction times for two-digit numbers compared to 55. (A) Original ESpaN model, top: Interaction between category and spatial

representation occurs at post-processing stage; bottom: Interaction between category and spatial representation occurs at pre-processing stage. (B) Same as

panel A for recurrent ESpaN formulation.
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The habituative transmitter gate z accumulates at rate B to

a target level 1, and is inactivated (released, or depressed) by

the mass action coupling 2C½x�þz with activity x :

dz

dt
¼ Bð1 2 zÞ2 C½x�þz: ðA2Þ

In Eq. (A2), rates B and C are constant, and the value of x is

thresholded, or rectified, at zero: ½x�þ ¼ maxðx; 0Þ: The

activity y; which is the final output of the preprocessor,

integrates (or sums, in the discrete time formulation) the

output signals xz over a threshold value Y

y ¼
Xt

t¼0

½xz 2 Y�þ; ðA3Þ

where Y ¼ xð0Þzð0Þ: The amplitude of this integrated signal

is roughly proportional to the number of items or events in a

sequence, so that the output reflects numerical properties of

the input; see Fig. 5. Parameter t in Eq. (A3) denotes the

current time. The initial conditions for Eqs. (A1)–(A3) are

xð0Þ ¼ a=A; zð0Þ ¼ B=ðB þ Ca=AÞ; and yð0Þ ¼ xð0Þzð0Þ ¼

ða=AÞðB=ðB þ C=AÞÞ: The threshold Y in Eq. (A3) is set

equal to xð0Þzð0Þ in order to eliminate the DC component in

the integrator final output.

The linearity of the preprocessor does not have to be

imposed exactly. In a more general case, a monotonously

increasing function of the number of transients correspond-

ing to the number of items or events is sufficient. Having,

say, a logarithmic relation between the number of transients

and the preprocessor output would result in a different

distribution of thresholds and slopes in the spatial number

map in order to preserve the properties of the number

retention and comparison processes.

A.2. Spatial number map

The spatial number map is implemented as a linear array

of nodes, where the input si to each node is the output of a

sigmoid, or S-shaped, signal function of the integrator

activity y :

si ¼
ð½y 2 Gi�

þÞn

bn
i þ ð½y 2 Gi�

þÞn
: ðA4Þ

Eq. (A4) begins to convert the nonspecific distribution

of the shared input y into a location along a spatial map. In

Eq. (A4), i is the node position along the map (i ¼ 1 being

the leftmost node), y is the integrator output in Eq. (A3),

the Gi are signal thresholds that increase from left to right,

parameters bi control the slope increase from left to right,

and parameter n determines how steep the slopes are; see

Fig. 4 for signal function examples. In particular, the

thresholds Gi increase linearly as a function of i; and the

parameters bi vary as a hyperbolic function of i that takes

the form a þ b=ði 2 cÞ; see the end of this section.

Normalization of the inputs si preserves their relative

sizes while also ensuring the same order of magnitude for

values on the left and right sides of the map:

Si ¼
siX

k

sk

: ðA5Þ

In Eq. (A5), the summation over k spans all the map

nodes. The normalized Si input to the activities pi of the

map via an on-center off-surround network, whose cells

obey the membrane, or shunting, properties familiar from

cell recordings (Grossberg, 1973, 1980, 1988):

dpi

dt
¼2Dpi þð12piÞ

X
k

FikSk 2 ðpi þEÞ
X

k

GikSk: ðA6Þ

In Eq. (A6), D is a constant decay rate, E is a constant

hyperpolarization coefficient, and terms Fik and Gik are

excitatory and inhibitory Gaussian kernels that define the on-

center and off-surround, respectively. The excitatory and

inhibitory input sums in Eq. (A6) are gated by the memb-

rane equation, or shunting, gain control terms ð12piÞ and

ðpi þEÞ; respectively, which keep each pi within the interval

2E to 1. Summation over k spans all nodes where the kernels

have nonzero values. The initial condition is pið0Þ ¼ 0; since

no spontaneous activity is assumed to be present. The

Gaussian excitatory and inhibitory kernels for different

locations on the map obey:

Fik ¼
F

g
ffiffiffiffi
2p

p exp 2
1

2

k2 i

g

� �2
( )

and

Gik ¼
G

d
ffiffiffiffi
2p

p exp 2
1

2

k2 i

d

� �2
( )

