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Abstract—A neural network model of synchronized oscillator activity in visual cortex is presented in order to
account for recent neurophysiological findings that such synchronization may reflect global properties of the
stimulus. In these recent experiments, it was reported that synchronization of oscillatory firing responses to
moving bar stimuli occurred not only for nearby neurons, but also occurred between neurons separated by
several cortical columns (several mm of cortex) when these neurons shared some receptive field preferences
specific to the stimuli. These results were obtained not only for single bar stimuli but also across two disconnected,
but colinear, bars moving in the same direction. Our model and computer simulations obtain these synchrony
results across both single and double bar stimuli. For the double bar case, synchronous oscillations are induced
in the region between the bars, but no oscillations are induced in the regions beyond the stimuli. These results
were achieved with cellular units that exhibit limit cycle oscillations for a robust range of input values, but which
approach an equilibrium state when undriven. Single and double bar synchronization of these oscillators was
achieved by different, but formally related, models of preattentive visual boundary segmentation and attentive
visual object recognition, as well as nearest-neighbor and randomly coupled models. In preattentive visual
segmentation, synchronous oscillations may reflect the binding of local feature detectors into a globally coherent
grouping. In object recognition, synchronous oscillations may occur during an attentive resonant state that
triggers new learning. These modelling results support earlier theoretical predictions of synchronous visual cortical

oscillations and demonstrate the robustness of the mechanisms capable of generating synchrony.

Keywords— Vision, Visual cortex, Oscillations, Neural networks, Cooperative feature linking.

1. EXPERIMENTAL BACKGROUND

On the basis of simultaneous, multielectrode, extra-
cellular recordings, two labs (Eckhorn, Bauer, Jor-
dan, Brosch, Kruse, Munk, & Reitbock, 1988; Gray
& Singer, 1989; Gray, Konig, Engel, & Singer, 1989)
have reported stimulus-evoked resonances or syn-
chronized oscillations of 40-60 Hz in the primary
visual cortex (Areas 17 and 18) of the cat. Coherence
or synchrony of firing activity was found between
cells within a cortical column (Eckhhorn et al., 1988;
Gray & Singer, 1989), in neighboring hypercolumns
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(Eckhorn et al., 1988; Gray et al., 1989), in distant
hypercolumns (Gray et al., 1989), and lying in two
different cortical areas (Eckhorn et al., 1988). Stim-
ulus position, orientation, movement direction, and
velocity were among the stimulus properties that
yielded stimulus-evoked resonances. Synchronized
oscillatory responses were frequently found at distant
cortical positions when at least one of the primary
coding properties was similar.

While the whole of these results have received a
great deal of attention, the most surprising findings
(and the most difficult to explain) are those con-
cerning the large spatial separations across which
stimulus-evoked synchrony may occur. Using a sin-
gle long moving bar stimulus, Gray et al. (1989)
recorded simultaneously from cells which were
separated by large cortical distances. Gray et al.
found that for cortical separations great enough that
the receptive fields of the cells did not overlap (>2
mm), coherent oscillations occurred only between
cells with similar orientation preferences. Even at
these large separations, the cross-correlations of the
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firing patterns of the cells indicated a tight syn-
chrony, on average having a 0 ms phase lag. Nearly
all phase-locked cells showed activity peaks within 3
ms of each other. Thus assuming a 25 ms period of
oscillation, phase differences were typically less than
12% of the period.

Gray et al. repeated this procedure using two short
disconnected bars as the stimuli. At large recording
distances, only one bar would pass through the re-
ceptive field of one cell, and exclusively the second
bar would pass through the receptive field of a second
cell. Yet when the two bars were moved colinearly
in the same direction at the same speed, two distant
cells frequently synchronized their oscillations even
though there was a gap between the stimuli. When
the bars were moved in opposite directions no syn-
chrony resulted.

These stimulus-evoked resonances have been in-
terpreted as reflecting the global properties of the

S. Grossberg and D. Somers

stimulus. For instance, in the two-bar stimulus par-
adigm, colinear but disconnected bars moving in the
same direction at the same speed may be pércep-
tually interpreted as a single continuous contour that
is occluded in the middle, whereas two bars moving
in opposite directions (without rotation) are likely to
be perceptually interpreted as different contours.
Segregation across occluding regions is a common
problem that the visual system must solve regularly.
In nature, occlusion may arise due to internal sources
such as retinal veins in front of the photoreceptors
or external sources such as a tree branch between
the observer and the object of interest.

