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Neural dynamic:s of attentionally modulated
Pavlovian c()nditioning: Conditioned

reinforcement, inhibition, and
oppolnent processing
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A real-time neural network model is developed to explain data about the acquisition and ex-
tinction of conditioned excitors and inhibitors. Systematic computer simulations are described
of a READ circuit, which joins toget]~er a mechanism of associative learning with an opponent-
processing circuit, called a recurrent gated dipole. READ circuit properties clarify how positive
and negative reinforcers are learned and extinguished during primary and secondary condition-
ing. Habituating chemical transmitt~rs within a gated dipole determine an affective adaptation
level, or context, against which later events are evaluated. Neutral conditioned stimuli can be-
come reinforcers by being associated ,~ither with direct activations or with antagonistic rebounds
within a previously habituated dipole. Neural mechanisms are characterized whereby condition-
ing can be actively extinguished, and associative saturation prevented, by a process called oppo-
nent extinction, even if no passive memory decay occurs. Opponent extinction exploits a func-
tional dissociation between read-in a:tld read-out of associative memory, which may be achieved
by locating the associative mechaniSJn at dendritic spines. READ circuit mechanisms are joined
to cognitive-emotional mechanisms for associative learning of conditioned reinforcers and of in-
centive motivation, and to cognitive-.in particular, adaptive resonance theory-mechanisms for
activating and storing internal repre,sentations of sensory cues in a limited-capacity short-term
memory (STM); for learning, matchiJlg, and mismatching sensory expectancies, leading to the
enhancement or updating of STM; antI for shifting the focus of attention toward sensory represen-
tations whose reinforcement history ill consistent with momentary appetitive requirements. This
total neural architecture is used to e:x:plain conditioning and extinction of a conditioned excitor;
conditioning and nonextinction of a conditioned inhibitor; and properties of conditioned inhibi-
tion as a "slave" process and as a "comparator" process, including effects of pretest deflation
or inflation of the conditioning co~terl, of familiar or novel training or test contexts, of weak
or strong shocks, and of preconditioltling unconditioned-stimulus-alone exposures. The same
mechanisms have elsewhere been used to explain phenomena such as blocking, unblocking, over-
shadowing, latent inhibition, supercolJditioning, inverted U in conditioning as a function of inter-
stimulus interval, anticipatory condii;ioned responses, partial reinforcement acquisition effect,
learned heclplessness, and vicious-circle behavior. The theory clarifies why alternative models
have been unable to explain an equally large data base.

cognitive-reinforcement circuits. The theory is applied to
the explanation of data about the acquisition and extinc-
tion of classically conditioned excitors and inhibitors.

The neural architectures that are engaged during clas-
sical conditioning are distributed across several brain
regions. Even the relatively simple architecture that con-
trols the rabbit's nictitating membrane response includes
such widely separated regions as the cerebellum (McCor-
mick & Thompson, 1984) and hippocampus (Berger &
Thompson, 1978). In order to understand the workings
of such a distributed neural architecture, one must simul-
taneously analyze both the whole and its parts, both the
macroscopic and the microscopic description of the archi-
tecture. On the macroscopic level, one needs to under-
stand the functional and computational relationships that
clarify how the architecture controls a particular class of

1. Introduction: The Analysis of
Distributed Neural Architectures

A key problem in biological theories of intellig.~nce con-
cerns the manner in which external events interact with
internal organismic requirements to focus attention upon
motivationally desired goals. The present wor]k:. further
develops a theory that involves sensory-cogniitive and
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Figure 1. Anatomy of an adaptive resonance theory (ART) cir-
cuit. (a) Interactions between the attentional and orienting sub-
systelDS: Code learning takes place at the long-term memory (L TM)
traces within the bottom-up and topodown pathways between levels
FI and F2. The topodown pathways can read out learned expecta-
tions, or templates, that are matched against bottom-up input pat-
terns at Fl' Mismatches activate the orienting subsystem A, thereby
resetting sbort-term memory (STM) at F2 and iuitiating search for
another recognition code. Subsystem A can also activate an orient-
ing response. Sensitivity to mislnatch at F 1 is modulated by vigilance
signals from drive representations. (b) Trainable pathways exist be-
tween level F2 and the drive representations. Learning from F2 to
a drive representation endows a recognition category witb condi-
tioned reinforcer properties. Learning from a drive representation
to F2 associates the drive representation with a set of motivation-
ally compatible categories. (From "Neural Dynantics of Category
Learning and Recognition: Stmctural Invariants, Reinforcement,
and Evoked Potentials," by G. A. Carpenter and S. Grossberg, in
press, Quantitative Analyses of Behavior, Vol. 8. Printed by per-

mission.)

behaviors, and why it is composed of particular types of
circuits. On the microscopic level, one needs to attain a
detailed analytic understanding of how each circuit is
designed, of how it works, and of what types of mechanis-
tic variations can be expected to occur as evolutionary
variations across species. These macroscopic junctional
analyses and microscopic mechanistic analyses are, more-
over, not independent, because the behavioral properties
controlled by a neural architecture are typically emergent
properties that arise from interactions among its compo-
nent circuits.

A thoroughly characterized neural architecturt: provides
an explicit real-time description of how behaviorally ob-
servable stimuli influence the internal neural tr~lDSforma-
tions that regulate behaviorally observable n~sponses.
Although a number of extremely useful phenomenologi-
cal and formal conditioning models have been described
during the past two decades, most of these models do not
provide an explicit description of the real-time mecha-
nisms that would be required to instantiate their concepts
and equations. In particular, although the classical Res-
corIa and Wagner (1972) model is formulated in terms
of difference equations whose variables changl~ through
time, these equations do not provide an explicit charac-
terization of real-time mechanisms that might IJe able to
instantiate the model's properties. Such an attempt at ex-
plication shows, moreover, that the Rescorl~t- Wagner
model cannot be consistently embedded into an explicit
real-time model (Grossberg, 1982a).

The demand for a real-time processing descriiption has
been shown to impose important design constraints upon
the formulation of conditioning processes. The ~tdvantage
of a real-time theory can be appreciated through exam-
ples of how such a theory has articulated the coordinated
neural events that are triggered by unexpected changes
in external environmental contingencies, notably by the
unexpected nonoccurrence of a primary or conditioned
reinforcer, or by unexpected changes in contingent or non-
contingent probabilities of a conditioned stimulus (CS) or
unconditioned stimulus (US) in a given experimental

context.
At least two types of neural network macrocircuits are

needed to provide a real-time explanation of a broad range
of data about the acquisition and extinction of conditioned
excitors and inhibitors.

Sensory-cognitive circqit. Sensory-cognitive inter-
actions in the theory are carried out by an adaptive reso-
nance theory (ART) circuit (Carpenter & Grossberg,
1985, 1987; Grossberg, 1976b, 1987a). The ART archi-
tecture suggests how internal representations Clf sensory
events, including CSs and USs, can be learnecl in stable
fashion (Figure 1). Among the mechanisms USt:d for sta-
ble self-organization of sensory recognition codes are the
top-down expectations that are matched again~:t bottom-
up sensory signals. When a mismatch occurs, an orient-
ing arousal burst acts to reset the sensory reprc~sentation
of all cues that are currently being stored in short-term

memory (STM). In particular, representations with high
STM activation tend to become less active, representa-
tions with low STM activation tend to become more ac-
tive, and the novel event that caused the mismatch tends
to be more actively stored than it would have been had

it been expected.
Cognitive-reinforcement circuit. Cognitive-reinforcer

interactions in the theory are carried out in the circuit
described in Figure 2. In this circuit, there exist cell popu-
lations that are separate from sensory representations and
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}igW'e 2. SclRmatic conditioning circuit. Conditioned stimuli activate ~ repreRD-
tations (Scs,), which compete amo~: theJDSelves for limited-ca.-city short-term
memory activation and storage. The activated Scs, elicit conditionable signals to drive
representations and motor command rellJl'eseDtations. learning from an Scs, to a drive
repreRntation, D, m called conditionedreinfo~er leaming. Learning from D to an ~,
m called incentive motivationalleamin8. Signals from D to ~, are elicited when the
combination of external sensory Inputs plus Internal drive Inputs m sufficiently large.
In the simulations reported herein, the ,irive level m assumed to be large and constant.

related to particular drives and motivational variable~
(Grossberg, 1972a, 1987a). Repeated pairing of a CS sen-
sory representation, Scs, with activation of a drive
representation, D, by a reinforcer causes the modifiable
synapses connecting Scs with D to become strengthenedl.
Incentive motivation pathways from the drive represel1l-
tations to the sensory representations are also assumed
to be conditionable. These conditioned S --D --S feed-
back pathways shift the attentional focus to the set of previ-
ously reinforced, motivationally compatible cues
(Figure 2). This shi~ of attention occurs because the sen-
sory representations, which emit conditioned reinforcer
signals and receive conditioned incentive motivation sig-
nals, compete among themselves for a limited-capacit:'f
STM via on-center off-surround interactions. When in-
centive motivational feedback signals are received at th,~
sensory representational field, these signals can bias thl~
competition for STM activity toward motivationally salient
cues.

In order to explain the moment-by-moment dynamics
of conditioning, an additional microcircuit must be embed-
ded in the drive representations of the macrocircuit de-
picted in Figure 2. This microcircuit, called a gated di-
pole (Grossberg, 1972a, 1972b), instantiates a neuro-
physiological theory of opponent processing. The nee<1
for a certain type of opponent processing for condition-
ing circuits can be seen from the following considera..
tions.

The gated-dipole opponent process. In the cognitive-
reinforcement circuit, CSs are conditioned to either the
onset or the offset of a reinforcer. For example, a CS that
is conditioned to the onset of a shock can become a source
of conditioned fear (excitor). A CS that is conditioned to
the offset of a shock can become a source of conditioned
relief (inhibitor). A gated-dipole opponent process ex-
plains how the offset of a reinforcer can generate an off-
response, or antagonistic rebound, to which a simulta-
neous CS can be conditioned. A gated dipole is a minimal
neural-network opponent process that is capable of gener-
ating a sustained, but habituative, on-response (e.g., afear
reaction) to onset of a cue (e.g., a shock), as well as a
transient off-response (e.g., a relief reaction), or an-
tagonistic rebound, to offset of the cue.

The READ circuit: A synthesis of opponent process-
ing and ~tive learning mechanisms. A specialized
gated-dipole circuit is needed to explain phenomena such
as secondary inhibitory conditioning. Secondary inhibi-
tory conditioning consists of two phases. In Phase I, CSt
becomes an excitatory conditioned reinforcer (e.g., a
source of conditioned fear) by being paired with a US
(e.g., a shock). In Phase 2, the offset of CSt can gener-
ate an off-response that can condition a subsequent CS2
to become an inhibitory conditioned reinforcer (e.g., a
source of conditioned relief). In order to explain secon-
dary inhibitory conditioning, a gated-dipole circuit must
also contain internal feedback pathways; that is, it should
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be recurrent. In addition, such a recurrent gated dipole
must be joined to a mechanism of associative learning,
whereby CSs may become conditioned excitors or inhi-
bitors. A circuit design that realizes all these properties
is called a READ circuit, as a mnemonic for FtEcurrent
Associative gated Dipole (Figure 3).

The design of the READ circuit clarifies many proper-
ties of conditioning data; for example, how tile extinc-
tion of conditioned excitors and the nonextinction of con-
ditioned inhibitors may be explained by a sin~:le neural
circuit (Part ll). Our analysis links these data properties
to the functional property that opponent interac;tions ac-
tively cause extinction even in cases in which pllssive ex-
tinction does not occur. In the absence of passi1re extinc-
tion, an associative memory could easily saturate.
Opponent extinction shows how saturation is prevented
and active extinction obtained even if no passiv(: memory
decay occurs. These functional properties of opponent ex-
tinction can be achieved using a mechanistic property that
dissociates the read-in and read-out of a1isociative
memory. Such a mechanistic property can, in turn, be
realized by locating associative synapses on dendritic
spines.

Thus, the present article describes two related types of
results. Part I provides a quantitative computational anal-
ysis of several variants of a READ circuit d(:sign that
forms part of the total neural architecture for tl1le control
of classically and operantly conditionable behaviors that
is schernatized in Figures 1-3. Based upon the mathemati-
cal theory of classical conditioning and associative learn-
ing that was provided in Grossberg (1969a, 1965'c, 1970),
the development of this architecture began in Crrossberg

(1971). Since that time, the component circuits of the ar-
chitecture have been progressively elaborated in a series
of articles aimed at explaining and predicting an ever-
larger behavioral, psychophysiological, neurophysiologi-
cal, anatomical, and neuropharmacological data base
about conditioning and its control mechanisms. Keyac-
complishments of this theory during its first decade of ex-
istence are reviewed and further development provided
in Grossberg (1982a, 1982b, 1984b). These recent arti-
cles are gathered together in Grossberg (1987a).

The READ circuit design analyzed in Part I is one of
several specialized gated-dipole circuits that have been
identified through the parametric analysis of behavioral
and brain data. Specialized gated-dipole circuits have also
played a key role in helping to explain and predict a wide
variety of other data bases.! Thus, a gated-dipole circuit
may at this time be said with some confidence to instanti-
ate a basic principle of neural design.

Involvement of a gated-dipole circuit can be inferred
from behavioral data through its characteristic constella-
tion, or bundle, of emergent properties. These include
mutually dependent properties of habituation, antagonis-
tic rebound, adaptation-level processing, and an in-
verted U in sensitivity. The habituative, antagonistic-
rebound, and adaptation-level properties play an impor-
tant role in the applications described herein. Antagonistic-
rebound properties are particularly important for under-
standing how a real-time theory can fill the conceptual
gaps left by a merely fonnal theory. This is because
antagonistic-rebound reactions often occur subsequent to
the offset of an external cue or subsequent to the non-
occurrence of an expected cue. Such antagonistic rebounds
thus occur during time intervals when no experimentally
controlled external cues are active. Only in a real-time
theory can such reactions be explained without invoking
ad hoc hypotheses. Indeed, the very existence, no less
than the size, of an antagonistic rebound can depend upon
a host of contextual and learning-dependent factors, whose
properties can be conveniently analyzed in a real-time the-
ory but not in a merely formal theory. Since such rebounds
influence key observable properties of behavioral condi-
tioning and extinction, formal theories are fundamentally
limited in their ability to explain data in which the spatio-
temporal organization of CSs and USs mixes together
learnable direct reactions and antagonistic rebounds to
these cues.

Part n joins the results of Part I to the other real-time
circuits of the neural architecture schematized in Figures
1 and 2 to explain conditioning data. These include mecha-
nisms for activating and storing internal representations
of sensory cues in a limited-capacity working memory,
or STM; mechanisms for learning, matching, and mis-
matching of sensory expectancies, leading to the enhance-
ment or updating of STM processing; and mechanisms
for shifting the focus of attention toward sensory represen-
tations whose reinforcement history is consistent with
momentary appetitive requirements. This total architec-
ture is then used to qualitatively explain the important data

Figure 3. A READ I circuit. This circuit joins togetllter a recur-
rent gated dipole with an associative learning mechanism. Learn-
ing is driven by signals, Sk, from sensory representatiorui, Sk, which
activate long-term memory (I.TM) traces Zk7 and ZkS, which sam-
ple activation levels at the on-channel and off-ehannel, respectively,
of the gated dipole. See text for details.
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concerning acquisition and extinction of conditioned exc:i-
tation and inhibition obtained by Lysle and Fowler (198:5)
and Miller and Schachtman (1985), as well as the results
of many other related studies. Along the way, the qualita-
tive explanatory concepts of these authors are explicawi,
refined, and generalized, and related data about suc:h
phenomena as blocking are also analyzed in a unifie:d
fashion.

2. Simulating the Mechanism of
Conditioned Reinforcement

In Part I, computer simulations are used to character-
ize the behavior of a circuit in which a gated dipole is
joined to a mechanism of Pavlovian conditioning. Multi-
ple neural circuits are conditioned during a typical con-
ditioning experiment. The conditioning events described
in Part I constitute the type of learning whereby a CS bc~-
comes a conditioned reinforcer by being paired with a U~>.
Both primary conditioning and secondary conditionin!~,
as well as excitatory conditioning and inhibitory condi-
tioning, are demonstrated.

