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Neural dynam:ics of attention switching
and temporal-order information

in shc.rt-term memory
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Reeves and Sperling (1986) have developed an experimental paradigm and a model to explain
how attention switching influences the, storage oftemporal-order information in short-term memory
(STM), or working memory. The present article suggests that attention switching influences ini-
tial storage of items in STM, but thai; competitive interactions among the STM representations
of stored items control the further e,volution of temporal-order information as new items are
processed. The laws governing these clompetitive interactions, called the long-term memory (L TM)
invariance principle and the STM normalization rule, were originally derived from postulates
that ensure that STM is updated in a way that enables temporally stable list learning in L TM
to occur. Despite these adaptive constraints, and often because of them, temporal-order informa-
tion is not always stored veridically. :Both feedforward and feedback STM processes, with differ-
ent invariant properties, are identified in the storage of temporal-order information.

The critical importance of temporary stora~:e in per- TEMPORAL-ORDER INFORMATION
ception has long been recognized (James, 189(]I) and has IN SHORT-TERM MEMORY
been the subject of extensive experimental and theoreti-
cal work (Atkinson & Shiffrin, 1971; Baddeli:y, 1976;
Healy, 1975; Lee & Estes, 1977, 1981; RundlllS, 1971;
Sperling & Melchner, 1976; Tulving, 1983). S:uch tem-
porary storage occurs at multiple levels of processing,
from low-level sensory buffers to conceptually based,
cross-modal representations. Although the various forms
of temporary storage differ in many details-d:epending
upon the nature of processing at the level in question-
the fundamental role of such storage and the problems
that must be solved in devising real-time mechanisms for
its instantiation have led to the recognition (Jif several
general principles governing the short-terrnl storage
process (Grossberg, 1978a, 1978b). Within tile frame-
work provided by these principles, it is possible to inves-
tigate and specify in greater detail specific sJi1ort-term
storage phenomena. In particular, this paper USt:s data on
the effect of a shift of visual attention on tempc,ral-order
information over item representations in sli1ort-term
memory (Reeves, 1977; Reeves & Sperling, 1986; Sper-
ling & Reeves, 1980) to elucidate the dynamics of short-
term memory at a central stage of processing.
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A number of paradigms have been used to probe the
mechanisms by which subjects can store temporal-order
information about a list of items in short-term memory
(STM). The present model provides a principled expla-
nation of several of the patterns that have been reported
in the literature.

In free-recall tests of short-term memory, items from
the beginning and the end of a sufficiently long list are
reported earlier than are items from the middle of the list
(Atkinson &Shiffrin, 1971; Murdock, 1962). Although,
in general, this bowed serial position effect reflects both
long-term memory (LTM) and STM effects, immediate
free recall by amnesic subjects with long-term memory
deficits also produces a bowed serial position effect (Bad-
deley & Warrington, 1970). This suggests that bowing
can occur in STM with little or no L TM contribution
(Figure la). This conclusion is also supported by free-
recall data for normal subjects. R. M. Hogan and M. M.
Hogan (1975) theoretically disentangled STM and LTM
contributions in their free-recall data, and found an STM
bow in addition to the expected L TM primacy gradient.
Lee and Estes (1981) and Ratcliff (1978) also presented
evidence for a primacy effect in STM.

When shorter lists are presented (e.g., the digits of a
telephone number), the items can be recalled immediately
in the correct order but may be forgotten if a distraction
is introduced before recall, suggesting that the correct tem-
poral order is maintained in STM. Correct temporal-order
information can be encoded by a primacy gradient in STM
(Figure Ib).

Reeves and Sperling (Reeves, 1977; Reeves & Sper-
ling, 1986) found that when a list is presented rapidly and

Copyright 1986 Psychonomic Society, Inc451

~



452 GROSSBERG AND STONE
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Figure 1. ~ble patterns oftemporal~rder infomtation in STM.
The abscissa represents presentation order of items in a list. The
ordinate represents the precedence strength of the items, which de-
tennines mean report order. (a) Classic bow with primacy for early
items and recency for later items; (b) pure primat:y giving correct
temporal order; (c) inverted bow found by Reeves and Sperling
(1986).

subjects must shift visual attention to the list, items in the
middle of the list are reported first. Thus, wlder these con-
ditions, the serial position curve in STM is an inverted
bow (Figure lc).

The type of model that we develop in this paper has
already been used to suggest an explanation of primacy
gradients and bows in STM (Grossberg, 1978a, 1978b).
In this article, we further develop the model to quantita-
tively analyze the Reeves and Sperling (1986) data. In par-
ticular, we consider how attention switching interacts with
the processing of temporal-order information in STM dur-
ing conditions of rapid item presentation. In order to em-
phasize the critical role that temporal-order information
in short-term memory plays in our account of Reeves and
Sperling's data, we refer to the model developed in this
article as the Temporal-Order Model (TOM). Before
presenting the TOM, we will describe the data of Reeves
and Sperling, the empirical model that they developed to
fit the data, and systematic deviations of their model from
the data, which suggest separate effects of attentional gate
opening and internal STM dynamics on report order.

"""-

(b)

Reeves and Sperling (1986) had subjects monitor a se-
quence of letters that appeared successively at a position
to the left of a fixation point. The presentation rate of the
letters was fixed for each subject so that accuracy in
reporting the letters was nearly perfect (about 98% cor-
rect) and the subjects' full attention was required. When
a predesignated target symbol was detected, subjects
shifted their attention, without moving their eyes, to a
stream of numerals that appeared sequentially to the right
of the fiXation point. Subjects responded by reporting, in
order, the first four numerals they were able to detect.

There were two within-subjects variables: target sym-
bol and presentation rate for the numerals. For each of
the 3 subjects, the target symbol was either a C, a U, or
a square. The choice of target symbol on each trial was
randomized and was not known to the subject before the
trial began. Two of the subjects (AR and GL), who were
experienced in the task, ran in four numeral-presentation-
rate conditions (4.6, 6.9, 9.2, and 13.4 numerals/second).
The third subject (AK), who was naive, ran in three
numeral-presentation-rate conditions (5.6, 6.9, and 9.2
numerals/second). These presentation rates were selected
to avoid both "blurring" (about 20 numerals/second) and
implicit naming of each numeral as it appeared (about
3 numerals/second; cf. Landauer, 1962; Sperling, 1963).
For each subject and presentation rate, the "critical set"
was defined as the seven consecutive numerals most likely
to be reported, based on pilot studies. Numeral positions
were numbered so that the numeral occurring simultane-
ously with the target symbol was assigned to position O.
For AR and GL, the critical set began at positions -1,
0, 1, and 2 for the slowest to the fastest conditions. For
AK, the critical set began at positions -1, 1, and 2 for
the slowest to the fastest conditions. Feedback indicating
the first six numerals in the critical set was provided af-
ter each trial.

Reeves and Sperling (1986) evaluated the data using
several performance measures, which can be grouped into
item scores and order scores. The item score Pi describes
the proportion of trials in which the subject reported a
numeral from position i in the critical set regardless of
its position in the response. Figure 2 shows Pi as a func-
tion of the onset asynchrony between the target letter and
the numeral in position i, for each subject in each condi-

.tion. The bell-shaped curves indicate that subjects most
often reported numerals that had been clustered around
400 msec after target onset. Reeves and Sperling also
computed Pi(r), the proportion of trials in which the
numeral in stimulus position i was reported in response
to position r.