Until the present work was carried out, attempts
to explain these oscillatory phenomena have typically
been restricted to formal equations for the phase
relations among abstractly defined oscillators (Atiya
& Baldi, 1989; Baldi & Meir, 1990; Kammen,
Holmes, & Koch, 1989). Herein we explain how suit-
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FIGURE 1. The static Boundary Contour System circuit described by Grossberg and Mingolla (1985a). The circuit is divided
into an oriented contrast-sensitive filter (SOC Filter) followed by a cooperative-competitive feedback network (CC Loop).
Multiple coples of this circuit are used, each corresponding to a different range of receptive field sizes of the SOC Filter. The
depicted circuit has been used to analyse data about monocular vision. A binocular generalization of the circuit has also
been described (Grossberg, 1987b; Grossberg & Marshall, 1989).
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ably designed neural networks can give rise to such
oscillations as an emergent property of their real-
time dynamics. Moreover, we use neural networks
which have previously been derived to explain and
predict behavioral and neural data, other than the
oscillatory phenomena themselves.

2. THEORETICAL PREDICTIONS OF
VISUAL CORTICAL CODING AND
RECOGNITION LEARNING

Grossberg and Mingolla have developed a neural
network theory of preattentive vision in which a new
type of cortical cell, called a bipole cell, was predicted
to exist (Grossberg, 1984, 1987a, 1987b; Grossberg
& Mingolla, 1985a, 1985b, 1987). Bipole cells co-
operatively link perceptual features into emergent
boundary segmentations via cooperative-competi-
tive feedback signals in a network called the CC
Loop. The CC Loop is part of a larger neural model,
called the Boundary Contour System (BCS), which
suggested new perceptual roles for cortical simple
cells, complex cells, hypercomplex cells, and bipole
cells (Figure 1). In addition, the BCS was used to
explain and predict a variety of psychophysical and
perceptual data, notably data about texture segre-
gation, subjective contours, filling-in of brightness
and color, and 3-D surface perception.

The bipole cell receptive field was predicted to
consist of two long, thin independent flanks which
nonlinearly sum inputs from cells with orientation
preferences similar to the orientation of the long axis
of the bipole (Figure 2). Bipole cell output signals
can be activated if and only if both flanks are suffi-
ciently activated. These signals feed excitatory input
back to model hypercomplex cells in a lower network
layer which have the same orientation preference and
are positioned near the middle of the bipole cell.
Through this cooperative feedback cycle, two dis-
connected but colinear contours can induce a bound-
ary completion between them.

FIGURE 2. A bipole cell tires only if it is activated by sufficient
input of similar orientation and/or direction to both of its
receptive fields. It then delivers positive feedback signals to
the layers of cells by which it was activated.
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Although the bipole cell was predicted on per-
ceptual grounds, its existence was soon supported by
neurophysiological data. Recording from area 18 of
alert monkeys, von der Heydt, Peterhans, & Baum-
gartner (1984) found cells that responded to moving
illusory contours. That is, with no local luminance
information to suggest a contour and only with co-
linear inducing lines lying beyond the receptive fields
of the cells, cells responded strongly when the global
percept of the stimulus suggested an illusory contour.
When the stimulus was altered so that an illusory
contour was no longer perceived, the cells did not
respond. Inducing lines on both sides of the site were
necessary for the perception of the illusory contours
by both the cells and human observers. These data
indicate that some cells in visual cortex respond well
to subjective contours, and that cells which are not
directly activated by bottom-up signals require input
from at least two colinear flanking regions in order
to be activated.

In addition to this electrophysiological data, Gil-
bert and Wiesel (1989) provided anatomical evidence
from areas 17 and 18 of the cat. They remarked that
“a prominent and stereotypical feature of cortical
circuitry in the striate cortex is a plexus of long-range
horizontal connections running for 6-8 mm parallel
to the cortical surface.” Using retrograde labeling,
they found that these connections run between cor-
tical columns of similar orientation preferences. In-
dividual cells tended to have long and narrow
receptive fields and greater than 90% of the con-
nections appeared to be excitatory. Gilbert and Wie-
sel noted that while like orientation was necessary
to achieve labelling, it was not sufficient. They spec-
ulated that there were “subthreshold contextual in-
fluences” at work. However, from these labeling
techniques they were unable to determine a consis-
tent relation between the orientation of the axis of
the axonal fields and the orientation preferences of
the columns to which they connected. While such
evidence is not conclusive proof of the existence of
long-range cooperative bipole cells in visual cortex,
it does seem to strongly support the biological plau-
sibility of the bipole mechanism.

