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Abstract-A neural network model that controls behavioral timing is described and simulated. This model,
called the Spectral Timing Model, controls a type of timing whereby an animal or robot can learn to wait for
an expected goal by discounting expected nonoccurrences of a goal object until the expected time of arrival of
the goal. If the goal object does not then materialize, the animal can respond to unexpected nonoccurrences of
the goal with appropriate changes in information processing and exploratory behavior. The model is a variant
of the gated dipole model of opponent processing. When the gated dipole model is generalized to include a
spectrum of cellular response, rates within a large population of cells, the model's total output signal generates
accurate learned timing properties that collectively provide a good quantitative fit to animal learning data. In
particular, the Spectral Timing Model utilizes the habituative transmitter gates and adaptive long-term memory
traces that are characteristic of gated dipole models. The Spectral Timing Model is embedded into an Adaptive
Resonance Theory (ART) neural architecture for the learning of correlations between internal representations
of recognition codes and reinforcement codes. This type of learning is called conditioned reinforcer learning.
The two types of internal representations are called sensory representations (S) and drive representations (D).
Activation of a drive representation D by the Spectral Timing Model inhibits output signals from the orienting
subsystem (A) of the ART architecture and activates a motor response. The inhibitory pathway helps to prevent
spurious resets of short-term memory, forgetting, and orienting responses from being caused by events other
than the goal object prior to the expected arrival time of the goal. Simulated data properties include the inverted
U in learning as a function of the inter stimulus interval (IS/) that occurs between onset of the conditioned stimulus
(CS) and the unconditioned stimulus (US); correlations of peak time, standard deviation, Weber fraction, and
peak amplitude of the conditioned response as a function of the ISI; increase of conditioned response amplitude,
but not its timing, with US intensity; speed-up of the timing circuit by an increase in CS intensity or by drugs
that increase concentrations of brain dopamine or acetylcholine; multiple timing peaks in response to learning
conditions using multiple ISIs; and conditioned timing of cell activation within the hippocampus and of the
contingent negative variation (CNV) event-related potential. The results on speed-up by drugs that increase brain
concentrations of dopamine and acetylcholine support a 1972 prediction that the gated dipole habituative trans-
mitter is a catecholamine and its long-term memory trace transmitter is acetylcholine. It is noted that the timing
circuit described herein is only one of several functionally distinct neural circuits for governing different types
of timed behavior competence.

Keywords-Neural networks, Associative learning, Robotics, Classical conditioning, Timing, Reinforcement,
Adaptive resonance theory, Cognition, Hippocampus, Nictitating membrane, Orienting response.

1. INTRODUCllON: llMING THE
EXPECTED DELAY OF A GOAL OBJECT

IN A SPAllALLY DISTRIBUTED AND
NONSTAllONARY WORLD

This article presents a model of a neural circuit that
controls behavioral timing. There are several differ-
ent types of brain processes that organize the tem-
poral unfolding of serial order in behavior. The
present article describes in detail a model of one type
of timing circuit, and outlines how this circuit may
be embedded in larger neural systems that regulate
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several different types of temporal organization. It
seems to us that such timing circuits are just as im-
portant for the survival of animals as they are for
the design of robots that are capable of freely moving
in a spatially distributed world that is characterized
by unexpected events and nonstationary statistics.

Many goal objects in such a world may be delayed
subsequent to the actions that elicit them, or the
environmental events that signal their subsequent ar-
rival. Were all causes followed immediately by their
consequences, the world would be a much simpler
place to live. In the world as it is, humans and many
animal species can learn to wait for the anticipated
arrival of a d.elayed goal object. In part, this capa-
bility enhances the efficiency of the consummatory
behavior that is triggered by the arrival of the goal
object, such as eating when the goal object is food,
because the animal can time the preparations to eat
so that they are synchronized with the arrival of the
food.

The need for behavioral timing becomes even
more important in the lives of animals that are ca-
pable of exploring their environments for novel
sources of gratification. Although the evolution of
efficient locomotion greatly enhanced the range of
alternative goals that an animal could sample, it also
created the danger that the animal may never be able
to consummate at all. For example, if an animal
could not inhibit its exploratory behavior, then it
could easily starve to death by restlessly moving from
place to place, unable to remain in one place long
enough to carry out the consummatory behaviors
needed to acquire food there. On the other hand,
if an animal inhibited its exploratory behavior for
too long, and remained in one place waiting for an
expected source of food to materialize, then it
could starve to death if food was not, after all, forth-

coming.

2. llMING THE BALANCE BElWEEN
EXPLORAllON FOR NOVEL

REWARDS AND CONSUMMAllON OF
EXPECTED REWARDS

Thus the animal's task is to accurately time the ex-
pected delay of a goal object based upon its previous
experiences in a given situation. It needs to regulate
the balance between its exploratory behavior aimed
at searching for novel sources of reward, and its con-
summatory behavior aimed at acquiring expected
sources of reward. To effectively control this bal-
ance, the animal needs to be able to suppress its
exploratory behavior and focus its attention upon an
expected source of reward at around the time that
the expected delay transpires for acquiring the re-
ward.

3. DISTINGUISHING EXPECTED
NONOCCURRENCES FROM UNEXPECTED

NON OCCURRENCES: INHIBmNG THE
NEGATIVE CONSEQUENCES OF
EXPECTED NONOCCURRENCES

The type of timed behavior described above is re-
stricted to calibrating the delay of a single behavioral
act, rather than organizing a correctly timed and
speed-controlled sequence of acts. The key problem
that needs to be mechanistically understood is illus-
trated by the following example. Suppose that, after
pushing a lever, an animal typically receives a food
pellet from a food magazine two seconds later. Sup-
pose that the animal orients to the food magazine
right after pushing the lever. When the animal in-
spects the food magazine, it perceives the nonoc-
currence of food during the subsequent two seconds.
These nonoccurrences disconfirm the sensory expec-
tation that food will appear in the magazine. More-
over, the perceptual processing cycle that processes
this sensory information occurs at a much faster rate
than two seconds, so that it can compute this sensory
disconfirmation many times before the two second
delay has elapsed.

The key issue is: What spares the animal from
erroneously reacting to these expected nonoccur-
rences of food during the first two seconds as pre-
dictive failures? Why does not the animal immedi-
ately become frustrated by the nonoccurrence of
food and release exploratory behavior aimed at
searching for food in another place? On the 9ther
hand, if food does not appear after two seconds have
elapsed, why does the animal then react to the un-
expected nonoccurrence of food by becoming frus-
trated and releasin.g exploratory behavior?

We assert that a primary role of the timing mech-
anism is to inhibit, or gate, the process whereby sen-
sory mismatches trigger the orienting and reinforcing
mechanisms that would otherwise reset the animal's
atteritional focus, negatively reinforce its previous
consummatory behavior, and release its exploratory
behavior. The process of registering these sensory
mismatches or matches, as the case might be, is not
inhibited. Indeed, if the food happened to appear
earlier than expected, the animal could certainly per-
ceive its occurrence and begin to respond accord-
ingly. The sensory matching process, as such, is thus
not inhibited by the timing mechanism. Rather, the
effects of sensory mismatches upon processes of sen-
sory reset and reinforcement are inhibited.

This inhibitory action is assumed to be part of a
more general competition that occurs between the
motivational, or arousal. sources that energize dif-
ferent types of behavior. Exploratory behaviors en-
able the animal to come into contact with novel goal
objects. Such behaviors are assumed to be energized
by endogenously active motivational sources. Hence,
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stimulus (CS) and the unconditioned stimulus (US).
The CS is a sensory stimulus which does not initially
possess the reinforcing properties of the US, but
gains (some of) these properties by being paired with
the US during learning trials. We denote by Ics(t)
the internal input generated by the CS to the timing
circuit, and by Ius(t) the internal input generated by
the US to the timing circuit.

