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Data and models about recognition and recall of words and non words are unified using a real-time
network processing theory. Lexical decision and word frequency effect data are analyzed in terms of
theoretical concepts that have unified data about development of circular reactions, imitation of novel
sounds, the matching of phonetic to articulatory requirements, serial and paired associate verbal
learning, free recall, unitization, categorical perception, selective adaptation, auditory contrast, and
word superiority effects. The theory, called adaptive resonance theory, arose from an analysis of how
a language system self-organizes in real time in response to its complex input environment. Such an
approach emphasizes the moment-by-moment dynamical interactions that control language devel-
opment, learning, and stability. Properties of language performance emerge from an analysis of the
system constraints that govern stable language learning. Concepts such as logogens, verification, au-
tomatic activation, interactive activation, limited-capacity processing, conscious attention, serial search,
processing stages, speed-accuracy trade-off, situational frequency, familiarity, and encoding specificity
are revised and developed using this analysis. Concepts such as adaptive resonance, resonant equilibration

of short-term memory, bottom-up adaptive filtering, tQp-down adaptiveteml'late matching, competitive
masking field, unitized list representation, temporal order information over item representations,
attentional priming, attentional gain control, and list-item error trade-off are applied.

1. Role of Learning in Word Recognition

An explosive outpouring of data during the past two decades
has documented many aspects of how humans process language
in response to visual and auditory cues. With the data have arisen
a number of conceptual frameworks and models aimed at in-
tegrating data from individual experimental paradigms and sug-
gesting new experiments within these paradigms. A complex
patchwork of experiments and models has thus far organized
the data into a loose confederation of relatively isolated data
domains. The time is ripe for a synthesis.

A parallel line of theoretical development over the past two
decades has begun to achieve such a synthesis (Grossberg, 1980,
1982b, 1982c, I 986b, 1986c; Grossberg & Kuperstein, 1985;
Grossberg & Mingolla, 1985). In this article the theory's prin-
ciples and mechanisms are used to explain some challenging
data about letter and word recognition and recall. Alternative
models of letter and word recognition and recall are also reviewed
and discussed. The theory's principles and mechanisms arose
from an analysis of how behaving individuals can adapt in real

time to environments whose rules can change unpredictably. Only
a few principles al1d real-time mechanisms are needed to unify
a large data base. We believe that the unifying power of the theory
is due to the fact that principles of adaptation-such as the laws
regulating development, learning, and unitization-are funda-
mental in determining the design of behavioral mechanisms.
This perspective suggests that the lack of a unifying account of
the data base is due not to insufficient data quality or quantity
but to the use of conceptual paradigms that do not sufficiently
tap the principles of adaptation that govern behavioral designs.
Such adaptive principles are often called principles of self-or-
ganization in theoretical biology and physics (Basar, F1ohr, Haken,
& Mandell, 1983).

Many of the information processing models that have been
suggested during the past two decades have ignored principles
of self-organization. In models in which learning was included,
the learning rules and the information processing rules were
usually introduced as independent hypotheses. We suggest that
the linkage between learning and information processing is more
intimate than these models suggest. A growing appreciation of
this close linkage is suggested by experiments that demonstrate
that five or six presentations of a pseudoword can endow it with
many of the identification properties of a high-frequency word
(Salasoo, Shiffrin, & Feustel, 1985). Such an intimate linkage
was also evident in classical paradigms such as serial verbal
learning (Underwood, 1966; Young, 1968), wherein the func-
tional units, or chunks, governing a subject's performance can
change in a context-sensitive way from trial to trial. The great
successes of the 1970s in exploring information processing par-
adigms made it possible to temporarily ignore vexing issues con-
cerning dynamically changing functional units, but the price paid
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language processes, notably to processes governing auditory fea-
ture detection, analysis by synthesis, matching phonetic to ar-
ticulatory requirements, imitation of novel sounds, word super-
iority effects, temporal-order information over item repre-
sentations in short-term (or working) memory, and list chunking.
The several design principles that are used to determine the ar-
chitecture of each processing stage are also reviewed.

With both mechanistic and organizational processing concepts
in hand, we turn in Section II to a detailed analysis of the lexical
decision data of Schvaneveldt and McDonald (1981). We show
how these data are clarified by a property of the theory called
the list-item error trade-off This new trade-off is closely related
to the speed-accuracy trade-off The analysis considers the mo-
ment-by-moment influence of related, unrelated, and neutral
word primes on subsequent recognition of word and nonword
targets under mask and no-mask presentation conditions. The
analysis clarifies how unconscious processes can strongly influ-
ence the course of recognition (Marcel, 1980; MacKay, 1973).

Sections 12-16 illustrate how the theory can explain a different
type of word recognition and recall data. We analyze data con-
cerning the recognition of prior occurrence, familiarity, situa-
tional frequency, and encoding specificity, such as that of Mandler,
Tulving, Underwood, and their collaborators. We note problems
within the empirical models that have arisen from these data
and indicate how our theory overcomes these problems. This
synthesis of several domains of recognition and recall data il-
lustrates the explanatory power of processing concepts that have
been derived from an analysis of language self-organization.

We now turn to a description of several of the most important
word recognition models and representative data upon which
they were built. We recognize that many variations are possible
within each framework. Our critique identifies core problems
with certain types of models. We acknowledge that variations
on these model types may be devised to partially overcome these
core problems. Our critique suggests that any improved model
must deal with these problems in a principled and uncontrived
fashion. At the present time, these models do not seem to con-
tain any principles that naturally overcome the problems.
Then we show how our theory deals with these problems in a
principled way.

2. Logogens and Embedding Fields

has been the fragmentation of explanatory concepts concerning
this important data base.

To deeply understand word recognition and recall data, one
needs to analyze the computational units that subserve speech,
language, and visual processing. One needs to consider how these
computational units acquire behavioral meaning by reacting to
behavioral inputs and generating behavioral outputs, how a par-
ticular choice of computational units determines a model's pro-
cessing stages and interactions between stages, and how such
concepts are supported or challenged by functionally related data
other than those under particular scrutiny. All the while, one
needs to explicate all the hidden processing assumptions that go
into a model and to test their plausibility and ability to arise
through self-organization in a stable fashion.

The organization of the present article reflects the multifaceted
nature of its task. Sections 2-5 review some of the main models
and empirical concepts that have been used to explain word
recognition data. The logogen model, the verification model, and
the Posner and Snyder model are reviewed using concepts such
as automatic activation, limited capacity attention, serial search,
and interactive activation. Experimental evidence is cited that
suggests the need for multiple processing stages in whatever model
is chosen. Internal and predictive limitations of these models are
noted to prepare for a resolution of these difficulties using our
theoretical framework.

Section 6 begins the exposition of adaptive resonance theory
with a discussion of the relations among the theory's computa-
tional units, its processing stages, and its mechanisms. These are
network mechanisms whose interactions define the theory's pro-
cessing stages and give rise to its computational units. The com-
putational units are spatial patterns of short-term memory ac-
tivation and of long-term memory strength. The computational
properties of these units are emergent, or collective, properties
of the network interactions. These interactions do not include
serial programs, algorithms, or cognitive rule structures. In-
stead, the network as a whole acts as ifintelligence is programmed
into it.

The network's emergent computational properties are not ad-
equately described by the familiar metaphors of symbol manip-
ulation and number crunching. The spatial pattern units are
concrete yet indivisible entities that are capable of coding highly
abstract context-sensitive information. Breaking such a pattern
down into its constituent parts destroys the pattern's contextual
information and its behavioral meaning.

Many possible theories use spatial patterns as their compu-
tational units. Section 7 describes the main mechanisms that set
apart the present theory from possible alternatives. Just a few
mechanisms are needed, despite the theory's broad predictive
range. Section 8 shows how these mechanisms can be used to
clarify fundamental concepts found in other models, such as
attention, limited capacity, and processing stage. Section 9 goes
on to show how the distinction between attentional priming and
attentional gain control can further clarify concepts of automatic
spreading activation and conscious attention.

On the basis of these general ideas, we describe the theory's
hierarchical organization in Section 10. This discussion indicates
how the theory's computational units and stages differ in critical
ways from those used in other theories. We also clarify how word
recognition and recall are related to other types of speech and

Many recent experiments on word recognition have been in-
fluenced either directly or indirectly by the seminal work of
Morton (1969,1970). The functional unit of Morton's model is
called the logogen:

The logogen is a device which accepts information from the sensory
analysis mechanisms concerning the properties of linguistic stimuli and
from context-producing mechanisms. When the logogen has accumulated
more than a certain amount of information, a response (in the present
case the response of a single word) is made available. (Morton, 1969,
p.165)

The logogen model can be instantiated as a real-time network.
In such a network, a combination of visual and auditory feature
detectors and semantically related contextual information can
input to network nodes that represent the logogens. When the
total input at a logogen node exceeds a threshold value, an output
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nature of this failure helped to extend the theory by suggesting
other principles and mechanisms of self-organization that are
used to generate complex behaviors (Grossberg, 1982c). We in-
dicate in this article how offspring of the original logogen net-
works can be unified by offspring of the original embedding field
networks.

3. Verification by Serial Search

The incompleteness of the logogen model was suggested by
several types of evidence. Meyer, Schvaneveldt, and Ruddy (1974)
showed that in a lexical decision experiment, stimulus quality
and semantic context interact. Becker and Killion (1977) studied
the interaction between stimulus quality and word frequency.
This interaction, although in the direction predicted by the logo-
gen model, did not reach statistical significance, and a power
calculation indicated that an interaction as small as 25 ms could
have been detected. Under the assumptions of the Sternberg
(1969) additive factor method, these data suggested that stimulus
quality and semantic context affect at least one common stage
of information processing, whereas stimulus quality and word
frequency influence different stages of information processing.
In particular, semantic context can influence the relatively early
stages of processing at which stimulus quality is important, and
word frequency influences a later processing stage. Because both
semantic context and word frequency effects arise through learn-
ing, these data also indicate that learning can go on at multiple

stages during language learning experiences.
The logogen model did not specify two levels at which learned

factors can operate, although considered as a framework rather
than a definite model, any number of levels could in principle
be contemplated. Instead, within the logogen model, semantic
context acts by supplying activation to target logogens from se-
mantically related logogens. This type of context effect is equi-
valent to lowering the output threshold, or criterion, of the target
logogens, which is the mechanism used to account for faster
recognition of high-frequency words. In a lexical decision task,
such a lowering of criterion should induce bias toward word
responses. Schvaneveldt and McDonald (1981) summarized data
of Antos (1979), Lapinski and Tweedy (1976), McDonald (1977),
McDonald and Schvaneveldt (1978), and Schuberth (1978) that
disconfirmed this expectation. Semantic context thus does not
merely induce a criterion shift. Somehow, context facilitates the
processing of information in the stimulus.