In the simulations of primary excitatory conditionin!~,
a conditioned stimulus (CSJ precedes the onset of a u~;,
as in Figure 4a. As a result of conditioning, the CS1 bl:-
comes a conditioned reinforcer with the same motivatioruu
sign as the us. In the simulations of secondary condi-
tioning, another conditioned stimulus (CSz) precedes a
conditioned reinforcer (the CS1 of a primary condition-
ing experiment), as in Figure 4b. As a result of condi-
tioning, the CSz also becomes a conditioned reinforcc:r
with the same motivational sign as the CS1. In primary
inhibitory conditioning, a CS1 occurs subsequent to die
offset of a US, as in Figure 4c. As a result of condition-
ing, the CS1 becomes a conditioned reinforcer whose
motivational sign is the opposite of that of the US. In
secondary inhibitory conditioning, a CSz occurs subSf:-
quent to the offset of a conditioned reinforcer (CSJ, as
in Figure 4d. As a result of conditioning, the CSz become:s
a conditioned reinforcer whose motivational sign is die
opposite of that of the CS1. In addition, we investigate
how these several types of conditioned reinforcer leanl-
ing can extinguish if the CSs are presented without reirl-
forcement on subsequent trials.

Many variations of the temporal sequencing of die
events CS1, CSz, and US can be better understood through
an analysis of these four types of conditioning events. Se<:-
tions 3-5 describe qualitatively the mechanisms that com-
pose a gated-dipole opponent process and contrast them
with the opponent-process model of Solomon and Corbit
(1974). Sections 6-16 mathematically describe the neu-
ral circuits we have developed to carry out conditioned
reinforcer learning. Sections 17 and 18 display real-time
computer simulations of the several types of conditioned
reinforcer learning. Sections 19-31, in Part ll, use these
quantitative results as a basis for providing qualitative e];-
planations of conditioning experiments in which condJl-
tioned reinforcer learning plays a part. The gated-dipole

PART I

CS Ln -

I n (a)
US I I I

CS2l.n-
(b)

CS11 n-

CS L- n-

(c)
US l. -n~

CS2 L- n-

(d)
CS1 L~__I l_-

Figure 4. Some simulated combinations of conditioned stimulus
(CS) and unconditioned stimulus (US) on individual trials:
(a) primary excitatory conditioning; (b) secondary excitatory con-
ditioning; (c) primary inbibitory conditioning; (d) secondary inbibi-
tory conditioning. ~use a READ circuit does not, in itself, cause
blocking of simultaneotmy prewnted CSs, CS onset times in (b) were
chosen to be synchronous. When blocking mechanisms are added,
as in Part n, staggered CS1-C~ onset times are necessary.

mechanisms described herein characterize only one of
several types of model circuits that compose the total neu-
ral architecture we use to explain these data about condi-
tioning. Mechanisms of attention, expectation, orienting,
sensory and cognitive chunking, motor learning, and
sensory-motor planning are no less important than gated-
dipole mechanisms. Mathematical analyses and extensive
computer simulations of these other types of mechanisms
have ~n reported elsewhere (Bullock & Grossberg, in
press; Carpenter & Grossberg, 1987, in press a, in
press b; Cohen & Grossberg, 1986, 1987; Grossberg,
1987a; Grossberg & Kuperstein, 1986; Grossberg & Le-
vine, in press).

3. The READ Circuit: A Synthesis of
Opponent Processing and Associative
Learning Mechanisms

A gated-dipole opponent process is a minimal neural
network that is capable of generating a sustained but
habituative on-response to onset of a cue, as well as a tran-
sient off-response, or antagonistic rebound, to offset of
the cue (Figure 5). Properties of the on-response are used
to explain excitatory conditioning, whereas properties of
the off-response are used to explain inhibitory condi-

tioning.
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tific discipline. That a READ circuit forms only one of
the several circuits that are engaged during conditioning,
and that all of these circuits interact via nonlinear feed-
back signals, highlights the difficulty of building a
.rigorous real-time conditioning theory. On the other hand,
many additional design constraints become evident when
one actually attempts to build such a theory. The simul-
taneous satisfaction of these several stringent design re-
quirements has led us to some neurophysiologically test-
able predictions about how associative learning is
regulated by gated-dipole opponent processing.
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Figure 5. Example of a feedforward gated dipole. j~ sustained
habituating on-response (top left) and a transient off-rtbound (top
right) are elicited in response to onset and offset, respectively, of
a phasic input, J (bottom left), when tonic arousal, I (bot1om center),
and opponent processing (diagonal pathways) suppiem4:nt the slow
gating actions (square synapses). See text for details.

In order to explain secondary conditioning, a gated-
dipole circuit must also contain internal feedback path-
ways (Grossberg, 1972b, 1982a). Then a single CSt can
engage in two types of events: The CSt can le:.arn to be-
come an excitatory conditioned reinforcer by ~:ing paired
with a subsequent US. After conditioning occurs, offset
of CSt can generate an antagonistic rebound thilt can con-
dition a subsequent CS2 to become an inhibitory secon-
dary reinforcer. When a neural network conl:ains inter-
nal feedback pathways, it is said to be reCUITent.

In order to explain these several types of conditioned
reinforcer learning, such a recurrent gated dipole must
be joined to a mechanism of associative learning. Thus
the total circuit analyzed here is called a recurrl~nt associa-
tive gated dipole (READ) circuit.

A number of design constraints must be satisfied simul-
taneously by a READ circuit. The opponent processing
laws and the associative learning laws must fit together
in such a way that all the desired properties of conditioned
reinforcer learning obtain with a single choice of
parameters. Moreover, the range of parameters for which
this is true must be robust. A READ circuit contains
processes that fluctuate on three different tinle scales-a
fast activation time scale, a slower habituation time scale,
and a yet slower conditioning time scale. As noted above,
these processes are linked together by nonlinc:ar feedback
interactions, due to the recurrent anatomy oJt the circuit.
The design of nonlinear feedback circuits that possess
three distinct time scales is a difficult task in any scien-

4. Qualitative Properties of a Gated Dipole
Four main ingredients go into the design of a gated di-

pole: slowly habituating and recovering chemical trans-
mitters; opponent, or competitive, interactions between
an on-channel and an off-channel; phasic inputs, such as
a CS or US, that perturb the on-channel or the off-channel
through time; and a sustained, or tonic, arousal input that
equally perturbs both channels, thereby setting the sensi-
tivity of dipole outputs to phasic input fluctuations and
providing the energy to generate an antagonistic rebound
in response to offset of an input.

Figure 5 describes the simplest type of feedforward,
or nonrecurrent, gated dipole. Figure 5 also schematizes
how a gated dipole can generate a sustained, but habitua-
tive, on-response to input onset, and a transient off-
response, or antagonistic rebound, to input offset. These
reactions can be qualitatively explained as follows. (See
Grossberg, 1972b, 1984b, 1987a, for quantitative mathe-
matical analyses.)

A. Transmitter gating. Signals in both the on-channel
and the off-channel are multiplied, or gated, by a chemi-
cal transmitter (square synapses) before the gated signals
are further transformed by opponent processing. Each
transmitter y(t) multiplies its input signal S(t) to form such
a gated output signal T(t); that is,

T = Sy. (1)

B. Slow transmitter habituation and recovery. The
transmitter y habituates and recovers according to the law
(Grossberg, 1968, 1972b):

d""di y = B(I-y) -CSy, (2)

where B and Care positi.ve constants. In Equation 2, the
notation!y denotes the net rate of change of y. Term
B(I-y) says that transmitter y recovers at a rate B until
it reaches the target level 1. Term -CSy says that trans-
mitter y habituates at a rate proportional to its gating ac-
tion in Equation 1.

Many refinements of the laws given by Equations 1 and
2 have been described, including equations for transmit-
ter mobilization, post-tetanic potentiation, enzymatic ac-
tivation, and autoreceptive competition (Carpenter &
Grossberg, 1981; Grossberg, 1969b, 1987a, 1987b).
These refinements, albeit important for some purposes,
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do not playa major role in explaining qualitative proper-
ties of conditioned reinforcer learning.

C. Overshoot and undershoot. A critical propertY for
explainjng conditioned reinforcer data is that the input sig-
nal 5 can fluctuate more quickly than the transmitter y
can react. This propertY leads to an overshoot in the out-
put T in response to onset of the input 5 and an und,~r-
shoot in T in response to offset of 5 (Figure 6). To see
how this happens, note that in response to a constant in-
put of size 5, Equation 2 implies that the transmitte]~ y
approaches the equilibrium value

y = B-fcr .(3)

In other words, larger signals 5 cause more transmiUer
habituation. On the other hand, the output signal that is
generated by an input 5 does not equal y. The output sig-
nal is equal to T=5y, due to Equation 1.

Figure 6 describes how the output T reacts to changes
in the size of the input 5. A rapid increase in 5 from 50
to 51 elicits a slow decrease in y, due to Equation 3. Mlll-
tiplication of the graphs of 5(t) and y(t) shows that a rapid
increase in 5 generates a rapid increase in T, followc:d
by a slow decrease, or habituation, of Tto an intennedii-
ate level. In a similar way, a rapid decrease in 5 from
51 to 50 generates a rapid decrease in T, followed by a
slow increase, or habituation, to an intennediate level.

t==~~::~~=~==S 1
S(t)

S So
(FAST) 0

t
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0 -

y ( t )

[ :...~~~::::~~~===::~~:~- (SLOW) ~
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T(t)

(FAST. SLOW)
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Figure 6. Reaction of output signal T and transmitter gate y 1:0
chmlges in input S. The output T is the product of a fast proces§,
S, and a slow process, y. OverslKJOts and undershoots in T are caUMd
by y's slow habituation to fast changes in S.

In all, rapid increases and decreases in the input S gener-
ate overshoots and undershoots in the output T due to the
slow rate of reaction, or habituation, of the transmitter.
These habituative reactions are fundamental to many basic
properties of gated dipoles and, by extension, of condi-
tioned reinforcer learning.

D. Tonically aroused transmitter gates in opponent
processes. We can now explain the properties depicted
in Figure 5. In such an opponent process, a phasic input
(J) can elicit a sustained on-response, whereas offset of
the input can elicit a transient off-rebound, or temporal
contrast effect. These properties" are explained as follows.

The left-hand series of stages in Figure 5 represents the
on-channel, and the right-hand series of stages represents
the off-channel. Both channels receive an equal arousal
input, denoted by I, that is constant through time. The
arousal input provides the tonic internal activity that trig-
gers the antagonistic rebound that occurs after the on-input
shuts off. The on-input, denoted by J, is delivered only
to the on-channel. Input J is switched from zero to a posi-
tive level and held at that level long enough for transmit-
ter habituation to occur. Then J is shut off.

Inputs I and J are added by the activity (or potential)
XI (t). Activity XI (t) responds quickly to input fluctuations,
relative to the reaction rate of the network's slow transmit-
ter gates. The graph of XI(t) has the same form as the top
graph in Figure 6: a rapid switch from a lower positive
activity to a higher positive activity, followed by a rapid
return to the lower level. The activity XI (t) generates an
output signal g(xl (t» in its pathway that again has the form
of a double switch between two positive values. The output
signal g(xl (t» is gated by a slow transmitter YI (t) that ac-
cumulates and habituates within the square synapse in the
on-channel. Figure 6 describes the effect of this slow gate
on the input to the next stage. Consequently, activity X3(t)
follows an overshoot -habituation-undershoot -habituation
sequence through time. Then X3(t) relays an output sig-
nal of the same form to xs(t). Activity xs(t) also receives
an inhibitory signal from X4(t). To determine what hap-
pens next, we consider the dynamics of the off-channel.

The off-channel receives only the constant tonic input
I. Hence X2(t) and the slow gate Y2(t) in the off-channel
square synapses are constant through time. The activity
X4(t) is therefore also constant through time. For definite-
ness, we make the simplest assumption that correspond-
ing stages in the on-channel and the off-channel possess
the same parameters. Since the arousal input I to both
channels is also equal, the size of X4 equals the baseline
activity level of X3(t). This is not always true, but its vio-
lation is easy to analyze after the symmetric case is under-
stood (Grossberg, 1984b).

We can now determine the reactions of activity xs(t)
through time. Since the signals from X3(t) and X4(t) sub-
tract before perturbing xs(t), and their baseline activities
are the same, the baseline activity of xs(t) equals zero.
Activity xs(t) thus overshoots and undershoots a zero base-
line when the input J is turned on and off. By contrast,
activity X6(t) responds in an opposite way from xs(t) be-
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acause X3 excites Xs and inhibits X6, whereasx4 inhibits Xs
and excites X6.

The fmal assumption is that the output sign~Lls caused
by activitiesxs(t) andX6(t) are rectified: outputs:lre gener-
ated only if these activities exceed a nonnegative thresh-
old. As a result, the on-channel generates a sustained out-
put signal while the input J is on. This out)ut signal
habituates as the gate Yl (t) slowly equilibrates to the in-
put. By contrast, the off-channel generates a traJt1Sient off-
response, or antagonistic rebound, after the input J shuts

off.

a+b

5. Comparison With the Solomon and Cor'bit
Opponent-Process Model

The antagonistic rebound in the off-channel of a gated
dipole is energized by an undershoot of the dipole's on-
activity function X3 (Figure 5). In a gated dipoJle, such an
undershoot is due to habituation of the translnitter gate
within the on-channel. Overshoots and unders:tloots have
also been hypothesized to exist in alternative models of
opponent processing, but the properties haV4~ not been
traced to the action of a slowly habituating 1:ransmitter
gate. For example, Solomon and Corbit (1974) and Solo-
mon (1980, 1982) described a model of opponent process-
ing in which overshoots and undershoots ocl::ur. These
authors ascribed the overshoots and undershoots to the
subtraction of two opponent processes that b,oth evolve
according to similar time scales (Figure 7). Neither
process, in itself, undergoes an overshoot or an under-
shoot. Instead, overshoots and undershoots lire derived
from the assumption that the off-process begilDs to build
up only after the on-process is initiated. The: model as-
sumes, in addition, that "the second component, the b
process, is aroused via the arousal of a" (Solomon & Cor-
bit, 1974, p. 126). Neither assumption is madt~ in a gated-
dipole opponent process, wherein the slow habituation of
the transmitter gate within the on-channel generates an
overshoot and an undershoot within that channel. Conse-
quently, in a gated dipole, opponent processing per se be-
tween the on-channel and the off-channel gt:nerates the
antagonistic rebound within the off-channel without neces-
sitating the hypothesis that on-channel activation triggers
a delayed off-channel activation.

Solomon and Corbit's (1974) opponent process is not
defined by a dynamic model such as the gated-dipole ar-
chitecture. Thus their model does not expl;riD why the
maximum size of the a process should sometimes, but not
always, exceed the maximum size of the b process, or
why the b process is delayed in time relative to the a
process by just the right amount to produce ~ID overshoot
and an undershoot. The hypothesis that slovny habituat-
ing, tonically aroused transmitter gates exist in an oppo-
nent anatomy provides simple answers to all of these ques-
tions, and implies other properties that enable the gated-
dipole model to explain data about conditionc~ reinforcer

learning.

Figure 7. In the opponent-pnx:ess model of Solomon (1982), over-
shoots and undershoots are caused hy an excitatory process (a) and
an inhibitory process (b), which both change at a similar rate such
that (b) lags behind (a) and neither (a) nor (b) separately exhibits
overshoots or undershoots.

6. Laws for a READ Circuit
Dynamic equations for a READ circuit are described

and explained in this section. Our analysis has revealed
that several variations on the same basic network design
have the properties that we desire. Which variation may
exist in particular species is testable by neurophysiologi-
cal and anatomical techniques. The simplest network vari-
ation is depicted in Figure 3. This circuit will be defined
first. Then the functional significance of its equations will
be explained. After that, the equations corresponding to
the other circuits will be explained.