In earlier modelling work on the dynamics of cor-
tical coding, Grossberg (1976b, 1978c) predicted that
cortical codes would be expressed by resonant stand-
ing waves in which cooperatively linked cells oscillate
in phase with one another. It was also noted that
these standing waves could be replaced by approach
to an equilibrium point, or attractor, if no “slow”
variables, such as inhibitory interneurons or chemical
modulators, exist in the network. Both standing
waves and equilibria can, in principle, support a fea-
ture-based cortical code. The standing waves were
called “order-preserving limit cycles” to emphasize
that the ordering, or relative importance, of feature
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detector activations should persist during each cod-
ing cycle, even if their absolute activations vary
through time as the oscillation unfolds.

Mathematical analyses of both the standing wave
and equilibrium point models were initiated in the
1970s. Studies of equilibrium point models led to a
series of mathematical theorems, including a general
theory for globally analyzing equilibria and oscilla-
tions in competitive neural networks (Grossberg,
1978a, 1978b, 1980) and the Cohen-Grossberg model
aftd theorem for content addressable memory
(Cohen & Grossberg, 1983; Grossberg, 1982a). The
Cohen-Grossberg (1983) model was designed to in-
clude the additive model, subsequently studied by
Hopfield (1984), as well as the shunting model that
describes interactions between cells that obey a mem-
brane equation; see Grossberg (1988) for an histor-
ical overview. The present article continues the
analysis of standing waves that was initiated in Ellias
and Grossberg (1975).

The standing wave prediction was made in the
context of a theory, called Adaptive Resonance The-
ory (ART), which analyzes the role of reciprocal top-
down and bottom-up cortico-cortical and thalamo-
cortical adaptive filters in the development of cortical
feature detectors, recognition learning, attentional
processing, and memory search (Grossberg, 1976a,
1976b, 1978c, 1982b). Within ART, aresonant stand-
ing wave can occur when bottom-up and top-down
signals fuse into an attentional focus. Such an atten-
tional focus can support new learning as it gives rise
to a conscious perceptual experience. The predicted
linkage between standing waves, attention, and con-
scious experience has recently begun to attract the
interest of a large number of investigators.

Mathematical investigations of complete ART
architectures have heretofore tended to analyze
equilibrium point models (Figure 3), wherein slow
variables are eliminated for simplicity (Carpenter &
Grossberg, 1987a, 1987b, 1990; Carpenter, Gross-
berg, & Reynolds, 1991). The present results illus-
trate how the ART standing waves predicted in
Grossberg (1976b, 1978¢) can be generated by the
type of bottom-up and top-down feedback interac-
tions among adaptive filters that are used in ART
circuits. '

The ART adaptive filter prediction was made be-
fore the BCS, or its cooperative bipole cells, were
discovered. The present article demonstrates that
both the CC Loop and ART circuits can coopera-
tively link cells into stimulus-specific standing waves
wherein cell activities oscillate in phase with each
other. More generally, we show that Cooperative
Bipole Coupling, Adaptive Filter Coupling, Nearest
Neighbor Coupling, and Random Connection Cou-
pling can all generate the desired results. Thus, in
preattentive visual segmentation, synchronous oscil-
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FIGURE 3. ART 1 system: Two successive stages, F, and F,,
of the attentional subsystem encode patterns of activation
in short term memory (STM). Bottom-up and top-down adap-
tive filter pathways between F, and F, contain trainable long
term memory (LTM) traces which multiply the signals in these
pathways. The remainder of the circuit modulates these STM
and LTM processes. Modulation by gain control enables F,
to distinguish between bottom-up input patterns and top-
down priming, or expectation, patterns, as well as to match
these bottom-up and top-down patterns by the 2/3 Rule. Gain
control signals also enable F, to react supraliminally to sig-
nals from F, while an input pattern is on. The orienting sub-
system generates a reset wave to F, when sufficiently large
mismatches between bottom-up and top-down patterns oc-
cur at F,. This reset wave selectively and enduringly inhibits
previously active F, cells until the input is shut off, and trig-
gers a bout of hypothesis testing or memory search for a
better F, representation.

lations may reflect the binding of local feature de-
tectors into a globally coherent grouping. In object
recognition, synchronous oscillations may occur dur-
ing an attentive resonant state that triggers new
learning. The robust nature of the mathematical phe-
nomenon is hereby demonstrated. Synchronized os-
cillations may be generated in different parts of the
brain by circuits that carry out different functional
tasks; in particular, preattentive vision and attentive
visual object recognition. The existence of synchro-
nized oscillations in two different parts of the brain
does not, in itself, imply that they carry out similar
functions.