The order score, P iBj, describes the proportion of trials
on which the numeral in position i was reported before
the numeral in position j. Typical values of P iBj (Sub-
ject AR, Target U) are presented in Figure 3.
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Figure 2. The item score, P" for all conlJitions in the Reeves and Sperling (1986) experi-
ment. P, describes the proportion of trials in which the subject reports a numeral from posi-
tion i in the critical set. The absciS!i8 gives the onset asynchrony between the target letter and
the numeral in position i. Data for a given subject appear in one column, as indicated. Each
panel within a column presents th,e data for the given presentation rate. Each curve within
a panel represents a different target condition, as indicated. From" AttentionaJ theory of order
information in short-term visual mlemory" by A. Reeves and G. Sperling, 1986, Psychological
Review, 93, p. 184. Reprinted by permission.
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When the PIS} curves do not cross each other, they are
said to display laminarity. For example, in the upper left
quarter of Figure 3 (presentation rate = 13.4 numerals/
second), stimulus position 6 tends to be reported before
all other positions. To the extent that laminari~y holds,
responses show an order of precedence. In other words,
the top curve gives the stimulus position that tends to be
reported first, the second curve gives the stimulus posi-
tion that tends to be reported second, and so fortIl. Thus,
the data for Subject AR, Target U, rate 13.4 numerals/
second shows a precedence order of (6, 5, 7, 8, '~, 3, 2).
This pattern of precedence, in which a central position
has the greatest precedence and the nearest precentral and
postcentral positions are reported next, is referred to as
folding. The central position (6 in the preceding exam-
ple) is called the "folding point." At faster presentation
rates, precedence orders showed strong folding. At slower
presentation rates, folding was present, but tempered by
a tendency to report correct temporal order.

Another aspect of Reeves and Sperling's (1986) results
is worth noting. Subjects reported that they actually
"saw" the numerals in the reported order and were sur-
prised to find that the reported order was not vt:ridical.
This phenomenology was compelling enough that the first
author, who also served as a subject, initially assumed
that the discrepancy between reported order and the order
indicated by the feedback was due to a programrning er-
ror (A. Reeves, personal communication, 1985). These
introspections lead to several conclusions. The re-ordering
of numerals in short-term memory occurs prior to con-
scious awareness. Despite the fact that all list items acti-

vate the same retinal region, later items can appear to oc-
cur before earlier items without masking recognition of
these earlier items. Thus, the later items do not "catch
up" to the earlier items to inhibit them. Rather, items are
successively transformed from retinal coordinates into a
space that can simultaneously store several item represen-
tations in short-term, or working, memory. Under cer-
tain conditions, later items can encode earlier temporal-
order properties than can earlier items. In the TOM, one
such temporal-order factor is the relative activation levels
of the different item representations in short-term memory
(Figure 1). When these item representations are stored
in short-term memory, later items can be activated more
than earlier items, even though later items began to enter
STM after earlier items.

THE REEVES-SPERLING ANALYSIS

After presenting evidence that discounts both an item-
guessing and an order-forgetting account of these results,
Reeves and Sperling (1986) established the viability of
a one-dimensional scale of precedence for order infor-
mation in STM for their data. In addition, they assumed
that PiS} depends upon the difference in precedences ac-
cording to the equation:

PiS} = H[V(i) -V(j)], (1)

where V(i) is the precedence strength for stimulus posi-
tion i, and H is some monotone increasing function map-
ping the reals into the interval [0,1]. Reeves and Sper-
ling tested these assumptions using a ' 'quadruple' ,
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Figure 3. The order score, P'IS}, for Subject AR, Target U. Quantity PIS} describes the propor-
tion of trials on which the nWl1leral in position i is reported before the numeral in position j. The
abscissa represents list position j. The curve for each value of i is labeled with that value of i. The
four panels are for the four different presentation rates, as indicated. From "Attentional theory
of order information in short-term visual memory" by A. Reeves and G. Sperling, 1986, Psycho-
logical Review, 93, p. 187. Rel~rinted by permission.

accounted for 98 % of the overall variance in the data.
For the order scores P/Bj, the fit was very close at the fast
rates but was not as good at slower rates [overall, the V(i)
accounted for 94 % of the variance]. Finally, Reeves and
Sperling (1986) argued that the violations of laminarity
could reflect averaging of trials with different precedence
scales and noted that simulations in which trials with the
same V functions but different folding points were aver-
aged produced violations of laminarity typical of the data.

condition on the P /Bj probabilities (Block & Marschak,

1960):

THE ATTENTION GATING MODEL (AGM)

Having demonstrated the utility of the strength model
of precedence in accounting for the Pi and PiS} scores,
Reeves and Sperling (1986) proposed a parsUnonious
description of precedence strengths using an Attention
Gating Model (AGM). The AGM assumes that all stUnu-
Ius items are represented peripherally and that the strength
of temporal-order information in central storage is deter-
mined by two factors: the attention gating function a(t),

P/Bj < PkBl < = > P/Bk < Pial. (2)

This condition should hold for all i, j, k, and 1 for any
choice of the V(i) and H satisfying the constraints previ-
ously given. The mean proportion of quadnllple violations
ranged from 4 % at the fastest rates to 7 % at the slowest
rates. Assuming that response order reflects both the
precedence strengths V(i) and an equal-variance normally
distributed noise component, Reeves and Sperling esti-
mated the seven V(i) for each cell of the subject x ex-
perimental condition design (Figure 4). Ea<:h V(i) was de-
rived from Equation 1 by assuming tI.1at H was a
cumulative normal distribution and then by performing
a Monte Carlo simulation.

The inverted-U shapes of the V(i), based on relative
order scores, are quite similar to the Pi s<:ores based on
the probability of a single item's appearing in the
response. In fact, the predicted item scores, using the V(i),
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Figure 4. The estimated precedence strt~ngths, VIi), for all experimental conditions:
VIi) was obtained by least squares fit to the P/Bj and Pi(l) scores. The abscissa represents
position in the critical set. The abscissa I:abels under the critical set positions give the
absolute list positions, with the top row dt!SCribing the fastest rate and the bottom row
the slowest rate. Data for a given subject aI.e presented in one column, as indicated. Each
panel within a column presents data for tl~e preseJatation rate indicated. Each curve in
a panel represents a different target condit:ion. From" Attentional theory of order infor-
mation in short-term visual memory" by I\.. Reeves and G. Sperling, 1986, Psychologi-
cal Review, 93, p. 191. Reprinted by permission.

and a peripheral availability-or persistence-function,
bi(t), for each stimulus position. The STM activity Si for
the ith item ri at its time of storage is thus the cumulative
central availability of the item's peripheral persistence:

Si = I C» a(w)bi(w)dw. (3)
-C»

These Sj serve the same function in the AGM that the es-
timated precedences V(i), as defmed in Equation 1, serve
for the empirical characterization of Reeves and Sperling's
results. Reeves and Sperling assumed that bi(t) = 1 from
the onset of item ri at time ti to the onset of item ri+l at
time ti+l and bj(t) = 0 at all other times. Thus, by

Equation 3,

SI = I 11+la(w)dw. (4)
I,

By Equation 4, an item's STM activity depends entirely
upon the degree to which the attention gate is open while
the item is being presented. The AGM assumes that there
is neither spontaneous STM decay nor any interaction be-
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tween the STM activities of different item representations.
The STM activity of an item at the time of recall is as-
sumed to equal its strength upon completion of central

storage.
It is convenient to rewrite Equation 4 in a fonD that em-

phasizes that Si is a constant portion of a total integrated
STM activity. After j items have been stored in STM, the
total STM activity is .