As in the nonrecurrent gated dipole described in Sec-
tion 4, the variables Xi describe cell potentials, or activa-
tions, and the variables Yi describe slowly habituating
transmitter gates. In addition, the variables Zkl describe
long-term memory (LTM) traces, or associative weights,
that exist at the ends of the pathways from the sensory
representations of CS and US cues to the on-channel and
the off-channel of the gated dipole. The equations for the

READ I circuit are as follows:

READ I EQUATIONS

Arousal + US + Feedback On-Activation

ddt Xi = -Axi + 1 + J + /(;1;7) (4)
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Arousal + Feedback Off-Activation

d"di X2 = -Ax2 + I + !(Xs) (:5)

On-Transmitter

d
"di" Yl = B(I-YJ -Cg(Xl)Yl (6)

7. Tonic Arousal, Phasic US Input,
and Feedback Signaling

In Equations 4 and 5, tenD I denotes the tonically ac-
tive arousa1level that sets the baseline sensitivity of the
READ circuit and energizes its antagonistic rebounds.
Tenn J in Equation 4 denotes the US input. This US in-
put corresponds to a primary US, not to a conditioned
reinforcer that acquires US properties through condi-
tioning.

Tennf(x7) in Equation 4 describes the nonnegative sig-
nal that converts the on-channel into a positive feedback
loop. In a similar fashion, tennf(xs) in Equation 5
describes the nonnegative signal that converts the off-
channel into a positive feedback loop. Terms -Axl and
-Axz in Equations 4 and 5, respectively, describe the pas-
sive decay terms whereby the potentials XI and Xz return
to the equilibrium value O. The equations governing all
the potentials Xi contain such passive decay terms -Axio
For simplicity, the same parameter A was chosen in all
of these equations.

Off-Transmitter

d'"(it Yz = B(l-yz) -Cg(xz)yz (7)

Gated On-Activation

d
"diX3 = -Ax3 + Dg(XJYl O~)

Gated Off-Activation
d

"diX4 = -Ax4 + Dg(X1.)Y2 (~~)

Normalized Opponent On-Activation

d
"di Xs = -Axs + (E-XS)X3 -(XS+F)X4

Normalized Opponent Off-Activation

d
"diX6 = -Ax6 + (E-X6)x4 -(x6+F)x3

8. Gating Fast Signals with Slowly
Habituating Transmitters

Equations 6 and 7 describe the dynamics of the habitu-
(10) ating transmitters Yl and Y2 in the on-channel and the off-

channel, respectively. These equations are the same as
Equation 2. In Equation 6, the nonnegative input signal
S=g(Xl)' whereas in Equation 7, the nonnegative input

(11) signal S.=g(X2)' .
Equation 8 descnbes the effect of the gated on-channel

signal Dg(X.)Yl on the next on-potential X3' Potential X3
averages these gated signals through time at rate -A. In
a similar fashion, Equation 9 describes the effect of the

(1:~) gated off-channel signal Dg(X2)Y2 on the next off-potential
X4-

On-Activation by CS Inputs

~ X7 = -Ax7 + G[Xs]+ + L E S,.z~7'
k

(1:3)

On-Conditioned Reinforcer Learning

4t Zk7 = Sk( -Kzk7 + L[xs]+) (1'~)

Off-Conditioned Reinforcer Learning

i Zk8 = Sk( -Kzk8 + L[X6]+) (1:5)

On-Output Signal
01 = [Xs]+ (16)

where C is a capacitance (scaled to equal 1 for con-
venience); ¥P, V+, and V- are saturation potentials; gP,
g+, and g- are conductances; and V is a variable poten-
tial. See Grossberg (1982c, 1987a, 1987b) and Grossberg
and Kuperstein (1986) for many applications of this equa-
tion. The additive equations 4, 5, 7, and 8 may be inter-
preted as approximations to Equation 18 whose inputs are
not large enough to drive their potentials close to their
saturation potentials V+ and V-.

The crucial properties of a shunting equation can be ap-
preciated by studying its equilibrium values. At equili-
brium, ;1jXs=O. Then Equation 10 implies

Off-Output Signal
0] = [X6]+ (1'7)

where [w]+ = max(w,O).

Off-Activation by CS Inputs
9. Normalized Opponent Interactions

Equations 10 and 11 describe the effects of opponent,
or competitive, signals from X3 and X4 on the next on-
potential Xs and off-potential X6. Equation 10 is a mem-
brane, or shunting, equation of the form
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(E + F) (X3 + x.) P'XaXs = ---(19)
A+X3+X4 X3+X4 E+F

(Grossberg, 1970, 1976b, 1983). In Eq1lation 19, if
X3+X4>-A, then term (E+F)(X3+X4)(A+X3+X4)-1 is ap-
proximately constant. Then Equation 19 inlplies that Xs
is sensitive to the ratio X3 (X3 + X4)-1 relative to the adap-
tation level F(E+F)-1, Thus Equation 10 automatically
regulates the overall operating range of the circuit. In ad-
dition, Xs>O in Equation 19 only if

X3 F
X3+X4- > E+F' (20)

Since the output signal due to Xs is [xs]+ in E:quations 12,
14, and 16, all subsequent processing by th,e on-channel
is controlled by whether or not the relative size of X3 to
X4 enables ratio X3(X3 + X4)-1 to exceed the constant adap-
tation level F(E+F)-1. Thus Equation ]lO evaluates
whether the total balance of all factors influencing the net-
work favors the on-channel over the off-ch~tnnel enough
to cause the inequality given in Equation ~~O to hold.

In the circuit depicted in Figure 3, we chose E=F in
Equation 10. Then Equation 19 may be more: simply writ-
ten as

E(X3-X4)
A+ + .(21)X3 x.

In this special case, Xs > 0 only if X3 > x.. Thus
[xs]+ > 0 only if the balance of all network 1:actors favors
the on-channel over the off-channel. In ;iddition, the
denominat9r A+X3+X. in Equation 21 ensurt:s thatxs, and
likewise X6, computes a ratio scale, in addition to an op-
ponent scale, from X3 and x..

Equation 11 for X6 is the same as Equation 10 for Xs
with the opponent input terms X3 and x. reversed. Thus
at equilibrium, when E=F in Equation 11,

X6 = E(X.-X3). (22)
A+X3+X.

By Equations 21 and 22,

sgn(xs) = -Sgn(X6) (23)

where

(24)

10. Positive and Negative Conditioned Reinforcer
Inputs: Total Context Versus Individual Cue

Equation 12 registers the normalized opponent signal
[xs]+ from the on-channel, as well as a sunl L EkSkZk7 of
signals due to all CSs and conditioned USs. Term Sk is
the output signal from the kth sensory representation. This
signal is multiplied, or gated, by the L TM 1race Zk7 at the

Xs =

sgn(w) =
+1ifw>O
0 ifw=O

-1 if w < O.

In summary, if E=F, thenxs and X6 compute a nonnal-ized 
opponent process.

,I

end of the pathway from the kth sensory representation
to the on-channel of the READ circuit. The sumLEltSltZk7
is called the total positive conditioned reinforcer signal.

In a similar fashion, Equation 13 registers the normal-
ized opponent signal [X6]+ from the off-channel, as well
as the total negative conditioned reinforcer signal
LEltSltzlts. Thus the output signal Sit from the kth sensory
representation is gated by an LTM trace Zlt7 abutting the
READ on-channel and an LTM trace ZitS abutting the
READ off-channel. Due to the opponent organization of
the READ circuit, the kth sensory representation is a posi-
tive conditioned reinforcer if

Zlt7 > ZitS (25)

and a negative conditioned reinforcer if

Zlt7 < Zits. (26)

These inequalities determine the conditioned reinforcer
properties of a single sensory event. In general, many ac-
tive sensory events may simultaneously input to the READ
circuit. Then the total behavioral environment behaves
like a positive conditioned reinforcer context if

ESltZlt7 > ESltzlts (27)
k k

and like a negative conditioned reinforcer context if

E SkZk7 < E SkZkS (28)
k k

(Grossberg, 1972a, 1972b). Clearly, a positive condi-
tioned reinforcer context can obtain even if it contains ac-
tive negative reinforcers, and vice versa.

11. Context-Dependent Adaptation Level
and Associative Averaging

The total positive and negative conditioned reinforcer
signals interact within a gated-dipole circuit to cause
context-dependent, and hence learning-dependent, shifts
in the circuit's adaptation level (Grossberg, 1972b,
1987a). The adaptation level is the baseline level of tonic
activation that is maintained across both the on-channel
and the off-channel of the circuit during a time interval
that is long enough to modulate the circuit's habituation,
rebound, or conditioning properties. Changes in the total
configuration of conditioned reinforcing cues, including
contextual cues, can dramatically alter the dynamics of
a READ circuit by changing its adaptation level. This fact
will be critical in explaining the data summarized in
Part ll. The main factors that control the circuit's adap-
tation level are now summarized.

In the absence of any inputs to the gated dipole, both
the on-channel and the off-channel become equally ac-
tive; thus Xl =X2, Yl =Y2, X3=X", Xs=X"6, andx7=xs. In the
READ I circuit, the choice E=F implies, in addition, that
Xs =X"6 =0 by Equations 21 and 22, and thus thatX7=XS=0,
by Equations 12 and 13. Consequently, in the no-input
case, the adaptation level equals the tonic arousal level I
that is defined by Equations 4 and 5.
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In contrast, when conditioned reinforcers are active,
the termsf(x7) in Equation 4 andf(xs) in Equation 5 can
cause an increase in the adaptation level. To understand
this property more precisely, consider the following facts.
The potentials X7 and Xs react quickly to their input sig-
nals. Hence during a time interval when the conditioned
reinforcer signals Sk are maintained, X7 and Xs can achieve
an approximate equilibrium with respect to these signals.
Then ,fjX7=O and ,fjxs=O in Equations 12 and 13,
respectively, whence

G L
X7 = A [xs]+ + A E SkZk7 (29)

k

and

(30)

(a) (b)

Figure 8. (8) H the total input to the on-i:hannel of the READ cir-
cuit is large, whereas the total input to the oft'-cbannel is small, then
i is small and.i is large and ~itive. (b) Hthe total inputs to both
channels are large, then i is large and .i is small.

In Equations 4 and 5, we chose fix7) = Mx7 and fixe) =
Mxa in our computer simulations. Hence by Equations 29
and 30,

d MG ML
"dt" Xl =: -Axl + 1+ J + A [xs]+ + A t SkZk7 (31)

and

d .MG ML
"di"" X2 S -Ax~ + I + A [X6]+ + A E SkZk8

k
(32),

Guided by ~uati°!1S 31 and 32, we define the circuit's:
adaptation level I by the minimum of I + J +
~I::kSkZk7 in Equation 31 and of I + MjEkSkZk8 ml
~uation 32; that is,

(33)

(Figure 8b), then any conditioning that does occur is
weak, because Xs and X6 in Equations 21 and 22 would
both be close to zero due to the normalization property.
If ~ > 0, then conditioning of positive conditioned rein-
forcers occurs, due to Equations 21 and 14. If ~ <0, then
conditioning of negative conditioned reinforcers occurs,
due to Equations 22 and 15. Thus a contextual cue that
is a potent positive reinforcer can interfere with condi-
tioning of a discrete CS as a negative reinforcer, and vice
versa.

An important constraint on dle tenDS i and ~ (see Part n
for details) follows from dle property that dle total STM
activation that reads out dle signals Sk also tends to be
normalized, or conserved, at each time (Grossberg,
1972a, 1975, 1982c). This normalization property expli-
cates the concept of a limited-capacity STM, or working
memory, that is operative during Pavlovian conditioning.
In its simplest form, dle normalization property may be
realized by the constraint dlat

E Sk = S = constant. (35)
k

It then follows from Equations 33 and 34 that both i and
~ are determined by a type of associative averaging,
radler than by summation. In particular, term

ESk(Zk7-ZkS) (36)
k

of the total arousal and reinforcing signals I + J -to
~ EkSkZ.t7 and I + ~ EkSKZk8 that define the adaptation
level. If all primary reinforcers and conditioned rein-
forcers balance out so that ~=O, then their only effect
on the gated dipole is to cause a shift in adaptation level.
No new conditioning occurs under these circumstance:s
because equal total inputs to XI and X2 cause Xs =X6 =0 af-
ter the transmitte~gates YI and Y2 habituate to these equal
total inputs. If I is very large but ~ is very small

in Equation 34 is a weighted average, with weights equal
to the net LTM strengths Zk7-ZkS of the signals Sko By
Equation 36, any mechanism that increases a signal Sk that
generates a net positive conditioned reinforcer input
(Zk7 > ZkS) to the gated dipole a fortiori weakens the to-
tal net negative conditioned reinforcer input to the gated

(Figure 8). In other words, i describes the tonic baseline:
due to the totality of internally generated tonic arousal!
signals and externally generated primary and secondaT)'
reinforcer signals. Varlablesxl andxz in Equations 4 ancl
5 activate X3 and X4, which compete to generate Xs ancl
X6 before these net activations regulate the READ circuit's
antagonistic rebounds and conditioning signals. Thus tht:
net input signal that determines whether rebounds or con..
ditioning will occur is the difference
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dipole. On the other hand, such an increase m:1Y or may
not increase the total net positive conditioned reinforcer
input to the dipole, because the increase in one positive
input may be balanced by a decrease in a different posi-
tive net input. Thus there exists an asymmetry in the net
effect that an attention shift among the sensory represen-
tations may cause on the overall performance of a READ
circuit.

1

tX5
Figure 9. A possible microarcbitecture for dissociation of long-

tenn memory (L TM) read-in and read-out. Individual L TM-gated
sensory signals, SkZk7, are read out into local potentials that are
summed by the total cell-body potential, X7, without significantly
influencing each others learned read-in. In contrast, the input sig-
nal, xs, triggers a massive global ceO activation that drives learned
read-in at all active L TM traces abutting the ceO surface. Signal
Xs also activates the ceO-body potential X7.

.II

I

Instead, [Xs]+ appears in Equation 14. Thus LTM read-
out and L TM read-in are dissociated in Equations 12 and
14. In addition, the tenD [Xs]+, which is read into LTM
by Equation 14, is the on-channel output signal, as in
Equation 16. Thus the READ circuit embodies the intui-
tion that the signals that drive learning and elicit outputs
to other circuits are the resultant of all the decision-making
processes that take place within the circuit. In particular,
[.xs]+ is a normalized opponent signal, whereas X7 is not.

How can such a dissociation between L TM read-in and
L TM read-out be physiologically implemented? The
scheme we apply was introduced by Grossberg (1975;
reprinted in Grossberg, 1982c) for this purpose. Figure 9
schematizes this mechanism. Grossberg (1975) interpreted
this formal mechanism in tenDS of the dynamics of large
pyramidal cells which, in his application, were interpreted
to occur in the hippocampus. These cells possess a large
and complex dendritic tree whose activations and inhibi-
tions generate local potentials that flow into, and are aver-
aged by, the cell body. Due to the geometry and electri-
cal properties of such a dendritic tree, an input that
activates a particular dendritic branch may not be in-
fluenced by inputs that activate different dendritic
branches. In order to maximize the functional indepen-
dence of each conditionable input channel, it was assumed

that the conditionable

12. Associative Learning: Learned LTM
Increases or Decreases Gated by CS Read-Out

Equation 14 describes the associative lealming law
whereby the positive conditioned reinforcer l.TM trace
is trained. This associative learning law was introduced
into the associative learning literature by 13rossberg
(1969a) and has played a central role in the de'{elopment
of neural architectures in a variety of applications (Car-
penter & Grossberg, 1987, in press a; Cohen & Gross-
berg, 1987; Grossberg, 1982c, 1987a, 1987b; IGrossberg
& Levine, in press; Grossberg & Stone, 1986b). Recently,
direct neurophysiological evidence for this Elssociative
learning law has been reported (Levy, 1985; Levy, Bras-
sel, & Moore, 1983; Levy & Desmond, 1985;
Rauschecker & Singer, 1979; Singer, 1983). In Equa-
tion 14, the signal Sk from the kth sensory representation
turns learning of the LTM trace Zk7 on and off. When
Sk=O, learning turns off because .1;Zk7=0. When
Sk > 0, learning turns on. Thus activation of a sensory
representation both reads out a conditioned reinforcer sig-
nal, via tenD SkZk7 in Equation 12, and reads in new
learned infonnation, via Equation 14. When Sit> 0, the
L TM trace performs a time-average, at rate -,((Sk, of the
learning signal LS'k[XS]+. As a result, theLT~,f trace Zk7
attempts to track the nonnalized opponent signal [xs]+
through time. In particular, during a time interv:ll to ~ t ~ t,
when Sk(t) equals a positive constant Sk, Equation 14 may
be integrated to yield

Zk7(t) = Zk7(tO)e-KSk(t-tO) + LIt [xs(v)]+e-KSk(t-v)dv.
to

(38)

In other words, Zk7 perfonns a time-average of [Xs]+ at
a rate proportional to Sk. Due to this property, Zk7 can
either decrease (when [xs]+ becomes small for a time) or
increase (when [Xs]+ becomes large for a time). This learn-
ing property is critical in our work.