The verification model was introduced to compensate for this
weakness of the logogen model (Becker, 1976; Becker & Killion,
1977; Becker, Schvaneve1dt, & Gomez, 1973; Paap, Newsome,
McDonald, & Schvaneveldt, 1982; Schvaneve1dt, Meyer, &
Becker, 1976). To deal with the two stages at which learned factors
can operate, the verification model

assumed that the feature analysis and feature increment process is an
indeterminant one: a process that results in numerous word detectors
exceeding criterion. ...The function of this type of processing is to
delineate a subset of lexical memory items that are consistent with the
primitive visual feature information. ...It is assumed that the verifi-
cation process selects a word from the sensory set and uses an abstract
representation stored with the word to 'predict' the relational features
contained in visual memory. If the predicted relational features match
those found in visual memory. then the word that generated the predictions

from the node is triggered. A node's threshold defines the "level
of evidence" that its logogen requires before it can generate out-
puts that influence other logogens or postlexical processes.

The logogen model is one of a family of network models that
arose in psychology and neurobiology during the 1960s. In the
domain of visual neurophysiology, the classical Hartline-Ratliff
model of lateral inhibition in the retina of the horseshoe crab
(Ratliff, 1965) obeys the same formal rules. The Hartline-Ratliff
model also compares activation due to input increments and
decrements to output thresholds at network nodes. Although the
interpretation of nodal activations in such models may differ
depending on the processing levels that they contain, all of the
models are, from a formal perspective, continuous versions of
the influential binary-threshold McCullough-Pitts networks that
were introduced in the 1940s (Pitts & McCullough, 1947).

The logogen model differs, however, from the Hartline-Ratliff
model in yet another, equally important way. Semantically related
logogens are assumed to interact more strongly than semantically
unrelated logogens. Thus a logogen is tacitly the outcome of a
learning process. Within Morton's theory, familiarization with
known words is conceptualized as a process whereby output
thresholds for existing logogens are lowered by repeated presen-
tations. Lowering a threshold facilitates selection of a logogen.
However, the logogen's internal organization does not change as
a function of experience. The learning processes whereby internal
representations for words are organized and maintained are not
rendered explicit or used to derive the model. We show that
mechanisms whereby internal representations, such as logogens,
are organized and maintained have properties that also help to
explain familiarization effects. Moreover, changes in output
threshold are not among these mechanisms. Thus an analysis of
how logogens become logogens leads to different explanations of
the types of data that the logogen theory was constructed to
explain.

At the same time that Morton was developing his network
model for word recognition, Grossberg was developing network
models in which learning issues were central. These networks,
called embedding fields. were introduced to explain data about
human learning, such as serial verbal learning and paired asso-
ciate learning (Grossberg, 1969d; Grossberg & Pepe, 1971); per-
formance speed-up and perceptual masking due to the interaction
between learning, lateral inhibition, and thresholds (Grossberg,
1969b); and unitization of hierarchically organized sensory-mo-
tor plans and synergies (Grossberg, 1 969c, 1 970b). Grossberg
also showed that the Hartline-Ratliff network could be derived
as a special case of an embedding field in which no learning
occurs (Grossberg, 1969b) and that the simplest circuits for
learning and performing sequential motor acts-the so-called
avalanche circuits-were similar to the command cells of inver-
tebrates (Grossberg, 1970b, 1982c). Such derivations suggested
that formal similarities exist between the processing laws utilized
by vertebrates and invertebrates yet that these laws are organized
into different circuits across species to solve different classes of
environmental problems. Thus it was clear by the late 1 960s that
an analysis of learning could lead to conclusions about perfor-
mance that cut across species and psychological-neural bound-
aries.

The original embedding field theory also had a limited domain
of applicability beyond which its predictive power failed. The
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is recognized. If the predictions fail to match the stimulus, another word
is sampled from the sensory set to be compared against the stimulus.
Thus verification is an interactive comparison process that operates on
one word at a time [italics ours]. ...The operation of semantic context
in the verification model is as follows: When a context word is recognized,
a semantic priming process, similar to that suggested by Morton (1969),
activates word detectors that are semantically related to the prime word
...it is assumed that the semantically defined set of words is sampled
by the verification process during the time that the sensory feature set is
being defined.. ..Thus, if the stimulus presented following the prime
word DOCTOR is semantically related, then that stimulus would be rec-
ognized by the successful verification of a word selected from the semantic
set. ..the effect of a semantic context is to bypass the visual feature
analyzer component of the model. If the new stimulus is not related to
the context word, then the semantic set would be exhaustively sampled
[italics ours], and verification would proceed to sample the sensory set
...for a word in context, the only effects of intensity would be those
localized in the peripheral visual system. ..the interaction of intensity
with context derives from the effect of intensity on a process that is nec-
essary to recognize a word out of context but that is bypassed for a word
in context. (Becker & Killion, 1977, pp. 395-396)

not succeeded in finding any mechanism that could self-organize
these processing requirements for a serial buffer. Of course, one
might argue that a concept of verification can be salvaged by
characterizing suitable parallel mechanisms. Such a character-
ization is a primal'Y task of this article. Once such a character-
ization is articulated, however, a finer processing language replaces
concepts such as verification.

Coltheart, Davelaar, Jonasson, and Besner (1977) obtained
evidence against serial search in word recognition using a lexical
decision experiment. They varied the number (N) of English
words that can be produced by changing just one letter in the
target letter string, They found that reaction times to respond
"word" were independent of N, but reaction times to respond
"nonword" increased with N. Coltheart et al. used this type of
evidence to argue against serial search and for some type of par-
allel access to lexical information. The relevance of the Coltheart
et al. data to serial search concepts can be understood by con-
sidering several cases.

Consider a serial search that uses the complete lexicon as its
search set. Then both "word" and "nonword" responses should
depend on N in a similar way. If the time to make each match
were independent of N, then both sets of reaction times should
be independent of N. If the time to make each match depended
on N, then both sets of reaction times should depend on N. In
the verification mpdel, by contrast, a serial search would be re-
stricted to the visual set, the size of which increases with N. In
this situation, bec~use times to respond "nonword" would require
an exhaustive sealTch of the visual set, increasing set size should
increase reaction times. Times to respond "word" would not
require an exhaustive search, but they too should increase with
N, although less rapidly. Thus the verification model is consistent
with the Coltheart et al. experiment if the latter was not powerful
enough to detect the smaller effect of N on "word" response
reaction times. On the other hand, this explanation becomes less
plausible if serial presorting operations increase exponentially
with N. To reconcile this implication of a serial presorting mech-
anism with the Coltheart et al. data seems to require that the
sum total of an e~ponentially growing number of presorting op-
erations takes much less time than does a linearly increasing
number of buffer matching operations. Thus a specification of
real-time serial mechanisms to instantiate the verification model
raises concerns not only about a serial model's ability to self-
organize, but also about the plausibility of the model's expla-
nations of certain data.

Even if a parallel presorting mechanism is assumed, a mech-
anistic analysis raises a serious problem concerning the assump-
tion that "the interaction of intensity with context derives from
the effect of intensity on a process that is necessary to recognize
a word out of context but that is bypassed for a word in context"
(Becker & Killion, 1977, p. 396). The model asserts that the time
to match the information in the sensory buffer with items in the
semantic set does not depend on the quality of the sensory in-
formation. The model also asserts that the activation of the visual
feature analyzers does depend on the quality of information in
the sensory buffer; It is unclear what kind of matching mechanism
could be insensitive to the quality of the information being
matched, especially when the quality of this information does
effect other processing channels. Thus, despite the great heuristic
value of the verification model, attempts to embody the model

Adding the verification process introduced a second stage at
which learning could occur into the word recognition literature.
This second stage operates according to processing assumptions
that deserve further analysis. The assumption that verification
operates on one word at a time creates problems of implemen-
tation if serial mechanisms are used. In a serial processor, order
information is typically stored via some type of buffer. The order
in which items are arranged in the buffer slots determines the
order of search. In the verification model, two types of buffers
would be needed. One would order items in terms of decreasing
semantic relatedness, the other in terms of decreasing word fre-

quency.
To determine decreasing word frequency, pairwise compari-

sons of all word frequencies in the sensory set or some equivalent
procedure would have to occur before any item could be stored
in the corresponding buffer. The system would have to be able
to compare arbitrary pairs of items, store the results of these
arbitrary comparisons, and then move and store the data re-
peatedly until a winner could be found. Only then could an item
be stored in the buffer. After the first item is stored, the entire
process would be repeated on the remaining items. In short,
ordering items according to word frequency in a serial buffer
implies the existence of a complex presorting device in which
arbitrary pairs of items can be accessed and compared using a
procedure whose total number of operations increases exponen-
tially with candidate set size. The same type of presorting process
would be needed to order items in the semantic set according to
decreasing semantic relatedness. It is left unclear in the verifi-
cation model how to index word relatedness or word frequency
in a way that could support such comparisons.

Moreover, because the sensory set cannot be searched before
the semantic set is fully sampled, one must assume that matches
based on word frequency do not even begin until every item of
the semantic set is serially eliminated. Thus the demands of the
verification model on a serial buffer are much more severe than
the demands placed on a serial buffer that attempts merely to
store items in their presentation order. Even such classical serial
buffer concepts do not fare well when they are analyzed from
the perspective of self-organization (Grossberg, 1978b). We have~
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using real-time mechanisms provide converging evidence against
certain versions of the verification process.

4. Automatic Activation and
Limited-Capacity Attention

We trace this problem within the Posner-Snyder model to its
very foundations, in particular, its choice of spreading activation
as a computational unit. By design, spreading activation of their
type does not have limited capacity. Even if each logogen were
to activate connected logogens by only a fraction of its current
activation, then the totallogogen activation could still grow with
the number of activated logogens and hence would not be of
limited capacity. By contrast, any model whose lexical processing
takes place among logogens must generate a limited capacity
logogen output to postlexical processes. In the Posner-Snyder
framework, an external mechanism that interacts with spreading
activation is needed to generate a limited capacity among the
logogens, because of the lack of an internal mechanism to restrict
the capacity.