JT(tj+J = E Sk = I tJ+I a (w)dw. (5)
k=1 t,

Using this expression, Equation 4 can be written in the
fonD:

s; = T(t;+J-T(t.). (6)

In order to compare the S; values with the analogous quan-
tities in the TOM, we define the nonnalized precedences,

y = T(t/+J -T(t.) (7)
/ T(~)
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Equations 3-7 are true within the AGM for any choice
of the attention gate a(t). Reeves and Sperling (1986) were
able to fit their data by defining a(t) to be a gamma
function: O?

to

qye-t' if t* ~ ()
0 ift*«)

a(t) = (8)
4.~,

where
t* = (t-T)/a. (9)

In Equation 9, the attentional reaction timle, T, is the time
at which the attention gate begins to open; a is a time
scale constant; and (J scales a(t) relative 1:0 the noise dis-
tribution. For each subject, a and (J were chosen constant
across conditions, and a Ttar. was set for each target let-
ter. For Subject AR, the attentional rea~::tion time, T in
Equation 8, was dependent only on the i::hoice of target
letter, so that T = T tar.. For Subjects GL and AK, the at-
tentional reaction time T was assumed to d4~pend upon both
the target and the presentation rate. These two factors
were assumed to have an independent ullfluence on the
attentional reaction time T. Thus, for the:se subjects, the
T in Equation 8 was chosen to satisfy T = Ttar. + Trat.,
subject to the constraint that E T rat. = 0 for each subject.
The model of the data for Subject GL included three T rat.
parameters, and that for Subject AK in,~luded two Trat.
parameters. For each subject, a least sqluares fit to the
PlBj and the Pj(l) scores was obtained, w]ilere Pj(l) is the
probability that the numeral in stimulus position i will be
reported in response position 1. The fits 'were quite good
for the small number of parameters chosi~n. The percen-
tage of variance accounted for, by subje(;t, was 83 % for
AR, 86% forGL, and 89% forAK. Thus, 13,200experi-
mental data points were first reduced to 198 precedence
strength parameters, which in turn were replaced by 20
AGM parameters capable of accounting for at least 83 %
of the variance in the PIB} and Pj(l) performance mea-
sures. Clearly, the AGM provides an elegant and par-
simonious descriptive model of the experimental results.

However, it is worth noting that corllparison of the
AGM's predicted precedences, the Yj in E!quation 7, with
the empirical estimates of precedence, Ule V(i) in Equa-
tion 1, shows distinct trends across pre:sentation order
(Figure 5). In particular, the Yj tend to underestimate the
V(i) for early items and overestimate them for later items.
This difference also tends to become more negative as
presentation order approaches the foldinJ~ point and then
becomes more positive as presentation or(ler increases be-
yond the folding point. In other words, the AGM tends
to underestimate the rate of change in pr'~cedence scores
for early items and overestimate the rate of change for
later items. In the AGM, a single pararrleter, a, is used
to account for the rate of gate opening and the rate of gate
closing; thus, the best fit estimate of a must compromise
between the faster rate of change for early items and the
slower rate of change for later items.

We will use the descriptive AGM as the basis for an
alternative quantitative explanation of the Reeves and
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Sperlmg (1986) data. This will be done usmg the TOM,
in which STM dynamics between the time of central
storage and recall plays a critical role. The principles from
which the TOM was derived illustrate some of the rea-
sons we believe it provides a deeper explanation of theReeves 

and Sperling data than does the AGM. In partic-
ular, the TOM accounts for the decreasing precedence
scores for later items in terms of STM dynamics and the
increasing precedence of early items as also reflecting the
influence of a fast-opening attention gate. This account
is consistent with the apparent difference in rate of change
of precedence strengths for early and later items, which
is not captured by the AGM. In addition, the TOM gener-
alizes to a number of other experimental paradigms in
which temporal-order information in STM is critical,
whereas the AGM does not. For example, the TOM for-
mulation of STM dynamics has been used to analyze data
concerning speech and language recognition (Cohen &
Grossberg, 1986a, 1986b; Grossberg, 1978b, 1986b;
Grossberg & Stone, 1986), free recall (Grossberg, 1978a),
serial verbal learning (Grossberg, 1978b), and predictive
sequences of motor acts (Grossberg, 1978b, 1986b,
1986c; Grossberg & Kuperstein. 1986)

We now characterize laws whereby a list of items can
be stored in STM. We relate the laws that store individual
items in STM to the LTM laws that group, or chunk, theseitems 

into unitized lists. We reQuire that individual items
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Figure 5. Best fit of nomtalized AGM precedence scores, Y" to
empirically derived precedence scores, V(i). Data are for Sub-
ject GL, Target C, rates 9.2 and 4.6 items/second. The abscissa
represents each item's presentation order. The curves represent the
Y, function and the symbols represent the V(i) scores. Precedence
scores for 9.2 items/second are given by the solid curve and the 0
symbols. Precedence scores for the 4.6 items/second condition are
given by the dashed curve and the + symbols. Because the Y, and
V(i) were scaled differently, a least squares fit of the Y, to the V(i)
was perfomted separately for each condition and used to rescale the
V(i).
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THE LTM INVARIANCE PRINCIPLE:
Deriving STM Laws

from an LTM Stability Principle
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be stored in STM in a manner that enables L TM to form
unitized lists in a temporally stable way. Such laws show
how to alter the STM activities of previous items in
response to the presentation of new items so that the repat-
terning of STM activities that is caused by the new items
does not inadvertently obliterate the L TM codes for old
item groupings.

Consider from this perspective learning of the new word
myself, supposing that the words my, self, and elf are al-
ready familiar. We would not wish the L TM codes for
the words my, self, and elf to be distorted or suppressed
just because we are learning the new word myself On
the other hand, the predictive importance of the group-
ings my, self, and elf may be reduced by their temporal
embedding within the list myself Thus, the laws whereby
STM activities over item representations are updated as
new items are processed must enable the new items to
alter the STM activities of previously processed item
groupings without destroying the L TM codes for these
groupings. This constraint on STM coding is therefore
called the LTM invariance principle (Grossberg, 1978a,
1978b). A remarkable consequence of this principle is that
it shows how breakdowns in the encoding of temporal-
order information in STM can be derived from mecha-
nisms that enable L TM chunks to be learned in a tem-
porally stable way.
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The theoretical macrocircuit depicted in Figure 6
(Cohen & Grossberg, 1986a; Grossberg, 1978b, 1986b,
1986c; Grossberg & Stone, 1986) provides a vantage point
from which to review briefly how the L TM invariance
principle is computationally implemented. In Figure 6,
the processing stage A3 stores an STM activity pattern ttiat
encodes both item information and temporal-order infor-
mation. Item information is coded in terms of the
representations that are activated, whereas temporal-order
information is coded in terms of the spatial patterning of
activation across representations. In this way, a single spa-
tial pattern of STM activity across A3 encodes both the
set of items that has been stored (i.e., item information)
and a measure-perhaps inaccurate-of the order in which
the items were stored (i.e., temporal-order information).
As a new item representation in A3 is activated by exter-
nal events, this STM activity pattern is updated to include
the new item in a way that satisfies the L TM invariance
principle.

Stage A4 encodes in STM the sublists, or groupings,
of items across A3 to which the network is sensitive. In
the simplest realization of this idea, a single A4 popula-
tion is activated by an STM pattern across A3, and differ-
ent STM patterns across A3 activate different A4 popula-
tions. In other words, indiv 'ual A4 populations encode
whole lists of items. In more general versions of the idea,
an STM pattern across A3 activates several ~ populations.
Each A4 population encodes a particular sublist of the A3
encoding. The spatial patterning of STM activity across
these A4 populations encodes which sublist groupings of
the whole list are salient to ~ (in particular, the list as
a whole, its most salient parts, and the predictive wholes
of which it forms a salient part). A network A4 whose
STM patterns are capable of representing salient parts and
wholes of the A3 pattern is called a masking field (Cohen
& Grossberg, 1986a, 1986b, in press).

Both prewired featural biases and subsequent lear...ng
experiences help to determine the sublist groupings to
which A4 is sensitive (Carpenter & Grossberg, in press a,
in press b; Cohen & Grossberg, in press; Grossberg,
1986b). In particular, the pathways from A3 to ~ contain
modifiable L TM traces that change as a function of the
STM patterns that A3 experiences. These L TM traces en-
able A4 to react preferentially to familiar sublist group-
ings. The laws for storing individual items in STM at A3
are chosen to guarantee the temporal stability of L TM en-
coding within the A3 -.A4 pathways. We can now state
more precisely how the design of A3 is constrained by the
need to stabilize L TM within the A3 -.A4 pathways.