:

ðA7Þ

In Eq. (A7), parameters F; G; g; and d are constant. Fig. 6

shows the steady-state activations pið1Þ for different values

of the integrator output that correspond to increasing

numerical magnitude of the input stimulus.In the number

reading (Fig. 10) and number priming (Fig. 11) simulations,

the reaction times were determined at the time ðtmodelÞ when

maxðpiÞ reached a fixed threshold of Th¼ 0:012: The total

reaction times shown in Figs. 10 and 11 were calculated as

RT ¼ tfixed þð1=2Þtmodel: For number reading, tfixed ¼ 195 ms:

For number priming tfixed ¼ 360 ms:

A.3. Comparison wave

Two arrays of nodes with activities q
right
i and qleft

i

transform the outputs pi of the spatial number map into

left and right comparison waves. The direction-sensitive

activities q
right
i and qleft

i detect the redistribution of activation

patterns across the spatial number map through time

dq
right
l

dt
¼2Hq

right
l þ½pl2mðtÞ2pl2mðt21Þ�þplðtÞ; ðA8Þ
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and

dqleft
l

dt
¼2Hqleft

l þ½plþmðtÞ2plþmðt21Þ�þplðtÞ: ðA9Þ

In Eqs. (A8) and (A9), index l reflects the cell position in

the array, H is the time decay rate, m is a constant shift

value, and ðtÞ and ðt21Þ denote current time and the time

one integration step back. This direction-detection mech-

anism computes the product of activation plðtÞ at current

node l and the phasic change of activation ½pl^mðtÞ2

pl^mðt21Þ�þ (a derivative-like operation) at the node

shifted to the m positions to the left (þ ) or to the right

(2 ) from the node l: The activities q
right
i ðqleft

i Þ are added to

compute the right and left outputs gright ðgleftÞ from the

Comparison Wave at any given time t; namely:

grightðtÞ ¼ J
XM
k¼1

q
right
k ðtÞ; ðA10Þ

and

gleftðtÞ ¼ J
XM
k¼1

qleft
k ðtÞ: ðA11Þ

The comparison wave magnitude Gmax at the response

time Tr is calculated according to Eq. (A12), which

integrates the values of gright ðgleftÞ up to time Tr; which

corresponds to the moment when the larger wave (gright or

gleft) reaches its maximum amplitude level

Gmax ¼
ðTr

t¼0
ðmax{grightðtÞ;gleftðtÞ}Þdt: ðA12Þ

In all simulations, Tr was fixed at 200 steps (<100 ms)

based on the EEG studies of numerical comparison

discussed in Dehaene (1997). Parameter J in Eqs. (A10)

and (A11) is a constant scaling factor, M is the total number

of left or right direction-sensitive nodes, which in turn

equals to the number of nodes in the spatial number map.

In the number comparison as a function of magnitude

(Fig. 12) and number comparison as a function of distance

(Fig. 13) simulations, the reaction times were determined at

the time ðtmodelÞ when the comparison wave amplitude

max{gleft; gright} reached a fixed threshold of Th ¼ 6:2: The

total reaction times shown in Figs. 12 and 13 were calculated

as RT ¼ tfixed þ ð1=2Þtmodel: For the magnitude simulations,

tfixed ¼ 320 ms: For the distance simulation tfixed ¼ 580 ms:

The following parameter values were fixed for all simulations

in both the SpaN and ESpaN models: A ¼ 10; B ¼ 0:05; C ¼

5; D ¼ 0:7; E ¼ 0:15; F ¼ 1; G ¼ 3; H ¼ 2; J ¼ 0:0004;

M ¼ 120; a ¼ 20; n ¼ 4; m ¼ 10; for k ¼ 1;…; 120 :: g ¼

5; d ¼ 32; Gk ¼ 0:23 þ 0:17·k; bk ¼ 1:98·104 þ 2:87=ðk 2

282Þ: Data fits using comparison wave estimates could not be

optimized because they are based on nonlinear emergent

properties of dynamically changing network comparisons.

These fits were found by trial-and-error.

Appendix B

ESpaN model equations

The ESpaN model during the learning phase is described

by Eqs. (B1)–(B6). These equations generalize the SpaN

model one-dimensional spatial number map to a two-

dimensional map that can be activated by number-

categories through a learning process. For each training

example (a single one- or two-digit number), the learning

process is described by the system of Eqs. (B1) and (B6).