In our theory, the computational unit is no longer a spreading
activation among network nodes. It is a spatial pattern of activity
that is processed as a whole across a field of network nodes. Such
a spatial pattern has limited capacity whether or not attention
is directed toward it. Thus our computational unit per se does
not require a two-process model. This change of unit does, how-
ever, necessitate a far-reaching revision in how one thinks about
basic notions such as attention and capacity (Grossberg, 1984).

The nature of these changes is hinted at by a comparison of
the verification model with the Posner-Snyder model. Both mod-
els have posited a second process subsequent to logogen activation
to deal with word recognition data. In the light of our analysis
of the verification model, we can now ask: How does the rapid
activation of logogens initiate competitive interactions, notably
interactions due to read-out of a top-down expectancy that is
matched against sensory data? How does the notion of verification
relate to the notion of attention? Can conscious attention be an
oil/come of verification, rather than its cause?

The verification model explicitly recognizes that at least two
processes are required to discuss data about word recognition.
Other two-process theories have also been useful in the analysis
of word recognition data. The popular model of Posner and Syn-
der (1975a) posits one process whereby a stimulus rapidly and
automatically activates its logogen, which in turn rapidly activates
a set of semantically related logogens. The second process is re-
alized by a limited-capacity attentional mechanism. It is slower
acting, cannot operate without conscious attention, and inhibits
the retrieval of information stored in logogens on which attention
is not focused. If a stimulus activates an unattended logogen,
that logogen can build up activation but cannot be read out for
postlexical processing or response selection. Before output can
occur from an active logogen, a limited-cap2city attentional pro-
cess must be shifted to that logogen.

This two-process theory successfully explains various data
about word recognition (Neely, 1977; Posner & Snyder, 1975b).
It also, however, raises serious questions. For example, suppose
that attention happens to be misdirected away from the semantic
set that is activated by a stimulus word. How does the processing
system then redirect attention to this semantic set? Unless at-
tention is randomly redirected, which is manifestly false, or an
undefined agent redirects attention toward the semantic set, sig-
nals from the logogens in the semantic set to the attentional
mechanism are the only agents whereby attention can be redi-
rected to the semantic set. As Neely (1977) noted,

the conscious-attention mechanism does not inhibit the build-up of ac-
tivation in unattended logogens, but rather inhibits the readout of in for-
mation from unattended logogens. ..before the information stored at
the unattended logogen can be analyzed in preparation for response ini.
tiation, the conscious-attention readout mechanism must be 'shifted' to
that logogen. (p. 228)

5. Interactive Activation and Parallel Access

The previous analysis suggests some of the problems faced by
a verification process that utilizes a serial search mechanism. To
overcome such difficulties, McClelland and Rumelhart described
a two-level model in which serial search is replaced by parallel
access (McClelland & Rumelhart, 1981; Rumelhart & Mc-
Clelland, 1982). The theory that we now apply, which was in-
troduced in Grossberg (1978a), also has this "interactive acti-
vation" characteristic. We do not use the McClelland and Ru-
melhart formulation for several reasons. We have elsewhere
argued that their model cannot arise in a stable manner as a
result of a self-organization process and that both its nodes and
its interactions are incompatible with some word recognition
data that our theory has successfully predicted (Grossberg, 1984,
1985). Within the general framework of real-time network models
exist many different possibilities. The present theory is one of
many "interactive activation," or real-time network, theories. It
happens to be one that is capable of stable self-organization and
able to explain a larger data base than the McClelland and Ru-
melhart version. Rumelhart and Zipser (1985) have recently
considered how learning mechanisms may be appended to the
interactive activation framework. The relation of these results to
those in the Grossberg (1976a) study and related learning models
are described in the Grossberg (1986a) study.

The Posner-Snyder model is silent about how logogens may draw
attention to themselves without outputting to postlexical pro-
cesses.

The key feature of the Posner-Snyder model lies in the fact
that attention can eventually get redirected, that competitive or
limited-capacity processes are often involved in its redirection
and sharpening, and that these processes occur after the initial
wave of logogen activation. At first glance, it may appear that
the incompleteness of the Posner-Snyder model can be resolved
if an attention shift can be a consequence of logogen output as
well as a cause of logogen output, as in the attention theory of
Grossberg (1975). Further consideration shows, however, that
the problem cannot be resolved just by assuming that active
logogens can draw attention to themselves. In a spreading acti-
vation model, the activation across logogens can be of unlimited
capacity. How an unlimited capacity output from logogens to
the attentional mechanism can be transformed into a limited
capacity output from logogens to other postlexical processes is
not explained within the Posner-Snyder model.
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6. The View From Adaptive Resonance Theory that are allowed to occur at any macrostage. Only a few principles
and laws are used in the entire theory, despite its broad scope.
For example, every stage of the theory is a mixed cooperative-
competitive network, and every interstage signal process is an
adaptive filter. Furthermore, the same mechanisms are used to
generate chunking and temporal order properties of both lan-
guage and motor control processes.

That feedback cycles define the basic building blocks of the
theory leads to a sobering conclusion. Such feedback cycles must
be built up out of nQnlinear mechanisms, because linear mech-
anisms have been proven to be unstable (Grossberg, 1973, 1983).
Thus a certain amount of mathematics is needed to achieve a
deep understanding of behavioral self-organization. The human
mind does not easily grasp nonlinear interactions among thou-
sands or millions of units without mathematical tools. Fortu-
nately, once one has identified good nonlinear laws, a mathe-
matical theory with data-predictive properties can be developed.

We explain word recognition data using the theory of human
memory that was developed by Grossberg (1978a). This theory
is more complex than many psychological models because it
analyzes how auditory, visual, cognitive, and motor represen-
tations can develop and be learned in real time within individual
learning subjects. The simultaneous consideration of several mo-
dalities by the theory enables one to discover many more design
constraints than can be discovered by consideration of anyone
factor alone. For example, interactions between auditory and
motor factors impose constraints on how internal language rep-
resentations are initiated, imitated, chunked, recognized, and
used to generate motor commands for recall. Interactions between
visual, auditory, and motor factors impose constraints on how
visual symbols for language units, such as letters, numbers, and
words, can be recognized through learned verbally mediated lan-
guage representations, which in turn can generate motor com-
mands for recall.

A central issue in each of these intermodal interactions con-
cerns the manner in which development, learning, and unitization
are stabilized via the action of feedback loops. Some of these
feedback loops are closed internally, via bottom-up and top-
down signal exchanges. Others are closed externally, via the reg-
istration of environmentally mediated sensory feedback signals.
These cyclic organizations, rather than one-way traffic between
processing stages, define the computational units that have be-
havioral meaning. Piaget (1963) and Neisser (1967) both em-
phasized the importance of the cyclic organization of perceptual
and cognitive units-Piaget through his theory of circular re-
actions and Neisser through his theory of perceptual cycles. Cir-
cular reactions are, in fact, dynamically characterized within the
theory and play an important role in initiating the self-organi-
zation of its cyclic memory structures. The term adaptive res-
onance was introduced by Grossberg (1976b) to describe this
cyclic aspect of the theory. An adaptive resonance is a fully elab-
orated recognition event within a feedback network capable of
dynamically buffering, or self-stabilizing, its learned codes and
expectancies against recoding by irrelevant cues.

The final results of the Grossberg (1978a) analysis were a
macrotheory and a microtheory. These two aspects of the theory
coexist in a mutually supportive relation. The macrotheory con-
sists of several design principles, dynamical laws, and macrocir-
cuits whose macrostages compute functionally characterized
properties. The microtheory describes the processes that generate
the properties of the various macrostages. Unlike many artificial
intelligence models, the macrotheory and the microtheory cannot
easily be dissociated. This is because the critical properties at
the macrostages are interactive, or collective, properties of the
microtheory's processes. Even the apparently local concept of
feature detector is the net effect of widespread interactions within
a microtheory network.

The microtheory thus does not freely invent properties at each
macrostage. Each process of the microtheory generates a formal
syndrome of interactive properties in response to prescribed ex-
perimental and system constraints. The internal structuring of
these syndromes defines the macrotheory properties and is the
source of the theory's predictive force. The macrotheory's general
principles and laws severely constrain the types ofmicroprocesses

7. Elements of the Microtheory: Tuning, Categories,
Matching, and Resonance

In this section we describe some of the interactions of short-
term memory (STM) processes at successive network stages with
bottom-up and top~down long-term memory (LTM) processes
between these stages. We denote the ith stage in such a network

hierarchy by F;.
Suppose that a pattern X ofSTM activities is present at a given

time across the nodes of Fj. Each sufficiently large STM activity
can generate excitatory signals that are transmitted by the path-
ways from its node to target nodes within Fj+l' When a signal
from a node in Fj is carried along a pathway to Fj+l, the signal
is multiplied, or gated. by the pathway's LTM trace. The LTM
gated signal (signal times LTM trace), not the signal alone, reaches
the target node. Each target node sums up all of its L TM gated
signals. In this way, a pattern X ofSTM activities across Fj elicits
a pattern S of output signals from Fj. Pattern S in turn generates
a pattern T of LTM gated and summed input signals to Fj+l.
This transformation from S to T is called an adaptive filtet:

The input pattern T to Fj+l is itself quickly transformed by a

cooperative-competitive interaction among the nodes of Fj+l.
In the simplest example of this process, these interactions choose
the node that received the largest input (Grossberg, 1976a, 1982c).
The chosen node is the only one that can store activity in STM.
In other words, the chosen node "wins" the competition for STM
activity. The choice transformation executes the most severe type
of contrast enhancement by converting the input pattern T, in
which many signals can be positive, into a pattern Y of nodal
activities in which at most one activity is positive. In more realistic
cooperative-competitive interaction schemes, the contrast en-
hancing transformation from Tto Y is more subtle than a simple
choice because it is designed to properly weight many possible
groupings of an input pattern. Such multiple grouping networks
are generically callecli masking fields (see Section 10). In every
case, the transformed activity pattern Y, not the input pattern
T, is the one stored in STM at F;+1 (see Figure la). In every case,
the transformation of T into Y is nonlinear.