3. SPECIFICATION OF THE MODEL

The source of the 40-60 Hz oscillations that have
been reported has yet to be identified. With an av-
erage period of 16-25 ms, such oscillations may arise
from local network effects, such as a feedback loop
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between an inhibitory interneuron and an excitatory
cell, or the oscillations may be due to single cell
membrane effects, such as the influence of a slow
channel or second messenger. In the present simu-
lations, we investigated how neural circuits that have
already been shown to have strong behavioral and
neural predictive value could act to synchronize their
cell activations in a stimulus-specific manner.

The starting point for our work is the analysis by
Ellias and Grossberg (1975) of oscillations within a
neural network of excitatory potentials X; and inhib-
itory interneuronal potentials Y; which obey the
equations

%Xi = —AX; + (B — X)) [E f(X)Ch + 1;:|

k=1

- X, 2 f(Yk)Dkl (1)

k=1
and

d "

=Y, = —EY, + ) X.F.. (2)
dr k=

Each excitatory potential X;in eqn (1) obeys a mem-
brane, or shunting, equation (Grossberg, 1973; Rall,
1955a, 1955b, 1956; Sperling & Sondhi, 1968),
whereas each inhibitory interneuronal potential Y, is
approximated by an additive equation in (2). In eqn
(1), parameter A is the passive decay rate, B is the
excitatory saturation point, C,, is the excitatory path
strength from cell k to cell i, I; is an external input,
and D,; is the inhibitory path strength from cell k& to
cell i. In eqn (2), parameter FE is the passive decay
rate, and Fj; is the excitatory path strength from cell
k to cell i. A case of particular interest is the 2-
dimensional E-G network

ditxz —AX + (B - X)(C[X - T]* + )
- DX[Y - T* ) (3)
and
d
Y= E(X - Y), 4)

where [w]* = max(w, 0), which was shown (Ellias.

& Grossberg, 1975) to undergo a series of Hopf bi-
furcations from equilibrium to frequency-dependent
oscillations as the arousal level / is parametrically
increased. This input-dependent oscillatory behavior
is representative of visual cortical neurons that fire
repetitively only when stimulated.

The parameters used in the present simulations
were chosen as follows: A = 1, B =1, C = 20,
D =333 T =04, E = F = 0.025. These values
were prescribed in Ellias and Grossberg’s original
work. The choice £ = 0.025 was made to give the
oscillator strong relaxation properties due to the rel-
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ative time scale differences between the passive de-
cay rates A and E of the excitatory and inhibitory
cells. These parameters also produce a desirable
“spike-like”” waveform. For these parameter choices,
the (X, Y) unit in eqns (3) and (4) exhibited stable
limit cycle oscillations for inputs between I = 0.7
and [ = 2.25. The present results are consistent with
the hypothesis that relaxation oscillators couple more
rapidly and more reliably than sinusoidal oscillators
for a variety of architectures (Somers & Kopell,
1991).

The simulations reported here utilized a one-di-
mensional array of 64 (X, Y) units organized, as in
Ellias and Grossberg (1975), in a ring to avoid bound-
ary effects. In order to connect these oscillatory
units, a cooperative feedback loop among the po-
tentials X; was implemented. Thus each excitatory-
inhibitory unit (X;, Y;) in the array obeys the equa-
tions:

%X, = —AX, + (B - X)(C[X, - TT*
+ aC[Z, - T]* + 1) = DX[Y, - T]* (5
and
d Y, = —EY, + FX,. (6)
dt

In eqn (5), Z; is the activity of the ith coupling unit.
This term will be specified below. Parameter « cal-
ibrates the size of the excitatory coupling strength
relative to that provided by the self-excitatory term
C[X; — I']". In these simulations, a was paramet-
rically increased from 0—the no-coupling case—to
test the effects of excitatory interneuronal coupling
on the coherence of the oscillations.