The timing model specializes a design for an op-
ponent processing network, called a gated dipole,
that was introduced in Grossberg (1972a, 1972b).
One version of the model is described. It is called
the Spectral Timing Model for reasons described be-
low. The model developed herein uses only feedfor-
ward anatomical pathways. On the other hand, as is
often the case, the learning is controlled by feedback
signals within these pathways.

The circuit diagram of the Spectral Timing model
is schematized in Figure 1. A key property of the
model is that the CS activates a population of cells
whose members react at different rates, according to
a spectrum of rates (Xi. Neural populations whose
elements are distributed along a temporal or spatial
parameter are familiar throughout the nervous sys-
tem. Two examples are the size principle, which gov-
erns variable rates of responding in spinal motor
centers (Henneman, 1957, 1985), and the spatial fre-
quency-tuned cells of the visual cortex, which also
react at different rates (Jones & Keck, 1978; Mus-
selwhite & Jeffreys, 1985; Parker & Salzen, 1977a,
1977b; Parker, Salzen, & Lishman 1982a, 1982b;
Plant, Zimmern, & Durden, 1983; Skrandies, 1984;
Vassilev & Strashimirov, 1979; Vassilev, Manahilov,
& Mitov, 1983; Williamson, Kaufman, & Brenne,r,
1978).

unless they are actively inhibited, these endoge-
nously active arousal sources could remove the an-
imal from all sources of delayed reward. Consum-
matory behaviors, such as eating, enable the animal
to complete behavioral cycles involving familiar and
accessible goal objects. The inhibitory action posited
above is from the motivational sources of consum-
matory behaviors to the motivational sources of ori-
enting and exploratory behaviors.

It is also assumed that the consummatory arousal
sources are in mutual competitio~, enabling only the
strongest combinations of sensory, reinforcing, and
homeostatic signals to control observable behaviors
(Grossberg, 1982, Chap. 6; Staddon, 1983). Thus the
posited competition is a special case of the general
hypothesis that the output signals from all motiva-
tional sources compete for the control of observable
behaviors.

To explain how this process works, the present
article is organized into two parts:

Part I describes a model of the timing circuit and
shows that it can be used to quantitatively explain
data from a number of classical and instrumental
conditioning experiments about how timed behavior
is learned.

Part II shows how this timing circuit can be
embedded in a larger neural system to carry out the
gating function described above. This larger system
is a specialized Adaptive Resonance Theory, or
ART, circuit that has been progressively developed
in a number of articles since its first appearances in
Grossberg (1975, 1978). These and relevant subse-
quent articles are brought together in several books
(Grossberg, 1982, 1987, 1988). The present article
provides a summary of the major circuit concepts.

PART I
SPECTRAL TIMING MODEL

SPECTRAL TIMING EQUAnONS

Spectral Activation

ddix; = a;[-Ax; + (1 -BxJlcs(t)]; (1)

4. SPECTRAL TIMING MODEL:
AN APPLICAllON OF GATED

DIPOLE THEORY

The timing model presented herein grew out of. and
forills part of, a larger theory of cognitive-emotional
interactions (Grossberg, 1982, 1987, 1988; Grossberg
& Levine, 1987; Grossberg & Schmajuk, 1987).
These are the interactions whereby reinforcing
events influence the course of conditioning or asso-
ciative learning through time and thereby regulate
the salience of the events to which an animal will
subsequently attend. The model is evaluated by dem-
onstrating its competence in explaining data about
how animals time their responses during conditioning
experiments.

The two major experimentally controlled events
during a conditioning experiment are the conditioned

Associative Learning (LTM Trace)

d
dt Z; = Ef(x;)YI[-Z; + lus(t)]; (4)
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(b)

FIGURE 1. Circuit diagram of the Spectral Timing Model. The function Ics (t) denotes a step function input that is proportional
to the CS intensity and stays on after the CS offset; XI denote cell activities with different grow1h rates <r,; %, denote adaptive

long-term memory traces; and R(t) denotes the total circuit output. In version (a) of the model, the, %, are computed in terminals
of the presynaptic pathways converging upon the output neuron, and the Ius activates them pre,synaptically. In (b), the %, are
computed as pan of the postsynaptic membrane of the output neuron, and the Ius activates them via a postsynaptic route.

Output Signal

R= 2: J(xdY;z; -F
;

(5)

where

(STM). Figure 2 depicts it typical relationship be-
tween CS, Ics(t), and the US input Ius(t). Input Ics(t)
activates all potentials Xi in (1) of the cells in its target
population. The potentials Xi respond at rates pro-
portional to ai, i = 1, 2, ..., n.

Each potential X; generates the output signalf(x;),
Figure 3a depicts the results of a computer simulation
in which f(x;(t) is plotted as a function of time t for
values. of a; ranging from .2 ("fast cells") to .0025
("slow cells").

(6)

A. The Activation Spectrum

The function Ics(t) is assumed to be a step function
whose amplitude is proportional to the CS intensity,
and which stays on for a fixed time after CS offset
because it is internally stored in short-term memory

B. The Habituation Spectrum

Each output signal f(x;) activates a neurotransmitter
)';. According to equation (2), process Y; accumulates
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_Il
to yield a net signal g; proportional to f(x;)y;o Each
of these gated signals, as C{ function of time g;(t) =
f(x;(t))y;(t), has a different rate of growth and de-
cay 0 The set of all these curves thereby generates a
gated signal spectrum, which is shown in Figure 3c.
The curves in Figure 3c exhibit the following prop-
erties:

cs

ICS

IUS fl
I I I I ~ t

0 50 100 150 msec

FIGURE 2. Temporal arrangement of a 50-ms CS and a 50-
ms US separated by a 100-ms 151. Ics Is the step function
activated by the CS that Inputs to the Spectral Timing Model.

1. Each functiong;(t) is a unimodal function of time,
where function g;(t) achieves its maximum value
M; at time T;;

2. T; is an increasing function of i; and
3. M; is a decreasing function of i.

to a constant target levell, via term C(l -yJ, and
is inactivated, or habituates, due to a mass action
interaction with signal f(xJ, via term -Df(xJYi.
Although the rate parameters C and D that govern
each process Yi are independent of i, the different
rates <Yo; at which each X; is activated causes the cor-
responding Y; to become habituated at a different
rate. A habituation spectrum is thereby generated at
which the Y; processes are successively inactivated.
The signal functions f(x;(t)) in Figure 3a generate
the habituation spectrum of y;(t) curves shown in
Figure 3b.

D. Temporally Selective Associative Learning

Each long-term memory (LTM) trace Zj in (4) is ac-
tivated by its own temporally selective sampling sig-
nal gj' The sampling signal gj turns on the learning
process, and causes Zj to approach Ius during the
sampling interval at a rate proportional to gj. Each
Zj thus grows by an amount that reflects the degree
to which the curves gj(t) and Ius(t) have simulta-
neously large values through time.

The time interval between CS onset and US onset
is called the interstimulus interval, or ISI. The indi-
vidual LTM traces differ in their ability to learn at
different values of the ISI. This is the basis of the
network's timing properties.

Figure 4 illustrates how six different L TM traces
Zj, i = 1, ..., 6. learn during a simulated learning

C. The Gated Signal Spectrum

Each signal f(Xi) interacts with Yi via mass action.
This process is also called the gating of f(x;)- by Yi
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FIGURE 3. The spectrum of reactions to a step Input Ics: (a) Eighty signal functions f(x/(f»,1 = 1,2, ..., 80, are plotted as a
function of f. (b) The corresponding eighty habituative transmitter gates y,(f) are plotted as a function off. (c) The corresponding
gated signals 91(f) = f(x,(f»y,(f) are plotted as a function of f. Parameters are: <x, = .2i-1 for i = 1,2,..., 80; A = 1; B = 1;
C = .0001; D = .125; 13 = .8; n = 8; Ics(t) = 1 for t > O. In all simulations, one time step represents 1 ms and all f(x,(o) =

Oandy,(O) = 1.
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FIGURE 4. Selective learning within different spectral populations at a fixed ISI = 500 ms. Each three-image panel from (a)
to (f) represents the gated signal g,(t) [top], long-term memory trace z,(t) [middle], and doubly gated signal h,(t) = g,(t)z,(t)
[bottom], at a different value of i. In (a), i = 1; in (b), i = 10; in (c), i = 20; in (d), i = 30; in (e), i = 40; in (f), i = 50. The
same parameters as in Figure 3 were used. In addition, E = .01 and lus(t) = 10 for t E (500,550) and = 0 otherwise.
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experiment. The CS and US are paired during 4
learning trials, after which the CS is presented alone
on a single performance trial.