Only nodes of Fj+l that support stored activity in STM can
elicit new learning at their contiguous L TM traces. Thus, whereas
all the LTM traces in the adaptive filter, and thus all learned past~
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experiences of the network, are used to determine recognition
via the tranformation X --+ S --+ T --+ Y, only those LTM traces
whose target activities in £;+1 survive the competitive-cooperative
struggle for stored STM activity can learn in response to the
activity pattern X. The fact that only the transformed STM pat-
terns Y, rather than the less focused input pattern T, can influence
LTM in the network helps to explain why recognition and at-
tention play an important role in learning (Craik & Lockhart,
1972; Craik & Tulving, 1975).

This type of feedback interaction between associative LTM
mechanisms and cooperative-competitive STM mechanisms has
many useful properties (Grossberg, 1976a, 1978a). It generalizes

Fi+1

F.

the Bayesian tendency to minimize risk in a noisy environment.
It spontaneously tends to form learned categories Y in response
to the activity patterns X. Novel activity patterns X can be un-
ambiguously classified into a category on their first presentation
if they are weighted averages of experienced patterns that all lie
within a single category. Input patterns that are closely related
to previously classified patterns can elicit faster processing than
can input patterns that are not. The rate of processing is also
sensitive to the number and dissimilarity of experienced patterns
that fall within a category. For example, a larger number of dis-
similar patterns can cause slower processing, other things being
equal. Learning by each LTM trace is sensitive to the entire
activity pattern X that is active at that time, as well as to all prior
learning at all L TM traces. This property follows from the fact
that the input pattern T engages the cooperative-competitive
STM interactions across Fi+l to generate Y, before Y in turn
regulates how each L TM trace will change in response to X.
Thus both learning and recognition are highly context sensitive.
The learning and recognition capabilities of the choice model
are mathematically characterized in Carpenter and Grossberg
(1985) and Grossberg (1976a). The properties of the masking
field model are described in Cohen and Grossberg (in press) and
Grossberg (1978a, 1985).

The bottom-up STM transformation X ---S ---T ---Y is not
the only signal process that occurs between F; and F;+I- In the
absence of top-down processing, the LTM traces within the
learned map S ---T can respond to a sequence of input patterns
by being ceaselessly recoded by inappropriate events (Grossberg,
1976a). In other words. the learning within the bottom-up code
can become temporally unstable in that individual events are
never eventually encoded by a single category as they are pre-
sented on successive trials. Carpenter and Grossberg (1985) de-
scribed an infinite class of examples in which such ceaseless
recoding occurs. Information processing models could not ar-
ticulate this basic stability problem because they did not use
learning in an essential way. Simulation studies of conditioning
in response to impoverished input environments also failed to
deal with the problem. In Grossberg (1976b), it was shown that
properly designed mechanisms for top-down signaling from F;+I
to Fi and for matching within Fi can stabilize learning within
the bottom-up code against recoding by inappropriate events.
Because information processing models could not achieve this
insight about the functional role of top-down processing, the
constraints that follow from this insight were not available to
help choose among the many possible embodiments oftop-down
signaling and matching. The aspects of this top-down scheme
that we need are reviewed below.

The STM transformation X ---S ---T ---Y takes place very
quickly. By "very quickly" we mean more quickly than the rate
at which the L TM traces in the adaptive filter S ---T can change.
As soon as the bottom-up transformation X ---Y takes place,
the activities Y in Fi+1 elicit top-down excitatory signals U back
to Fi (see Figure 2a). The rules whereby top-down signals are
generated are the same as the rules by which bottom-up signals
are generated. Signal thresholds allow only sufficiently large ac-
tivities in Y to elicit the signals U in pathways from F;+I to Fj.
The signals U are gated by L TM traces in these pathways. The
LTM gated signals excite their target nodes in Fi. These LTM
gated signals summate at the target nodes to form the total input

Figure 1. Bottom-up interaction of short-term memory and long-term
memory between network levels: (a) An activity pattern X at level F;
gives rise to a pattern of output signals S. Pattern S is multiplicatively
gated by long-term memory traces. These gated signals summate to form
the input pattern T to level Fj+I' Level F;+l contrast enhances T before
storing the contrast-enhanced activity pattern Y in short-term memory.
(b) Each activity Xk in F; gives rise to a signal Skj (possibly zero), which
is gated by a long-term memory trace zkj before the gated signal activates

Xj in F;+,"
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signals from Fj+l. In this way, the pattern U of output signals
from Fj+l generates a pattern V of input signals to Fj. The map
U ---V is said to define a top-down template, or learned expec-
tation, V. Note that V is not defined exclusively in terms ofL TM
traces. It is a combination of L TM traces and the STM activities
across Fj+1 .

y
u

vX'

Two sources of input now perturb F;: the bottom-up input
pattern I that gives rise to the original activity pattern X and the
top-down template V that results from activating X. At this point,
descriptive language breaks down unless it is supported by precise
mathematical concepts. For once the feedback loop X ---S ---
T ---Y ---U ---V ---X* closes, it continues to reverberate
quickly between F; and F;+1 until its activity patterns equilibrate.
Notations such as X and Yare inadequate to describe this equil-
ibration process because the activity pattern X* across F; that
is induced by I and V taken together may not be the same activity
pattern X that was induced by I alone. This composite activity
pattern quickly activates a new template, which quickly activates
a new activity pattern, which quickly activates a new template,
ad infinitum, as the system equilibrates. This conceptual prob-
lem is naturally hal!ldled by the formalism of nonlinear systems
of differential equations, as is the quantitative analysis of equil-
ibration and its relation to learning, recognition, and recall. To
sidestep these technical difficulties, we complete our intuitive
discussion using suggestive but incompletely specified ter-
minology.

Because of the design of its cooperative-competitive interac-
tions, F; is capable of matching a bottom-up input pattern I
with a top-down template V (Grossberg, 1976b, 1983). The
functional units that are matched or mismatched at F; are whole
input patterns, which are spatially distributed across the nodes
of Fi rather than the inputs to each node. This choice of functional
units is not an independent hypothesis. It is forced by two sets
of mathematical results that follow from more basic theoretical
hypotheses. The first set of mathematical results proves that the
functional unit of associative learning and L TM in such networks
is a spatial pattern of LTM traces (Grossberg, I 969a, 1982c).
The second set of mathematical results proves that the functional
unit of matching and STM is a spatial pattern of STM traces
(Grossberg, I 970a, 1982c).

We illustrate what is meant by saying that the functional units
are spatial patterns of STM and L TM traces, rather than indi-
vidual traces, with the following properties: A bottom-up input
and a top-down template signal to a node can be equal, yet part
of mismatched bottom-up and top-down patterns. A bottom-
up input and top-d<)wn template signal to a node can be different,
yet part of perfectly matched bottom-up and top-down patterns.
The relative sizes of the traces in an STM pattern or an L TM
pattern determine the "information" carried by the pattern. The
scaling parameter, which multiplies these relative sizes into their
actual sizes, is an '~energy" variable that determines properties
such as how quickly this "information" is processed, rather than
what the information is.

In the special case wherein a top-down template V perfectly
matches a bottom~up input pattern I, the relative sizes of the
activities that compose X can be preserved after V is registered,
whereas the absolute size of each activity is proportionally in-
creased. Thus a perfect top-down match does not disrupt ongoing
bottom-up pattern processing. Rather it facilitates such pro-
cessing by amplifying its energy without causing pattern distor-
tions. This energy amplification due to pattern matching is one
of the properties U$ed to generate adaptive resonances.

Pattern matching within such a network thus does not just
compare bottom-up and top-down inputs at each node, as in
Euclidean matching algorithms. Instead, the network senses the

Figure 2. TOp-down interaction of short-term memory and long-term
memory between network levels: (a) An activity pattern Y at level F;+1
gives rise to a pattern of output signals U. Pattern U is multiplicatively

gated by long-term memory traces. These gated signals summate to form
the input pattern Y to level F;. Level F; matches the bottom-up input
pattern I with Y to generate a new activity pattern X* across F;o (b) Each
activity Xj in F;+I gives rise to a signal Ujk (possibly zero), which is gated
by a long-term memory trace Z;k before the gated signal activates Xk in
F;.
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Figure 3. Matching of a bottom-up input pattern with a top-down tem-
plate pattern: Regions of approximate match lead to an amplification of
the corresponding activities. Regions of serious mismatch lead to a
suppression of the corresonding activities. (I = input pattern; V = template
pattern; X. = activity pattern due to conjoint action of 1 and V.)

degree of match between subpatterns of the total bottom-up and
top-down input. As Figure 3 shows, approximate matches be-
tween subpatterns of I and Vtend to enhance the corresponding
activities of X, whereas serious mismatches between I and V tend
to suppress the corresponding activities of X. The effect of an
approximate match is to deform X so that it forms a compromise
between I and V. When X is deformed, so are all the patterns
that form the map X --+ S --+ T --+ Y. The net effect of all these
shifts is to represent the same input pattern I by a new activity
pattern Y whose template V provides the best match to I. As
this best match equilibrates, the system enters a state of energy
amplification, or resonance. The resonant state persists long
enough for the slowly varying LTM traces of the bottom-up
adaptive filter S --+ T and the top-down template U --+ V to
adjust their values to the resonating STM patterns. Only LTM
traces lying in pathways that carry signals to or away from active
nodes in F;+I can learn after resonance has been reached. The
computational unit of the feedback network F; +-- Fj+l is called
an adaptive resonance because resonance triggers learning.