13. Dissociation of LTM Read-In and R~td-Out:
A Possible Role for Dendritic Spines

A key property of the READ circuit may be understood
by comparing Equations 12, 14, and 16. This property
is the basis for the opponent extinction pro];>erty (Sec-
tion 24) that is used to explain extinction of a (:onditioned
excitor (Section 27) and nonextinction of a (;onditioned

inhibitor (Section 28).
By Equation 12, prior conditioned reinforcer learning

is read out via term L 2:kSkZk7 to activate the potential X7.
In contrast, X7 does not appear in the learning equation 14.
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8Sksignals reach dendritic spines. Here they produce 10~J
potentials that propagate to the cell body where they in-
fluence axonal firing. We assume that the resistance i](l
spines are such that it is much harder for a signal to pass
between spines than from a spine to the cell body. ...B:V
contrast, ...feedback. ..causes a spike potential, or similar
global potential change, throughout the dendritic column.
This spike invades all the spines in its path and is suffi-
ciently strong to induce transmitter level changes in activl~
S -+ A [conditionable] channels. Thus a mechanism usinl~
dendritic spines and dendritic spike generators (or som.~
formally analogous mechanism) can allow S -+ A signal:,
to occur witltout major changes in S -+ A synaptic trans-
mitter levels unless feedback invades the entire dendritic:
apparatus. (Grossberg, 1975, Section 21, p. 320)

OUTPUT OUTPUT

Zk7

In Figure 9, the feedback signal that invades the enlire
dendritic apparatus equals [xs]+. Potential X7 computes the
cell body activation that averages G[xs]+ with the total
positive conditioned reinforcer input L E"S"Zk7 that is dc~li-
vered at spines distributed across the entire dendritic :ip-

paratus.
The same mechanism is used to interpret Equation L 3 .

Here term G[X6]+ is the off-channel feedback signal ~lDd
term L E"S"w is the total negative conditioned reinfor.:er

input.
Recent experiments have supported the hypothesis that

synaptic plasticity may occur at the dendritic spines of
hippocampal pyramidal cells (Lynch, 1986). In addition,
the same functional properties that recommended dissoci-
ation of L TM read-in and L TM read-out during hippocam-
pal learning also recommended its use during associative
learning in mammalian neocortex (Grossberg, 198~~b,
1987a). Recent computer simulations of the unitization,
or chunking, of cognitive recognition codes have argu,ed
for the functional importance of this concept in other cor-
tical systems (Cohen & Grossberg, 1987), but direct (:x-
perimental evidence relevant to this prediction seems as
yet to be lacking;

Equations 4-9 are the same as in the READ I circuit.
The next equation performs a pure nomlalization, without
opponent processing, due to the choice F=O of its inhibi-
tory saturation point.

Normalized On-Activation

d-aiX' = -Ax5 + (E-X6)X3-XsX4 (39)

14. Decoupling the Nonnalization and

Opponent-Processing Stages
The READ n circuit depicted in Figure 10 is matJle-

matically equivalent to the READ I circuit in Figure 3.
The READ n circuit is included to point out that the nor-
malization and opponent-processing transformations,
which are carried out in a single step by Equations 10
and 11, may in principle be carried out separately in 1'iNO
successive steps. Such a dissociation may be necessary
in vivo because the inhibitory saturation point -F in
Equations 10 and 11 is often much smaller in absolute
value than the excitatory saturation point E; that is, E>- F.
In fact, cells are known to exist in which F is appro7c.i-
mately zero (e.g., the bipolar cells of the retina; Gro;ss-
berg, 1987b; Werblin, 1971). The equations for the
READ n circuit are as follows.

J I

Figure 10. A READ n circuit. This circuit is mathematically
equivalent to the READ I circuit depicted in Figure 3. In a READ n
circuit, competitive nonnaIization and rompetitive opponent pnx=--
ing are separated into two successive inhibitory stages rather than
being lumped into one stage, as in the READ I circuit. See text for
details.

READ n EQUATIONS

--~ ~--~

-~~ ~'c-. ["" ~.- ~~

NorDlalized Off-Activation

d""(iiX6 = -Ax6 + (E-X6)X4-X6X3. (40)

These nonnalized activations compete at the next pro-
cessing stage to generate normalized opponent activations.
Thus the variables Xs -X6 and X6 -Xs play the same role
in the READ n circuit as do variables Xs and X6, respec-
tively, in the READ I circuit. For notational simplicity,
we do not represent the cells at which the opponent inter-
actions occur as a separate stage, although this is implicit
in the equations. The remaining equations of the READ n
circuit are as follows.

On-Activation by CS Inputs

-dd X7 = -Ax7 + G[XS-X6]+ + LESkZk7 (41)

t k
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time conditioning profiles that other conditioning models
have not yet been able to explain.

(42)

(43)

(44)

(45)

(46)

Off-Activation by CS Inputs

-dd Xs = -Axs + G[X6-XS]+ + LkS"zkS
t k

On-Conditioned Reinforcer Learning

d
"(it Zk7 = Sk( -Kzk7 + L[xs -X6]+)

Off-Conditioned Reinforcer Learning

d
"(it ZkS = Sk(-KzkS + L[X6-XS]+)

On-Output Signal
01 = [XS-X6]+

Off-Output Signal
O2 = [X6-XS]+

16. Presynaptic Gating Versus
Postsynaptic-to-Presynaptic Feedback

The READ ill circuit depicted in Figure 11 is both
physically and mathematically distinct from the READ I
and READ n circuits, but its functional properties in com-
puter simulations are remarkably similar, both qualita-
tively and quantitatively, to those of the READ I and n
circuits. In the READ I and n circuits, associative learn-
ing is controlled by a correlation between presynaptic and
postsynaptic influences, such as Sk and [xs]+, respectively,
in Equation 14. In contrast, within the READ ill circuit,
all of the learned changes in the LTM trace are mediated
presynaptically. After describing the nature of these
presynaptic influences, we also note that, in the absence
of a specialized anatomical organization, their realization
in vivo would be inconvenient at best.

The possibility that associative influences may be medi-
ated presynaptically in some neural systems is consistent
with some invertebrate data (Hawkins, Abrams, Carew,
& Kandel, 1983). On the other hand, both invertebrate
and vertebrate associative learning data also support the
exiStence of postsynaptic influences (Alkon, 1979, 1984a,
1984b; Levy, 1985; Levy et al., 1983; Levy & Desmond,
1985; Rauschecker & Singer, 1979; Singer, 1983), and
some associative properties, by their very definition, re-
quire a postsynaptic influence (Grossberg & Levine, in

.Sk

~UTOUTP~

15. Comparison With Alternative
Conditioning Models

Although the READ II circuit is mathematicall:y equiva-
lent to the READ I circuit, its equations make it easier
to understand one of the circuit's key propertie:s. In the
associative equations 43 and 44, conditioned rc~inforcer
learning is driven by the terms [xs -X6]+ and [X6 -xs]+.
Thus learning occurs only if the net balance of ~Ill inputs
to the gated dipole favors the on-channel or the off-
channel. Expressed in another way, L TM chan!~es occur
only if an increment occurs above a baseline of ac=tivation.

A number of models have been formulated to express
this type of intuition. Whereas the Rescorla and: Wagner
(1972) and the Sutton and Barto (1981) models have at-
tempted to represent all the factors that control the con-
ditioning process by using a single equation for learning
by individual LTM traces, the Pearce and Hafi (1980)
model uses several equations: one for computirlg the at-
tentional parameters, one for excitatory associations, and
one for inhibitory associations. Grossberg (1982a)
itemized a number of basic experiments that these models
cannot explain because they lump too many processes

together,
The READ II equations demonstrate in a real..time set-

ting that all of these models have attempted to express
an important processing insight. The READ II t:quations
also emphasize, however, that qualitatively different types
of processes , such as gated-dipole opponent processes and
CS-gated associative learning processes, interact with one
another to generate these properties as an I~mergent
property of the entire circuit, rather than as a direct
property of a single syna,pse. This conclusion was also
explicit in the READ circuit equations that wf:re origi-
nally introduced in Grossberg (1972b) and further devel-
oped in Grossberg (1975). These circuits have stood the
test of time and of subsequent data. Their further develop-
ment in this article through systematic computer simula-
tions demonstrates their robust ability to genelrate real-

Y2'
x2f

t~--~

J V
Figure 11. A READ ill circuit. Unlike the READ I and n cir-

cuits, learning in a READ ill circuit is driven by the correlation
of two presynaptic signals, rather than by the correlation of a
presynaptic signal with a postsynaptic signal. Computer simulations
of both types of circuits generate silnilar results.
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press). Thus we present the READ III circuit to demon-
strate that the simulated conditioning properties we report
do not, in themselves, rule out a purely presynaptic si1:e
for conditioning.

READ ill EQUAnONS

Equations 4-9, 39-40, and 43-46 are the same as in
the READ n circuit. The READ n and ill circuits differ
only in their equations for activation by CS inputs. In botih
the READ I and READ n circuits, the potentials X7 aruj
Xs are influenced by normalized opponent signals from
the prior processing stage of the gated dipole. In tht~
READ III circuit, potentials X7 and Xs are influenced bIt
normalized, but not opponent, signals from the prior
processing stage.

On-Activation by CS Inputs
d

"di" X7 = -Ax7 + G[xs)+ + L ES"zk7 (47:1
k

Off-Activation by CS Inputs

d-d Xs = -Axs + G[X6)+ + LESkZkS (48;1
t k

The normalization stage, defined by Equations 39 and
40, ensures that the potentials Xs and X6 compute ratios:
that are passed along the gated-dipole on-channel and off.
channel via Equations 47 and 48. In addition, these non-
negative output signals activate an opponent-processing
stage to generate the output signals given in Equations
45 and 46. As in Figure 11, these output signals are re-
layed along a bifurcating pathway. One branch of the path-
way carries outputs to other circuits. The other branch
has a presynaptic modulatory effect on the L TM trace of
its channel, as in Equations 43 and 44.

In this circuit, a single output signal, say 01 in the on-
channel, must presynaptically modulate the LTM traces
Zk7 of all the sensory representations whose signals Sk can
sample the on-channel. In order to meet this requirement,
eitlher there exists a very large number of specific path-
ways branching from each READ ill output patlhway to
tlhe synaptic terminals of all CS-activated patlhways, or
all these synaptic terminals are grouped together function-
ally so tlhat a single modulatory signal generated by each
output patlhway can spread to all the synaptic terminals
tlhat abut on its channel. Other tlhings being equal, it seems
far simpler, as in the READ I and n circuits, to allow
postsynaptic-to-presynaptic signals to influence each abut-
ting synaptic terminal via a direct local feedback process.

17. Computer Simulations With the
Read I Circuit: No Passive Extinction

In each series of computer simulations, numerical
parameters of the circuit were held fixed and several
different experiments, characterized by different pairings
of CS and US inputs, were simulated. Then individual

parameters were altered and another complete series of
simulations was undertaken. In this way, an understand-
ing of how each parameter influences network dynamics
was achieved. This and the next section summarize illus-
trative sets of computer simulations. Although the simu-
lation sets demonstrate the formal competence of READ
circuits, they are not presumed to embody the full neural
machinery engaged during conditioning. The results are,
we suggest, necessary but not sufficient to explain con-
ditioning in vivo. These simulation results are used in
Part II, along with other modeling results, to suggest
qualitative explanations of some difficult conditioning
data. In particular, in Part II (Section 24) we show how
the process of opponent extinction can extinguish L TM
traces actively even if parameters are set, as in this sec-
tion, to prevent the L TM traces from extinguishing pas-
sively.

The simulation series reported below tested the response
of a READ circuit to the five experimental combinations
of CS and US inputs described in Figure 12. Figure 12a
summarizes the CS and US inputs used to study primary
excitatory conditioning and extinction. In these simula-
tions, CS1 onset preceded US onset for 10 acquisition
trials. Then the CS1 was presented alone for 10 extinc-
tion trials. In such a READ circuit, one mechanism of
extinction is passive decay of conditioned reinforcer L TM
strength when the CS is active. We show that such decay
may occur in some parameter ranges, but that essentially
perfect conditioned reinforcer memory obtains in other
parameter ranges wherein the full range of desirable cir-
cuit properties, notably large antagonistic rebounds, pre-
vails. Thus CS-contingent passive extinction may occur
in some neural systems or species, but not others, due
to evolutionary selection of a different choice of param-
eters. In circuits wherein passive extinction does not oc-
cur, an active extinction process may be controlled by aux-
iliary circuits (Grossberg, 1982c, 1987a). These auxiliary
circuits match a learned expectation against the sensory
events that actually occur. A mismatch may trigger a
novelty reaction, which causes a burst of nonspecific
arousal that can elicit an antagonistic rebound within the
READ circuit. Conditioned reinforcer learning of an an-
tagonistic rebound within an off-channel can competitively
inhibit prior conditioned reinforcer learning to the cor-
responding on-channel due to the opponent processing that
occurs between channels before the circuit elicits an out-
put signal. This type of expectancy-mediated extinction
mechanism is used to explain conditioning data in Part II.

Figure 12b summarizes the CS and US inputs used to
study primary inhibitory conditioning and extinction. In
these simulations, US offset preceded CS1 onset for 10
acquisition trials. Then the CS1 was presented alone for
10 extinction trials.

Figure 12c summarizes the CS and US inputs used to
study secondary excitatory conditioning. In these simu-
lations, the CS1 preceded the US for 10 acquisition trials.
Then the CS1 and the CS2 occurred together for 10 second-
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ure 12b. In this simulation, the LTM trace CS,-OFF is
the one that learns. This is the L TM trace in the pathway
from the sensory representation of the CS. to the off-
channel of the READ circuit. Conditioning of the off-
channel is due to the antagonistic rebounds that occur af-
ter the US to the on-channel is terminated. These an-
tagonistic rebounds, in turn, are caused by the habitua-
tion of the transmitter gate y, in the on-channel. Note that
these rebounds also cause habituation of the transmitter
gate yz in the off-channel, but that yz habituates during
time intervals when y, is recovering.

An important point of comparison between Figures 13
and 14 concerns the maximum sizes achieved by the con-
ditioned LTM traces CS,-ON and CSt-GFF, respectively.
These maximum sizes (35.8 and 55, respectively) are
commensurate. The existence of relatively large values
of off-LTM traces tended to covary in our simulations
with the persistence of memory during extinction trials.
Large off-LTM traces and good memory went hand in
hand. It is still too soon to say whether this is a general
property of READ circuits, and thus a property upon
which an experimental prediction can securely be based.
On the other hand, it is an interesting correlation that
deserves further study.

In order to study the covariation of extinction with large
off-rebounds, we did parametric studies, varying the feed-
back coefficient M in Equations 31 and 32 from .01 to
.07. In Figures 13-17, we chose M=.05. For this
parameter choice, the off-LTM trace slowly decays to ap-
proximately 70% of its maximal value during successive
presentation of the CS alone. A similar decay occurs given
choices of M between .01 and .05.

Figure 15 depicts a simulation of excitatory secondary
conditioning using the inputs summarized in Figure 12c.
The LTM trace CSt-ON grows during the first 10 trials
and is then used to induce growth of the LTM trace CSz-
ON during the next 10 trials, without undermining its own
LTM strength. The size (37.7) of CSt-GN after 10 ac-
quisition trials is larger than the size (33.3) of CSz-QN
after 10 acquisition trials. Thus, secondary conditioning
generates significant L TM strength in this READ circuit,
but not LTM strength as great as that generated due to
primary conditioning.