There are the R(t) functions generated on the tecnth
trial of each experiment in response to a CS alone,
after four trials of prior learning, with all time axes
synchronized with CS onset. In Figure 7a, the Ius(t)
was chosen twice as large as in Figure 7b. Halving
Ius(t) amplitude reduces the R(t) amplitudes without
changing their timing or overall shape. Note that the
envelope of the R(t) functions increases and then
decreases through time, and that the individual R(t)
functions corresponding to larger ISIs are broader.

E. The Doubly Gated Signal Spectrum

The CS input Ics( t) remains on and constant through-
out the duration of each learning trial. The US input
Ius(t) is presented after an ISI of 500 ms and then
remains on for 50 ms. The upper panel in each part
of the figure depicts the gated signal function g;(t)
with a; chosen at progressively slower rates. The mid-
dle panel plots the corresponding LTM trace z,(t),
and the lower panel plots the double gated signal
h;(t) = f(x;(t»y;(t)z;(t). Each doubly gated signal
function h;( t) registers how well the timing of CS and
US is registered by the ith processing channel. Note
that in Figure 4c, whose gated signal g;(t) peaks at
approximately 500 ms the LTM trace z;(t) exhibits
maximum learning. The doubly gated signal h;(t)
also shows a maximal exhancement due to learning,
and exhibits peaks of activation at approximately 500
ms after onset of the CS on each trial. This behavior
is also generated on the fifth trial, during which only
the CS is presented.

F. The Output Signal

The output signal R(t) defined in eqn (5) is the sum
of all the doubly gated signal functions h;(t) minus
a threshold F. The output signal computes the cu-
mulative learned reaction of all the cells to the input
pattern.

Figure 5a plots the output signal generated in a
computer experiment through time across all five
trials, using an ISI of 400 ms. In Figure 5b, successive
responses in Figure 5a are superimposed to show how
they are aligned with respect to the ISI and increase
due to learning or successive trials. Figure 5c plots
all of the doubly gated signal functions h;(t) that are
summated to form R(t) on the fifth trial. Figure 5d
plots all the gated signal functions g;(t) whose mul-
tiplication by z;(t) generates the h;(t) curves. To-
gether these Figures illustrate how function R(t)
generates an accurately timed response from the cu-
mulative partial learning of all cells in the population
spectrum.

6. COMPARISON WITH NICTITATING
MEMBRANE CONDmONlNG DATA

The computer simulations summarized in Figure 7
are strikingly similar to the data of Smith (1968) sum-
marized in Figure 8. Smith (1968) studied the effect
of manipulating the CS-USinterval and the US in-
tensity on the acquisition of the classically condi-
tioned nictitating membrane response. The CS was
a 50 ms tone and the US was a 50 ms electric shock.
The ISI values were 125,250,500, and 1000 ms. The
fact that conditioning occurred at ISIs much larger
than CS duration implies that an internal trace of the
CS, which we have called lcs, is stored in short-term
memory subsequent to CS offset, as in Figure 2. The
US intensities were 1, 2, and 4 mA.

Smith (1968) found that the conditioned response,
measured as percentage of responses and response
amplitude, was determined by both ISI and US in-
tensity, whereas response onset rate and peak time
were determined by the ISI essentially independently
of US intensity. In addition, an increase in the mean
of the peak response time correlated with an increase
in the variance of the response curve, for each ISI.

All of these properties are eyident in the computer
simulation of Figure 7. The absolute sizes of the em-
pirically measured responses increase slower-than-
linearly in Figure 8 as a function of shock intensity,
rather than linearly as in the computer simulations
in Figure 7. This fact suggests that shock intensity is
transformed by a slower-than-linear signal function
in vivo, rather than the linear signal function that we
used to engage the activation spectrum of the model.
Such a slower-than-linear transformation can easily
be generated by a preprocessing step at which the
CS is averaged by a shunting on-center off-surround
feedback network at which the CS is stored in short-
term memory (Grossberg, 1982, 1988). The output
from this short-term memory representation to the
timing circuit is I cs.

The qualitative similarities between the data in
the top panel of Figure 8 and the computer simula-
tion in Figure 7a are quantified in Figures 9 and 10.
Figure 9 plots data points and computer simulations
together. Figure 10 plots four measures of data and
simulation at ISI values of 0, 125,250,500, and 1000

5. EFFECT OF INCREASING
ISI AND US INTENSITY

Figures 6a-6c plot the curves that are generated by
ISIs of O. 500. and 1000 ms. In every case, the learned
cumulative response R(t) is accurately centered at
the correct ISI.

Figure 7 plots the functions R(t) that are generated
by different ISIs in a series of learning experiments.
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FIGURE 5. Generation of the response function R(t). The C5 was presented at the beginning 1:>f each learning trial. The US
was presented 400 ms later (thus the 151 = 400) and kept on for 50 ms during 4 learning trials, which were followed by one
test trial during which only the C5 was presented. (a) Graph of the output signal R(t) through time on all five trials. (b) After
each trial, the time scale was reset to t = 0 to superimpose the output signal with a common initial tin1e. The sudden jump
In four of the five curves Is due to the Ius. All the output curves are centered at the 151 because the output threshold F = 0

In (5). If F Is chosen positive, the successive output curves move progressively backwards in time and become progressively
better centered at the ISI as learning proceeds. (c) All the doubly gated signals h,(t) = f,(x1(t)y,(t)z,(t), 1 = 1,2,. .., 80, are
plotted through time on the fifth trial. (d) All the gated signals g,lt) = f,(x,(t))y,(t), 1 = 1,2,... , 80, are plotted through time

on the fifth trial. Parameters are chosen as In Figure 4.
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FIGURE 6. As In Figure 5b, superimposed plots of the output signal R(t) on four successive learning trials and one performance
trial are shown, along with plots of ail the doubly gated signals h.(t), / = 1,2, ..., BO, on the fifth trial. Each panel displays
the results at a different 151: (a) 151 = 0 ms; (b) 151 = 500 ms; and (c) 151 = 1000 ms.
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ms. The four measures are peak time (J.L), standard
deviation (rr), Weber fraction (W), and peak ampli-
tude (A). Peak time (J.L) was defined as the time at
which the response amplitude reached its maximum
value at each ISI. Standard deviation (rr) was esti-
mated by approximating each response curve by a
normal distribution and determining the times at
which the amplitude was equal to .61 of the curve's
peak value. This criterion was chosen because the

interval between the times at which response ampli-
tude equals .61 of its peak value is approximate.ly 20"
in length. To see this, consider a normal distribu-
tion lIThO" exp[-(t -uf/20"2]' Its amplitude
when It -~I = 0" is lIThO" exp(-1/2). Its
amplitude when t = ~ is lIThO" .The ratio of these
amplitudes is exp( -1/2) = .61. The Weber fraction
W was defined as W = 0" I~.

Despite the coarse nature of these approxima-
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tions, Figure 10 reveals a remarkably good fit be-
tween experimental and simulated values of all the
parameters 11., (J', W, and A at all the reported ISIs.
Of particular interest is the approximately constant
value of the Weber fraction W as a function of IS!,
in particular its tendency to approach a positive
asymptote with increasing values of the ISI (Killeen
& Weiss, 1987).