4. COOPERATIVE COUPLING
MECHANISMS

Several coupling architectures were investigated;
namely, Cooperative Bipole Coupling, Adaptive Fil-
ter Coupling, Nearest Neighbor Coupling, and Ran-
dom Connectivity Coupling (Figure 4). This analysis
illustrates the robust nature of the synchrony phe-
nomenon. Each coupling unit Z; could be interpreted
biologically as either the output signal from the den-
dritic tree of an X, cell, or as another cell that sends
an excitatory connection to the X; cell. For example,
the Cooperative Bipole Coupling (Figure 4a) could
be interpreted as a bipolar dendritic tree in which
both compartments must be sufficiently activated to
provide input to the X, cell. Alternatively, this cou-
pling unit could be interpreted as a distant cell, per-
haps lying in Area 18 (Grossberg & Mingolla, 1985a;
von der Heydt et al., 1984), having the same den-
dritic properties and making a monosynaptic con-
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FIGURE 4. Coupling architectures. Figures A-D show the
connectivities characteristic of the four coupling architec-
tures implemented in the simulations. Each (X, Y) pair rep-
resents a single oscillator and the lines indicate typical
connections. In (A) the bowtie-shaped symbol represents a
single bipole cell. Coupling inputs from the right of oscillator
i feed exclusively into the right half of the bipole. Coupling
inputs from the left feed exclusively into the left half of the
bipole. The two halves of the bipole are combined and the
rectified, thresholded coupling signal that results feeds to
oscillator i. There is a single bipole cell corresponding to
each (X, Y) oscillator pair. In (B) the triangle-shaped symbols
represent adaptive filter (AF) elements. Each adaptive filter
element may receive coupling input from many oscillator
units, and in turn may feed coupling output back to many
oscillator units. In these simulations there are as many adap-
tive filter elements as there are oscillator units. In (C) each
oscillator unit is connected reciprocally and equally with its
immediate neighbor on either side and with no other oscil-
lator units. In (D) each oscillator is connected with a fixed
number of randomly chosen oscillators. All oscillators send
out the same number of coupling outputs, but typically re-
ceive different numbers of coupling inputs. The filled arrow-
heads indicate excitatory connections, while unfilled
arrowheads indicate inhibitory connections. The only inhib-
itory connections are from the Y cells to the X cells.
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nection with the X; cell. The coupling units are made
explicit in the following equations:
Cooperative Bipole Coupling

- P(Right,)" P(Left)" s
“s [Q” + (Right)" Q" + (Left,)" Tor| ()
where
widt]
Right, = width ; (X..; - T] ®)
and
—width
Left, = —Wid[h [Xi,,]- - r] . (9)

j=-1

Parameters P, O, and » in.eqn (7) characterize a
sigmoidal, or S-shaped, response curve that indicates
a typical nonlinear summation within each cell com-
partment (Grossberg, 1973, 1982b; Rall, 1955a,
1955b, 1956). For these simulations, the values P =
1, 0 = 0.10, and n = 5 were chosen. Parameter I,
is the coupling threshold. The choice I';,, = P was
made in order to guarantee that both compartments
or flanks needed to be sufficiently activated before
Z; could be activated, and thus before coupling feed-
back from Z; to X; could be generated. The width of
the flanks was parametrically varied in the simula-
tions.

Adaptive Filter Coupling

1 +fan out/2
Zi = [fan out 2 AF.; - F(.,,,:l* (10)

j=—fan out/2
where

1 +fan in/2

AF = —— 3
fanin ;o &5

[X., -1 (1)

The Adaptive Filter coupling (Figure 4b) assumes
that many inputs fan in, bottom-up, to each coupling
compartment AF;, and that these AF’s fan out, top-
down, to many compartments Z;. In the general case
(fan in > 1, fan out > 1), this coupling can be re-
alized, for example, by letting each Z; collect signals
in the excitatory dendritic tree that feeds X;. In the
case fan out = 1, AF, and Z, may be collapsed into
the same dendritic structure, and it is not necessary
to postulate intervening cells.
Nearest Neighbor Coupling

Z, = 12[Xi, - T + 12[X, - T]*: (12)

Nearest Neighbor coupling (Figure 4c) is defined by
excitatory signalling between each cell and its two
immediate neighbors.