Figure 16 depicts a simulation of inhibitory secondary
conditioning using the inputs summarized in Figure 12d.
These simulations fully exploit the fact that the READ
circuits contain positive feedback loops. Grossberg
(1972b, 1975) was the first to note that in order for a CSt
to be conditionable either directly to the on-channel or
to an antagonistic rebound in the off-channel, its LTM
traces must contact the gated dipole at a stage subsequent
to the habituative transmitter gates. In order for offset of
a CSt to cause an antagonistic rebound, its LTM traces
must contact the gated dipole at a stage prior to the habitu-
ative transmitter gates. In order for the same stage ofLTM
contact with the gated dipole to occur both subsequent to
and prior to the habituative transmitter gates, the gated
dipole must contain positive feedback pathways. In Fig-

and US pairing alternated with presentation of the C,SI
alone for 20 trials. As noted above, the conditioning that
occurs within an isolated READ circuit, whether due to
continuous reinforcement or partial reinforcement, is not
modulated by expectation mechanisms. Such modulation
can yield higher asymptotic response levels under partial
reward than under continuous reward (Grossberg, 197:5;
reprinted in Grossberg, 1982c), as also occurs in marlY
experimental paradigms (Boren, 1961; Brogden, 1939;
Felton & Lyon, 1966; Gibbon, Farrell, Locurto, Dun-
can, & Terrace, 1980; Gibbs, Latham, & Gormezano,
1978; Gonzalez, 1973, 1974; Perkins et al., 197~;;
Schwartz & Williams, 1972; Wasserman, 1974; Wasser-
man, Hunter, Gutowski, & Bader, 1975). This type of
enhancement effect does not occur in an isolated READ
circuit. The discussion in Part n describes how the inter-
action of expectation mechanisms with READ circuit
mechanisms can yield higher asymptotes and more resi:,-
tant extinction during partial reward than during continu-
ous reward.

Figures 13-17 depict a series of simulations using a
fixed set of numerical parameters. Each curve depicts tl;le
real-time behavior of an activation (STM trace) or adap-
tive weight (L TM trace) of the READ I circuit. Due to
the fact that each variable fluctuates over a different rang:e
of numerical values, each curve has been normalized to
fit within an interval of fixed height. We call particular
attention to the following features of these conditioning
curves.

Consider Figure 13 for definiteness. This figure depic1:S
a simulation of excitatory primary conditioning using the
inputs in Figure 12a. Because the US is presented to the
on-channel, the on-transmitter Yt in Figure 13 undergoe:s
a series of habituation-accumulation cycles on successive
learning trials, as schematized in Figure 6. Due to these
reactions, the on-activations throughout the circuit UlJl-
dergo overshoot -habituation-undershoot -habituation cy-
cles through time, also schematized in Figure 6. The Varil-
abIes Xs and X6 in Figure 13 illustrate these properties:.

The variable CSt-ON describes conditioning of the
L TM trace within the pathway from the sensory represel1l-
tation of the CSt to the on-channel of the READ circui1:.
Notice that after the 10 acquisition trials terminate, fu,-
ture presentations of the CSt alone on extinction trials do
not cause delay of the CS1-ON LTM trace. For this choice
of parameters, memory is essentially perfect. Forgetting
is due to active relearning, notably counter-conditionin,g
of CS1-OFF, as in the interference theory of forgettin,g
(Adams, 1967; Grossberg, 1972b).

Another important feature of circuit dynamics is seen
in the output functions [xs]+ and [X6]+ of the on-channe:l
and off-channel, respectively. Because the output signals
are rectified, they generate sustained but habituative on-
reactions and transient off-reactions, as schematized in
Figure 5.

Figure 14 summarizes a simulation of inhibitory pri-
mary conditioning obtained through a backward condi-
tioning procedure, using the inputs depicted in Fig-

~
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Figure 13. Computer simulation of priJnary excitatory conditioning and extinction with slow habituation
and large feedback in a READ I circuit. The conditioned stimulus (CSI> is paired with the unconditioned
stimulus (US) during the f"Irst 10 simulatld trials, and CS1 is presented in the absence of the US in the next
10 simulated trials. The numbers aboVI: each plot are the maximum and lniDimum values of the plot.
ParametersareA=I, 8=.005, C=.OOI2~5, D=20, E=20, F=20, G=.5, H=.005,K=.025, L=20,M=.05.
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ure 16, CS1-ON grows on the first 10 trials, due to pair-
ing with the US, whereas CSz-OFF grows on the next 10
trials, due to pairing with the antagonistic rebourul caused
by the offset of CS1. The maximum size (42.4) of CS1-
ON during the first 10 trials is smaller than the maximum
size (52.3) of CSz-OFF during the next 10 trials.

Figure 17 describes a simulation using the partial-
reward schedule described in Figure l2e. The rate of ac-
quisition is less than that in the continuous-rew;trd case
of Figure 13. Because memory is essentially pen'ect dur-
ing passive extinction trials, the asymptotic associative
strength can grow to close to that achieved using I:ontinu-
ous reward. Because this READ circuit is not Utnked to
expectation mechanisms, the nonoccurrence of an ex-
pected US, or the occurrence of an unexpected US, on
later conditioning trials has no influence on th~: course
of conditioning when the CS is presented alon~:.

Key properties of these computer simulations tend to
be supported by experimental data. These simulations do
not incorporate a number of the model's attentional and
expectancy mechanisms used to analyze data in Part ll,
but their properties are consistent with data wher,ein such
mechanisms do not playa rate-limiting role.

In the case of excitatory conditioning (Figure 13,), simu-
lations show conditioned responses (CRs) of inl~reasing
amplitude over trials, as has often been described in clas-
sical conditioning (see, e.g., Gormezano, Kehoe, & Mar-
shall, 1983).

Rescorla and LoLordo (1965) and Siegel and Domjan
(1971) found that backward conditioning procedures, as
described in Figure 14, yield inhibitory conditioning.
Zimmer-Hart and Rescorla (1974) found that inhibitory
conditioning does not extinguish after presentatiollS of the
CS alone. In agreement with Zimmer-Hart and Itescorla
(1974), there exists a parameter range for the READ cir-
cuit such that complete extinction of the CS-OFF associ-
ation does not occur due to presentation of the C:S alone.

In the READ circuit, extinction of the cst-or.;r associ-
ation does not affect the CSz-ON association. This result
agrees with data obtained by Rizley and Rescorla (1972),
who used rats as subjects in an aversive conditioning
paradigm, and by Holland and Rescorla (1975), who also
used rats as subjects, but in an appetitive paradigm. On
the other hand, there exist several experimental paradigms
(Leyland, 1977; Lysle & Fowler, 1985; Miller & :khacht-
man, 1985; Rashotte, Griffin, & Sisk, 1977) in which ex-
tinction of a given stimulus can significantly influence the
behavioral efficacy of other conditioned stimuli. II1l Part fl,
we append READ circuit mechanisms to cognitiv,e modu-
latory circuits to illustrate how such an augmented cir-
cuit can be used to analyze such data.

18. Computer Simulations in Other Parameter
Ranges: Responses to Stimulus Transients arid
Passive Extinction

The simulations depicted in Figures 18-21 show how
speeding up the habituation and accumulation ratl:s of the
transmitter gates influences circuit dynamics. In Figures

t
(t ~

18 and 19, the rates chosen are twice as fast as those in
Figures 13-17. In Figures 20 and 21, the rates chosen
are four times as fast as those in Figures 13-17. In Figures
18 and 20, the simulations are of excitatory secondary
conditioning. In Figures 19 and 21, the simulations are
of inhibitory secondary conditioning. These simulations
illustrate the robustness of READ circuit properties within
a physically plausible parameter range. The faster habitu-
ation rate causes a more rapidly falling overshoot in cir-
cuit activations, and thus an accentuation of transient,
rather than sustained, responses to the CS and us. Other-
wise, the qualitative properties of conditioning are
preserved across these parameter changes.

Figures 22-26 depict a complete set of simulations in
a parameter range wherein passive extinction occurs when
the CS is not followed by a us. The READ circuit in
which passive extinction occurs has the same parameters
as the READ circuit depicted in Figures 20 and 21, with
one exception: In Figures 22-26, the parameter that con-
trols the strength of the positive feedback signals from
X7 -+ Xt and Xe -+ X2 was chosen to be smaller.

Several functional properties of the READ circuit
changed as a result of this single change in parameters.
As already mentioned, passive extinction occurs in all of
Figures 22-26. In addition, antagonistic rebounds are
smaller, so inhibitory conditioning is weaker (Figures 21
and 25) relative to the corresponding level of excitatory
conditioning (Figures 22 and 24). Finally, due to the pas-
sive extinction that can occur on nonrewarded trials, both
the rate and the asymptote of learning are less in the
partial-reward case (Figure 26) than in the continuous-
reward case (Figure 22), unlike the partial-reward case
in which no passive extinction occurs (Figure 17). Despite
these quantitative changes, the READ circuit continues
to exhibit the main qualitative conditioning properties that
are exhibited in its other displayed parameter ranges.
These results show that the circuit's emergent properties
are robust over at least four- to fivefold changes in the
size of key parameters.

PART n

19. The Relationship Between Conditioned
Inhibition and Blocking Paradiglns

When a conditioned stimulus, CSt, is appropriately
paired with a shock US in a conditioned-suppression
paradigm, it can become a conditioned excitor, as mea-
sured by a decreased suppression ratio, an increased
response latency, or other indices of conditioned fear
(Lysle & Fowler, 1985; Miller & Schachtman, 1985). If
simultaneous pairing of the CSt with another conditioned
stimulus, CS2, is followed by a no-shock interval, the CS2
can become a conditioned inhibitor, as tested by an in-
creased suppression ratio, a decreased response latency,
and so on. Conditioned inhibitors elicit a number of para-
doxical behavioral properties, which have attracted intense
experimental interest.
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feedback in a READ I circuit. The first conllitioned stimulus (CSt> is presented with the unconditioned stimu-
lus (US) during the first 10 simulated trial.!:, and CS2 is preseuted with CS1 in the absence of the US in the
next 10 simulated trials. The parameters are those given in Figure 13, except that B = .010 and C = .0025.
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(US) during the first 10 simulated trials, and CSt is presented with Cs,. in the absence of the US in the next
10 simulated trials. The parameters are those given in Figure 13, except that B=.020 and C=.OO5.
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Figure 21. Computer simulation of secondary inhibitory conditioning with fast habituation and large feedback
in a READ I circuit. The first conditioned stimulus (C~;J is presented with the unconditioned stimulus (US) during
the first 10 simulated trials, and CSz is presented after CSt offset in the absence of the US in the next 10 simulated
trials. The parameters are those given in Figure 20.
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trials. The parameters are those given In Figure 20, except that M=.OI.
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Fjgure 24. Computer simulation or ~jlldary excitatory conditioning with slow habituation and small reed-
back in a READ I circuit. The first condilioned stimulus (CSt) is presented with the unconditioned stimulus
(US) during the first 10 simulated trials" and CS1 is presented with C~ in the absence or the US in the
next 10 simulated trials. The parameter: I are those given in Fjgure 22.
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Figure 25. Computer simulation of secondary inJilibitory conditioniug with slow habituation and small feed-
back in a READ I circuit. The first conditioned stimulus (CSJ is presented with the unconditioned stimulus
(US) during the first 10 simulated trials, and CSz is presented after CSI offset in the absence of the US in the
next 10 simulated trials. The parameters are those given in ligure 22.
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Figure 26. Computer simulation of partial reinforcement with slow habituation and small feedback
in a READ I circuit. The conditioJlled stimulus (CSv is alternately presented with the unconditioned
stimulus (US) and without the US miring 10 simulated trials. The ImranleteI'S are ~ given in Figure 22.

-The experimental paradigm for training a conditioned not become, at least asymptotically, a conditioned exci-
inhibitor is similar to the blocking paradig)n (Kamin, tor. How does prior fear conditioning of the CSt' 'block"
1968, 1969). In a blocking paradigm, the CSt may be subsequent fear conditioning of the CS1?
paired with a shock US. Then the CSt and CS:1 are sim1:Jl- The blocking paradigm and the conditioned inhibition
taneously presented, but are also followed by;! shock US. paradigm thus differ primarily in terms of the conse-
The key question in blocking concerns why tJile CS1 does quences of CSt +CS1 presentations. In blocking, the con-
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sequence is a definite US event. In conditioned inhibi-
tion, it is the nonoccurrence of the expected US event.
There exists a continuum of other experimental possibili-
ties in which the compound stimulus CSt +CS2 may be
followed by a US that differs from the original US, for
example, in its intensity. Then conditioning of the CS2
may undergo unblocking. From this perspective, proper-
ties of conditioned inhibition may be interpreted as a limit-
ing case of unblocking properties.2

Herein we join the computer simulations of READ cir-
cuit dynamics that are described in Part I to the additional
cognitive-emotional mechanisms schematized in Figures
1 and 2 to provide a unified real-time explanation of key
data about conditioned inhibition. In particular, this ex-
planation clarifies how, despite their similarity, blocking
and conditioned inhibition paradigms generate such differ-
ent behavioral properties.

20. Conditioned Inhibition as a "Slave" Process
Our analysis takes as its point of departure the seminal

experiments, modeling concepts, and general data discus-
sions provided by Lysle and Fowler (1985) and Miller
and Schachtman (1985). Many related experiments will
be clarified along the way.

One motivation for Lysle and Fowler's (1985) experi-
ments was the fact that several predictions of the Rescorla
and Wagner (1972) model failed to be experimentally con-
firmed in later studies. In particular, a conditioned inhi-
bitor CS2 does not extinguish when it is presented alone,
unlike a conditioned excitor (DeVito, 1980; Owren &
Kaplan, 1981; Witcher, 1978; Zimmer-Hart & Rescorla,
1974). In addition, a neutral stimulus presented with a
conditioned inhibitor CS2 does not acquire excitatory value
(Baker, 1974). The experiments Lysle and Fowler (1985)
designed to further probe these properties led them to con-
clude that conditioned inhibition is a "slave" process to
conditioned excitation. This concept was experimentally
defined and tested using the following general type of
paradigm, whose many controls will not be reviewed here.

First, a CSt was paired with a shock US. Next, a com-
pound stimulus CSt +CS2 was followed by a no-shock in-
terval. Then a number of different manipulations were
carried out on several different groups of anixnals. In one
group of anixnals (denoted by CSt [CSJ), the CSt was ex-
tinguished by being followed by a no-shock interval. In
another group of anixnals (denoted by X[CSJ), the train-
ing context X was extinguished by being followed by a
no-shock interval. In a third group of anixnals (denoted
by N[CS2]), neither CSt nor X was extinguished. Then
a retardation test was performed to discover how quickly
the conditioned inhibitor CS2 could be trained as a condi-
tioned excitor by being randomly paired with shock on
50% of its trials. The data showed that conditioned sup-
pression developed least rapidly for the N[CS2] group,
more rapidly for the X[CS2] group, and most rapidly for
the CSt [CS2] group. Indeed, the CSt [CS2] group devel-
oped suppression almost as rapidly as comparison groups
that were tested using a novel CS rather than CS2. In other

words, prior extinction of the conditioned excitor CS1
seemed to deactivate the conditioned inhibitory proper-
ties of CS2 in the subsequent retardation test, as did, to
a lesser extent, extinction of the context X, which had
also acquired properties of a conditioned excitor.

To further analyze these properties, Lysle and Fowler
(1985) tested whether fear of the CS2 or the US was in
the test context or in the animal. In the latter case "a
nonassociative mechanism could be postulated whe;eby
inhibition is motivated and thus maintained by an excita-
tory representation of generic form" (Lysle & Fowler,
1985, p. 83). To this end they performed experiments that
demonstrated that if, in conjunction with extinction of the
conditioned excitor CS1,

the animal receives presentations in a different context of
the US by itself, for a novel CS, or correlated either posi-
tivelyor negatively with [CS,], then the inhibitory property
of [CSz] will be maintained without loss. ...Furthermore,
if, following extinction in the original context, the animal
receives US presentations for the same or a different CS
in that context, then the inhibitory property of [CSz] will
be restored apparently to full strength. (Lysle & Fowler,
1985, p. 90)

The remarkable aspect of these results is that such flexi-
ble relationships between the extinction and retraining of
conditioned excitatory events and a conditioned inhibitor
can have such dramatic effects upon how and whether the
conditioned inhibitory property manifests itself in a test
context.