Eq. (B1) describes the evolution through time of the

activation pij of each cell of the spatial number map. The

index i denotes the node position along each number line.

The index j designates multiple copies of the number line,

with j ¼ 1 designating the primary number line; see Figs. 16

and 17.

B.1. Extended number map

dpij

dt
¼ 2Dpij þ ð1 2 pijÞ

X
n

FinSnj þ
X

k

Ikwkij

" #

2 ðpij þ EÞ
X

n

GinSnj þ
X

n

pinKnj

" #
: ðB1Þ

In Eq. (B1), parameter D is a constant decay rate, term

ð1 2 pijÞ bounds pij to remain less than 1 in response to

excitatory inputs
P

n FinSnj þ
P

k Ikwkij from numerical

inputs and learned categories, respectively; and term

ðpij þ EÞ bounds pij to remain greater than 2E in response

to inhibitory inputs
P

n GinSnj þ
P

n pinKnj from numerical

inputs and recurrent inhibitory feedback, respectively. The

parameter E determines the maximal hyperpolarization

level. Terms Fik and Gik are excitatory and inhibitory

kernels that define the on-center and off-surround,

respectively, that is activated within each strip j in

response to the numerical input Snj: These kernels are

thus responsible for the intra-strip competition. The termP
n pinKnj with kernels Knj; controls the selection of which

strip will respond after inter-strip competition takes place.

Inter-strip competition allows localization of map acti-

vation by the individual number-categories and prevents

learning from spreading uncontrollably across the strips.

All kernels in Eq. (B1) represent Gaussians with constant

scaling factors (F; G; and K) and constant variances (g; d;

and 1). They are defined according to Eq. (B2):

Fik ¼
F

g
ffiffiffiffi
2p

p exp 2
1

2

k 2 i

l

� �2
( )

;

Gik ¼
G

d
ffiffiffiffi
2p

p exp 2
1

2

k 2 i

l

� �2
( )

;

Knj ¼
K

1
ffiffiffiffi
2p

p exp 2
1

2

n 2 j

1

� �2� �
:

ðB2Þ
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The input from the kth number-category multiplies the

category output signal Ik with a learned adaptive weight wkij:

The learned input from all categories are added via the termP
k Ikwkij at map location ði; jÞ: The analog input Snj

generalizes the input to the primary spatial map in Eq. (A5)

as follows. An input si to location i of the primary number line

is generated by the preprocessor of the SpaN model. The

equations describing the preprocessor operations are given in

Appendix A. After normalization to si=
P

k sk; the normalized

input is projected onto a strip of the two-dimensional spatial

map in the direction orthogonal to the primary number line

via a spatial gradient Lj :

Sij ¼
siX

k

sk

Lj: ðB3Þ

In Eq. (B3), the gradient Lj has a unit value at the primary

number line ðj ¼ 1Þ; and decays exponentially to the opposite

side of the spatial number map:

Lj ¼ exp 2
j 2

z

( )
: ðB4Þ

In Eq. (B4), z is a constant parameter responsible for the

slope of the gradient. The category input Ik takes binary

values depending on the activation of a particular category

through the category input channel:

Ik ¼
1; if the category is present

0; if the category is absent

(
: ðB5Þ

Parameters in Eq. (B1) were chosen with the same values

as in Eq. (A6).

The weights wkij from number category k to the spatial

number map locations ði; jÞ were learned according to the

equation.

B.2. Category-to-map learning

dwkij

dt
¼ hIkpijwkij Q 2

X
l

wlij

" #
: ðB6Þ

Weight wkij changes at a rate proportional to the product

Ikpijwkij of the current category input Ik; cell activity pij; and

the current weight wkij until the sum of the weights
P

l wlij

associated with the node ði; jÞ attains the maximum level Q:

Product Ikpij defines an associative learning constraint in

that learning occurs only if the category and the map cell are

simultaneously active. Parameter h is the fixed learning rate

parameter, which equals 0.07 in all the simulations. The Q

term defines a competition for a limited weight resource at

each map cell. The maximum total weight Q ¼ 15: Before

the learning process starts, all weights are assigned normally

distributed ðmw;swÞ small positive values.