Random Connection Coupling

1 num conn +
Zi = [— 2 [X,'+j - F]+ - Fcp,:l B (13)

num conn | 5on ;

Random coupling (Figure 4d) sums the active inputs
of a number of random connections. If the total input
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FIGURE 5. Single bar and double bar system inputs. Simu-
lations were run on two different input images: a single, long
bar (A); or two short bars separated by a slit (B). The values
of I, are displayed for each position i along the 64-position
ring. Each high value (I, = 1.0) represents a position on a
bar in the image and is sufficient to drive an uncoupled
(X, Y) pair into its oscillatory regime. Each low value /, = 0.05
represents part of the background of the image and is not
sufficient to drive oscillations in an uncoupled (X, Y) pair;
rather, an equilibrium value is approached. Within the course
of a simulation run, all input values were constant and did
not themselves oscillate.

is sufficiently great, an excitatory signal to X is ac-
tivated. Note that while the coupling is chosen ran-
domly, the same random connections remain in
effect throughout the course of a simulation run.

5. METHODS

The typical paradigm for the simulations is as fol-
lows. At the start of each simulation, the (X, Y)
units were given random initial conditions and the
coupling variables Z were set equal to zero. The test
stimuli were either long single bar images or short
disconnected double bar images (Figure S). For the
single bar stimulus, the central region (i = 19 to
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= 46) was set to the target value. The double bar
stimulus differed in that a central slit region (i = 31
to i = 34) was set to the background value. Input
array positions corresponding to part of a bar were
given values sufficient to generate stable limit cycle
oscillations in an uncoupled unit [eqns (3) and (4)].
At positions not on a bar, the input value was in-
sufficient to sustain oscillations in its unit. For a given
simulation run, the inputs and parameters were cho-
sen and held fixed. Within a series of runs, a param-
eter or pair of parameters, such as the synaptic
coupling strength « and/or the widths of coupling
interaction, were varied in order to determine their
effects. The simulations were written in C and run
on a Silicon Graphics IRIS/4D. The ordinary dif-
ferential equations were numerically integrated using
a standard published Adaptive-Stepsize Runge-
Kutta routine (4th order) (Press, Flannery, Teu-
kolsky, & Vettterling, 1988). Critical results were
checked using a published Rational Function Ex-
trapolation method (Bulirsch-Stoer) (Press et al.,
1988). Since these methods arrive at their results by
fundamentally different techniques, when both
methods yield the same result it is highly unlikely
that numerical error had a significant effect on the
results.

6. RESULTS

The primary control experiment for these simula-
tions is the uncoupled (& = 0) case. In the uncoupled
case, units receiving sufficient input exhibit stable
limit-cycle oscillations, while units receiving insuf-
ficient input quickly approach a low equilibrium
value (Figures 6 and 7). Since the initial values were
chosen randomly, the units oscillated in random

i
i

FIGURE 6. Uncoupled (e« = 0) case for single bar input. Three windows are displayed in which plots of X, versus time are
overlayed. In window |, positions i = 1 thru i = 18 are overlayed. In window li, positions i = 19 thru i = 46 are plotted.
Positions i = 47 thru i = 64 are shown in window lll. The positions displayed in windows | and Ill correspond to the image
background, while window Il displays activity of X, along the_ bar. In this uncoupled case, the activities at positions corre-
sponding to the background quickly approach the same steady-state value, while positions along the bar oscillate in random
phase. This uncoupled case represents the control simulation for single bar input.
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FIGURE 7. Uncoupled (a = 0) case for double bar input. Five windows are displayed in which plots of X; versus time are
overlayed. In window |, positions i = 1 thrui = 18 are overlayed, while in window Il, positions i = 19 thrui = 30 are plotted.
Windows lll and IV display positions i = 31 thrui = 34 and i = 35 thru i = 46, respectively, and positions i = 47 thrui =
64 are shown in window V. The positions displayed in windows | and V correspond to the image background, while window
Il displays activity in the slit between the two bars. Windows |l and IV display activity of X, along the left and right bars,
respectively. In this uncoupled case, the activities at positions corresponding to the background and the slit quickly approach

the same steady-state value, while the activities at positions along both bars oscillate in random phase. This uncoupled case
represents the control simulation for double: bar input.

phase with respect to one another. If all ON inputs
were the same, these phase relationships did not
change over the time course of the simulation, since
their frequencies were thé same.