The fact that extinction of the conditioned excitor CS,
deactivates the conditioned inhibitory properties of CS2,
but reconditioning in another context reinstates CS2 as a
conditioned inhibitor, prompted Lysle and Fowler (1985)
to propose that conditioned inhibition is a "slave" process
to conditioned excitation.

21. Conditioned Inhibition as
a "Comparator" Process

According to Rescorla (1968), excitatory conditioning
is obtained whenever P(US/CS) > P(US/CS), inhibitory
conditioning when P(US/CS) < P(US/CS), and no con-
ditioning when P(US/CS) = P(US/CS), where CS
denotes "no CS."

In a more recent exploration of contingency effects on
classical conditioning, Miller and Schachtman (1985) fur-
ther analyzed these properties by paying particular atten-
tion to how the context X may become conditioned to the
US, and the effects of such associations on conditioned
inhibition and excitation. They therefore controlled both
the probability P(US/CS) and the probability P(US/CS).
They noted that if P(US/CS) = .33 and P(US/CS) = 0,
then the CS became a conditioned excitor. In contrast,
if P(US/CS) = .33 but P(US/CS) = .67, then the CS
became a conditioned inhibitor. Thus, knowing P(US/CS)
alone is not sufficient to predict the excitatory or inhibi-
tory properties of the CS. The relevance of context-US
associations was vividly raised by this manipulation, since
during P(US/CS) trials, no CS occurred.
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Miller and Schachtman (1985) explored the role of
context-US associations and showed that the "critical fac-
tor was whether or not unsignaled shocks wc~re given in
the conditioning context" (p. 60). They did drus by train-
ing tw-?- experimental groups [P(US/C~:) = .33,
P(US/CS) = .67 and P(US/CS) = .33, P(US/CS) = 0]
in an experimental context A. They then broke up each
group into two test groups, and tested one group's reac-
tion to the CS in context A and the other group's reac-
tion to the CS in a novel context B. Both groups that were
trained on P(US/CS) = .33, P(US/CS) = 67 showed
short-latency responses to the CS, whereas both groups
trained on P(US/CS) = .33, P(US/CS) = 0 showed long-
latency responses to the CS. Thus, if the CS was trained
as a conditioned excitor, it preserved this property in either
the training context or a novel context. The saine was true
if the CS was trained to be a conditioned inh,ibitor. The
latter result is of particular interest, since it de:monstrated
that a conditioned inhibitor could maintain its inhibitory
property in a novel context B in which no exciltatory con-
ditioning had taken place. In particular, the inhibitory ef-
fect of the CS in this situation could not be due to the
unmasking in context B of a weaker excitatory effect than
that which was conditioned to the training context A.

After conducting a variation of this paradigm, Miller
and Schachtman (1985) concluded that "the Itraining lo-
cation as opposed to the test location plays the role of the
associative comparator in detemrining whether or not a
CS will be an effective conditioned inhibitolr or condi-
tioned excitor" (p. 61). To show this, they algain chose
P(US/CS) = .33 with CS conditioning occuning in con-
text A; this time, however, no unsignaled shocks were
delivered in context A, and for half the animaJIS the prob-
ability of unsignaied shock in context B was .157. Testing
of the CS in either context A or context B showed that
it was a source of conditioned excitation, inde:pendent of
the occurrence of signaled shocks in context B and, as
in the past experiment, independent of which context was
used for testing.

An interesting fmer point in these results ~'as that the
total conditioned excitatory effect of the CS ~'as not sig-
nificantly increased by testing it in the fearful context B.
This result is consistent with the property of aLSsociative
averaging, rather than associative summation, of the to-
tal amount of conditioned fear (Section 11).

Miller and Schachtman (1985) realized that different
temporal contingencies were imposed by trainiJlg and test-
ing in the same or different contexts. They p'articularly
noted data of Kleiman and Fowler (1984) wherein

unsignaled shocks delivered in moderately close temporal
proximity to a nonreinforced stimulus (but not so close as
to produce excitatory conditioning) will increase the effec-
tive inhibitory strength of this stimulus relative to that
produced by unsignaled shocks delivered in the lniddle of
the intervals between presentations of the target stimulus.
(Miller & Schachtman, 1985, p. 63)

We will trace this temporal effect to whether condition-
ing occurs to a directly activated on-channel or to an in-

directly activated antagonistic rebound within an off-

channel.

Miller and Schachtman (1985) discovered an important
asymmetry in the processing of a conditioned inhibitor
when they "asked whether the comparator baseline was
the excitatory value of the conditioning context at the time
of conditioning or at the time of testing" (p. 64). To test

this, they inflated or deflated the associative value of the
context during the retention interval before the test be-
gan. For example, after training on P(US/CS) = .33,
P(USICS) = .67, they deflated the context in one group

by extinguishing it on P(USICS) = O. Then the CS was
tested in both the deflated group and a nondeflated group.
The CS elicited a longer lick latency after context defla-
tion than in the absence of context deflation. This is a re-
markable result, because it was accomplished without pre-
senting either the CS or the US in the P(USICS) = 0 sit-
uation. Miller and Schachtman concluded that

the comparator baseline is the current associative value of
the conditioning context rather than the associative value
of the conditioning context at the time of conditioning. ...
The critical comparison does not occur until the time of
testing. Thus the information retained over the retention
interval is apparently the independent associative strengths
of the CS, i.;!., P(US/CS), and the conditioning context,
i.e., P(US/CS), rather than solely the outcome of the com-
parison, i.e., P(CR/CS). (p. 65)

We will show how a combination of an adaptation level
shift, associative averaging, and antagonistic rebound
properties can explain this result, in much the same way
that it can explain the finding ofBottjer (1982) that a novel
stimulus presented just before the CS can restore the in-
hibitory power of the CS.

In contrast to their results on contextual deflation, Miller
and Schachtman (1985) also demonstrated that "no
amount of contextual inflation will affect the comparator
role of the conditioning context" (p. 66). Both the effect
of contextual deflation and the non-effect of contextual
deflation will be explained using the same mechanisms,
as will the fact that US-alone presentations do degrade
CS responding either before (Holman, 1976) or during
CS conditioning, but not after (Jenkins & Lambos, 1983).
The present theory thus has a broader explanatory range
than does the comparator hypothesis; Miller and Schacht-
man (1985) remarked that they "currently do not have
any reasonable hypothesis as to why contextual inflation
[CI] appears to be ineffective, whereas contextual defla-
tion does influence responding ...it remains unclear why
unsignaied US's following conditioning apparently fail to
augment CI, whereas US's during conditioning do pro-
vide CI" (p. 67).

In addition, we suggest explanations of other impor-
tant data that Miller and Schachtman (1985, p. 69) sum-
marized, such as "why a conditioned inhibitor attenuates
excitor behavior on a summation test far more than does
a novel stimulus (Pavlov, 1927)" and why, as in the ex-
periments of Cotton, Goodall, and Mackintosh (1982) an
"A -+ large shock! AX -+ small shock procedure renders
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X effectively inhibitory as measured in a summation test
with a previously conditioned excitor (B) when B had pre-
viously been paired with a large shock, but not when B
had been paired with a smaIl shock" (Miller & Schacht-
man, 1985, p. 69). The same mechanisms also clarify
why, although conditioned excitation is retarded, condi-
tioned inhibition is facilitated by preconditioning US-alone
exposures (Hinson, 1982); why A+/X- trials may pro-
duce some conditioned inhibition, but only weakly if at
all; and why pretest extinction of A restores responding
to X in an overshadowing paradigm (Kaufman & Bolles,
1981). These results also extend beyond the reach of the
comparator hypothesis, inasmuch as "the comparator
hypothesis. ..is silent concerning how either the nomi-
nal CS or context accrue excitatory associative strength"
(Miller & Schachtman, 1985, p. 81).

22. A Theoretical Review:
The Synchronization and Peristence Problems
of Pavlovian Conditioning

Our explanation of these demanding data about condi-
tioned inhibition is a variant of an explanation of block-
ing in terms of the following types of processes (Gross-
berg, 1975, 1982a; Grossberg & Levine, in press): How
does the pairing of a CSt with a US in the first phase of
a blocking experiment endow the CSt cue with proper-
ties of a conditioned, or secondary, reinforcer? How do
the reinforcing properties of a cue, whether primary (US)
or secondary (CSJ, shift the focus of attention toward
its own processing? How does the limited capacity of at-
tentional resources arise, so that a shift of attention toward
one set of cues (CSt or US) can prevent other cues from
being attended (CS2 or CS)? How does withdrawal of at-
tention from a cue prevent that cue from entering into new
conditioned relationships?

Mechanisms to instantiate these processes have been de-
rived from solutions of several simple, but basic, neural
design problems, which came into view through real-time
analyses of conditioning data.

The first design problem, caIled the synchronization
problem, was posed in Grossberg (1971, pp. 227-237).
This problem asks how CS-US associations can develop
in a stable fashion in spite of the variability of the time
lag between CS and US. The synchronization problem
came into focus as a result of quantitative results from
previous work (Grossberg, 1969c, 1970), which showed
that each elementary sensory representation or motor com-
mand could be represented mathematically as a spatial pat-
tern of activation across a network of cell populations.
If activity at a population coding a CS was followed
repeatedly by the same US, the LTM traces activated by
the CS population could cumulatively learn the spatial pat-
tern corresponding to that US. However, if the CS was
followed at different time intervals by two or more events,
among which only a single US occurred, the CS-activated
LTM traces would not learn the spatial pattern cor-
responding to the US. Instead, they would learn a mix-
ture of the spatial patterns corresponding to all the events

that occurred when the CS was active, whether meaning-
ful to the organism or not. Such a mixture would typi-
cally encode little useful information about the environ-
ment and would certainly not resemble the US pattern.

The synchronization problem hereby brought into fo-
cus two related problems of fundamental importance: How
does an organism know how to distinguish significant
events for encoding in L TM among all the irrelevant en-
vironmental fluctuations that never cease to occur? How
are conditioning systems designed to be capable of sta-
blyoperating in continuous, or real, time, despite the fact
that meaningful events, such as novel events and USs,
occur at irregular and discrete time intervals?

Grossberg's (1971) analysis of the synchronization
problem led to the proposal that there exist populations
of cells, called D for drive representations (Figures Ib
and 2), that are separate from the sensory representations
of particular stimuli but are related to particular drives
and emotions. Workers such as Bower (1981; Bower, Gil-
ligan, & Monteiro, 1981) have called such drive represen-
tations "emotion nodes." A food US, for example, un-
conditionally activates the D population corresponding to
the hunger drive if the hunger drive level is sufficiently
high. Repeated pairing of a CS with a food US thus causes
pairing of stimulation of the CS sensory representation,
which we denote by Scs, with that of the D representa-
tion of the hunger drive, which we denote by DH. If the
Scs -DH synapses are assumed to be modifiable accord-
ing to an associative rule, such as Equation 14, then the
pairing Scs -DH can become strengthened, so that even-
tually the CS by itself becomes able to activate the drive
representation DH and thereby becomes- a conditioned
reinforcer for food. Once a neutral CS (call it CSJ has
been conditioned, it can be used as a US to reinforce
responses to another CS (call it CSJ in a later experi-
ment. Once the Scs, -DH synapses have been strength-

ened, repeated presentation of CS2 followed by CS 1 can,
in turn, strengthen the associative Scs2 -DH synapses,
as in Figure 15.

Pathways D -S from the drive representations to the
sensory representations were also derived and shown to
be conditionable. Conditioning in the D -S pathways was
related to classical concepts about incentive motivation
and shown to overcome some serious problems involv-
ing heuristic approaches to the defInition of motivation.
Whereas reinforcement acts directly upon the efficacy of
S -D pathways in this model, the entire conditionable
pathway S -D -S regulates motivational support for
the learning and performance of conditioned responses
along stimulus-response (S -R) circuits (Figure 2).

In order to relate S -D conditioning, D -S condi-
tioning, and S -R conditioning, and thereby to analyze
how the S -D -S feedback loop regulates attention
toward motivationally salient cues, Grossberg (1975;
reprinted in Grossberg, 1982c) defined and analyzed the
persistence problem of classical conditioning, also known
as the turkey-love fiasco. This problem arose from con-
sideration of another typical conditioning situation which
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seems problematic only when one attempts to build a real-
time model.

In Figure 27b, the cues CSt and CS1 have previously
been conditioned to responses CR1 and CR1. Responses
CRt and CR1 are assumed to be motivationally incom-
patible, as are, for example, eating and sex. A catastrophic
problem could occur in an improperly desigru:d learning
circuit if CSt and CS1 were then alternately scanned in
rapid succession. If only one of the cues had previously
been conditioned to a response, then no difficulty would
occur (Figure 27a). However, if both cues w~:re already
conditioned and if classical conditioning wen~ merely a
feedforward process that associatively linked cues with
simultaneously active responses, then cross-conditioning
from CSt to CR1 and from CS1 to CRt could J:apidly oc-
cur (Figure 27b). This example identifies the ,core issue:
When many cues are processed in parallel, arid some of
the cues are already conditioned to motivatiomtlly incom-
patible responses, then why are these associations not
quickly degraded by cross-conditioning? How can the
ubiquity of parallel cue processing be reconcilc~ with the
persistence of learned meanings?

The persistence problem was also called thl~ "turkey-
love fiasco" to emphasize its basic nature and the absurd
world to which it could lead if not actively preve:nted. Dur-
ing an otherwise uneventful turkey dinner 'Nith one's
lover, suppose that one alternately looks at lover and tur-
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key. Visual cues of one's lover are associated with sex-
ual responses (among others!) and visual cues of turkey
are associated with eating responses. Why do we not come
away from dinner with tendencies to eat our lover and
to have sex with turkeys? The fact that we do not illus-
trates that the persistence of learned meanings can endure
despite the fact that sensory cues that are processed in
parallel often control motivationally incompatible re-
sponses.

At least two types of mechanisms have been proposed
to deal with this fundamental problem: (1) prewired, or
innate, connections among preferred sets of internal rep-
resentations, and (2) dynamic regulation of conditioned
associations via attentional mechanisms. In general, a
combination of both types of factors may be operative,
since the non-equipotentiality of prewired connections can
facilitate conditioning among certain sets of events above
others.

Seligman illustrated the role of non-equipotentiality dur-
ing an experience when he

felt the effects of the stomach flu six hours after eating fi-
let mignon with sauce Beamaise. The next time I bad sauce
Bearnaise, I could not bear the taste of it. ...Neither the
filet mignon, nor the white plates off which I ate the sauce,
nor Tristan und Isolde, ...nor my wife ..., became aver-
sive. (Seligman & Hager, 1972)

Several experiments also suggest that some combina-
tions of stimuli and reinforcers result in faster condition-
ing than do others. For instance, Garcia and Koelling
(1966) found that when a compound gustatory and audi-
tory stimulus are paired with agents that produce nausea,
gustatory but not auditory stimuli are associated with
nausea. On the other hand, when the compound stimulus
is paired with a shock US, the auditory stimulus is as-
sociated with the US (Domjan and Wilson, 1972). Foree
and LoLordo (1973) showed that pigeons associate visual
stimuli with a food US more readily than auditory stimuli
with a food US, and that this relationship is reversed when
a shock US is used.

Seligman and Hager (1972) suggested that the results
could be explained in terms of a selective associative
difference by which a given CS is innately more' 'pre-
pared" to be associated with a given US than with others.
Mackintosh (1973) proposed that previous experience with
the difference in the correlation of different classes of CSs
and USs determines their predisposition to be associated
at a later time.