TheL TM invariance principle states that the spatial pat-
terns of STM activity across A3 are instated and reset by
a sequentially presented list in such a way as to leave the
A3 -.A4 LTM codes of past event groupings invariant.

In order to understand how to implement this rule, it
is necessary to know how the A3 -.A4 L TM traces help
to transform STM activity patterns across A3 into STM
activity patterns across A4. The conditionable pathways
from A3 to A4 define an adaptive filter. In other words,
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FEATURES
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Figure 6. Theoretical macrocircuit involved in processing list items.
Stage A3 encodes both the identity of items (item information) and
a measure of the order in which they were stored (order informa-
tion). Stage A. encodes unitized sublists of items represented at A3
and ill called a masking field. From "Neural dynalnics of word recog-
nition and recall" by S. Grossberg and G. O. Stone, 1986, Psycho-
logical Review, 93, 46-74.
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Although each IL. reflects attentional factors and will vary
according to the task, we can specify the STM reset
parameters "'J in terms of the attentional parameters /J...

THE NORMALIZA nON RULE:
Limited Capacity of 8TM

Expression of the STM reset parameters, (A1j, in terms
of the attentional weights, JI./, is achieved by implement-
ing the STM normalization rule. The STM normalization
rule refers to the fact that total STM strength grows toward
a finite maximum level of activity that is independent of
the number of items being processed. In other words,
STM at the item level A3 is of limited capacity. This rule
is not an independent assumption within the theory.
Rather, it is a property of the competitive STM inter-
actions among the item representations that also give rise
to the LTM invariance principle (Grossberg, 1978a,
1978b). In order to impose the STM normalization rule,
we first derive a convenient equation for the total STM
activity, 8(lj+l)' after the item field has equilibrated in
response to storage of the jth item.

By definition,
j

S(tj+J = E XI (tj+J. (12)
;=1

Using Equation 10 of the LTM invariance principle,
Equation 12 implies that

S(tj+J = UJjS(tj) + ILj' (13)

Equation 13 suggests a functional relationship between
the STM reset parameters UJj and the attentional
parameters ILl. This relationship must satisfy three require-
ments: (1) If,ILj = 0, then UJj = 1: If the attentional weight
ILl for itemj equals zero (i.e., itemj receives no attention
and so produces no STM activity), the total STM activity
should not change due to that item. (2) UJj is a decreasing
function of ,lLj: As the attentional weight ILl is parametri-
cally increased, the STM reset weight UJj is parametrically
decreased. In other words, the greater the attentional
weight ,lLj given to the item currently being stored, the
greater its ability to competitively reset the STM traces
of previous items. This implies that as the attentional
weight ILl increases, previous item codes will be more
strongly inhibited. (3) Given constant vigilance across ex-
perimental trials, UJj covaries with ILj in such a way that
S(tj+J increases monotonically to a finite limit as succes-
sive items are stored.

if node VI in A3 generates a signal SI in the pathway to
node Vj in A4' this signal is multiplied, or gated, by an
L TM trace Zlj before the gated signal S/Z/j can activate Vi'
The sum ~ = E/slz/j of all gated signals is the total in-
put from A3 to Vi- The input pattern (T" T1' ...) deter-
mines which sublist groupings will be stored in STM by
A4' The relative sizes of the signals SI determine the rela-
tive sizes of the inputs ~. Accordingly, in order to pre-
vent new items at A3 from disturbing the L TM coding of
past item groupings, we assume that a new item entering
A3 may alter the absolute sizes of SI for previously active
nodes, but does not alter their relative sizes. In other
words, each new item can multiply, or shunt, the previ-
ous STM activities across A3 by a common multiplica-
tive factor as a new item is stored in STM at A3' Gross-
berg (1978a, 1978b) noted that such a rule could be
implemented by designing A3 as an on-center (coopera-
tive) off-surround (competitive) recurrent (feedback) net-
work undergoing shunting (mass action) interactions.

In order to implement the L TM invariance principle
within the TOM, we consider a sequence of items rl, r1,
..., r" presented at times tl, t1, ..., t", respectively. We
work with the STM activities xl(tj+J for the representa-
tion of item i that obtain just before the rj+1 item begins
to take effect. The LTM invariance principle constrains
the development, during the course of list presentation,
of these STM activities. The STM activities at time tj+1
(the instant that itemj+ 1 begins to take effect) provide
the best estimate of the equilibrated pattern of STM ac-
tivity in response to the jth item in the list. We introduce
the notation ILl = XI(tl+J for the STM activity of the ith
item at the time its STM memory trace is first activated.
Quantity ILl covaries with the amount of attention paid to
the ith item in the list at the time it is presented, with
smaller IL/ reflecting less attention. The thel)ry sharply dis-
tinguishes between the vigilance devoted by a subject to
a stimulus and the amount of attention received by that
stimulus in STM. See Carpenter and Grossberg (1986,
in press b) and Grossberg and Stone (1986) for discus-
sions of this distinction. We also introduce the notation
"'j for the STM reset parameter, which multiplies, or
shunts, the STM traces of all previous items upon entry
of the jth item into STM. These relationships are ex-
pressed ma~ematically by the equation

( 0 ifi >j
xl(tj+J = ILl if i = j (10)

"'jXI(tj) if i < j.

Thus, the activity of each item's STM representation is
the product of a term, ILl' reflecting the attention paid to
each item as it is presented and of shunting parameters,
"'j, which reset STM when each subsequent item is
presented. Recursive solution of Equation 10 leads to an
equation for XAtj+J expressed entirely in terms of these
factors:

RELATING STM RESET TO
ATTENTIONAL PROCESSING

Our computations herein have implemented the simplest
function that satisfies these constraints:

(11)
j

x/(tj+J = /1-/ n "'t, j ~ j.
k=i+1

"'J = 1 -IJ.J (14)

where 0 ~ IJ.j ~ 1. This choice allows us to derive ex-
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Figure 7. Comparison of TOM attentional weights ILi and nonnal-

ized AGM precedence scores Yo. Data shown are for Subject GL,
Target C, rates 9.2 and 4.6 items/second. In the TOM, each item's
strength at storage is given by the 1',; however, due to STM reset,
its strength on retrieval from STM is given by the Yo. In the AGM,
each item's strength does not change after storage and is given by
the Y", The abscissa represents presentation order. The solid curves
represent the y, scores and the dashed curves represent the 1', scores.
The 4..6 items/second condition is indicated by the + symbols. The
9.2 items/second condition is indicated by the 0 symbols.
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DERIV AnON OF ATTENTIONAL WEIGHTS
FROM THE AGM

Equation 19 converts a sequence of attentional weights
(the JLJ into a set of temporal-order precedence scores [the
x/(tJ+J]. The analysis of experimental results requires con-
version of observed response orders into unobserved at-
tentional weights. The model, as developed thus far, can
be used for this analysis without additional assumptions.

We begin by relating the normalized precedence values
Y/ of the AGM, which are defined in Equation 7, to the
analogous quantities within the TOM. If n is the number
of items in the list, then x/(t..+J is the STM activity of
item r/ at the time of read out from STM, assuming that
spontaneous STM decay is not appreciable. We therefore
let

plicit attentional weights fl.} from the precedence scores
predicted by the AGM.

Before implementing these computations, it is neces-
sary to verify that Equation 14 implies the STM normali-
zation rule. By Equations 13 and 14,

S(t}+J = (1-fl.})S(t}) + fl.}, (15)

from which it follows that

S(t}+J S 1, j ~ O. (16)

By rewriting Equation 15 as

1 -S(t}+J = (1-fl.J[I-S(tJ), (17)

it is also readily seen that S(t}+J increases withj as long
as Os fl.} s 1 for allj = 1,2, By Equations 14 and
17,

Xi (t..+.) = Y/ (20)

as a basis for deriving further information about the TOM
from the AGM. First, we compute the attentional weights
as a function of AGM parameters.