Although the Spectral Timing Model provides a
good quantitative fit to conditioning data acquired
over a relatively small number of trials, say 1-20,
the associative learning equation (4) needs to be
made slightly more complex to work well over very
large numbers of trials. This is true because all Zi for
which f(X;)Yi > 0 during times when Ius> 0 can
approach Ius, albeit at different rates, as t -+ 00.
Adding a very slow passive decay term -e:Zi to eqn
(4) can overcome this potential difficulty.
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7. INVERTED U IN LEARNING AS A
FUNCflON OF ISI

A basic property of both the simulated response
functions R(t) in Figure 7 and the data summarized
in Figure 8 is an inverted U in learning as a function
of the ISI. In other words, there exists a positive ISI
that is optimal for learning. In Figure 7, this optimal
ISI is approximately 250 ms. Learning is weaker at
both smaller and larger values of the ISI.

FIGURE 8. Conditioning data from a nictitating membrane

learning paradigm. Mean topography of nictitating mem-
brane response after learning trial 10 with a 50 ms CS, ISI's
of 125, 250, 500, and 1000 ms, and different (1, 2, 4 MAmp)

intensities of the shock US in each subsequent panel. Re-
printed from Smith (1968) with permission.
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DATA
, SIMVLATIONS

FIGURE 10. Comparison between experimental and simulated peak time (1'-), standard deviation (or), Weber fraction (W), and
peak amplitude (A). See text for details. The correlation between simulated and experimental points for I'- is r = .9996(p <

.001), for (J Is r = .9761(p < .005), and for A Is r = .9666(p < .01).

of secondary excitatory conditioning. In secondary
excitatory conditioning, two CSs are employed; call
them CSt and CSz. Let CSt be conditioned with a
US until CSt can elicit some of the reinforcing prop-
erties of the US. Then present the two CSs simul-
taneously as a compound stimulus CS1 + CSz. The
conditioning of CS~ to the new reinforcer CSt is much
attenuated relative to the conditioning that would
have occurred if CSt was presented before CSz.

On the other hand, consider an experiment in
which CSt and CS~ are equally salient to the organism
and the compound cue CSt + CSz is presented before
a US on conditioning trials. Then both CS1 and CSz
can be effectively conditioned to the US.

Thus the attenuation in the conditioning of CSz
to CSt when CS1 and CS2 are simultaneously pre-
sented and CSz has previously been conditioned to
US cannot be due merely to the simultaneity of CSt
and CSz in their capacity as sensory events. Rather
it must be due to the effects of reading-out within
the network the reinforcing properties of CS2 by the
sensory representation of CS;.

A model capable of explaining how such atten-
tional blocking of CSz by a simultaneous conditioned
reinforcer CSt is outlined in Part II. Computer sim-
ulations of attentional blocking within this model are
found in Grossberg and Levine (1987; reprinted in

Grossberg, 1988).

A number of experimental conditions have been
developed to better understand this fundamental
property. In simultaneous conditioning (zero ISI),
CS and US begin together. In delay conditioning,
the CS precedes the US, and the US overlaps the
CS. In trace conditioning, the CS precedes the US,
and the US is presented after the CS offset. Con-
ditioning is typically more efficacious when the CS
precedes the US than when the two are presented
together (Gormenzano, Kehoe, & Marshall, 1983).

It has been found that different response systems
in a given species present different optimal ISIs. As
illustrated above, the nictitating membrane condi-
tioned response in rabbits has an optimal ISI of
around 250 ms (Smith, 1968). Heart rate condition-
ing in rabbits is optimal with a 7-s ISI (Schneiderman,
1972). Conditioned leg flexion in cats is optimal with
a 500-ms ISI (McAdam, Knott, & Chiorini, 1965).
Salivary conditioning in dogs is optimal with a 20-s
ISI (Konorski, 1948). Conditioned licking in rats is
optimal with a 3-s ISI (Boice & Denny, 1965). Heart
rate conditioning in rats is optimal with a 5-s ISI

(Black & Black, 1967).
Although the Spectral Timing Model successfully

generates such a positive optimal ISI, it seems clear
that this circuit is not the only one subserving the
optimal ISI that is behaviorally observed.

This can be seen by considering the phenomenon
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8. MULllPLE llMING PEAKS

Another functionally useful model property that
matches experimental conditioning data concerns the
ability of a singleCS to read out responses at a series
of learned delays. This multiple timing property pro-
vides strong indirect evidence that each CS sends
signals to a complete activation spectrum, rather than
to a single tunable delay.

Figure 11 depicts the outcome of a computer sim-
ulation in which a CS is paired with a US whose ISI
is chosen on alternate trials at two different values.
When the CS is subsequently activated on a recall
trial, the response function R(t) generates two peaks,
with each peak centered at one of the ISIs.

The parameters used in the simulation of Figure
11 are the same as those used to fit the data in Figure
10 concerning response time, amplitude, standard
deviation, and Weber fraction. It is therefore of par-
ticular interest that the model simulations in Figure
11 strikingly resemble the multiple timing data of
Millenson, Kehoe, and Gormenzano (1977) that are
summarized in Figure 12.

Millenson, Kehoe, and Gormenzano (1977) pre-
sented rabbits in a nictitating membrane paradigm
with a tone CS followed by a shock US at two ran-
domly alternating ISIs of 200 and 700 ms. The CS
terminated at US onset, and the US had a 50 ms
duration. Each row in Figure 12 corresponds to a
different experimental condition. The experiment

summarized in row 1 used a 200 ms ISI throughout.
The experiment in row S used a 700 ms ISI through-
out; Compare these relative peak times, amplitudes,
and Weber fractions with the model simulation in
Figure 11.

Experiments summarized in the middle three rows
used varying fractions of the two ISI delays during
learning trials. In the second row, the ISI equaled
200 ms on 7/8 of the learning trials and 700 ms on
1/8 of the learning trials. In the third row, the ISI
equaled each of these values on 1/2 of the learning
trials. In row four, the ISI equaled 200 ms on 1/8 of
the trials and 700 ms on 7/8 of the trials.

Each column in Figure 12 corresponds to a dif-
ferent test condition subsequent to a set of learning
trials. During such a test, a CS, but no US, was
presented. In column 1, the CS duration was 200 ms.
In column 2, the CS duration was 700 ms. In each
panel, a test curve is displayed after 3 days and after
10 days of prior learning.

The data curves of greatest interest are in row 3,
column 2. These curves are strikingly similar to the
model simulation in Figure 11. Row 3, column 1 is
also of interest, because it shows that termination of
a CS of 200 ms duration under these conditions pre-
vents strong perseveration of its Ics curve for the
additionalSOO ms needed to read out a large response
at 700 ms.

The parameters used to fit the data in Figures 9,
10, and 12 generate broadly tuned timing peaks.

}:f
'l,
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o.
O. 200. 400. 600. BOO. 1000. 1200. 1400. 1600. 1800.

msec
FIGURE 11. Multiple timing peaks due to learning with more than one ISI. The output signal function R(t) Is plotted on a test
trial after 20 learning trials during which a US of Intensity 10 was presented alternately at an ISI of 200 ms and 800 ms.
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Finer peaks can, however, be generated, should tech-
nological applications so require, without disturbing
other useful qualitative properties. For example, us-
ing a different set of parameters, the simulation re-
ported in Figure 13 generates the same qualitative
series of peaks as in Figure 7; but a sharper multiple
timing curve (Figure 13b) than in Figure 11.
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9. EFFECT OF INCREASING
US DURATION

Figure 14 depicts the results of a simulation that il-
lustrates the effects of increasing US duration upon
the response R(t). The Ius intensity was twice as
large in Figure 14a than in Figure 14b. A zero ISI
was employed throughout. Two effects are gener-
ated: a shift of peak time to a value towards the
midpoint of the US, and an overall increase in con-
ditioned response.