Grossberg (1975) suggested a mechanistic solution of
the persistence problem in which the possible non-
equipotentiality of innate connections was acknowledged,
but additional attentional regulatory mechanisms were in-
voked to deal with the case in which the sensory CSs were
approximately equipotential with respect to pairs of moti-
vationally incompatible responses. This solution proposed
how incentive motivational feedback due to conditionable
D -+ S pathways could shift an organism's attentional fo-
cus to preferentially process previously experienced

Figure 27. The persistence problem of cla$ical conditioning. (a) A
conditioned stimulus (CSJ can be quickly ~iated ,nth the con-
ditioned response (CR,) of a distinct Cs,. (b) When each of the con-
ditioned stimuli (CSt and C~ is already conditioned to a distinct
conditioned response (CRt and CRz, respectively) at tile beginning
of an experiment, alternate scanning of CSI and CSz does not al-
ways cause rapid cross conditioning of CSt to CRz and CSz to CRt,
as is Dl8de clear in (c), which depicts the absurd coDS4!quence that
would arise after dining with one's lover.
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due to either internal noise or saturation effects. This
noise-saturation dilemma can be prevented by an on-center
off-surround anatomy through which the cells interact via
mass action (or shunting) laws. Such a network interaction
implies, without further assumptions, that the total supra-
threshold activation of the network tends to be conserved,
and thus possesses a limited capacity.

When such a network is also designed to accomplish
STM storage, its on-center off-surround interactions are
recurrent, or feedback, interactions in which the cells ex-
cite themselves and inhibit other cells via feedback path-
ways (Figure 2). In addition to its noise-saturation and
limited-capacity properties, such a recurrent on-center off-
surround network contrast enhances an input pattern be-
fore storing the contrast-enhanced activation pattern that
emerges across the cells in STM (also called working
memory). Thus one must distinguish between the input
pattern and the more focal STM activity pattern that it
generates. Attention is paid to those sensory representa-
tions whose cells receive a positive level of stored STM'
activity.

When incentive motivational feedback signals form part
of the total input pattern to the sensory representations
(Figure 2), these signals can bias the competition for STM
activity toward motivationally salient cues. Due to the
limited capacity of STM, motivationally salient cues, in
particular primary and secondary reinforcers, can draw
attention to themselves via their strong conditioned
S -+ D -+ S feedback loops. In order to initiate such an
attention shift, such cues must first start to be processed
due to their sensory properties. After sensory processing
is initiated, it can activate the learned reinforcing and
motivating pathways of the cues, and can thereby help
to direct the ultimate allocation of sensory and attentional
resources.

Once attention shifts away from a sensory representa-
tion, its activity can become small or even subthreshold.
If, by whatever means, an attention shift causes a signal
Sk from a sensory representation to become small or zero
in the LTM equations 14 and 15, then the LTM traces
of the representation learn very slowly or not at all.

STM
ACTIVITY
WITH

MOTIVATIONAL
FEEDBACK

24. Gated Dipoles and Opponent Extinction
Gated dipoles were originally derived in Grossberg

(1972b) to explain how the offset of a reinforcer of posi-
tive (or negative) sign can generate an antagonistic re-
bound to which a simultaneous CS can be conditioned as
a reinforcer of negative (or positive) sign. Using these
gated dipoles, the drive representations in Figure 2 were
organized into the on-channels and off-channels of recur-
rent gated dipoles. These gated-dipole circuits were, in
turn, linked together via competitive interactions into
gated-dipole fields, which were designed to choose that
drive representation whose combination of sensory, rein-
forcing, and homeostatic constraints was most favorable
at any given time ("winner-take-all"). The chosen chan-

(c)

FIgUre 28. Augmentation of short-tenn memory (Sl'M) activation
at a sensory representation, Scs, by feedback signaling through the
pathway Scs -+ D -+ Scs. In response to the se~ry input (a)
received by Scs, the STM activation profile before learning is :15
scbematized in (h). After learning within the Scs -+ D -+ Scs patlil-
way takes place, the initial activation remains as in (h). However,
as the feedback signals are registered, the STM activation of 8.;s
can be greatly amplified and prolonged, as schematized in (c).
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are activated. Opponent extinction hereby avoids the pos-
sible saturation at maximal values of both L TM traces Z"1
and z"s, no matter how many experiments activate S".

nel could release incentive motivational output siignals to
the sensory representations and thereby focus attention
upon the motivationally most favored sensory rc~presen-
tations. These enhanced representations could thereupon
generate output signals to release conditioned re:sponses
consistent with these momentary sensory and motivational
constraints .

A surprising property of a gated dipole is tha1: the un-
expected nonoccurrence of an event can trigger an an-
tagonistic rebound by causing a sudden increme:nt in its
nonspecific arousal level I (Grossberg, 1972b, 1987a).
These two types of rebound-inducing events c1ariJfied how
a large on-conditioned reinforcer value of CS--that is,
its on-LTM trace Zk7 in Equation 14-could be extin-
guished by conditioning its off-LTM trace Zk8 in Equa-
tion 15. Such off-conditioning of Zk8 may be due to rein-
forcing inputs delivered directly to the dipole's
off-channel. Off-conditioning may also be due to antag-
onistic rebounds at the off-channel in response to either
sudden offsets of on-channel inputs or unexpected non-
occurrence of on-channel reinforcers. This multiplicity
of conditions leading to off-conditioning has previously
been used to clarify many paradoxical propertie:. of con-
ditioning and extinction data, and will also pla:f an im-
portant explanatory role herein.

A new property of extinction has been understood
through the quantitative analysis of a READ circuit de-
scribed in Part I. This property is called opponerlt extinc-
tion. Opponent extinction clarifies how a conditioning cir-
cuit in which passive extinction does not occur Call prevent
its LTM traces from saturating at maximal valuc~s due to
a progressive accumulation of associative strength over
many conditioning trials. Opponent extinction also shows
how associative memories may be actively extiJlguished
even if they do not passively extinguish. The ('pponent
extinction property is based upon the dissociation of as-
sociative read-in and read-out that was related 1.0 condi-
tioning at dendritic spines in Section 13. Opponent ex-
tinction occurs as follows.

If, by any means, off-conditioning procee:ds until
Zk8 =Zk7 >0, then the conditioned reinforcer sigrlals SkZk7
and SkZk8 of a conditioned reinforce~ to a REAJD circuit
become approximately equal. This circumstano~ can ac-
tively extinguish the L TM traces Zk7 and Zk8 as follows.
Suppose for definiteness that only signal Sk is pc)sitive at
any time. Then the difference signal A = 0 in Equation 34.
Consequently Xs =0 =X6' by Equations 21 and :~2. Thus
both Zk7 and Zk8 approach zero, by Equations 14. and 15.
In summary, as the on-LTM trace and off-LTM[ trace of
a conditioned reinforcer become approximately equal,
these L TM traces are actively extinguished, due to the
fact that conditioned reinforcer learning tracks thle net im-
balance of activation across the dipole's on-channel and
off-channel. This is the opponent extinction process. More
generally, conditioned reinforcer L TM traces continua1l.y
readjust themselves to track the net imbalance they de-
tect in all the environmental contexts within which they

25. Adaptive Resonance Theory: Expectation,
Mismatch, Reset, and Rebound

The gated dipole's rebound properties emphasize that
cognitive, notably unexpected, events playa critical role
in the modulation of reinforcement, conditioning, and ex-
tinction processes. The conceptual and data analyses
generated by this cognitive-emotional connection led
directly to the discovery and development of adaptive
resonance theory (Grossberg, 1976a, 1976b, 1978, 1980;
reprinted in Grossberg, 1982c). Adaptive resonance the-
ory has, by now, been used to analyze and predict a large
interdisciplinary data base and has undergone substantial
technical development (Carpenter & Grossberg, 1987;
Cohen & Grossberg, 1987; Grossberg, 1987a, 1987b).
Only those qualitative features of the theory that are
needed to explain data about conditioned inhibition will
be summarized herein.

Adaptive resonance theory suggests how internal rep-
resentations of sensory events, including CSs or USs, can
be learned in a stable fashion despite the potentially ero-
sive effects of irrelevant environmental fluctuations.
Among the mechanisms for the stable self-organization
of sensory recognition codes is the read-out of learned
top-down expectations that are matched against bottom-
up sensory signals (Figure 1). When a mismatch occurs,
a nonspecific arousal burst is triggered via an orienting
subsystem. This arousal burst acts to reset the sensory
representations of all cues that are currently being stored
in STM (Figure 29). In particular, representations with
high STM activation tend to become less active, rep!"esen-
tations with low STM activation tend to become more ac-
tive, and the novel event that caused the mismatch tends
to be more actively stored than it would be have been had
it been expected (Grossberg, 1982a, 1987a). These prop-
erties can be traced to the combined action of gated-dipole
interactions and limited-capacity competitive interactions
that are hypothesized to take place among the sensory rep-
resentations. As a result of such an STM-reset event, sen-
sory representations that had been actively reading out
an erroneous expectation become less active in STM;
hence, the expectation can be updated. Representations
that were attentionally blocked before the reset event oc-
curred can become unblocked, or dishabituated, in STM;
they code sensory information that may have been errone-
ously unattended. Finally, the novel event that triggered
the mismatch becomes more active in STM; it encodes
potentially important new information.

In order to deal effectively with temporal order effects,
the architecture schematized in Figure 1 must be aug-
mented by mechanisms for storage of event sequences in
working memory (Grossberg & Stone, 1986a, 1986b) and
for the learning of temporal discriminations (Grossberg
& Schmajuk, 1987).
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to become either a conditioned excitor or a conditioned
inhibitor and that during extinction trials, only the CS is
presented. In addition, the explanation shows how the dif-
ferent affective properties of excitors and inhibitors are
controlled, and utilizes the difference between condition-
ing of a CS to an affective reaction (viz., its role as a con-
ditioned reinforcer) and conditioning of the same CS to
a predicted sensory event (viz., its role as a source of con-
ditioned expectation).

ON-CELL POPULATIONS

Figure 29. Short-term memory reaction to an arousal-mediated
(ti.1) IInexpl'(:ted event. The aro~ burst M ~ to inhibit, or reset,
populations that were very active before the expected event and to
enhance, or dishabituate, populations that were weakly active be-
fore the unexpected event. The novel event that triggered M is ~tlso
preferentially stored. Inactive populations remain inactive, but tlley
are sensitized by a gain change. This type of global reset event gives
more short-term memory activity to those populations that did oot
control the actions leading to the unexpected outcome, including o~Us
that code the unexpected outcome.

27. Conditioning and Extinction of
a Conditioned Excitor

When a CSI is paired with shock on successive condi-
tioning trials, several things happen in the model. The sen-
sory representation SI of the CSI is conditioned to the
drive representation Dj corresponding to a fear reaction,
both through its conditioned reinforcer pathway SI -+ Dj
and through its incentive motivational pathway Dj -+ SI.
As a result, later presentations of CSI tend to generate
an amplified STM activation of SI, and thus CSI is
preferentially attended. Due to the limited capacity of
STM, less salient cues tend to be attentionally blocked
when CSI is presented.

As the cognitive-emotional feOOback loop SI -Dj -SI
is strengthened during conditioning trials, SI also learns
a sensory expectation of the shock. During extinction, CSI
is presented on unshocked trials. We assume, as in Fig-
ures 13-21, that the numerical parameters of the READ
circuit are chosen to prevent significant passive decay of
LTM traces from occurring; that is, we assume that ex-
tinction of conditioned reinforcer learning is due to an
active process of counterconditioning, as in Section 24.
When the expected shock does not occur, a mismatch oc-
curs with the learned expectation read-out by SI. As
described in Section 26, the STM activity of SI is quickly
reduced and an antagonistic rebound occurs in the READ
circuit. This rebound inhibits the fear reaction that is regu-
lated by the on-channel, and activates the relief reaction
(Denny, 1970; Dunham, 1971; Dunham, Mariner, &
Adams, 1969; Hammond, 1968; Masterson, 1970; McAl-
lister & McAllister, 1970; McAllister, McAllister, &
Douglass, 1971; Rescorla, 1969; Rescorla & LoLordo,
1965; Reynierse & Rizley, 1970; Weisman & Litner,
1969) that is regulated by the dipole's off-channe1 Dr.

The collapse in SI'S STM activity may be partial or
complete. We assume for definiteness that it is partial,
and describe in this case how conditioning within the
SI -+ Dj -SI pathway is antagonized by rebound-

contingent conditioning, which progressively extinguishes
CSI as a source of conditioned fear.

The collapse of SI'S activity occurs prior to the rebound
from Dj to Dr. Due to the hysteretic properties of a feed-
back competitive circuit, there exists a time interval dur-
ing which Djremains active after SI'S activity collapses.
During this time interval, the incentive motivational path-
way Dj -SI is weakened due to the same conditioning
mechanism (Section 24) that could lead to total extinc-
tion were SI to become totally inactive. If CSI is followed

26. ParaDel Learning of Sensory Expectation
and Conditioned Reinforcement

The synthesis of adaptive resonance mechanisms w:ith
conditioning mechanisms shows that the internal represe~n-
tation of a sensory event controls at least two distinct tyJ:1es
of output signals: learned top-down expectations widJtin
an attentional subsystem (Figure la) and learned coruii-
tioned reinforcer signals to a READ circuit (Figures Ib
and 3). The distinct, but interacting, properties of these
signals in different learning environments are critical to
our explanations of conditioned inhibition data. Notable
are the interactions whereby a disconfirmed sensory ex-
pectation can cause an antagonistic rebound within a
READ circuit.

Suppose, for example, that an active sensory represen-
tation of a conditioned reinforcer is reset due to a sen-
sory mismatch with its top-down expectation. The re~iet
event causes a rapid decrease in the STM activity of ttle
sensory representation and, thus, in its output signal Sk
to the READ circuit in Equations 12 and 13. As a result,
its conditioned reinforcer inputs SkZk7 and SkZkS to title
READ circuit also decrease. If the cue is an on-
conditioned reinforcer (viz., Zk7 ~ ZkS), an antagonistic re-
bound can hereby be elicited in the READ circuit's off-
channel.

Using the above properties, we now provide a unifi4~
explanation of data about conditioned inhibition. In pacr-
ticular, we suggest an explanation of why a conditioru~
excitor extinguishes, yet a conditioned inhibitor does not
extinguish. This explanation clarifies how this differeru~e
obtains, despite the facts that a given CS could be trainc~
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by a no-shock interval on successive learnin!: trials, the
weakening of the DJ ~ SI pathway is cumul:itive. As a
result, on a later presentation of CS1, DJ will supply less
feedback to SI, so that SI will be less attended than previ-
ously, but could possibly still be more attend!ed than an
irrelevant situational cue.

In addition to conditioned weakening of tlie DJ ~ SI
pathway, the SI ~ DJ pathway can be greatly weakened
or even totally extinguished. This is because ,51 remains
active after it is reset. Consequently, SI can t-ecome as-
sociated with an antagonistic rebound at Dr. This learn-
ing may take place at a slower rate than it did when SI
was associated with DJ, because SI is smaller after reset
than before. On the other hand, the maxim1tl possible
LTM strength of the SI ~ Dr pathway can exceed that
of the SI -+ DJ pathway, as it does in the simulations sum-
marized in Figures 14 and 15, as well as those in Figures
16 and 17. If CSI is followed by a no-shock interval on
successive trials, this learning process will be clllInulative.
Finally a time will occur when the pathway ~)1 ~ Dr is
as strong as the pathway SI ~ Dr As this time is ap-
proached, both conditioned reinforcer pathwa~rs become
extinguished by the mechanism described in S,ection 24,
and SI is extinguished as a conditioned excitor.

In the event that extinction of conditioned reinforcer
S -+ D pathways occurs rapidly, it may pennJlt residual
D -+ S incentive motivational associations to peJ:sist. Such
residual associations, including the associations which en-
code sensory expectations (Section 25) help to explain
how, during successive acquisitions and extinC1:ions, rate
of acquisition and extinction may increase as a result of
successive reversals (Davenport, 1969; Gonza1e:z, Berger,
& Bitterman, 1967; Schmaltz & Theios, 197~~).

tor can be restored against the extinction that takes place
on the no-shock trials, in the manner summarized in Sec-
tion 27. Intermittent restoration of the conditioned exci-
tor properties of CSt enables CSt to motivate the cumula-
tive training of CSz as a conditioned inhibitor on the
intervening no-shock trials.

Why does CS2 not extinguish when it is presented alone,
as a conditioned excitor does (DeVito, 1980; Owren &

Kaplan, 1981; Witcher, 1978; Zi1nIner-Hart & Rescorla,
1974)1 Why does a neutral stimulus presented with a con-
ditioned inhibitor not acquire excitatory value (Baker,
1974)1 Simple answers are now available.