In the preceding analysis, we considered two fundamen-
tal constraints on STM processing, the LTM invariance
principle and the STM normalization rule, which result
from an analysis of how a processing system can learn
in a stable fashion in response to a temporal list of events.
These principles allow us to convert a given sequence of
attentional weights, which characterize each item's
strength upon storage in STM, into an expanding spatial
pattern of STM activities that defme the precedence scores
responsible for report order at the time of response. In
the following section, we consider the reverse problem:
how to convert estimated precedences based on observed
responses into estimated sequences of attentional weights.
Further analysis of these empirically derived attentional
weight sequences will then reveal theoretically interest-
ing characteristics of the interaction between STM dy-
namics and attentional gating processes. In particular, con-
version of the AGM precedence scores into our
formulation reveals an unanticipated interaction between
feedforward and feedback processes in the storage of
temporal-order information in STM.
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where

{ Oi-T .f ~'
t; = a- ~ VI. > T (22)

0 If 01 :S T.

The proof is given in Appendix A.
Figure 7 compares the sequence of these 1"; values with

the Y1 at each presentation rate, using the data for Sub-
ject GL, Target C.

Unlike the pattern of precedences Y1, tile pattern of at-
tentional weights 1"1 does not exhibit significant bowing.
In other words, bowing is not a major e:ffect within the
TOM at the times when items are first stored in STM.
The TOM is thus consistent with the exi:~tence of an at-
tention gate that opens more rapidly thaJll does the gate
hypothesized in the AGM. Since XI (t,,+J = YI, the TOM
suggests that much of the bowing effect evolves due to
competitive interactions that reset the STM activities of
item representations when later items are presented. Com-
petitive interactions also account for the decrement in the
attentional weights 1"1 for later items r{o

Function 'YPI is called thefeedforward gain function and
"'I is called the feedback gain function. Function 'YP I de-
ternrines a property of STM activities as items begin to
be stored. We suggest that this function reflects, among
other processes, the opening of an attention gate. Func-
tion "'I, in contrast, determines a property of STM ac-
tivities after they are stored. We suggest that this func-
tion reflects interactions between STM activities that are
already stored. The following properties of these func-
tions support these interpretations: Function PI is (1) a
decreasing function of i; (2) greater than 1; and (3) shift
invariant in item time. Function "'I is (1) an increasing
function of i; (2) less than 1; and (3) shift invariant in real
time.

Examples of the functions PI and "'I, as derived from
fitting Equations 23 and 25 to the TOM's fit to the data
of Subject AR, Target U, are plotted in Figure 8.
Figure 8 also plots each function in real time (t) and in
item time (i) to demonstrate the shift invariance described
by property (3).

Equations 23 and 25 can be better understood by writ-
ing them in a notation that more explicitly exhibits their
dependent variables. Since tj = oj, where 0 is the onset
asynchrony, Equation 23 can be rewritten as

-6XI (oj) = ea N(i, T ,a,o)xl-t (oj), (26)

STM ONSET AND STM RE:SET

The distinct effects of attention switching and of STM
interactions on temporal-order information can be better
seen through the S1M onset equation,

Xi(tj) = 'YPiXi-l (tj), j > i, (23) where

Vi = N(i,T,a,o); (27)
and-$'Y = ea, (24)

Xi(o(j+l» = O(j,r,a,O)Xi(Oj), (28)
where

"'j = D(j,T,a,o). (29)

OPENING OF THE A17ENTION GATE

Figure 9 schematizes how the shift invariance in item
time of N(i,T ,a,o) interacts with e~to control whether
correct temporal-order information or folding will occur.
By Equation 26, correct temporal-order information (an
STM primacy gradient) occurs for items r'-l and r, such
that

and the STM reset equation,

Xj(tj+J = UJjXj(tJ, j > i. (25)

The STM onset equation describes the relative activi-
ties, Xj(tJIXj-l (tJ, of the STM representations correspond-
ing to successive items rj-l and rj at all times tj after the
items are stored in STM. The equation says, that these rela-
tive activities equal a quantity "(Vj that is independent of
t}- In other words, the relative advantage (Ir disadvantage
of items rj-l and rj in STM is determined: by the time rj
is stored and does not change thereafter..

The STM reset equation describes the relative sizes,
Xj(tj+JIXj(tJ, of the STM activities corres~)nding to a sin-
gle item, rj, at successive times t and t+]l after the item
is stored in STM. The equation says thalt these relative
activities equal a quantity, UJj, that is inde~pendent of the
item rj. In other words, after items are stored in STM,
a new item resets all their stored activitie:s by a constant
multiple, UJ}- The STM reset equation reallizes the LTM
invariance principle, as in Equation 10.

The meaning of Equations 23 and 25 resides within two
gainfuncuons, "(Vj and UJj, whose forms are derived by
fitting Equations 23 and 25 to the AGM. Such a fit dis-
closes some remarkable and unexpected properties. Be-
fore describing these properties, we intro<luce a physical
interpretation of Equations 23 and 25 whilch the proper-
ties are used to support and refine.

-8

eaN(i,7,a,o) < 1. (30)

Reversed temporal-order information (an STM recency
gradient) occurs for items rl-1 and rl such that

-8

eaN(i,7,a,o) > 1. (31)

Folding occurs if the feedforward gain function
e~(i,7,a,o) passes through the value 1 at an index
i > 1.

As presentation rate decreases, the onset asynchrony 0
increases. Consequently, N shifts to the left and e& in-
creases, yielding curves such as those in Figure 9. By
Equation 30, primacy occurs if N < e&; by Equa-
tion 31, recency occurs if N > e&. Figure 9 indicates

.
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'33-

Figur~~ 8. The feedforward gain, Vi' feedback gain, "'i' and their sll1ift invariance properties. All data are for Subject AR, Target U.
The four curves in each graph represent the four presentation rate condition~. (a) The feedforward gain function, Vi' is plotted against
the onset asynchrony measured in seconds. (b) The Vi functions are plotted against onset asynchrony measured in number of items ela~
(item tilne) and have been shifted onto the curve for 4.6 items/second. (c) The feedback gain function, "'i' is plotted against the onset
asynchrony measured in seconds. (d) The "'i have been shifted in real time onto the curve for 4.6 items/second.

before even the first item's STM storage equilibrates.
Then Equation 23 reduces to

X/(ti) ~ 'YXi-l (ti) (32)

for all items, which shows that correct temporal-order in-
formation obtains if gate opening does not prevent full
storage of all the items. The proof that p/ is shift invari-
ant in item time is provided in Appendix B. Function p/ 3
N(i,T,a,a) is a function of i and the variables a/a and
T/a, which are the parameters a and T scaled in item time:

(33)

where

that the folding point moves toward the beginning of the
list as 15 increases. When it is smaller than the first item
to be processed, correct temporal-order information
prevails.

The shift invariance of N in item time implies that
processing of items is attenuated until a later list position
when 15 is small. The term "( = e~ describes the effect
of an integration process that takes place in real time
within the duration 15 between successive items. More
items can be crowded into a constant duration when 15 is
small than when 15 is large. Correspondingly, "(-1 = e&
in Figure 9 decreases as 15 decreases, with the effect that
brief presentation of many items in a fixed duration tends
to cause folding. In effect, the STM activities of early
items relative to later items are weakened if they are

presented very quickly.
This effect may be related to the opening of an atten-

tion gate by considering the limiting case in which N ~ I
for all items. In other words, choose 15 so large that N ~ 1

1
.1l-e-v (34)P(u,v) = u -v -
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Equations 37 and 38 say that, up to a shift in time scale,
a fixed amount, n, of STM reset is determined by con-
tinuous STM integration for the duration T, whether this
processing has been divided among many items, each in-
tegrated for a brief time as in Equation 37, or few items,
each integrated for a longer time, as in Equation 38. When
many items are presented quickly, each item can reset
previous items less, but the cumulative effect of storing
a fixed total STM activity is to generate a fIXed amount
of reset. Thus the STM reset equation embodies a type
of Bloch's Law trade-off between number of items and
processing time to describe how cumulative STM activity
regulates subsequent STM storage and reset.