The learning paradigm described by Eqs. (B1)–(B6)

assumes that a single-digit number seven related to the units

(seven), decades (seventy), or even hundreds (seven hundred)

may be processed through the analog input channel via a

serial counting-like mechanism. For example, when children

learn basic numbers, counting on fingers is one way that an

analog representation of the number of visually presented

items may be created. For tens or hundreds, analog input may

also be generated through the auditory modality as a result of

counting by increments of ten or hundred. The process of

silent counting often leads to the activation of auditory

categories (ten, hundred), which may be reflected by lip

movement. Those categories are activated serially, and then

every instance of encountering the category gives rise to a

transient signal, or an activity burst. The accumulation of

such bursts over time gives an analog signal whose amplitude

is proportional to the number of times any of the categories

got activated.

As the process of learning numbers continues, the

analog input is required less and less often, as number-

words become associated with number categories that

develop strong connections to the spatial representation.

The latter is especially true for the basic numbers from 1 to

9. In order to model the possibility that number categories

become the major input for the learning process, even

supplanting the role of the analog input channel, we have

also studied the following modification of the learning

process. In this recurrent model, we assume that inputs

from both the analog and the category channels are fed to

the cells of the primary number line only. Other strips

receive recurrent signals from the primary number line and

learned category inputs (Fig. B1).

Fig. B1. Recurrent version of the spatial map learning. The input from either of the analog or category input channel activates the primary number line. The

activation of the primary number line is then extended onto the whole spatial number map through recurrent gradient connections.
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This circuitry enables both an analog input and a learned

category input to activate the primary number line and the

corresponding strips of the extended number line via the

recurrent connections, which decrease in strength via a

gradient Lj; much as in Eq. (B4). Thus, as the primary

number line activation pi1 grows, whether due to analog or

category input, it extends onto the whole spatial number

map through a recurrent gradient of activation Lj; see term

pi1 Lj in Eq. (B1b). Eqs. (B1a) and (B1b) below now replace

Eq. (B1), since the primary number line (B1a) now requires

a separate treatment as the only place which receives an

analog input S:

B.3. Recurrent extended number map

dpi1

dt
¼ 2Dpi1 þ ð1 2 pi1Þ

X
n

FinSn1 þ
X

k

Ikwki1

" #

2 ðpi1 þ EÞ
X

n

GinSn1 þ
X

n

pinKn1

" #
; ðB1aÞ

dpij

dt
¼ 2Dpij þ ð1 2 pijÞ pi1Lj þ

X
k

Ikwkij

" #

2 ðpij þ EÞ
X

n

pinKnj

" #
; j – 1: ðB1bÞ

In Eq. (B1a), the input Sn1 is defined by Eq. (B3a):

Si1 ¼
siX

k

sk

: ðB3aÞ

The two learning paradigms, described by Eq. (B1) and

Eqs. (B1a) and (B1b), differ in the amount of learning based

on mostly analog estimation of number of items or quantity

versus learning based on acquired cognitive categories. We

believe that both mechanisms may be mixed in a certain

proportion during the initial stages of development of

numerical abilities in humans. The reaction time simu-

lations shown in Fig. 23 (panels A and B), demonstrate that

both learning circuits lead to similar results.

B.4. ESpaN comparison wave equations

During the number comparison process, inputs come

only through the number category channel. The spatial

number map Eq. (B1) is simplified by setting inputs Snj

coming through the analog channel equal to zero ðSnj ¼ 0Þ:

B.5. Learned read-out from number-categories

dpij

dt
¼ 2Dpij þ ð1 2 pijÞ

X
k

Ikwkij 2 ðpij þ EÞ
X

n

pinUnj:

ðB7Þ

In Eq. (B7), parameters D and E are the same as in

Eq. (B1), and the category inputs Ik are defined according to

Eq. (B5). Interstrip competition is also present, as in the

learning mode.

The comparison wave operates along each number line,

denoted by a fixed index j; in the same way as in Eqs. (A8)

and (A9), according to Eqs. (B8) and (B9).