Burkhardt and Ayres (1978) have collected anal-
ogous data (Figure 15) in a paradigm wherein rats
were presented with an auditory CS and a simulta-
neous (zero IS!) shock US. When the CS was later
presented while the rats were drinking water, the CS
presentation elicited a suppression of licking whose
relative magnitude before and after CS onset (the
suppression ratio) was used to measure the strength
of the conditioned fear elicited by the CS. During
conditioning, a grid-shock US of 2,4, or 8 s duration
began simultaneously with a noise CS of 2, 4, or 8 s
duration in the combinations 2-2. 2-4. 4-4. 4-8. and
8-8. As in Figure 14, Burkhardt and Ayres (1978)
found that conditioning increased as a function of

200 ms 700 ms 200 ms 700 ms

FIGURE 12. Conditioning data from the nictitating membrane

learning paradigm of Millenson, Kehoe, and Gormenzano
(1977). Data shown after learning trials 3 and 10 using a tone
CS of duration 200 msec and 700 msec, ISl's of 200 msec
and 700 msec, and a shock US of 50 msec duration. See text
for details. Reprinted with permission.
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FIGURE 13. Multiple timing peaks due to learning with more than one 151. The parameters were chosen as in Figure 4, with
the exception of B = .4.
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a test trial using a CS of twice that intensity generates
a response function R(t) that peaks at 400 ms. Thus,
increasing CS intensity "speeds up the clock" that
calibrates the response reaction time. Such a speed-
up is a straightforward consequence of eqn (1).

Section 17 describes experimental data which are
consistent with these properties. In order to analyze
these data, we first need to explain how the timing
circuit is embedded within a larger architecture that
controls the stable self-organization of cognitive-
emotional representations.

O. 200. 400. 600. 800. 1000.
n msec.

-J ' 50

-l! I 100
~ 150

(a)

PART II .

TIMED GATING OF READ-OUT
FROM THE ORIENTING SUBSYSTEM

us

o~ 200. 400. 600. BOO. 1000.

n msec.
-l I 50

-II .100

-11150
(b)

us

FIGURE 14. Effect of increasing US duration and intensity
on learning. In both (a) and (b), ISI = O. The output signal
R(t) is plotted on a test trial after 4 learning trials using Ius
functions of duration 50, 100, and 150 ms.ln (a), US intensity
equals 10. In (b), US intensity equals 5.

US duration, as well as of CS-US overlap, another
property easily explained by the model.

10. EFFECI' OF INCREASING
CS INTENSITY

Figure 7 showed that an increase of US intensity
alters the amplitude of the response functions R(t),
but not their timing, and Figure 8 showed that the
conditioning data of Smith (1968) conform to these
properties. A different pattern of results is obtained
if the CS intensity is altered. Figure 16 illustrates a
computer simulation in which the system was trained
with a CS and US of constant intensity and an ISI
of 800 ms across learning trials. The Figure shows
that a test trial using the same CS intensity generates
a response function R(t) that peaks at 800 ms, but

11. LOCATING THE TIMING CIRCUIT
WITHIN A SELF-ORGANIZING SENSORY-

COGNITIVE AND COGNITIVE-
REINFORCEMENT ART NETWORK

The timing circuit is hypothesized to fonD part of
interacting sensory-cognitive and cognitive-rein-
forcement circuits which have been progressively de-
veloped since the late 1960s to explain behavioral
and neural data about recognition, reinforcement,
and recall.

Sensory-cognitive interactions in the theory are
carried out by an Adaptive Resonance Theory
(ART) circuit (Carpenter & Grossberg, 1987a,
1987b, 1988; Cohen & Grossberg, 1986, 1987; Gross-
berg, 1976, 1982, 1987; Grossberg & Stone, 1986).
Such ART architectures are designed to explain how
internal repr:esentations of sensory events, including
conditioned stimuli (CS) and unconditioned stimuli
(US), are learned in real-time in a stable fashion in
response to noisy, nonstationary environments.

As in Figure 17, a sensory-cognitive ART circuit
is broken up into an attentional subsystem and
an orienting subsystem. The attentional subsystem
learns ever more precise internal representations of
and responses to events as they become more fa-
miliar. The attentional subsystem also learns the top-
down expectations that help to stabilize memory of
the learned bottom-up codes of familiar events. The
orienting subsystem resets the internal representa-
tion that is active in short-term memory (STM) in
the attentional subsystem when an unfamiliar or un-
expected event occurs. The orienting subsystem also
energizes the orienting response, including the move-
ments triggered by novel events that enable such
events to be more efficiently processed.

The orienting subsystem is activated when a suf-
ficiently large mismatch occurs within the attentional
subsystem between bottom-up sensory input signals
and learned top-down expectations. In Figure 17a.
the learned top-down expectations are read-out from
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MEDIAN CS TIMES IN SECONDS
FOR EACH GROUP IN EXPERIMENTS I, 2, AND 3

Baseline-Lick
Last TrainingGroup Test 1 Test 2

Experiment 1

5.2
3.4

37.8
2.7
8.8

Experiment 2

3.2
15.1
12.9
94.4
64.5

Experiment 3

4.9
15.6
30.6
58.2

101.8

0
1
4

64
128

1.6
1.6
1.9
1.4
1.6

3.2
3.4
6.2
4.8
7.8

0
1
2
4
8

1.8
1.7
1.9
1.7
1.6

1.9
4.8
3.8
6.4
8.3

2-2
2-4
4-4
4-8
8-8

1.5
1.5
1.4
1.5
1.4

4.7
8.9
5.4
9.9
7.0

FIGURE 15. Data of Burkhardt al1ld Ayres (1978) on conditioning an allditory CS and a simultaneous (zero ISI) shock us. See
the text for details. Reprinted with permission.

level F2 to level FI' and matching of expectations
with bottom-up input patterns occurs at level F 1-
When a mismatch occurs, the orienting subsystem A
is activated and causes an STM reset wave to be
delivered to level F2. This STM reset wave resets the
sensory representations of cues that are currently
being stored in STM at F2-

As noted in Section 3, one function of the timing
circuit is to prevent spurious resets of active internal

representations in response to mismatches due to
expected non occurrences of sensory events. In ad-
dition, the timing circuit should not prevent regis-
tration of bottom-up input patterns and their match-
ing with active top-down expectations. Thus the tim-
ing circuit does not interfere with processing within
the attentional subsystem.

Instead, we hypothesize that the timing circuit in-
hibits read-out of the STM reset wave from the on-

0 200. 400. 600. 800. 1000, 1200. 1400. 1600. 1800.

msec
FIGURE 16. Effect of C5 Intensity on "clock speed." After 10 learnin~1 trials were carried out with an 151 = 800 msec, 2 test

trials were carried out, one with the C5 intensity of 1 used in training, whose output R(t) peakl~d at 800 msec:, and one with
a C5 Intensity of 2 that caused the output R(t) to peak at 400 msec.



Adaptive Timing and Temporal Discrimination 95

sentations whereby sensory cues learn to become
conditioned reinforcers (Figure 17b).

(b)

FIGURE 17. Anatomy of an adaptive resonance theory (ART)
circuit: (a) Interactions between the attentlonal and orienting

subsystems: Learning of recognition codes takes place at
the long term memory (LTM) traces within the bottom-up and

top-down pathways between levels F, and F2- The top-down
pathways can read-out learned expectations, or templates,
that are matched against bottclm-up Input patterns at F,. Mis-
matches activate the orlentin~1 subsystem A, thereby reset-
ting short term memory (STM) at F2 and initiating search for
another recognition code. Output from subsystem A can also
trigger an orienting response. Sensitivity to mismatch at F,
Is modulated by vigilance signals from the drive represen-
tations. (b) Trainable pathways; exist between level F2 and the
drive representations. Learning from F2 to a drive represen-
tation endows a recognition category with conditioned rein-
forcer properties. Learning from a drive representation to F2
associates the drive representation with a set of motivation-

ally compatible categories.

enting subsystem A (Figure 17a). Thus when the
timing circuit is active, both STM reset within the
attentional subsystem and the orienting response are
inhibited. When the timing circuit is inactive, an un-
expected nonoccurrence of an event is able to trigger
the STM reset and orienting response needed to cope
with the unexpected event.