When learning does occur, its form is quite simple. Denote
by Zkj the L TM traces in the pathways from node Vk in Fj to node
Vj in F;+1 (see Figure I b). We restrict attention to the LTM traces
Zkj in the pathways that lead to a fixed node Vj of F;+I' Whenever
the STM trace -~j at Vj remains suprathreshold for a long enough
time, each Zkj can gradually become proportional to the signal
Ski emitted by Vk into its pathway. Two important properties are
implicit in this statement. First, the rate with which Zkj changes
increases with the size of xi' Second, while Xj is active, the LTM
vector Zj e (Zlj, Zzj, ..., zn) of the LTM traces leading to Vj
gradually becomes parallel to the signal vector Sj = (Sjj, S2j,

...,Sn) emitted by Fj to vi.
The following learning law (Grossberg, 1969a, 1976a) is the

simplest differential equation for the rate of change (djdt)Zkj of
the LTM trace Zkj that rigorously captures these properties:

lea:ning by zj.IThis ~ype of performance speed-up does not re-
quIre a larger ~otal sIze

(1)
d
diZkj = aXJ{-Zkj + (JSk)'

In Equation I, a and {l are positive constants. At times when
Xj = 0, it follows that (dfdt)Zkj = 0 so that no learning occurs.
Positive values of Xj induce positive learning rates. Increasing Xj
increases the learning rate. The rate constant a is sufficientiy
small that momentary activations of Xj cause insignificant changes
in Zkj' If Xj remains positive for a sufficiently long time-that is,
if Xj is stored in STM at Fi+l-then Zkj approaches the value
{lSkh which is proportional to the signal Ski' For simplicity of
exposition, we suppose that {l = I. Then Equation I shows that
the LTM vector Zj approaches the signal vector Sj at a rate that
increases with the STM activity xi'

The total input ~ to Vj is defined by

I II i zkj (3)
II: k-1

of the LTM tr~ces abutting Vj. Rather, it requires a repatterning
of the LTM traces within the vector Zj.

The signal patterns Sj that succeed in activating Vj can differ
on successive learning trials. The LTM vector Zj thus encodes a
weighted time average of all the signal patterns Sj that Vj has
actually sampled. The weight of a particular pattern Sj in this
average increases with the intensity and duration of xis supra-
threshold activity during the learning episodes when Sj was active.
Even though I!j may have intensely sampled a particular Sj on a
previous learning trial, the LTM vector Zj will not generally equal
Sj on the current trial. The LTM vector Zj provides a statistical
measure of all the patterns Sj that ever activated Vj. If many
signal vectors Sj succeed in activating Vj, then Zj will be different
from any on~ Of the vectors Sj, since it computes an average of
all the vecto .Thus the dot product ~ = Sj. Zj of anyone of
these vectors Sj with the average encoded by Zj may become
smaller as the number of exemplars Sk within the category cor-
responding t Vj increases. The amount of practice on a single
pattern (i.e., familiarity) and category variance thus tend to have
opposite effecrs on the reaction rate of Fi+l.

n
1j = L SkjZkj,

k-1
(2)

which can also be written as the dot product 1j = Sj' Zj of the

vectors Sj and Zjo As Zj approaches Sj because of learning, 1j
becomes larger. This property indicates how a fixed signal vector
Sj can generate an amplified and faster reaction of Xj due to prior
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A similar type of learning rule governs the LTM traces Zjk in
the top-down pathways from nodes Vj in F;+I to nodes Vk in F;
(see Figure 2b). Again Xj must be suprathreshold before Zjk can
learn. At least one fundamental difference exists, however, be-
tween bottom-up learning and top-down learning. During bot-
tom-up learning, each L TM vector Zj determines its own total
input 1j to Vj. These inputs trigger a cooperative-competitive
struggle among the STM activities Xj of F;+I' Consider, for ex-
ample, the case in which the node Vj that receives the largest
input 1j wins the STM competition. Then each input 1j acts to
improve the competitive advantage of its own STM trace Xj.

The same is not true during top-down learning. Once the
bottom-up filter determines which STM activities Xj in Fj+l will
be stored, all of the suprathreshold Xj values generate signal vec-
tors Uj = (Ujl, Uj:2, ..., Ujm) to Fjo All ('fthe signal vectors
Uj simultaneously read out their top-down LTM patterns Zj =

(Zjl, Zfl,. .., Zjm) to form a single top-down template V =

(VI, V2,. .., Vm), where

m

Vk = L UjkZjk
i-i

(4)

Thus, whereas bottom-up filtering separates the effects of the
LTM vectors Zj in order to drive the STM competition within
F;+I' the survivors of this competition pool their top-down L TM
vectors to form a consensus in the form of a composite template
to F;. This template, as a whole, is then matched against the
bottom-up input pattern to Fj. If the LTM pattern Zj of one
node Vj in F;+I matches the input pattern much better than the
other LTM patterns that form the template consensus, then this
node will win a larger portion of the total STM activity across
F;+1 as the resonance equilibrates. In other words, the template
presents a consensus to Fj so that the matching process within
Fj can rearrange the competitive STM balance across F;+l and
thereby better match the bottom-up data at F;. Computer sim-
ulations that illustrate these competitive and matching properties
during pattern recognition and category formation via adaptive
resonance are described by Carpenter and Grossberg (1985).

8. Counting Stages: Resonant Equilibration as
Verification and Attention

Many of the types of properties that the Verification model
and the Posner-Snyder model addressed are mechanized and ex-
tended by using the parallel process of resonant equilibration.
For example, other things being equal, high-frequency words are
more parallel to the L TM vectors Zj and Zj that they persistently
activate than low-frequency words are to their preferred L TM
vectors. This property helps to explain how a verification-type
process can occur without invoking serial search. To understand
why, suppose that a low-frequency word activates an output signal
pattern S from Fi to Fi+1 that does not correspond to any high-
frequency word. Before S can influence Fi+1 via T, it is gated by
the bottom-up L TM traces. Because of the relatively large effect
of high-frequency words on LTM tuning, the largest inputs 1j
to Fi+1 may initially bias the STM reaction of Fi+1 toward a high-
frequency interpretation of the low-frequency word. Conse-
quently, the fastest and largest top-down signals in the template

V may initially tend to code high-frequency words. The template
V plays the role of the verification signal. Thus high-frequency
word components can tend to make a faster and larger contri-
bution to the early phase of "verification," even though the pro-
cess that instantiates the template is a parallel read-out rather
than serial search.

After the matching process between bottom-up and top-down
templates is initiated at F;, it can change the bottom-up inputs
~ in favor of the low-frequency word. That is, although high-
frequency components across Fj+1 may be favored initially, once
"verification" begins at Fj, lower frequency components across
Fj+l whose top-down signals better match the sensory data at Fj
are amplified in STM as the high-frequency components are
attenuated. No serial search is needed for this to occur. This
capability is already implied by the conjoint action of rules
whereby (a) the bottom-up filter biases the STM competition
across Fj+l and (b) the top-down template synthesizes a consensus
for matching acro~ Fj. We maintain the intuition of the verifi-
cation model-that many alternative interpretations are tested
until the correct one is found-but the serial search mechanism
is replaced by a parallel zooming-in process whereby top-down
consensus becomes better matched to the sensory data as the
bottom-up filter chooses a better STM representation. No serial
mechanisms are needed to accomplish this process of matching.
deformation, and equilibration.

After the resonance quickly equilibrates in this way, the final
resonant STM pat~rn is the one to which attention is paid. As
in the Posner-Snyder model, the initial phase of activating the
"logogens" across Fi+1 uses excitatory Fj -Fj+l signals. The
subsequent stages of competition for STM storage across Fi+1
and matching across Fj both use lateral inhibitory signals, which
is also consistent with the Posner-Snyder model. Attention does
not, however, switQh to the logogens before inhibition can act.
Inhibition can help to draw attention to its final locus by focusing
the process of re~ant equilibration. Also, in these processes,
the mechanism of inhibition does not primarily function to im-
pose a limited capacity. This fact reflects a major difference of
our theory from th~ Posner-Snyder and verification models. The
computational unit in our networks is not a logogen that can be
excited or inhibited by other network nodes. The computational
unit is a distributeCli pattern of activity across a field of network
nodes. Inhibition $ay help to cause an amplified STM reaction
to a matched bottom-up input pattern and top-down template
pattern, as well as to suppress the STM response to mismatched
input patterns. These facilitative and suppressive reactions can
occur without changing the set of nodes that the input patterns
activate or the total activities of the input patterns. Thus the
mechanism of inhibition can cause amplification or suppression,
not as a function <!If network capacity, but rather as a function
of pattern match or mismatch.

Another reflection of the difference between computational
units in the theories is that inhibition also acts before signals
ever leave Fj for Fi+l. The same inhibitory interactions within
Fj that are used fot top-down template matching at Fj are also
used to accurately register the bottom-up input at Fi without
noise or saturation before Fj ever elicits its excitatory signals to
Fi+l. The fact that this early phase of inhibitory interaction prior
to the activation ()f the "logogens" at Fi+l does not primarily
function to limit capacity reflects the deeper property that the
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computational unit of the network is not a logogen at all (Gross-
berg, 1980, 1984).

Perhaps the strongest departure from both the Posner-Snyder
model and the verification model concerns the concept of pro-
cessing stages. Even if we restrict our consideration to two levels
Fi and F;+I , these two levels do not correspond to two processing
stages of the sort that these other models have described. In par-
ticular, these stages are not separable from one another. Rather,
each feeds into the next and thereby alters its own processing
due to feedback. The feedback continues to cycle between the
stages as it drives the approach to resonance and maintains the
resonance after it has been attained. We believe that it is the
absence of this type of insight in the Posner-Snyder model that
led to its problematic argument about how inhibition and atten-
tion are related (see Section 4). We see no way to fully understand
these basic intuitions except through the use of nonlinear systems
of differential equations. Once this is accepted, serial stage models
and binary computer models of human information processing
seem much less appealing than they once did. In fact, the com-
putational units of our macrotheory are not even necessarily
determined within individual macrotheory levels. Rather, com-
putational units such as adaptive resonances emerge from inter-
actions using microtheory mechanisms that are distributed across
several macrotheory levels.

.

(a) (b)

+
+

(d)c-J (c)

Fig/Ire 4. Interaction of attentional priming with attentional gain control:
(a) A supraliminal activity pattern within F;+I causes a subliminal response
within F;. (b) A bottom-up input pattern can instate a supraliminal
activity pattern within F; by engaging the attentional gain control channel.
(c) During bottom-up and top-down matching, only cells at F; that receive
convergent bottom-up and top-down signals can generate supraliminal
reactions. (d) An inhibitory attentional gain control signal from a com-
peting source can block supraliminal reaction to a bottom-.
up Input.

9. Attentional Gain Control Versus Attentional
Priming: The 2/3 Rule

The present theory makes another distinction that is not
mechanistically elaborated within the Posner-Snyder theory. As
Neely (1977) noted, experiments like those of Posner and Snyder
(1975b) and Neely (1976) "confounded the facilitatory effects of
conscious attention with the facilitatory effects of automatic
spreading activation" (p. 231). The Posner-Snyder model ac-
counts for these two types of facilitation by positing a separate
process for each. In the present theory, at the level of mechanism,
the two types of facilitation both share "automatic" properties.
They are distinguished by factors other than their automaticity.
A central distinction in the development of the present theory
is the difference between attentional gain control and attentional
priming (Grossberg, 1975, 1982b).