This interpretation is strengthened by consideration of
the hypothesis,-

40

Items
Figure 9. illustration of the interaction of N and 'y-1 to determine

folding versus correct temporal order. When N is greater than 'Y-1,
a recency effect obtains. When N is less than 'Y-1, III primacy effect
obtains. Thus, the intersection of N and 'Y-1 indicates the point at
which folding occurs. For slow presentation rates (Illashed curves),
'Y-1 is large and passes over the N curve without inte:rsecting it. This
implies correct report of temporal order and no folding. For fast
presentation rates (solid curves), 'Y-1 is smaller and intersects the
N curve, so that folding occurs with the item immediately preced-
ing the intersection (in this case the second item) as th,e folding point.

STM RESET MEDIATED BY
INTER-ITEM FEEDBACK INTERACTIONS

ILj = l-(I1j (39)

that was made in Equation 14. As (I1j increases toward 1,
less STM reset can occur. Correspondingly, by Equa-
tion 39, new items cannot be well stored in STM.

A more detailed interpretation of Equation 39 can be
given by noting a remarkable property of the ILj functions
that was empirically derived from the data. We believe
that this property provides additional evidence for the neu-
ral existence of the ILj process, and thus for the STM reset
process that converts ILj values into Xj values.

In particular, the following significant linear trend was
found for later items in the critical set:

In ILj = -m6j + b6. (40)

The slopes m6 and b6 can themselves be fit as linear func-
tions of the onset asynchrony 0:

Equation 25 and its more precise counterpart, Equa-
tion 28, describe the reset of STM that is driven by new
items competing for limited-capacity STM resources. This
conclusion can be supported in several wa~'s:

The gain 0 in Equation 28 increases toward 1 as the
item j increases. The explicit equation for !] is derived
in Appendix A. Whenj ). I, STM is hardly reset by a
new item, because the limited capacity of STM is almost
fully utilized. The approximate shift invariance of
0 (j,T,a,o) in real time (Figure 8) also clarifies the STM
reset interpretation. Shift invariance implies that for ev-
ery pair of onset asynchronies (01 and o~), there exists a
shift (>.) such that

Figure 10. In ILl as a function of j (presentation order). Data are
for Subject AK, target square. Best fit regression lines, based on
the final three items in each presentation rate condition, are com-
pared with the actual In ILl values, represented by the symbols. Each
regression line is labeled with the presentation rate, in items/second,
of the condition it represents. The symbols representing the In ILl
are assigned to presentation rate as follows: 0, 5.6 items/second; 6,
8.9 items/second; +, 9.2 items/second. A detailed description of the
regression analysis for these conditions is given in Table 3.

08, (t-).) = 082 (t) (35)

for all times t at which both functions are defined. Con-
sider a time T that can be written in the foun T = ho,
= h02 for appropriate choices of indices h and h. In par-
ticular, suppose 0, < 02 and h > h. Then we can defme

0 = 08,(T-).) = 082(T). (36)

Hence, by Equation 28,
x/(01(jl+1)-).) = OX/(OJ1-).) (37)

and

(38)X/(O2 (j2 + 1» = Ox/(oJJ.
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ma = mo-c, COMPARISON WITH THE GAGM MODEL(41)
and

ba = bo-d, (42)

where c .= O. Setting c=O, we find that

In/1-J ~ -moj + bo -d. (43)

lllustrative plots of estimated In /1-J values against j are
shown in Figure 10. A detailed description of the regres-
sions is provided in Appendix C. Deviations from this log
linear function are more pronounced for early i1:ems and
faster rates, and so are consistent with the openilng of an
attention gate. Note that, at larger values of 0, the first
significantly attended item whose /1-J is stored in STM tends
to be larger. In other words, this item has mort: time in
which its activity can be integrated in STM. On 1he other
hand, the slope -mo of In /1-J as a function of j tends to
be steeper at larger values of o. Thus, a fixed nulmber of
items can interfere more with subsequent STM storage
of the next item if each of these items has had more tim~
to be stored in STM.

STM ONSET AND STM RESET
INTERACT TO DETERMINE

TEMPORAL-ORDER INFORMA nON

The nature of the interaction between STM onset and
reset factors in determining temporal-order information
maybe seen by combining Equations 10, 23, alld 25 to
show that

/1-i = 'YPiUJi/1-i-l. (44)

Equation 44 follows by letting j = i + 1 in Equation 23:

Xi(ti+.) = 'YPiXi-l (ti+.); (45)

rewriting Equation 25 as

Xi-l (ti+.) = UJiXi-l (t;); (46)

combining Equations 45 and 46 to find

Xi(ti+.) = 'YPiUJiXi-l (t;); (47)

and using Equation 10 to rewrite Equation 47 as
Equation 44.

Equation 44 shows that the processes that cause suc-
cessive items ri-l and ri to generate different activities /1-i-l
and /1-i when the items are first stored in STM include both
STM onset factors 'YPi (notably attentional gatiJllg) and
STM reset factors UJi (notably competitive feedba(:k inter-
actions among active STM representations). The STM
reset mechanism synchronizes the STM activities of suc-
cessive items by transforming /1-i-l into the STM activity
Xi-l (ti+.) = UJi /1-i-l one time step later. The STM onset
mechanism in Equation 45 shows how attentional gating
when /1-i is being stored can cause further differences in
the STM activities of successive items.

rather than via the TOM equation

j
Xi(tj+J = p.i n (&)". (11)

k=i+1

Thus, the GAGM supplements the item measure p.i with
the competitive order measure fJp.iEr:~p.k. Unlike in the
TOM, in the GAGM, once the activity level Xi of item i
is established, it is not updated as additional items are
stored in STM. Thus, the GAGM assumes that each of
the activities p.i is independently stored in STM, after
which all stored items compete in a feedforward fashion
to determine the activities Xi at the next processing stage.
In contrast, the TOM posits that item representations are
activated at a previous processing stage before interact-
ing with each other at the next processing stage via afeed-
back competitive interaction. This feedback process en-
ables both previously stored activities and newly presented
items to update their STM activities by struggling for a
limited-capacity total STM resource.

One major difference between the models is that a
recency gradient in STM, as in a free-recall paradigm,

This article suggests how attentional processes can
modulate the temporal unfolding of competitive inter-
actions among active STM representations. The combined
effects of both processes give rise to temporal-order in-
formation in STM that may not veridically encode the ex-
ternal order of item presentation.

In our analysis of the Reeves and Sperling (1986) data,
we have fit the TOM parameters to the AGM in order
to analyze whether, indeed, opening of an attention gate,
combined with competitive shunting interactions among
active STM representations, can provide a conceptually
better explanation of these data than can the AGM. Several
analytic results strongly support this conclusion. These
include the unexpected discovery of the feedforward gain
function 'Y"i and the feedback gain function "'I, the unex-
pected discovery of the shift-invariant properties of these
functions, the confirmation of the expected property that
the attention function ILi is monotone decreasing rather
than bowed, and the unexpected discovery of the Bloch's
Law trade-off between number of items and processing
time that is shown by the form of ILi in Equation 40 as
a function of experimental parameters.