When S2 is unblocked by the nonoccurrence of shock,
it learns a sensory expectation. This sensory expectation
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Figure 30. Presentation of conditioned stimuli C81 and C~ when

C81 has become a conditioned excitor and the compound stimulus
is followed by no-shock. During the no-shock interval between times
TI and Tz, 81 is actively amplified by positive feedback and ~ is
blocked. During the shock interval, disconfirmation of the expected
shock causes both 81 and 8z to be reset. 81's sbort-term.memory
(STM) activity decreases and ~'s SI'M activity increases. Due to
81's increase, Dr also decreases, thereby causing a rebound at Dr.
This rebound becomes associated with the increased activity of ~.

28. Conditioning and Nonextinction of
a Conditioned Inhibitor

Suppose that CSt has become a conditione<! excitor,
thereby learning to strongly activate the SI -.Df -+ SI
pathway as well as a learned expectation of a subsequent
shock. Now present the compound stimulus CSt -i-CS1 and
follow it by a no-shock interval. When CSt and CS1 are
simultaneously presented, SI'S activity is amplified by
positive feedback through the strong conditioned
SI -+ Df -+ SI pathway (Figure 30). As a resliit of the
limited capacity of STM, the STM activity of S1 is in-
hibited, or blocked. (The novelty c;>f C51 can partially
mitigate this blocking effect.) When the expected shock
does not occur, the mismatch with SI ' s sensory expecta-

tion causes both 51 and 51 to be reset. As des,cribed in
Section 25, 51' s 5TM activity decreases while ~;1' s 5TM
activity increase~. Due to SI'S decrease, a rebound oc-
curs at Dr. Consequently, the unexpected nonoccurrence
of the shock enables S1 to become associated ~ith Dr in
both of the pathways S1 -+ Dr and Dr -+ S1. The!;e are the

primary cognitive-emotional conditioning events that turn
CS2 into a conditioned inhibitor.

If CSI -+ shock trials and CSI +CS1 -+ no-sh()Ck trials
are interspersed, then CS1' s status as a conditioned exci-
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does not, however, predict shock. It includes whatever
contextual representations are sufficiently salient and
repeatable to be cumulatively learned on successive con-
ditioning trials. Thus presentation of the conditioned in-
hibitor CS2 within a given context does not disconfirm
~e sensory expectation controlled by S2' Since passive
extinction does not occur, a conditioned inhibitor CS2 does
not extinguish when it is presented alone.

On the other hand, S2 does learn to control a strong
S2 -+ Dr -+ S2 pathway. Hence it becomes attentionally

amplified and can plock the processing of neutral stimuli.
Thus a neutral stimulus presented with a conditioned in-
hibitor does not acquire excitatory value (Baker, 1974).

29. An Explanation of the "Slave" Data
Our explanation of Lysle and Fowler's (1985) data

about conditioned inhibition as a "slave" process com-
bines adaptive resonance properties of expectancy match-
ing and STM reset with READ circuit properties of adap-
tation level and rebound. The following additional model
properties are particularly relevant.

Extinction of a conditioned excitor CS1 includes not only
extinction of the feedback pathway SI -+ Dj -+ SI, but also
reconditioning of the sensory expectation associated with
S1 to anticipate a,no-shock, purely contextual, sensory en-
vironment. ContextUal cues X can also become condi-
tioned excitors in a situation wherein a conditioned exci-
tor CS1 or a shock occurs at random times. Such
contextual cues X may condition an expectation of shock
and a pathway Sx -+ Dj -+ Sx between their sensory
representations Sx and the drive representation Dj, as does
S1. The fact that cues X may be attended during no-shock
intervals does not, in itself, imply that the Sx -+ Dj -+ Sx
pathways will extinguish, because extinction does not oc-
cur passively (Section 17). Contextual cues extinguish
only during time intervals when their expectation of shock
is actively disconfinned, thereby triggering the rebounds
that enable Sx to become associated with Dr.

Consider what happens within the model in response
to the conditioning experiences of the groups CS1[CS2],
X[CSJ, and N[CSJ that were defined in Section 20.
When CS1 is extinguished by being followed by no-shock
intervals, both its sensory expectation of shock and the
sensory expectation of shock controlled by attended con-
textual cues X are simultaneously extinguished. Likewise,
the conditioned reinforcer pathways S1 -+ Dj -+ SI and,
Sx -+ Dj -+ Sx are simultaneously extinguished. Thus,
when CS2 is trained as a conditioned excitor by being ran..
dornly paired with shock on 50% of its trials, the contex1:
in which CS2 occurs is one in which no shock is expected.
Thus the occurrence of a shock after CS2 is, in this situa.-
tion, surprising. In addition, because the fearful effecui
of X on Dj have been at least partially extinguished, the:
net effect of the compound cue CS2 + X on the gated di.-
pole is to generate a net positive reaction at Dr. WheI1l
a shock occurs subsequent to a presentation of CS2, a large~
mismatch occurs with the sensory expectation of CS2 andl

S2 is vigorously reset. Due to the net positive reaction
of Dr to CS2, the reset of S2 causes a large rebound from
Dr to Dr As this rebound from Dr to D, is forming, the
shock itself generates an unconditioned input to Dr The
rebound and the direct shock input summate to generate
an unusually large activation of Dr This enhanced fear
reaction is learned by S2. Thus, we trace the enhanced
suppressive effect of CS2 in the CS1[CSJ group to the
same types of mechanisms Grossberg (1975) used to ex-
plain the partial reinforcement acquisition effect. It is im-
mediately clear from this explanation why extinction of
the context X in group X[CS2] should have a similar, but
smaller, effect on the subsequent suppressive effects of
CS2.

In contrast, consider what happens in group N[CSJ.
Here neither CS1 nor X is extinguished. Thus contextual
cues X are still conditioned to an expectation of shock
and to the fear center D, when retardation testing of CS2
commences. When CS2 is presented in such a context X,
an expectation of shock can still be maintained by con-
textual cues. In addition, although S2 is conditioned to 0.,
X is conditioned to Dr As a result, the net effect of both
sets of signals upoF the READ circuit is to generate a large
adaptation level I in Equation 33 and a small, possibly
even zero, difference value ~ in Equation 34. We con-
sider the case ~=o to make our argument in its most ex-
treme fOnD. A similar qualitative argument holds for small
values of~.

Consider what happens within the model when CS2 is
first followed by a shock. Unlike the case for group
CS1[CSJ, an expectation of shock does exist. Thus'the
reset of S2 and X will be much less in the N[CSJ group
than in the CS1[CSJ group. In addition, if ~ = 0, this reset
event may cause no significant rebound, since both chan-
nels of the READ circuit may receive similar conditioned
input both before and after the reset event. The primary
effect of the shock is to generate an unconditioned input
to Dr This input does not summate with a rebound from
0. to Dr Moreover, this unconditioned input is received
!?y a gated dipole with an unusually large adaptation level
I. The net response of a gated dipole to a fixed phasic
lnput is reduced in the presence of a large adaptation level
I (Grossberg, 1972b, 1987a). Thus conditioning from S2
to D, is much slower in the N[CSJ group than in the
CS1[CSJ or X[CSJ groups.

Restoration of the conditioned inhibitory properties of
CS2 by presentation of a US is readily explained by the
same mechanisms if the US is presented within the same
context as the CS2. Such restoration can also be explained
if the US is presented in a novel context that shares cues
with the original context. These cues may, for example,
include similar shapes of the conditioning chambers and
similar procedures in the animals' handling.

This explanation of die "slave" properties sets die stage
for explaining the "comparator" properties described by
Miller and Schachtman (1985) by explicating the mediat-
ing role of the context X.
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ISts a neutral region of values of P(US/CSJ and
P(US/CSJ in which CS1 does not become a conditioned
reinforcer. This crossover region often ,occurs when
P(US/CSJ = P(US/CSJ (Rescorla, 1965:).

In the case P(US/CSJ = .33, p(Us/a:J = 0, CS1
generates a much stronger conditioned e,(pectation of
shock and conditioned attachment to Df than does X. In
the case P(US/CSJ = .33, P(US/CSJ = .6'7, the reverse
is true. In particular, consider an early learning trial when
CS1 is presented under the P(US/CSJ = .33" P(US/CSJ
= .67 contingency. Because Sx is conditioned more

strongly to Df than is SI, Sx can partially block SI. Sup-
pose on this trial that the shock is unexpectedly absent.
When the mismatch occurs, Sx can be rese1: as SI is un-
blocked. Consequently, SI can be associated, with the re-
bound from Dr to Df that is caused by the re~et of X. This
conditioning event tends to make CS1 a source of condi-
tioned relief.

On the other hand, CS1 is followed by shocks on some
trials, because P(US/CS) = .33. Thus the above argu-
ment does not necessarily imply that the L TJ\.f trace from
SI to Df is weaker than that to Dr. In general!, however,
the net conditioned fear caused by SI alone is significantly
less than the net conditioned fear caused by S" alone, and
SI may be a source of net conditioned relief in some
parameter ranges. In the case where SI renlains condi-
tioned to fear, the ratio Zx;,/ ZXr is much larl~er than the
ratio Zlf/Zlr; that is,

~ >- ~ (49)
ZXr Zlr

where the zs denote the L TM traces in the indicated
pathways.

On a later test trial when contextual repres~:ntations Sx
are alone active, they share the limited-capacity STM
strength (Equation 35) among themselves. V'le simplify
this constraint by lumping all contextual representations
into one and writing

Sx = S. (50)

During such a time interval, the conditioned reinforcer
signal SXZXf is much larger than SXZXr; that is,

SXZXf >- SxZxr. (51)

When CS1 is turned on, Sx tends to partially block acti-
vation of SI due to the strong positive feedback Sx -+
Df -.Sx implied by Equation 51. On the otheJr hand, be-
cause P(US/CSJ = .67, attentional fluctuati'Jns during
training trials enable the animal to attach feaJr reactions
to only a subset of the sampled contextual CUf:S X. Thus

SI + Sx = S, (52)

although, due to blocking of CS1 by X, often

Sx > SI' (53)

When Equation 52 holds, the total signal SIZtj + SxZXj
to Dj is smaller than the total signal SZXj to Dj that was
active in response to X alone. Consequently, a sudden
decrease in total input to Dj may occur after CS1 is
presented. This decrease causes a net reduction in condi-
tioned fear and, if it is large enough, can cause a relief
rebound at Dr. Thus CS1 can act as a conditioned inhibi-
tor when it is presented within context X whether or not
Zlr is larger than ZIi' The possibility that SI can act like
a conditioned inhibitor even if Zlj > Zlr depends critically
upon the antagonistic rebound properties of the READ
circuit. When a relief rebound does occur, there exists
a range of parameters such that SI can become a source
of net conditioned relief, by being associated with the re"
bound at Dr.

Some more subtle effects should also be noted. By
Equations 21 and 22, [xs)+ > 0 only if [X6)+ = 0 and [~)+
> 0 only if [xs)+ = O. On the other- hand, Zk7 and Zk8 in
Equations 14 and 15 perform a slow time-average of these
quantities, as in Equation 38. Thus, although [xs)+ and
[X6)+ cannot simultaneously be positive, Zk7 and Zk8 can
both be positive in a probabilistically defined environment,
such as P(US/CS.) = .33, P(US/CS.) = .67, wherein
expectations are intermittently disconfinned. In such a sit-
uation, presentation of CS1 can generate net positive sig-
nals SIZlj and SIZlr to both Dj and Dr. When this happens,

SIZV + SxZXj < ~ (54)
SIZlr + SxZXr Zx,

Hence, in addition to the decrease in total input to Dj,
there may also be an increase in the total input to Dr. When
this occurs, the fearful differepce A in Equation 34 may
decrease as the adaption level I in Equation 33 increases.
Thus a reduction in sensitivity to shock may occur in ad-
dition to, or in lieu of, a net relief reaction.

The same type of explanation shows why the critical
factor in generating conditioned excitation or inhibition
was whether or not unsignaled shocks were given in the
conditioning context. Once a net fear connection SI -+ Dj
or a net relief connection SI -+ Dr is established within
the conditioning context, it is carried intact to the same
or to a novel, test context. In addition, the associative
averaging property defmed by Equations 35 and 36 can
explain why prior unsignaled shocks in context B do not
necessarily increase the conditioned excitatory effect of
CS1 in context B during conditioning.
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The classical fact that a conditioned inhibitor attenu-
ates excitor behavior on a summation test far more than
does a novel stimulus (Pavlov, 1927) can be traced to the
different types of mechanisms that regulate attention
through an expectancy mismatch and through the
S -+ D -+ S feedback pathways. Whereas a novel event
can amplify its initial storage in STM via an expectancy
mismatch, and thereby temporarily remove attentional re-
sources from a conditioned excitor, the conditioned ex-
citor can restore its attentional focus through persistent
self-amplification via its S -+ Dj -+ S pathway subsequent
to the novel event. fu contrast, a conditioned inhibitor with
a sufficiently strong S -+ DO" -+ S pathway can compete
effectively with the S -+ Dj -+ S pathway of a conditioned
excitor throughout the time interval of their simultaneous
STM storage, thereby causing a sustained reduction in the
efficacy of the conditioned excitor.

1
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31. The Asymmetry Between Context Inflation
and Context Deflation

In dIe context deflation experiment, training on
P(US/CS.) = .33, P(US/CSJ = .67 was followed by
extinction on P(US/CS) = O. Then CSt was tested in both
a deflated group and a nondeflated group. The lick l;~-
tency to CSt was longer after deflation than in dIe ab-
sence of deflation. This type of effect follows from tile
properties summarized in Section 30. WidIout deflation,
presentation of CSt in X can reduce the fearful differeru:e
~ and increase dIe adaptation level j relative to the di-
pole's state in response to X alone. After deflation, X d()(~s
not generate fearful inputs to Dj: Hence dIe deflated .x
does not establish a large fear reaction within Dj, and dIlls
does not block CS.. Presentation of CSt in X can therc~-
fore effectively activate S., which can cause an increase
in the fearful difference ~ relative to the dipole's stalte
in response to X alone. Consequently, deflating the con-
text X can increase the conditioned excitor properties of
CSt when it is subsequently presented in X.

In the context inflation situation, P(USICS) is chosen
to be larger than the P(US/CS) = .67 used during train-
ing trials, with little effect on CS1's effect during testin!~.
Several model properties conspire to produce this result.
These properties depend upon the fact that probabilitic:s
P(US/CS.) that significantly exceed .67 define a learn-
ing situation wherein essentially all contextual cues X ma.y
be associated strongly with Dr The context X becomc:s
one characterized by inescapable fear.

In such a situation, very strong, persistent activation
of the Sx -+ Dj -+ Sx pathway occurs. Thus SI is strongly
blocked by Sx whenever CSt is presented. This property
prevents SI from reading out the conditioned reinforcc:r
values dIat could otherwise have enabled CS1 to act ~LS
a conditioned inhibitor. Choosing a very high P(US/CSJ
can also persistently inhibit the orienting reactions (Gross-
berg, 1975, 1982c, 1984b) which could have enabled th,e
model to intermittently reset fearful contextual represen-
tations and thereby facilitate the probability that initi;1l
processing of CS1 could partially overcome the strong con-
textual blocking effect.

33. Concluding Remarks
At least four types of learning processes are relevant

in the data discussions herein: learning of conditioned
reinforcement, incentive motivation, conditioned
response, and sensory expectancy. These several types
of learning processes, which by their very nature operate
on a slow time scale, regulate and are regulated by rapidly
fluctuating limited-capacity STM representations of sen-
sory events. The theory suggests how nonlinear feedback
interactions among these fast information processing
mechanisms ~d slow learning mechanisms control data-
predictive emergent properties-such as STM reset, an-
tagonistic rebound, adaptation level shift, associative aver-
aging, and opponent extinction-which cannot be under-
stood using traditional concepts such as contiguity learning
and associative summation.

From this perspective, the different time scales on which
sensory expectancies and conditioned reinforcers may be
learned becomes a key explanatory issue. This is the type
of distinction hinted at by Gibbon et al. (1980, p. 45),
who observed, "Perhaps intermittent reinforcement
generates schedule-induced cues only later in training, and
early unreinforced trial episodes are in some sense
'ignored.' "
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