The need for distinct mechanisms of attentional gain control
and attentional priming can be appreciated by considering Figure
4. In Figure 4a, a learned top-down template from F;+l to F; is
activated before a bottom-up input pattern activates F;. The
level F; is then primed, or ready, to receive a bottom-up input
that mayor may not match the active template. The template
represents the input that the network expects to receive. The
template plays the role of an expectancy.

Level F; can be primed to receive a bottom-up input without
necessarily eliciting suprathreshold output signals in response to
the priming expectancy. If this were not possible, then every
priming event would lead to suprathreshold reactions. Such a
property would prevent anticipation of a future event. On the
other hand, certain top-down expectancies can lead to supra-
threshold consequences, much like we can at will experience
internal conversations and musical events, as well as other fantasy
activities. Thus there exists a difference between the read-out of
a top-down expectancy, which is a mechanism of attentional

primin ] and the translation of this operation into suprathreshold

signals ue to attentional gain control.

The istinction between attentional priming and attentional
gain co trol can be sharpened by considering the opposite sit-
uation, ~n which a bottom-up input pattern I activates F; before
a top-ddwn expectancy from F;+1 can do so. As discussed earlier,
we wan~ the input pattern I to generate a suprathreshold activity
pattern t¥ across F; so that the sequence of transformations X --+
S --+ T -;-+ Y --+ U --+ V --+ X* can occur. How does F; know that

it shoul« generate a suprathreshold reaction to the bottom-up
input p~ttern but not to the top-down input pattern? In both
cases, ~ input pattern stimulates the cells of F;. Some other
mechaqism must exist that distinguishes between bottom-up
and top+-down inputs. We use the mechanism of attentional gain

control,
Th~ considerations suggest that at least two of the three signal

source~ to F; must be simultaneously active in order for some F;
cells tolbecome supraliminally active. Carpenter and Grossberg
(1985. '986) called this constraint the 2h Rule. These three signal
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sources are (a) the bottom-up input channel that delivers specific
input patterns to Fi; (b) the top-down template channel that
delivers specific expectancies, or priming signals, to Fi; and (c)
the attentional gain control channel that nonspecifically mod-
ulates the sensitivity of Fi. Figure 4 illustrates one realization of
the 2/3 Rule.

As shown in Figure 4a, supraliminally active cells within Fj+1
read out a specific top-down expectancy to Fi along excitatory
( +) and conditionable pathways. The active Fi+ I cells also read
out inhibitory (-) signals that converge in a nonspecific fashion
on the cells that regulate attentional gain control. Because all
the cells in Fi receive inputs from at most one channel, they
cannot generate supraliminal activations. By contrast, as shown
in Figure 4b, the bottom-up input channel instates a specific
input pattern at Fj and excites the attentional gain control chan-
nel, which nonspecifically sensitizes all the cells of Fj. (Alter-
natively, the attentional gain control channel may remain en-
dogenously, or tonically, active.) Those cells at which a bottom-
up input and an attentional gain control signal converge can
generate supraliminal activations. Cells that receive no bottom-
up input cannot generate supraliminal activations, because they
receive inputs only from a single signal source. As shown in
Figure 4c, a bottom-up input pattern and a top-down template
pattern are simultaneously active. The top-down signal source
shuts off the nonspecific gain control channel. However, if the
bottom-up input pattern and the top-down template pattern are
not too different, then some cells in Fj will receive inputs from
both signal channels. By the 2/3 Rule, these cells can become
supraliminally active. Cells that receive inputs from only the
bottom-up input or the top-down template, but not both, cannot
become supraliminally active. Nor can cells become active that
receive no inputs whatsoever.

Thus, in addition to suggesting how Fi can respond supralim-
inally to bottom-up inputs and subliminally to top-down tem-
plates, the 2/3 Rule suggests a rule for matching bottom-up and
top-down patterns at Fj. Carpenter and Grossberg (1985) showed,
moreover, that use of the 2/3 Rule for matching is necessary to
prevent ceaseless recoding of the learned categories that form in
response to sequences of bottom-up input patterns.

The 2/3 Rule leads to other useful conclusions as well. For ex-
ample, a supraliminal reaction to bottom-up inputs does not
always occur, especially when attention is focused on a different
processing modality. This can be understood as a consequence
of intermodal competition between attentional gain control sig-
nals. As Figure 4d shows, the attentional gain control channel
is inhibited by such a competitive signal; hence, only a subliminal
reaction to the bottom-up input occurs. In a similar way, top-
bottom signals do not always generate subliminal reactions. We
can willfully generate conscious internal fantasy activities from
within. Supraliminal reactions in response to top-down signals
can occur if the attentional gain control channel can be activated
by an "act of will."

To ground these concepts in a broader framework, we make
the following observations. The 2/3 Rule was first noticed in a
study of reinforcement and attention (Grossberg, 1975; reprinted
in Grossberg, 1982c, p. 290). In that context, the two specific
channels carried internal drive inputs and conditioned reinforcer
signals, respectively. The third channel carried nonspecific arousal
signals. The 2/3 Rule in that situation suggests how incentive mo-

tivational signals can be generated by pairwise combinations of
these signal channels. In that application, the 213 Rule suggested
how attention is modulated by the processing of emotion-related
signals. More generally, sensitization of specific processing chan-
nels by a nonspecific channel is a theme that occurs even in the
modeling of invertebrate motor control (Grossberg, 1978a; re-
printed in Grossberg, 1982c, pp. 517-531). Thus the concepts
of attentional gain control and attentional priming reflect design
constraints that seem to be used in several modalities as well as
across species.

The attentional priming and attentional gain control processes
can be used to clarify and modify the "automatic activation"
and "conscious attention" constructs found elsewhere in the lit-
erature. We discuss these constructs to form a bridge to other
models. Our discussion simultaneously refines the mechanistic
concepts that we introduced above and shows that these mech-
anistic concepts do not match well with descriptive ideas such
as "automatic activation" and "conscious attention." (Quotation
marks emphasize this mismatch.) For present purposes, we sup-
pose that a supraliminal activity pattern across F; that can survive
matching against a top-down expectancy from F;+l becomes
"conscious." In other words, activity across F; can become con-
scious ifit persists long enough to undergo resonant equilibration.
Activity within Fi+1 never becomes conscious, whether or not it
is supraliminal. The discussion is broken up into four parts: (a)
top-down subliminal control-"automatic" attentional priming
in the absence of attentional gain control; (b) top-down supra-
liminal control-"automatic" attentional priming plus "willed"
excitatory attentional gain control; (c) bottom-up supraliminal
control-"automatic" content-addressable input activation plus
"automatic" excitatory attentional gain control; (d) bottom-up
subliminal control-"automatic" content-addressable input ac-
tivation plus "automatic" or "willed" inhibitory attentional gain
control. These properties are explained mechanistically as follows.

Top-down subliminal control. A top-down expectancy from
F;+l to F; has a direct excitatory effect on F; (Figure 4a). The
Fi+l cells do not control a nonspecific excitatory signal capable
of sensitizing all the cells of Fi to its inputs. Such a nonspecific
arousal signal is said to lower the quenching threshold (QT) of
Fj (Grossberg, 1973, 1980), which in the absence of inputs is
chosen to be large. The QT is a parameter that STM activities
must exceed to elicit a suprathreshold reaction. Thus F; cannot
generate a suprathreshold output in response to a top-down ex-
pectancy alone. The top-down expectancy can prime Fi but can-
not release the priming pattern.

Top-down supraliminal control. An "act of will" can activate
the attentional gain control channel. This act generates a non-
specific arousal signal that sensitizes all the cells of F; to whatever
inputs happen to be delivered at that time. This type of willed
control does not deliver a specific pattern of information to be
processed. Rather it exerts a nonobligatory type of sensitivity
modulation on the entire processing channel.

This way of mechanizing the distinction between attentional
priming and attentional gain control is a special case of a general
design principle in neural information processing, namely, the
factorization of pattern and energy. or factorization of information
and arousal (Grossberg, 1982c), which is also mentioned in Sec-
tion 7. Another example of the dissociation between information
and arousal occurs during willed motor acts. When one looks at
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comes of recognition and recall tests. These applications of the
theory are presented after the next section.

Before turning to these applications, we outline a theoretical
macrocircuit that embodies the theory's view of how learning,
recognition, and recall take place in real time. The macrocircuit
embeds our analysis of word recognition and recall in a broader
theory. This theory clarifies the types of information that are
coded by the functional units at different processing stages and
locates the stages $ubserving word recognition and recall pro-
cesses. Such a theory is necessary to understand how the func-
tional units arise amd how they give rise to observable behaviors.
The reader can skim this section on a first reading.

an object, one can decide to reach it with one's left hand or right
hand or not at all. Learned target position maps are automatically
read out by the eye-head system to the hand-arm systems cor-
responding to both hands. These maps remain subliminally active
at their target cells until an "act of will" generates nonspecific
arousal to the desired hand-arm system. Suprathreshold read-
out of the corresponding target position map is thereby effected.
In this example, the top-down expectancy is a target position
map that encodes the desired terminal positions of the hand-
arm system with respect to the body.

Bottom-up supraliminal control. When a bottom-up input
pattern activates Fi, it has two simultaneous effects on Fi (Figure
4b). The obvious effect is the delivery of the input pattern directly
to Fi. As this is happening, the input also activates a nonspecific
channel. This nonspecific channel controls the nonspecific
arousal, or attentional gain control, that sensitizes Fi by lowering
its quenching threshold. Thus the bottom-up pathway "auto-
matically" instates its input and "automatically" activates the
attentional gain control system. It is misleading to suggest that
"automatic spreading activation" and "conscious attention" are
two independent stages of information processing, because the
same mechanisms that give rise to "conscious attention" are
often "automatically" activated in parallel with the mechanisms
that subserve "automatic spreading activation."

Bottom-up subliminal control. The automatic activation of
attentional gain control by a bottom-up input pattern can be
prevented from generating a suprathreshold response at Fi (Figur~
4d). If a given processing channel is already active, then its at-
tentional gain control mechanism can competitively inhibit the
automatic activation of the gain control mechanisms within other
channels. A large-scale competition exists between the gain con-
trol sources of different processing channels in addition to the
small-scale cooperative-competitive interactions within each
processing channel that regulate its STM matching and contrast
enhancement properties.