To analyze how the timing circuit works, we sum-
marize some basic properties of another part of the
attentional subsystem. This is the network which con-
trols the learned interactions between recognition
and reinforcement mechanisms that focus attention
upon motivationally salient events. We assume, in
particular, that the timing circuit forms part of the
interaction from cognitive to reinforcement repre-

12. COGNIllVE-REINFORCEMENT CIRCUIT

Recognition is only one of several processes whereby
an intelligent system can learn a correct solution to
a problem. Reinforcement and recall are no less im-
portant in designing an autonomous intelligent sys-
tem.

Reinforcement, notably reward and punishment,
provides additional. information in the form of en-
vironmental feedback based on the success or failure
of actions triggered by a recognition event. Reward
and punishment calibrate whether the action has or
has not satisfied internal needs, which in the biolog-
ical case include hunger, thirst, sex, and pain reduc-
tion, but may in machine applications include a wide
variety of internal cost functions. Reinforcement can
modify the formation of recognition codes and can
shift attention to focus upon those codes whose ac-
tivation promises to satisfy internal needs based upon
past experience. For example, both green and yellow
bananas may be recognized as part of a single rec-
ognition category until reinforcement signals, con-
tingent upon eating these bananas, differentiates
them into separate categories.

Recall can generate equivalent responses or ac-
tions to input events that are classified by different
recognition codes. For example, printed and script
letters may generate distinct recognition codes, yet
can also elicit identical learned naming responses.

The type of ART circuit depicted in Figure 17a is
devoted entirely to the stable self-organization of
sensory and cognitive recognition codes. Feedback
interactions among recognition and reinforcement
circuits, as in Figure 17b, are also posited by the
theory, and in fact were the first type of ART circuit
to be defined (Grossberg, 1975, 1982). In these ap-
plications, the circuit at which recognition codes are
processed is called a sensory representation S, and
the circuit at which reinforcement and homeostatic,
or drive, signals are processed is called a drive rep-
resentation D (Grossberg, 1971, 1972b, 1987), as in
Figure 17b. Thus a reinforcing event, such as a re-
ward or punishment, possesses both a sensory rep-
resentation in its capacity as a sensory event, and a
drive representation in its capacity as a motivation-
ally significant reinforcer.

During classical conditioning, a familiar condi-
tioned stimulus (CS) may initially have a sensory
representation S, but no drive representation D.
Pairing a CS with an unconditioned stimulus (US)
that does have reinforcing properties causes several
types of learning to occur. In particular, repeated
pairing of a CS sensory representation, Scs, with ac-
tivation of a drive representation, D. by a US rein-
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forcer causes the modifiable synapses connecting Scs
with D to become strengthened. This conditioning
process converts the CS into a conditioned reinforcer
(Figures 17b and 18). Incentive motivation pathways
from the drive representations are also assumed to
be conditionable. These conditioned S -D -S
feedback pathways shift attention to focus upon the
subset of active sensory representations which have
been previously reinforced and are motivationally
compatible. This shift of attention occurs because
the sensory representations which emit conditioned
reinforcer signals S -D and receive conditioned
incentive motivation signals D -S compete among
themselves for a limited capacity short-term memory
(STM) via on-center off-surround interactions (Fig-
ure 18). When incentive motivational feedback sig-
nals are received at the sensory representational
field, these signals can bias the competition for STM
activity towards motivationally salient cues. More
generally, such feedback interactions between Sand
D can reorganize the STM pattern across S to jJe
compatible with reinforcement constraints. This
STM pattern can then be incorporated through learn-
ing into the sensory-cognitive recognition code via
an ART circuit of the type shown in Figure 17.

In order to explain. the moment-by-moment dy-
namics of conditioning, an additional microcircuit
needs to be embedded in the drive representations
of the macrocircuit depicted in Figure 18. This mi-
crocircuit, called a gated dipole (Grossberg, 1972a,

1972b), instantiates a neurophysiological theory of
opponent processing. The need for a certain type of
opponent processing for conditioning circuits can be
seen from the following considerations.

13. THE GATED DIPOLE
OPPONENT PROCESS

In the cognitive-reinforcement circuit, CS's can be-
come conditioned reinforcers by being associated
with either the onset or the offset of a reinforcer.
For example, a CS that is conditioned to the onset
of a shock can become a source of conditioned fear
(excitor). A CS that is conditioned to the offset of a
shock can become a source of co~ditioned relief (in-
hibitor). A gated dipole opponent process explains
how the offset of a reinforcer can generate an off-
response, or antagonistic rebound, to which a si-
multaneous CS can be conditioned. A gated dipole
is a minimal neural network opponent process which
is capable of generating a sustained, but habituative,
on-response (e.g., a fear reaction) to onset of a cue
(e.g., a shock), as well as a transient off-response
(e.g., a relief reaction), or antagonistic rebound, to
offset of the cue. The on-responses are processed
through the on-channel D + of the gated dipole,
whereas the off-responses are processed through the
off-channel D -of the gated dipole. In addition, such
a gated dipole must be joined to a mechanism of
associative learning, whereby CS's learn to become
conditioned excitors via S -D + learning and con-
ditioned inhibitors via S -D -learning.

INTERNAL
DRIVE
INPUT

FIGURE 18. Schematic conditioning circuit: Conditioned
stimuli (CS/) activate sensory representations (SCSI) which
compete among themselves for linClited capacity short-term
memory activation and storage. The activated SCSI elicit con-
ditlonable signals to drive representations and motor com.
mand representations. Learning from a SCSI to a drive rep.
resentatlon D is called conditioned reinforcer learning.
Learning from D to a SCSI Is called incentive motivational

learning. Signals from D to SCSI arle elicited when the com-
bination of external sensory plus Internal drive Inputs is suf.

flciently large.

14. ADAPTIVE TIMING AS SPECTRAL
CONDmONED REINFORCER LEARNING

The feedforwal:d adaptive timing circuit is assumed
to be a variant of S -+ D + conditioned reinforcer

learning. The main new idea is that the on-channel's
population of neurons D + is broken up into neuron

subpopulations whose membrane properties enable
them to respond to inputs at different rates ai, as in
eqn (1). In other words, by selecting a sloppy para-
metric specification of cell reaction rates, nature can
discover an adaptive timing mechanism-ij such
sloppiness is permitted at the proper processing stage
of a gated dipole circuit!

Once this is achieved, standard gated dipole mech-
anisms respond to the activation spectrum ai in the
manner described in Part I. In particular, eqn (2) for
the transmitter gate is the standard gating equation
that gave a gated dipole its name; eqn (3) is a variant
of the dipole's standard associative learning law; and
eqn (4) simply computes the total output from all
subpopulations of the dipole's on-channel. We sum-
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marize this fact by saying that adaptive timing is a
type of spectral conditioned reinforcer learning.

expected delay of the US whose width covaries with
this delay.

15. TIMED INHIBmON OF
mE ORIENTING SUBSYSTEM BY

DRIVE REPRESENTATIONS

It remains to explain how a timing circuit embedded
within the on-channels of gated dipole drive repre-
sentations achieves the functional properties de-
scribed in Section 3. These properties follow if we
assume, in addition, that the drive representations
D inhibit the orienting subsystem A, as in Figure 19.
In Figure 17a, level Fl also inhibits A. Thus several
processing levels within the attentional subsystem are
assumed to inhibit the orienting subsystem. The hy-
pothesis of competition from D to A representations
was first made within the context of ART-type
models in Grossberg (1975; reprinted in Grossberg,
1982, pp. 284-286). Given D-+ A inhibition, spectral
conditione9 reinforcer learning generat~s the desired
adaptive timing properties as follows.