B.6. Comparison waves

dq
right
lj ðtÞ

dt
¼ 2Hq

right
lj ðtÞ þ ½pl2m;jðtÞ2 pl2m;jðt 2 1Þ�þpljðtÞ;

ðB8Þ

dqleft
lj ðtÞ

dt
¼ 2Hqleft

lj ðtÞ þ ½plþm;jðtÞ2 plþm;jðt 2 1Þ�þpljðtÞ:

ðB9Þ

When j ¼ 1; the comparison wave responds to the

primary number line, where it detects redistribution of

activation along that one-dimensional array of nodes. For

each j . 1; there is a separate comparison wave. These

waves are combined as follows. The activities q
right
ij ðqleft

ij Þ are

added to compute the right and left outputs grightðgleftÞ from

the comparison wave at any given time t: The summation

spans both dimensions, along number line positions ðl ¼

1;…;MÞ and across number lines for each strip (units: j ¼

1;…;Punits; tens: j ¼ Punits;…;Ptens; etc.):

grightðtÞ ¼ Runits

XPunits

j¼1

XM
l¼1

q
right
lj ðtÞ þ Rtens

XPtens

j¼Punits

XM
l¼1

q
right
lj ðtÞ

þ Rhundreds

X
· · · ðB10Þ

gleftðtÞ ¼ Runits

XPunits

j¼1

XM
l¼1

qleft
lj ðtÞ þ Rtens

XPtens

j¼Punits

XM
l¼1

qleft
lj ðtÞ

þ Rhundreds

X
· · · ðB11Þ

In Eqs. (B10) and (B11), Runits and Rtens are fixed

weighting coefficients that may depend on attentional

factors when generating a response. Due to the presence of

the gradient in Eq. (B4) during the learning stage, the

resultant activation of the units strip may become larger

than that of the tens strip. The ESpaN model assumes that

different levels of attention may exist for different strips in

the output, or response generating, stream. According to

this hypothesis, more attention is typically paid to the strips

that correspond to numerical categories that are acquired

later in the learning process. Thus the weighting coeffi-

cients obey the following pattern: Runits , Rtens , Rhundreds:

In particular, Runits ¼ 1 and Rtens ¼ 3: The number of

number lines that comprise each strip (Punits and Ptens) is

not chosen a priori. It arises from the self-organizing

structure of the spatial map that is created during learning,

where the separation of strips is determined by the kernel

Knj in Eq. (B2). Model parameters were chosen such that

each strip consists of at least 4–5 number lines in order to
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simulate the properties that emerge from the two-dimen-

sional spatial map. In particular, Punits ¼ 5; Ptens ¼ 14:

These simulations do not use three digit numbers, so

Rhundreds is not defined.

Two types of response were simulated based on the

properties of the comparison wave: error rates and reaction

times. The error rate was determined as the inverse of Gmax

in Eq. (B13), namely:

Gmax ¼
ðTr

t¼0
ðmax{grightðtÞ; gleftðtÞ}Þdt; ðB12Þ

and

Error ¼
1

Gmax
; ðB13Þ

where gright and gleft are defined in Eqs. (B10) and (B11), and

the value of Tr (time of response) was fixed at 200 steps

(<100 ms) for all pairs of number inputs based on the EEG

studies of numerical comparison discussed in Dehaene

(1997). The reaction time for each pair of inputs was

determined from Eqs. (B10) and (B11) as the moment T when

the comparison wave magnitude max{gleftðTÞ; grightðTÞ}

reached a fixed threshold value Th for all pairs of stimuli

presented during the session:

RT ¼ minðTÞ; when

max{grightðTÞ; gleftðTÞ} $ Th:

ðB14Þ

The fixed value of Th implies that the energy of the wave

has to reach a certain level in order to generate the response.

We assumed the simplest hypothesis where this level is equal

for all stimuli. In addition to parameters defined in the end of

Appendix A, the following parameter values were used in the

ESpaN model simulations: Q ¼ 15; Punits¼5; Ptens ¼ 14;

Runits ¼ 1; Rtens ¼ 3; 1 ¼ 5; z ¼ 550; h ¼ 0:07; mw ¼ 0:1;

sw ¼ 0:05: Data fits based on multiple comparison wave

estimates are even harder to achieve than those based only on

the primary number line.
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Ögmen, H., & Gagné, S. (1990). Neural network architecture for motion

perception and elementary motion detection in the fly visual system.

Neural Networks, 3, 487–506.

Parkman, J. M. (1971). Temporal aspects of digit and letter inequality

judgments. Journal of Experimental Psychology, 91(2), 191–205.

Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroana-

tomical substrates of arabic number processing, numerical comparison,

and simple addition: a PET study. Journal of Cognitive Neuroscience,

12, 461–479.

Poltrock, S. E., & Schwartz, D. R. (1984). Comparative judgments of

multidigit numbers. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 10, 32–45.

Pinel, P., Le Clec, G., van de Moortele, P.-F., Naccache, L., Le Bihan, D., &

Dehaene, S. (1999). Event-related fMRI analysis of the cerebral circuit

for number comparison. NeuroReport, 10, 1473–1479.

Rainer, G., Asaad, W. F., & Miller, E. K. (1998). Selective representation of

relevant information by neurons in the primate prefrontal cortex.

Nature, 393, 577–579.

Ramachandran, V. S., & Hubbard, E. M. (2001a). Psychophysical

investigations into the neural basis of synaesthesia. Proceedings of

the Royal Society of London B, 268, 979–983.

Ramachandran, V. S., & Hubbard, E. M. (2001b). Synaesthesia—a window

into perception, thought and language. Journal of Consciousness

Studies, 8, 3–34.

Repin, D. V., & Grossberg, S (1999). How does the brain represent

numbers. Paper presented at the third international conference on

cognitive and neural systems. Boston: Boston University.

Repin, D. V., & Grossberg, S (1999). A neural model of how the brain

represents numbers. Paper presented at the 21st international summer

school of brain research. Amsterdam.

Restle, F. (1970). Speed of adding and comparing numbers. Journal of

Experimental Psychology, 83, 274–278.

Rickard, T. C., Romero, S. G., Basso, G., Wharton, C., Flitman, S., &

Grafman, J. (2000). The calculating brain: an fMRI study. Neuropsy-

chologia, 38, 325–335.

Rilling, M., & McDiarmid, C. (1965). Signal detection in fixed-ratio

schedules. Science, 148, 526–527.

S. Grossberg, D.V. Repin / Neural Networks 16 (2003) 1107–1140 1139



Robinson, D. A. (1970). Oculormotor unit behavior in the monkey. Journal

of Neurophysiology, 35, 393–404.

Schiller, P. H. (1970). The discharge characteristics of single units in the

oculomotor and abducens nuclei of the unanesthetized monkey.

Experimental Brain Research, 10, 347–362.

Seron, X., Pesenti, M., Noel, M.-P., & Deloche, G. (1992). Images of

numbers, or ‘When 98 is upper left and 6 is sky blue’. Cognition, 44,

159–196.

Starkey, P., Spelke, E. S., & Gelman, R. (1983). Detection of intermodal

numerical correspondences by human infants. Science, 222,

179–181.

Stein, B. E., & Meredith, M. A. (1993). The merging of the senses.

Cambridge, MA: MIT Press.

Ullsperger, P., & Grune, K. (1995). Processing of multi-dimensional stimuli:

P300 component of the event-related brain potential during mental

comparison of compound digits. Biological Psychology, 40, 17–31.

Washburn, D. A., & Rumbaugh, D. M. (1991). Ordinal judgments of

numerical symbols by macaques (Macaca mulatta). Psychological

Science, 2(3), 190–193.

Wynn, K. (1998). Psychological foundations of number: numerical

competence in human infants. Trends in Cognitive Sciences, 2(8),

296–303.

S. Grossberg, D.V. Repin / Neural Networks 16 (2003) 1107–11401140


	A neural model of how the brain represents and compares multi-digit numbers: spatial and categorical processes
	Introduction: human and animal numerical abilities
	&?tw;Part I: spatial mechanisms in the where processing stream
	Experimental data and modeling approaches
	SpaN model spatial map
	Simulation results
	Response distribution
	Error rate data
	Chronometric data

	Discussion of Where processing properties
	&?tw;Part II: What number categories and What&hyphen;to&hyphen;Where associative mapping
	Three types of models for multi-digit number comparison
	The ESpaN model
	Number categories and spatial organization
	Multi-digit number comparison

	Data simulations
	Error rates
	Reaction times
	Asynchronous presentation

	Discussion of multi-digit data and simulations
	Acknowledgements
	Span model equations
	Preprocessor
	Spatial number map
	Comparison wave

	ESpaN model equations
	Extended number map
	Category-to-map learning
	Recurrent extended number map
	ESpaN comparison wave equations
	Learned read-out from number-categories
	Comparison waves

	References