Bottom-up subliminal control shows that inhibition is mo-
bilized not only by "conscious attention" processes, as the Posner-
Snyder model suggests. Attentional gain control signals elicited
by bottom-up inputs in one channel can cause "automatic" at-
tentional inhibition in a different processing channel. Moreover,
"automatic" excitatory attentional gain control signals in a given
channel cause "automatic" inhibitory signals in that channel by
rendering suprathreshold the small-scale competitions that reg-
ulate STM matching and contrast enhancement within the
channel. "Conscious attention" can be the outcome, rather than
the cause, of this inhibitory process.

Neely (1977) designed and performed a remarkable set of ex-
periments to unconfound the facilitatory effects of conscious
attention and the facilitatory effects of automatic spreading ac-
tivation. The present theory also recognizes at least two different
types of facilitatory effects, attentional gain control and atten-
tional priming, but does not attribute these properties to "con-
scious" and "automatic" processes in the same manner as the
Posner-Snyder (1975a) theory. Despite this fact, the present the-
ory can explain. the Neely (1977) data. A more serious test of
the theory concerns its ability to explain transient versus equil-
ibration effects, such as effects of inconsistent versus consistent
primes and of mask versus no-mask manipulations. Another se-
rious test concerns the theory's ability to predict different out-

10. A Macrocircuit for the Self-Organization of
Recognition and Recall

Figure 5 depicts a macrocircuit that is capable of self-orga-
nizing many recognition and recall properties of visual, verbal,
and motor lists. The boxes Ai are macrostages for the elaboration
of audition, speech, and language. The boxes Mj are macrostages
for the elaboration of language-related motor representations.
The box V' desiglllates a source of preprocessed visual signals.

At an early stage of development, the environmellltally activated
auditory patterns at stage AI start to tune the lolllg-term memory
(LTM) traces within the pathways of the adaptive filter from AI
to A2, and thus to alter the patterning of short-term memory
(STM) auditory "feature detector" activation across A2. After
this tuning proces$ begins, endogenous activations of the motor
command stage M I can elicit simple verbalizations (babbling)
whose environmental feedback can also tune the AI ---A2 adap-
tive filter. The learming within the feedback pathway M I ---A2 ---

A2 helps to tune auditory sensitivities to articulatory require-
ments. This process is consistent with the motor theory of speech
perception (Cooper, 1979; Liberman, Cooper, Shankweiler, &
Studdert-Kennedy, 1967; Liberman & Studdert-Kennedy, 1978;
Mann & Repp, 19181; Repp & Mann, 1981; Studdert-Kennedy,
Liberman, Harris, & Cooper, 1970).

Just as the auditory patterns across AI tune the AI ---A2 adap-
tive filter, the endogenously activated motor command patterns
across M1 tune the M1 ---M2 adaptive filter. The activation pat-
terns across M2 encode the endogenously activated motor com-
mands across M I using the same mechanisms by which the ac-
tivation patterns across A2 encode the exogenously activated au-
ditory patterns across A I .

The flow of adaptive signaling is not just bottom-up from A I
to A2 and from M I to M2. Top-down conditionable signals from
A2 to AI and from M2 to MI are also hypothesized to exist. These
top-down signal patterns represent learned expectancies, or
templates. Their most important role is to stabilize the learning
that goes on within the adaptive filters AI ---A2 and MI ---M2.
In so doing, these top-down signal patterns also constitute the
read out of optimal templates in response to ambiguous or novel
bottom-up signals. These optimal templates predict the patterns
that the system expects to find at A I or M 1 on the basis of past
experience. The predicted and actual patterns merge at A I and
M I to form completed composite patterns that are a mixture of
actual and expected information.

Auditory and motor features are linked via an associative map
from A2 to M2. When MI is endogenously activated, it activates
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Figure 5. A macrocircuit governing self-organization of recognition and
recall processes: The text explains how auditorily mediated language pro-
cesses (the AJ, visual recognition processes (V*), and motor control pro-
cesses (the Mj) interact internally via conditionable pathways (black lines)
and externally via environmental feedback (dotted lines) to self-organize
the various processes which occur at the different network stages.

ory's explication of the developmental concept of circular reaction
helps to clarify the speech performance concepts of motor theory
and analysis-by-synthesis in the course of suggesting how an in-
dividual can begin to imitate non-self-generated speech sounds.

The stagesA2 and M2 can each process just one spatial pattern
of auditory or motor features at a time. Thus A2 can process an
auditory "feature code" that is derived from a narrow time slice
of a speech spectrogram, and M2 can control a simple motor
synergy of synchronously coordinated muscle contractions. These
properties are consequences of the fact that spatial patterns, or
distributed patterns of activity across a field of network nodes,
are the computational units in embedding field networks. This
computational unit is a mathematical consequence of the asso-
ciative learning laws that govern these networks (Grossberg,
1969a, 1982c). This fact is not intuitively obvious and was con-
sidered surprising when first discovered. The later stages Ai and
Mj in Figure 5 are all devoted to building up recognition and
recall representations for temporal groupings, or lists, of spatial
pattern building blocks. These higher stages embody solutions
to aspects of the fundamental problem of self-organizing serial
order in behavior (Lashley, 195 I).

A spatial pattern of activation across A2 encodes the relative
importance of each "feature detector" of A2 in representing the
auditory pattern that is momentarily activating AI. To encode
temporal lists of auditory patterns, one needs first to simulta-
neously encode a sequence of spatial patterns across Ais auditory
feature detectors. The following way to accomplish this also ad-
dresses the vexing problem that individual speech sounds and
thus their spatial patterns across A2 can be altered by the temporal
context of other speech sounds in which they are embedded.

In addition to activating the associative map from A2 to M2,
each spatial pattern across A2 also activates an adaptive filter
from A2 to AJ. Although all the adaptive filters of the theory
obey the same laws, each filter learns different information de-
pending on its location in the network. Because the A2 --+ AJ
filter is activated by feature patterns across A2, it builds up learned
representations, or chunks, of these feature patterns. Each such
representation is called an item representation within the theory.

It is important to realize that all new learning about item
representations is encoded within the LTM traces of the A2 --+
AJ adaptive filter. Although each item representation is expressed
as a pattern of activation across AJ, the learning of these item
representations does not take place within AJ. This flexible re-
lation between learning and activation is needed so that temporal
codes for lists can be learned and performed. For example,
whereas the spatial patterns across A2 can rapidly decay via a
type of iconic memory (Sperling, 1960), the item representations
across AJ are stored in short-term memory (STM), also called
working memory (Cermak & Craik, 1979). As a sequence of
sound patterns activates A I , a succession of item representations
is stored in STM across AJ. The spatial pattern of STM activity
across AJ represents temporal order information across the item
representations of AJ.

This temporal order information cannot be laid down arbi-
trarily without causing temporally unstable LTM recodings to
occur in the adaptive filter from AJ to A4. Laws for regulating
temporal order information in STM have been derived from the
LTM in variance principle. This principle shows how to alter the
STM activities of previous items in response to the presentation

a motor representation at M2 via its adaptive filter M1 ---M2'
as well as an auditory representation at A2 via environmental
feedback M1 ---AI and the adaptive filter AI ---A2. Because A2
and M2 are then simultaneously active, the associative map A2 ---
M2 can be learned. This map also links auditory and articulatory
features.

The associative map A2 ---M2 enables the imitation of novel
sounds-in particular, of non-self-generated sounds-to get un-
derway. It does so by analyzing a novel sound via the bottom-
up auditory filter AI ---A2' mapping the activation patterns of
auditory features detectors into activation patterns of motor fea-
ture detectors via the associative map A2 ---M2' and then syn-
thesizing the motor feature pattern into a net motor command
at MI via the top-down motor template M2 ---MI. The motor
command, or synergy, that is synthesized in this way generates
a sound that is closer to the novel sound than are any of the
sounds currently coded by the system. The properties whereby
the learned map A I ---A2 ---M2 ---MI enables imitation of novel
sounds to occur are in agreement with the analysis-by-synthesis
approach to speech recognition (Halle & Stevens, 1962; Stevens,
1972; Stevens & Halle, 1964).

The environmental feedback from MI to AI followed by the
learned map AI ---A2 ---M2 ---M1 defines a closed feedback
loop, or "circular reaction" (Piaget, 1963). Thus the present the-
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of new items so that the repatterning of STM activities that is
caused by the new items does not inadvertently obliterate the
LTM codes for old item groupings. These STM patterns oftem-
poral order information have been used, for example, to explain
and predict data showing primacy and recency gradients during
free-recall experiments (Grossberg, 1978b). Computer simula-
tions that illustrate how these temporal order patterns evolve
through time are described by Grossberg and Stone (1985).

The concept of temporal order information across item rep-
resentations is necessary but not sufficient to explain how lists
of items can be learned and performed. One also needs to con-
sider the analogous bottom-up filtering process from M2 to M3
that builds up unitized representations of motor items (synergies),
the toP-down learned templates from M3 to M2, and the asso-
ciative map A3 --+ M3 that is learned from sensory items to motor

items. In particular, suppose that analysis by synthesis (the map
AI --+ A2 --+ M2 --+ M1) has elicited a novel pattern of sensory

features across A2 and of motor features across M2. These feature
patterns can then generate unitized item representations at A3
and M 3 even though the network never endogenously activated
these patterns during its babbling phase. A map A3 --+ M3 between

these unitized item representations can then be learned. Using
these building blocks, we can now show how a unitized repre-
sentation of an entire list can be learned and performed.

When the network processes a verbal list, it establishes an
STM pattern of temporal order information across the item rep-
resentations of A3' Because every sublist of a list is also a list,
the adaptive filter from A3 to A4 simultaneously "looks at" all
the sublist groupings to which it is sensitive as a list is presented
through time. The cooperative-competitive interaction across
A4 then determines which of these sublist representations will
be stored in STM at A4.