After CS-US conditioning at a fixed ISI, presen-
tation of the CS activates its sensory representation
Scs, which activates its conditioned drive represen-
tation D with a response curve R(t) of the form de-
picted in Figure 7. Each of these response curves
R(t) begins to grow right after Ics read-out; remains
positive throughout an interval whose total width
covaries with the ISI, due to the approximate con-
stancy of the Weber fraction W (Figure 10); and
peaks at the ISI. Inhibition of A by D thus prevents
STM reset by expected nonoccurrences of the US
throughout a time interval that is centered at the

16. TIMED ACI1VATION OF mE
HIPPOCAMPUS AND mE CONllNGENT

NF;GATIVE VARIATION

Because it is activated by the drive representations
D, positive feedback from D to S along the D -S
incentive motivational pathways is also timed to pro-
vide peak motivational support for release of a con-
ditioned response (Figure 18) at the expected delay
of the US.

In Grossberg (1975, Section VII, and 1978, Sec-
tion 16; ~eprinted in 1982), such D -S feedback
was first interpreted to be a formal analog of the
contingent negative variation, or CNV, event-related
potential. The CNV had earlier been experimentally
shown to be sensitive to an animal's expectancy, de-
cision (Walter, 1964), motivation (Cant & Bickford,
1967; Irwin, Rebert, "McAdam, & Knott, 1966),
preparatory set (Low, Borda, Frost, & Kellaway,
1966), and arousal (McAdam, 1969). It is also a con-
ditionable wave whose timing tends to match the ISI.
Until the present work, development of our condi-
tioning theory, as summarized in Grossberg (1987,
Chapter 1, Sections 23 and 25, and Chapter 2, Sec-
tions 30, 43, 53, 57, and 60), suggested how the CNV
is conditioned and how it is related to expectancy,
decision, motivation, preparatory set, and arousal.
The theory had not, however, heretofore explained
how the learning process enables CNV timing to
mimic the ISI. The present extension of the theory
provides an explanation through the hypothesis of
spectral conditioned reinforcer learning. The inter-
pretation of drive representations in terms of hy-
pothalamo-hippocampal interactions (Grossberg,
1971, 1982, 1987) provides an anatomical marker for
directly testing the existence of spectral activation.

The hypotheses that drive representations include
hippocampus and that the hippocampus is involved
in conditioned timing have also received support
from neurophysiological experiments (Berger &
Thompson, 1978; Delacour & Houcine, 1980; Hoe-
chler & Thompson, 1980; Rawlins, 1985; Rawlins,
Feldon, & Gray, 1982; Solomon, 1979, 1980; Solo-
mon, van der Schaff, Thompson, & Weisz, 1986).

FIGURE 19. Inhibition of the orienting subsystem A by the
output from a drive representation D. The Spectral Timing
Model is assumed to be part of the network whereby con-
ditioning of a sensory representation S to a drive represen-
tation D endows S with conditioned reinforcer properties. As
S reads-out spectrally timed conditioned signals to D, Din-
hibits output signals from A and thereby prevents expected
nonoccurrences of the US from resetting STM and triggering
orienting responses.

17. EFFEcr OF CS INTENSITY ON TIMED
MOTOR BEHAVIOR

We are now ready to use the model property illus-
trated in Figure 16 to suggest how changes in CS
intensity and various drug manipulations may cause
observed changes in certain timed motor behaviors
of animals.

For example, changes in CS intensity alter the
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followed the short or long houselight stimulus, and
reward or non-reward immediately followed a cor-
rect key peck. Suppose that an internal representa-
tion of a dim or bright houselight activated a full
activation spectrum, and that food reward caused
conditioning of those spectral populations that were
active when the reward occurred, as in Figure 4. In
response to a short CS, only rapidly reacting spectral
populations could become conditioned. In response
to a long stimulus, only those spectral populations
which became active after a longer CS duration could
become conditioned. Thus the basic properties of the
timing model explain how, in response to a CS of
any fixed intensity, only a properly timed subset of
spectral populations could become conditioned. In
addition, the model property depicted in Figure 16
shows how dimming of the CS can, other things being
equal, slow down the read-out of the clock.

Further discussion is needed, however, to explain
how dim and bright houselights are discriminated in
the first place, and how differential reward of both
dim and bright short lights and of dim 'and bright
long lights generated the main effect that pigeons
peck the "short" key in response to longer durations
of dim light. Indeed, both the dim light and the bright
light are conditioned to different key pecks based on
their duration, not their intensity. Why should longer
dim lights tend to generate the key peck that was
associated with a short duration light independent of
its intensity?

The computer simulations reported in Figure 16
would imply this result if some of the spectral cells
that are activated by a short bright light are also
activated by a long dim light. On those learning trials
when these cells are activated by a short bright light,
they would be conditioned, via incentive motiva-
tional feedback signals (Figure 18), to the internal
representation of the key that signifies a short stim-
ulus. On those learning trials when these cells are
activated by a long dim light, they would amplify
these internal representations and thereby favor this
key in the STM competition for which key the pigeon
will attend and thereupon peck.

18. SPATIAL CODING OF SDMULUS
INTENSITY BY A PTS SHIFf MAP

We trace this property to the manner in which. dif-
ferent intensities of the same stimulus are discrimi-
nated by the animal. Suppose that a particular
stimulus input, such as a white light, is coded by a
population of cells. Grossberg and Kuperstein (1986,
pp. 160-167) have developed a model of such a cod-
ing population in which different input intensities
maximally activate different subsets of the total pop-
ulation. Thus, input intensity is recoded into the max-
imally activated spatial location within the pop-

conditioned key pecking behavior of pigeons
(Wilkie, 1987). In these experiments, each pigeon
was pretrained to discriminate between short (2 s)
and long (10 s) houselight presentations. In one set
of 30 sessions, a bright houselight was used. In an-
other, a dim houselight was used. In all learning
sessions, the 20-s intertrial interval was spent in com-
plete darkness. In each of the 80 trials in a session,
the probability was .5 that the houselight presenta-
tion was short.

Immediately after the short or long houselight pre-
sentation was completed, two pecking keys were lit,
one with red light and the other with green light.
The right-left locations of the red and green keys
was varied randomly over trials. For some pigeons,
red was designated as the correct key to peck after
a short stimulus, and green was the correct key to
peck after a long stimulus. For other pigeons, the
colors were reversed. Pecking of the correct key pro-
duced 5-s access to mixed grain on a partial 75%
reinforcement schedule.

During the experiment proper, all pigeons re-
ceived approximately 35 sessions, each comprising
80 trials. On one-half of the trials (randomly deter-
mined), the houselight was bright. On the other
trials, it was dim. On a quarter of all trials (randomly
determined), the light presentation was 2 s in du-
ration. On another quarter, it was 10 s. On the re-
maining trials, it was equally probable that the light
would be 4, 6, or 8 s in duration. Thus there were
10 types of trials in total: 2, 4, 6, 8, and 10 s bright
lights, and 2, 4, 6, 8, and 10 s dim lights, presented
in randomized order. Correct choices on 2 and 10 s
trials of both dim and bright lights always produced
5-s access to grain. Choices on 4, 6, and 8 s trials
wer~ neyer rewarded.

In each session, a record was kept of the number
of times the "short" choice key was selected when
2,4, 6, 8, and 10 s lights were presented. These values
were accumulated over sessions and used to calculate
the percentage of trials on which pigeons chose the
"short" alternative after durations of 2, 4, 6, 8, and
10 s lights. These measures were calculated sepa-
rately for bright and dim light trials.