In addition to their analysis of the AGM, Reeves and
Sperling (1986) also sketched a Generalized Attention
Gate Model (GAGM) that is closer in spirit to the TOM.
As in the TOM, the GAGM postulated that order infor-
mation is regulated by a shunting competitive interaction.
Using the notation introduced herein, the GAGM mixes
item and order information via the equation

i-I
Xi = ILI(l-{3 E ILk)' (48)

k=1



464 GROSSBERG AND STONE

can only be generated by the GAGM if successive activi-
ties p.. increase to offset the growing effect of the ac-
cumulating inhibition {Jp./ E ~~~ p.". This would seem to re-
quire that increasing attention be paid to later list items
to generate a recency gradient in a free-recall study, which
seems not to be the case. In contrast, ,a feedback com-
petitive interaction can generate a recency gradient in
STM without making this assumption (Grossberg, 1978a,
1982). The invariance properties and Ihe Bloch's Law
properties derived from the TOM also seem to argue for
a feedback competitive process in the control of temporal-
order information. In any case, both models point to the
importance of shunting competitive processes in the regu-
lation of temporal-order information, and future analyses
will doubtless disclose finer details than either model has
yet articulated within this general class of competitive
mechanisms.

As indicated above, in other applications of the TOM,
where the form and time scale of attention switching are
not themselves the processes under analysis, the hypothe-
sis that constant attention is paid to stimulus materials does
not lead to the folding of temporal-order information
through time. Instead, Grossberg (1978a, 1978b, 1982)
analyzed situations in which a recency gradient in STM,
a bow in STM (Figure la), or a primacy gradient in STM
(Figure Ib) are the only outcomes that can occur.
Moreover, under these circumstances, the list position at
which the STM activity pattern begins to bow does not
change as more list items are presente:d. This strong
property is a consequence of the L TM invariance princi-
ple (see the section entitled "STM Onset and STM
Reset"). Thus, one can define the transient memory span
of a list to be the list position at which an STM bow be-
gins to develop in a given experimental setup. Measure-
ment of the transient memory span is to be desired in
paradigms that provide relatively pure measures of STM
processing. In general, measurement of the transient
memory span is complicated by the fact that STM and
L TM processes often interact, as in generating the bowed
curve observed in free-recall experiments (Atkinson &
Shiffrin, 1971; Baddeley & Warrington, 1970; Hogan &
Hogan, 1975). Circumstances have been characterized
during which the transient memory span is shorter than
the more familiar immediate memory span. A model of
STM and L TM interactions has also been developed
wherein the contribution of both types of factors to the
observed temporal-order information can, in principle,
be disentangled.

In the present article, we have assumed that each item
code is represented by a single population activity x/(t)
through time, since the data do not probe the internal or-
ganization of an item's STM representation. Such c~n-
cepts as the L TM invariance principle easily generalIZe
to consideration of item representations that are distributed
among several unequally activated populations. In this
general case, each new item again shunts the STM ac-
tivity of all previously activated populations at level A3
without regard to which combinations of these popula-

tions possess unitized list codes at the next processing level
A4 (see the section entitled "The LTM lnvariance
Principle").

Breakdowns of temporal-order information in STM are
traced in all these cases to biological processes that pos-
sess a manifest adaptive value. The competitive STM in-
teractions are designed to enable stored STM patterns to
be stably encoded in LTM. Factors such as attentional
gating have also been related to stabilization of L TM en-
coding (Carpenter & Grossberg, 1986, in press a, in
press b; Grossberg, 1980, 1984). The TOM thus suggests
that even experimental paradigms that provide relatively
pure measures of STM processing, such as the remark-
ably flexible and informative Reeves and Sperling
paradigm, indirectly probe brain mechanisms that are
designed to enable us to learn about the world in a stable
fashion. This insight suggests the value of developing new
experimental paradigms in which relatively pure measures
of STM processing can be taken before and after subjects
are trained to achieve different stages or types of learn-
ing. Such direct manipulations of STM and LTM inter-
actions may provide important new information concern-
ing the adaptive principles that govern brain design.
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(All)11-1 = .
1- Ej.I+1 ~

By Equation AlO, this is true for the initial condition i = n-2.
Using Equation A6, we now show that the case for 11-1-1 follows

from the case of 11-,:

APPENDIX A
Computation of Attention Weights and STM Reset Weights-~ -

Theorem 1 (Equations 21 and 22) expresses the attentional
weights IL" as a function of the AGM parameters 6, IX, r:



466 GROSSBERG AND STONE

where/1.,-1 =

P(~,'1) = ~-'1- (B2)(A12)

Multiplying the thirdtenn by (1 -E7='+1 ~)/(l- E7="" ~) and
cancelling the 1'; and 1 -E7='+1 ~ tenIlS that appear in the numer-
ator and denominator, we obtain

Y,-I Y,-I (A13)
l-E7='+I~-Y' l-E7=,~ '

which is Equation All for the case IL,-I.
Note that the relationship between ILl and the ~ given in Equa-

tion A 11 derives from the L TM invariance principle and the
relationship between ILl and CIJ, given by Equation A:5. Equa-
tion All will hold for any arbitrary set of ~. In other words,
Equation All does not compute the pattern of temporal-order
infonnation in STM at the time of readout. Rather, it provides
a method for converting an arbitrary set of observed pl1~edence
scores into a sequence of attentional weights, ILi.

To finish the proof of Theorem 1, we need only s.ubstitute
the precedence scores ~ derived from the AGM into Equa-
tion All. Setting the attention gate function, a(CIJ), in Elluation 5
equal to the gamma function assumed by Reeves and Sperling
(Equations 8 and 9) gives Y, as

--::Il-e-.and

/Li-1 = =

,-,~ = rl.~,TJ) -rl.~~,TJ~) I.DI)

(AI4) that is independent of 1'. In other words, a change in the
paranleters T, a, f> shifts the entire curve in item time by the
predicted anlount P(~,TJ)-P(~*,TJ*). From Equation Bl, the

(AI5) equation
so that

Y, = (1 +t:)e-tr -(1 +t:+.)e-t:..

with t~ defined as in Equation A2. Likewise, i+l-P (i' i)
Pi = N(i,T,a,o) =

(B8)
i-P(~'~)

(Equation 33) follows immediately.
The inverse function (Equation Bl) is derived from the defi-

nition (Equation 23) of PI:

n
E Yj = (l+t*I.,)e-tr"-(I-t:.,)e-t:',. (AI6)

j-i+1

Theorem 1 (Equation AI) follows from substitution of Equa-
tions AIS and Al6 into Equation All.

Using Equation AS, "'I can also be expressed in tenDS of the
AGM parameters as a corollary of Theorem 1. By Equation Al
and Equation AS,

x,(tj)
(B9)"1"1 = Xl-l (Ii) , j > i,

where* .
(1 +ti)e-tl -(1 +ti+l)e-tl+l"'I = 1 -* *

] , (AI7)
1-[(1 + ti+l) e-tl+l -(1 +ti+l)e-t..+l

which implies

1-[(1 +ti)e-t~ -(1 +1:+1) e-t:+I]
(A18)"'I = 1-[(1 +tT+l)e-t/+l_(l +t:+1)e-t..+l] .