Using the Cooperative Bipole Coupling Architec-
ture in eqns (7)-(9), coherent oscillations emerged

rapidly (approximately one cycle or less) for both the
one bar (Figure 8) and two bar (Figure 9) stimuli.
In the two bar case, oscillations were induced in the
slit between the two bars and these oscillators could
be almost instantly synchronized with the others. In
both stimulus cases, the bipole architectures did not

Y \

|

—

FIGURE 8. Bipole coupling for single bar input. Using the same inputs and initial conditions which were used to generate
Figure 6, bipole coupling with a = 0.25 yielded rapid and sustained synchronization of oscillatory activity at positions along
the bar without inducing oscillatory activity at positions corresponding to the background. Each bipole flank received input
from six neighboring positions (width = 6).
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FIGURE 9. Bipote coupling for double bar input. Using the same inputs and initial conditions which were used to generate
Figure 7, bipole coupling with a = 0.25 yielded rapid and sustained synchronization of oscillatory activity at positions along
both bars and induced synchronous oscillatory activity at the slit positions i = 31 thrui = 34 but did not induce oscillatory
activity at positions corresponding to the outer background regions. This may be interpreted as the completion of a discon-
nected image boundary, resulting in the perception of a single tong bar. Each bipole flank received input from six neighboring

positions (width = 6).

induce a spreading of oscillatory activity to the outer
regions beyond the stimuli. Inward boundary com-
pletion without outward spreading of oscillatory ac-
tivity was found to be a robust property of bipole
coupling.

Adaptive Filter coupling also yielded rapid syn-
chronization for single bar stimuli (Figure 10). As

shown in Figure 11, the disconnected regions that .

were activated by a double bar stimulus were syn-

chronized with respect to each other. This is a robust
property of adaptive filter coupling. If the fan in and
fan out are chosen broadly enough to only include
one bar, then the cellular units corresponding to that
bar become synchronized. If the fan in and fan out
are chosen broadly enough to also include the region
spanned by both bars, then units corresponding to
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FIGURE 10. Adaptive filter coupling for single bar input. Shown here with a = 0.10 and fan-in and fan-out widths of 9, adaptive
filter coupling yielded rapid synchronization of oscillatory activity along the bar. While some small oscillatory activity was
induced at background positions, this activity was well below the firing threshold of 0.4. The inputs and initial conditions

were identical to those used in generating Figure 6.
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FIGURE 11. Adaptive filter coupling for double bar input. Shown here with & = 0.10 and fan in and fan out widths of 9,
adaptive filter coupling yielded rapid synchronization of oscillatory activity along each bar and synchronized the bars with
respect to each other. While some small oscillatory activity was induced at background positions and in the slit, this activity
was subthreshold. The inputs and initial conditions were identical to those used in generating Figure 7.

both bars are synchronized. Depending upon cell
parameters, the intervening units may undergo syn-
chronized subthreshold or suprathreshold oscilla-
tions. There is also a strong tendency for cells
flanking the exteriors of the bars to undergo analo-
gous oscillations. .

Nearest neighbor coupling (Figure 12) and ran-
dom coupling (Figure 13) could also cause coherent

oscillations to emerge, although this synchrony did
not occur as rapidly, nor for as robust a set of initial
conditions, as it did for the bipole and adaptive filter
architectures. Selective boundary completion was
not a feature of either the nearest neighbor or ran-
dom couplings. Disconnected bars could still be syn-
chronized under suprathreshold conditions, but then
the oscillation spread from each bar in both direc-
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FIGURE 12. Nearest neighbor coupling for single bar input. Coherent oscillations are shown here to emerge rapidly (about
six cycles) with only coupling between nearest neighbors (a = 0.05).
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FIGURE 13. Random coupling for single bar input. Coherent oscillations rapidly emerged at positions along the bar stimulus
for a random coupling shown here with o = 0.1. Each X; provided input to six other units, chosen randomly. These random
connections remained fixed throughout the simulation. Since connections were random some units received input from more
than six units while others received less. In window [l oscillatory activity is induced in one unit which received more than
six inputs. All other background units exhibited only subthreshold oscillations. .-

tions. For nearest neighbor coupling this occurred
only for small slit widths (four or fewer positions).

Figures 7 and 9 together with Figures 14 and 15
present two different perspectives of the synchro-
nized behavior for double bar stimulus, using the
bipole architecture. Figures 7 and 14 display the un-
coupled (« = 0) case and Figures 9 and 15 display
the tight synchrony (@ = 0.25) of the bipole coupling.
Not only are the two bars synchronized, but also
synchronized oscillations were induced in the slit re-
gion. between the two bars, indicating that a subjec-

tive contour was perceived across the slit and that
the features were linked across the “occluding” re-
gion, as was also ascribed to bipole cells in the equi-
librium point version of the BCS (Grossberg &
Mingolla, 1985a, 1985b).