It was found that the pigeons chose the "short"
key more frequently in response to longer durations
of the dim light. In other words, a dim light slowed
down the time scale, as in Figure 16. Wilkie (1987,
p. 38) noted that "it is not intuitively obvious how
intensity would affect something like a counter or
how any such effect would be manifested in dim sig-
nals' being perceived as being shorter."

In order to provide a more detailed explanation
of these data based upon the model property illus-
trated in Figure 16, several properties of the exper-
iment need to be kept in mind. In particular, the
presentation of the red and green keys immediately
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ulation. Since distinct subsets of the population can
activate different output pathways, different input
intensities can control their own spectral popula-
tions, and can be conditioned to activate the drive
representations at different times.

The Grossberg and Kuperstein (1986) model is
called a Position-Threshold-Slope (PTS) Shift Map.
To generate this spatial map of input intensity, the
cell$within the population are assumed to possess
different output thresholds and different sensitivities
to input increments. Cells with higher thresholds are
assumed to be more sensitive. Thus, essentially all
input intensities (e.g., dim and bright lights) can gen-
erate output signals from cells with low output
thresholds, whereas only high input intensities (e.g.,
bright lights) can generate output signals from cells
with high thresholds. Due to the greater sensitivity
of the high-threshold cells, the spatial locus of max-
imal activation changes with input intensity.

Populations of cells whose output thresholds and
input sensitivities covary have been found in the ab-
ducens and oculomotor nuclei (Luschei & Fuchs,
1972; Robinson, 1970; Schiller, 1970). The present
analysis suggests that such populations may also exist
in thalamocortical sensory processing areas.

the remembered time of reinforcement in long-term
memory, and thus slows down the clock in short-
term memory. For example, both physostigmine and
phosphatidylcholine change timing in a manner in-
terpretable as a decrease in remembered time of re-
~nforcement, whereas atropine and aging cause an
Increase.

Since the introduction of gated dipole theory in
1972 (Grossberg, 1972b; reprinted in Grossberg,
1982), it has been predicted that the habituative
transmitter gates, as defined in eqn (2), are chemi-
cally realized in the brain by a catecholamine, such
as dopamine or norepinephrine, and that the long-
tl~rm memory traces, as defined in eqn (4), are re-
alized in the brain by acetylcholine. Thus the present
model is consistent with the recent dopamine and
acetylcholine data if a gated dipole circuit exists that
processes the CS input before it generates Ics in eqn
(1). In this way, the aforementioned drug manipu-
lations would alter the intensity of the CS, and
thereby speed up or slow down the clock in the man-
ner indicated in Figure 16.

Such habituative and LTM transmitter systems
are, in fact, postulated as part of the adaptive coding
circuitry that self-organizes an internal representa-
tion of the CS in an ART circuit such as that depicted
in Figure 17 (Grossberg, 1982, 1987).

These drug data also raise the question whether
the habituative transmitter and the LTM transmitter
Kithin the Spectral Timing Model itself can influence
clock speed. This would be the case if the timing
circuit included internal feedback loops whereby the
two types of transmitters feed back their influence
to the spectral activities defined in eqn (1). Such
feedback pathways have previously been postulated
to exist in the gated dipole circuits that regulate the
learning of conditioned reinforcers (Grossberg,
1982; Grossberg & Schmajuk, 1987), of which the
Spectral Timing Model is herein assumed to be a
specialization. It remains for future research to de-
termine how a Spectral Timing Model with internal
feedback pathways may be designed.

19. EFFECT OF DRUGS ON nMED
MOTOR BEHAVIOR

Wilkie (1987, p. 38) has speculated, based on earlier
results of Maricq, Roberts, and Church (1981), that
"drug and light-intensity effects might both be me-
diated by a state of arousal that affects the pacemaker
rate." Meck and Church (1987) have reviewed a
number of experiments, including the Maricq et al.
(1981) and Meck (1983) experiments, and have col-
lected additional data on the effects of drugs on timed
motor behavior. The major properties of these drug
manipulations are consistent with the Spectral Tim-
ing Model.

Meck and Church (1987) noted that an increase
in the effective level of brain dopamine at the synapse
increases clock speed and that a decrease in the ef-
fective levels of brain dopamine decreases clock
speed. Methamphetamine and L-dopa increase do-
pamine at the synapse and change timing functions
in a manner that can be interpreted as an increase
in clock speed. Neuroleptics, such as haloperidol,
which block dopamine receptors change timing func-
tions in a manner that can be interpreted as a de-
crease in clock speed.

Likewise, experimental evidence suggests that an
increase in the effective level of brain acetylcholine
at the synapse reduces the remembered time of re-
inforcement in long-term memory, and thus speeds
up the clock in short-term memory. A decrease in
the effective level of brain reinforcement increases

20. CONCLUDING REMARKS: TIMING
PARADOX AND MULllPLE TYPES OF

TIMING CIRCUITS

There exist multiple types of timing mechanisms in
the brain. The present article considers only the type
of timing that enables an organism to time and dif-
ferentially respond to an expected nonoccurrence,
an expected occurrence, and an unexpected nonoc-
currence of a sensory event subsequent to a prior
sl~nsory event or action.

In so doing. the article clarifies a Timing Paradox
that becomes apparent upon closer inspection of this
type of timing problem. On the one hand. in response
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This example illustrates the manner in which the
totality of known temporally-discriminative neural
networks have begun to delineate a global neural
network architecture in which several distinct types
of behavioral timing circuits cooperate to regulate
the accurately timed autonomous unfolding of com-
plex behaviors.

to any fixed choice of conditionable ISI, it is desired
that the learned optimal response delay approximate
the ISI. Thus the model must be capable of an ac-
curate discrimination of individual temporal delays.
On the other hand, it is also desired that spurious
orienting responses be inhibited in response to ex-
pected nonoccurrences that may occur throughout
the ISI interval subsequent to a CS onset. Thus the
inhibitory signal must be temporally distributed
throughout the ISI interval.

The Spectral Timing Model reconciles the two re-
quirements of accurate optimal temporal delay and
temporally distributed activation via the Weber law
property (Section 6). According to this property, the
standard deviation of the model response scales with
its peak time. Consequently, the model begins to
immediately generate an output signal that may be
used to inhibit the orienting subsystem, even though
its peak 'output is accurately located at the ISI.

This key property distinguishes the Spectral Tim-
ing Model from a model that uses conditionable path-
ways with brief sampling signals and variable delay
lines to learn to time the ISI delay. In such a model,
use of a single ISI during training would lead to a
zero learned output in response to the CS until the
ISI had elapsed. The output from such a model could
not be used to inhibit orienting responses in response
to expected nonoccurrences.

The Spectral Timing Model is also not mechan-
istically the same as model circuits which have been
identified to self-organize the learning and long-term
memory of serially ordered behaviors, or the encod-
ing of event sequences in short-term memory, or the
encoding of sequential rhythmic properties in short-
term memory, or the clock-like oscillatory timing of
circadian rhythms. In particular, the type of timing
controlled by the Spectral Timing Model occurs
within hundreds of milliseconds or a few seconds at
most of a single behavioral response. It is not the
type of timing that may be spread over many seconds
or minutes whereby sequences of behavioral acts are
regulated. Neural network models for these alter-
native timing capabilities have been described in the
books Grossberg (1982,1987) and Grossberg and
Kuperstein (1986).

For example, the Spectral Timing Model, at least
in its present form, cannot explain how an animal
can learn to interrupt a timed behavioral sequence
during a signalled time-out period and continue the
timed behavioral sequence where it left off after the
time-out period is over (Meck & Church, 1984;
Meck. Church. Wenk, & alton, 1987). On the other
hand, a self-organizing avalanche circuit does have
this competence (Grossberg, 1982, pp. 519-531;
Grossberg & Kuperstein. 1986. Chap. 9). Moreover.
each sensory representation in the avalanche can ac-
tivate its own spectrally timed read-out to a drive

representation.
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