-6"r = ea. (BI0)

Lettingj = n + 1 in Equation B9 and using Equation 20 to con-
vert into the AGM precedences Y" we obtain:

Y,"r"1 = -;;- .(Bll)
~I-l

By Equation A15 of Appendix A,

(1 +tr)e-r, -(1 +fI+l)e-t~+1"r"1 = (1 +fI-l )e-t;-I-(1 +fI)e-t; .(B12)

APPENDIX B
Shift Invariance in Item Time

The definition of t~ in Equation 22 implies that

.() .t'+1 = -+t,
a (B13)

and thus that

In order to prove the shift invariance in item timc: of P, =
N(i, T ,a,o), we will derive the inverse function of P" namely

1i = _ 1 +P(~,1/), (B1)P,-
.-6. .e-t'+1 = eae-t, = 'Ye-t" (B14)

Tt = "6' (B3)

" = f. (B4)

Shift invariance follows from Equation BI as follows. Let one
or more of the parameters T, a, 6 (especially 6) be changed to
new values T*, a*, 6*, so that P(t",) is replaced by P(~*",*)
in Equation B I. Then given any fixed value P, = P, the indices

Ii = _ I +P(t",) (B5)P-

and

Ii* = -+P(~*",*) (B6)
p-1

corresponding to the different parameter choices shift by an
amount

".. ..,.., .., , ~~,
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APPENDIX C
Computation of In /J.J Regressions---

Using Equations BI3 and B14, all tenDS t7+1 and t7-1 in Equa-
tion BI2 can be expressed in tenDS of t7. Then cancelling the
e-t~ terms from the numerator and denominator leads to

(I +t7)-(1 +t7+&)-y-yp, = (l+t7~)-y-l_(I+t,*). (815)

Further simplification is achieved by combining the I + t7 tenDS
on the right and dividing the left and right sides of Equation BI5

by-y:

(I +ti")(I-'Y)-!if"I = (I +tl')(I-'Y)~ .(B16)

Rearranging Equation BI6 to get all tr tenDS on the left-hand
side leads to

0(1 +ti")(I-'Y)(II,-I) = a (II/-'Y). (BI?)

By dividing both sides of Equation BI7 by (I-'Y)(II,-I), re-
writing the ternlll,-'Y as 11,-1 + 1-'Y, and dividing wherev(~r
possible, we obtain

Because the attention gate introduces deviation from the
log linear p. functions, regressions were performed for the
final three items in each condition, where attention gating has
the least impact.

The index j is based on an item's position relative to the
fmal item in the list. This indexing method has several
advantages. First, indexing from the first item to receive
attention is complicated by the possibility that this first item
can receive so little attention that it has essentially no impact
on subsequent item storage and is virtually undetectable in noise
(cf. condition AR, Target U, rate 13.4 in Table 1). In other
words, indices anchored at the first attended item are sensitive
to decisions about how much attention constitutes "significant"
activation of an item's code. Second, when the indices are an-
chored at the final item in the list, a significant linear trend of
the intercept, b., as a function of onset asynchrony, fI, emerges.
This is not the case when the indices are anchored at the first
attended item.

Tables 1-3 present the regression analyses for subjects AR,
GL, and AK, respectively. For each target x presentation rate
condition, p., lnp. and the best fit to lop., denoted by loji., are
given for each item. The regression equation, correlation coeffi-
cient, and significance level are given for each condition. The
regressions of m. and b., as a function of onset asynchrony, are
given for each target condition.

0 1 1t7 = - ( --- ) -1. (BIS)

a 11,-1 I-'Y

Finally, we substitute for fl. using Equation 22 and move all
terms on the left except j to the right:

1 T a I
j = -+ -, (B19)

11,-1 0 0 1-'Y

which is the same as the inverse function in Equation B 1.

Table 1
Subject AR, Target U

4.6 items/sec (d = .2174*) 6.9 items/sec (6=.1449*)

j In/L Inp j In/L Inp

-4 -0.0150 1.0123 -4 -0.0950 0.2671

-3 -0.4853 -0.3119 -3 -0.6450 -0.5920

-2 -1.6487 -1.6361 -2 -1.4559 -1.4511

-1 -2.9352 -2.9603 -1 -2.3007 -2.3102

0 -4.2971 -4.2845 0 -3.1741 -3.1693

Infl= -1.3242j-4.284S
'Y= -0.99986 p < .05

Injl= -0.8591j-3.1693
"(= -0.99995 p < .01

9.2 items/sec (6=.1087*)

j InJL Injt

-5 -1.3438 0.4668

-4 -0.3109 -0.1745

-3 -0.8336 -0.8158

-2 -1.4588 -1.4571

-I -2.0951 -2.0984

0 -2.7414 -2.7397

In,L = -0.6413j-2.7393

'Y = -0.99999 p < .01

13.4 items!sec (8= .0746*)

j Inp. Infi.

-5 -5.9933 -0.0851

-4 -1.0578 -0.5064

-3 -0.9982 -0.9278

-2 -1.3516 -1.3491

-1 -1.7655 -1.7705
0 -2.1943 -2.1918

Inli = -0.4213j-2.1918

"y = -0.99995 p < .01

slopes (m) versus ~ intercepts (b) versus ~
~ .0746 .1087 .1449 .2174 ~ .0746 .1087 .1449 .2174
m -0.4213 -0.6413 -0.8591 -1.3242 b -2.191 -2.7393 -3.1693 -4.2845
m= -6.3069~+0.04881 b= -14.4969~-1.1189
r=-.99993 p < .01 r=-.99899 p < .01

"Seconds/item.
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Table 2
Subject GL, Target C

4.6 items/set (~ = .2174*) 6.9 items/sec (~=.1449*)

j In" Infi j In" Infi

-5 -0.3061 1.3795 -5 -0.3167 I 0.4174
-4 -0.0619 0.2843 -4 -0.3704 I -0.2971

-3 -0.9012 -0.8110 -3 -1.0331 -1.0115

-2 -1.9141 -1.9062 -2 -1.7285 -1.7260
-I -2.9857 -3.0015 -I -2.4353 -2.4404

0 -4.1046 -4.0967 0 -3.1574 -3.1549

Infi= -1.0953j-4.0967 lnfi= -0.7145j-3.1549
r=-.99992p < .01 r=-.99998p < .01

9.2 items/set (~=. JI087*) 13.4 items/sec (~= .0746*)

j In/l Infi j In/l lnfi

-5 -1.0283

-4 -0.5549

-3 -1.0076

-2 -1.5275

-I -2.0548

0 -2.5867

Inp.= -0.5296j-2.5859

r < -.99999 p < .01

0.0621

-0.4675

-0.9971

-1.5267

-2.0563

-2.5859

-4 -1.7117

-3 -1.2780

-2 -1.4686

-1 -1.7719

0 -2.1081

Inl1=-0.3197j-2.1026

r=-.99956p < .05

-0.8236
-1.1434

-1.4631

-1.7829

-2.1026

slope (m) versus 6 intercept (b) versus 6
6 .0746 .1087 .1449 .2174 6 .0746 .1087 .1449 .2174

m -0.3197 -0.5296 -0.7145 -1.0953 b -2.102 -2.5859 -3.1549 -4.0967
m= -5.38026+0.0691 b= -14.00026-1.0754
r=-.99939p < .01 r=-.99920p < .01

*Seconds/item. i

Table 3
Subject AK, Target Square

5.6 items/set (0 = .1786*) 6.9 items/sec (0= .1449*)

j InIL In[J. j InIL In[J.

-5 -1.3653

-4 -0.1573

-3 -0.7703

-2 -1.5096

-1 -2.2688

0 -3.0479

Injl= -0.7692j-3.0446
r=-.99997p < .01

0.8012
0.0320

-0.7371
-1.5063
-2.2754

-3.0446

-5 -0.3016

-4 -0.3686

-3 -0.9760

-2 -1.6001

-I -2.2249

0 -2.8566

In[L= -0.6283j-2.8555
r=-.99999p < .01

0.2858

-0.3425

-0.9707
-1.5990

-2.2272
-2.8555

9.2 items/set (6= .1087*)

j In 1£ Injl

-5 -0.6321 -0.3055
-4 -0.8060 -0.7739

-3 -1.2464 -1.2423

-2 -1.7111 -1.7107

-1 -2.1784 -2.1791

0 -2.6479 -2.6475

Injl= -0.4684j-2.6475
r < -.99999 p < .01

slope (m) versus 0 intercept (b) versus 0
0 .1087 .1449 .1786 0 .1087 .1449 .1786
m -0.4684 -0.6283 -0.7692 b -2.6475 -2.8555 -3.0446
III = -4.30470 -.0018 b = -5.68180-2.03065

:"_:~~"'~/~:~ p < .05 r = -.99998 p < .01 I!

*Seconds/item. I

(Manuscript received January 31, 1986;
revision acceDted for Dublication May 26, 1986.)