The coherence of the oscillations is measured
quantitatively by the standard deviation of the phases
along the stimuli over time. Figure 16 displays the
emerging synchrony of the bipole architecture as the
coupling strength « in eqn (5) increases. The sample
standard deviation of the phases is computed at each

FIGURE 14. 3-D perspective of uncoupled case for double bar input. The data of Figure 7 is replotted in three dimensions in
order to demonstrate the positional structure of the activity. The X-axis represents the position, /, of the (X, Y) unit; the Y-
axis represents time; and the Z-axis represents the activity, X.. This perspective more clearly displays two regions of incoherent
oscillatory activity separated by a slit region that quickly approaches equilibrium. The larger background regions to the
outsides also quickly approach equilibrium from their random initial conditions.
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FIGURE 15. 3-D perspective of bipole coupling for double bar input. By implementing bipole coupling for the inputs and
initial conditions shown in Figure 14, two nearby regions of incoherent oscillatory activity are very rapidly synchronized and
oscillations are induced in the slit region and these oscillations very rapidly synchronize with the bar regions. This repre-
sents a successful boundary completion between the bars which results in a single coherent contour of oscillatory activity
that does not spread to the outer background positions. The data plotted is the same that is shown in the overlay plots of
Figure 9.
peak and trough over the time course of the simu- two bars begin to synchronize with respect to each
lation. The effects of the coupling strengths can thus other rather than just internally. As the coupling
be compared on a single graph. strength is further increased, the phase lag between
As the coupling strength « is increased from 0 the slit and the bars becomes negligible and the bar
over a series of runs, the oscillations become increas- ends synchronize. The bars assume a more coherent
ingly coherent. For instance, in the double bar case, relationship and do so more rapidly until the whole
at a low coupling strength, the oscillators along each stimulus and slit region synchronizes together on the
bar begin to synchronize but the two bars are out of first cycle. The coherence of the oscillators continues
phase with respect to one another and the bar ends to improve until the coupling input is so great that
may be asynchronous. At this strength, no oscilla- it drives the units out of their oscillatory regimes to
tions yet occur in the slit region between the bars. a high equilibrium value. This effect is called oscil-
As o increases, oscillations are induced in the slit. lator death (Ermentrout & Kopell, 1990) and it is a
These oscillators lag behind the others in phase. Also typical phenomena among neural oscillators (Ellias
at this strength, the oscillators along the bars become & Grossberg, 1975). Analogous properties were
slightly less coherent for the first few cycles as the found for all four types of models. .
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FIGURE 16. The population standard deviations of phases along the stimulus region over time for a range of coupling strengths.
The standard deviations drop as the coupling strength increases. For « = 0.25 a stable standard phase deviation of 0.03 is
achieved. Such a value is well within the 12% deviation limit found experimentally by Gray et al. (1989). Parameter « = 0.20
also falls within this limit with a standard phase deviation of less than 0.05. Oscillator death occurs at « = 0.30.
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An interesting property is a bowing in phase that
the bipole architecture has a tendency to induce.
Although the first cycle of the oscillators may be
synchronized, the bipole provides more input longer
along the middle of the bar than at the ends. The
middle of the bar thus tends to stay on longer. This
property is minimized with relaxation oscillators, and
is then negligible.

7. DISCUSSION

The present results indicate that a wide variety of
nonlinear cooperative feedback networks, whose cell
units obey shunting or additive equations, can
undergo synchronous oscillations if their coupling
strength is sufficiently high, and if at least one slow
variable, here a slow inhibitory interneuron, exists.
These synchronous oscillations can, for example,
support a preattentive boundary completion process,
as occurs during visual boundary segmentation; an
attentive resonant state, as occurs during visual ob-
ject recognition; either preattentive or attentive
adaptive filtering operations during more general
processes of cortical feature detection and short term
memory representation; or more abstract couplings
by nearest neighbors or random connections.

Many researchers have recently focussed almost
exclusively upon the existence of these synchronous
oscillations. Now that the robust nature of the syn-
chrony phenomenon has been demonstrated, a finer
analysis of individual parametric features peculiar to
the perceptual or cognitive codes supported by the
oscillations can be carried out.
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