To enable A4 to store maximally predictive sublist chunks, the
interactions within A4 simultaneously solve several problems. A
core problem is called the temporal chunking problem. Consider
the problem of unitizing an internal representation for an un-
familiar list of familiar items, for example, a novel word com-
posed of familiar phonemes (auditory) or letters (visual). The
most familiar groupings of the list are the items themselves. To
even know what the novel list is, all of its individual items must
first be presented. All of these items are more familiar than the
list itself. What mechanisms prevent item familiarity from forcing
the list always to be processed as a sequence of individual items,
rather than eventually as a whole? How does a not-yet-established
word representation overcome the salience of well-established
phoneme or syllable representations? How does unitization of
unfamiliar lists of familiar items even get started? If the temporal
chunking problem is not solved, then internal representations
of lists with more than one item can never be learned.

The cooperative-competitive design of A4 that solves the tem-
poral chunking problem is called a masking field. One property
of this design is that longer lists, up to some maximal length, can
selectively activate populations in A4 that have a prewired com-
petitive advantage over shorter sublists in the struggle for STM
storage. Simple growth rules are sufficient to achieve this com-
petitive STM advantage of longer sublists. Such a competitive
advantage enables a masking field to exploit the fact that longer
sublists, other things being equal, are better predictors of sub-
sequent events than are shorter sublists, because they embody a

more unique temporal context. A masking field's preferential
STM response to longer sublists leads in turn to preferential
LTM chunking, or representation, of longer sublists using the
L TM law given by Equation I. As an important side benefit, the
competitive advantage of longer unfamilar sublists enables them
to compete effectively for STM activity with shorter familiar
sublists, thereby providing a solution to the temporal chunking
problem. The postulate that longer sublists, up to some maximum
length, have a competitive STM advantage led to the prediction
of a word length effect by Grossberg (1978a, Section 41). A word
length effect was reported in the word superiority experiments
of Samuel, van Santen, and Johnston (1982, 1983), with longer
words producing greater word superiority. Grossberg (1984,
1985) analyzed these and related data from the perspective of
masking field design. Computer simulations that illustrate how
a masking field can group temporal order information over item
representations into sublist chunks are described by Cohen and
Grossberg (in press).

The word length property is only one of several differences
between properties of stages A) and A4 and those of the stages in
alternative theories. Instead of letting A) and A4 represent letters
and words, as in the McClelland and Rumelhart (1981) theory,
A) and A4 represent items (more precisely, temporal order and
item information in STM) and lists (more precisely, sublist pars-
ings in STM), respectively. These properties do not require that
individual nodes exist for all items and lists. Learning enables
distributed item and list representations to be formed over a
network substrate whose rules do not change through time. All
familiar letters possess both item and list representations, not
just letters such as A and I that are also words. This property
helps to explain Wheeler's (1970) data showing that letters such
as A and I are not recognized more easily than letters such as E
and F. In contrast, the McClelland and Rumelhart (1981) model
postulates a letter level and a word level instead of an item level
and a list level. By their formulation, letters such as A and I must
be represented on both the letter level and the word level, whereas
letters such as E and F are represented only on the letter level.
This choice of levels leads to both conceptual and data-related
difficulties with the McClelland and Rumelhart (1981) model,
including a difficulty in explaining the Wheeler (1970) data
without being forced into further paradoxes (Grossberg, 1984).
More generally, any model whose nodes represent letters and
words, and only these units, faces the problem of describing what
the model nodes represented before a particular letter or word
entered the subject's lexicon or what happens to these nodes
when such a verbal unit is forgotten. This issue hints at more
serious problems concerning such a model's inability to self-
organize. Such concerns are dealt with by a theory whose levels
can learn to encode abstract item and list representations on a
substrate of previously uncommitted nodes.

These abstract item and list processing units of A) and A4 play
an important role in the theory's explanation of how unfamiliar
and unitized words are recalled. For example, suppose that a list
has just been represented in STM across the item representations
of A). Before the items in the list can be rehearsed, the entire
list begins to tune the A) ---A4 adaptive filter. The LTM traces
within this adaptive filter learn to encode temporal order infor-
mation in L TM. After this learning has occurred, the tuned filter
activates unitized sublist representations across A4. These sublist
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featural filling in, binocular matching, and object recognition
(Carpenter & Grossberg, 1985; Cohen & Grossberg, 1 984a,
1984b; Grossberg & Mingolla, 1985, in press), go beyond the
scope of this article. The stages within V. that are used for visual
object recognition (Carpenter & Grossberg, 1985, 1986) as dis-
tinct from visual form perception (Grossberg & Mingolla, 1985,
in press) also use bottom-up adaptive filters and top-down
learned expectancies. This is so because the problem of stabilizing
a self-organizing code in a complex input environment imposes
similar general design constraints on all sensory modalities
(Grossberg, 1980), Not all of these visual processing stages input
to the language system. We assume that associative maps from
the object recognition stages in V. to A4 or As can lead to phonetic
and semantic recognition as well as to motor recall of a visually
presented letter or word via the sensory-motor paths previously
described. Associative maps from A4 or As to V. can in turn
match the correct visual template of a word, such as NURSE,
against a phonetically similar target nonword, such as NERSE.

1. The Schvaneve1dt-McDonald Lexical Decision
Experiments: Template Feedback and

List-Item Error Trade-Off

Adaptive resonance theory predicts ordinal relations between
accuracy and reaction time. To illustrate these properties, we use
the theory to analyze the lexical decision experiments of Schva-
neveldt and McDonald (1981), which included both reaction
time and tachistoscopic conditions. These experiments used three
types of primes (semantically related, neutral, and semantically
unrelated) and two types of targets (normal words and altered
words). The neutral primes were used to establish a baseline
against which effects of related primes and unrelated primes
could be evaluated. The altered words were formed by replacing
one interior letter of each word with a different letter to form a
non word (e.g., TIGAR from TIGER). Assignment of non words to
the related or unrelated prime condition was based on the relation
between the prime and the word from which the non word was
constructed. Subj~ responded "word" or "non word" manually
by pressing a left.hand key or a right-hand key. Schvaneveldt
and McDonald's (1981) procedure was as follows:

Each trial consisted of two events in the reaction time paradigm and
three events in the tachistoscopic paradigm. In either case the first event
was always the priming signal, which consisted ofa stringofx's or a valid
English word. If the prime was neutral (x's), it was the same length. ..
as the related word prime for the target on that trial. The prime remained
on for 750 msec and was followed by a blank interval of 500 msec. No
response to the prime was required, and subjects were only told that the
first event was to prepare them to response to the target. The second
event, or target, appeared in the same location on the screen and was
either an English word or an altered word, as defined by the task require-
ments.

In the reaction time experiments, the target remained visible until the
subject responded. The instructions were that the subject was to respond
as rapidly and accurately as possible.

In the tachistoscopic experiments, the target was displayed for approxi-
mately 33.3 msec and was followed by a masking pattern consisting of a
string of number signs (#). Subjects were instructed to make as few errors
as possible, and speed was not encouraged. The interval between target
and mask, or interstimulus interval (ISI), was adjusted at the end of each

representations contribute to the recognition of words but cannot
by themselves elicit recall. This raises the issue of how short
novel lists of familiar items can be recalled even before they are
unitized. The fact that a verbal unit can have both an item rep-
resentation and a list representation now becomes crucial.

Recall of a short novel list of familiar items is triggered by a
nonspecific rehearsal wave to A3. This wave opens an output gate
that enables output signals of active items to be emitted from
A3 to M3. As each item is read out, it activates a negative feedback
loop to itself that selectively inhibits its item representation,
thereby enabling the next item representation to be read out.
Each item representation is recalled via the learned A3 --+ M3 --+
M2 --+ M. sensory-motor map.

The recall is an immediate recall from STM, or working
memory, of a list of unitized item representations. It is a type of
"controlled" process. It is not "automatic" recall out of LTM.
For a unitized list chunk in A4 to learn how to read out its list
of motor commands from LTM, the chunk must remain active
long enough during the learning process to sample pathways to
all of these motor commands. We next briefly sketch the simplest
version of how learning and recall can occur in the correct order.
It should be realized, however, that mechanisms that sometimes
control recall in the correct order can also generate recall in an
incorrect order. In fact, these mechanisms provide an explanation
of the bowed and skewed serial position curve of serial verbal
learning as well as related breakdowns of temporal order infor-
mation in LTM. We do not consider why these STM and LTM
temporal order mechanisms cannot always encode veridical STM
and L TM order information. See Grossberg (1982a, 1985) for
recent discussions of this issue.

In the simplest example of how temporal order information
across item representations is encoded and read out of LTM,
the top-down template from A4 to A3 learns this information
while the adaptive filter from A3 to A4 is being tuned. Thus the
learning of temporal order information is part of the learning
of an adaptive resonance. Later activation of a list chunk in A4
can read this LTM temporal order information into an STM
pattern of order information across the item representations of
A3. Activation of the rehearsal wave at this time enables the list
to be read out of STM. In sum, recall can occur via the learned
A4 --+ A3 --+ M3 --+ M2 --+ M. sensory-motor map.

All the stages A., A2, A3, and A4 are sensitive to phonetic
information to different degrees. The next stage As can group
the list representations of A4 into list representations that exceed
the maximal list length that can be represented within A4 due
to the finite STM capacity of A3. In other words, the list repre-
sentations of A4 spontaneously parse a list into the most predictive
sublist grouping that A4's prior experience permits, and As groups
together the parsed components via associative mechanisms. As-
sociative bonds also exist among the chunks of stage As. The
learned groupings from As to A4 can bind together multisyllable
words as well as supraword verbal units. The learned interactions
within As tend to associate verbal units that are highly correlated
in the language. Because the verbal units that are capable of
activating As are already of a rather high order, As's associations
encode semantic information in addition to other highly corre-
lated properties of these verbal units.

The visual stage V* is not broken down in the present analysis
because its several processing stages, such as boundary formation,
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block of trials in order to maintain an error rate of approximately .250.
(p.678) (a) (b)
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Fig~l~e 6. Res~lfs from the Schv~neveldt and M~Donald. (1~81) lexical
decIsion experiments: (a) A tachistoscoPIc experiment wrtha backward
pattern mask. Error rates in response to word (W) and no,word (Nw)
targets that follow related word (R), neutral (N), or unrelated word (U)
primes. (b) A reaction-time experiment without a backward p.ttern mask.
Reaction times in response to Wand Nw targets that follow R, N, or U
primes. (From "Semantic Context and the Encoding ofWorqs: Evidence
for Two Modes of Stimulus Analysis" by R. W. Schvaneveldt and J. E.
McDonald. 19811, Journal of E.-rperimental PsJ'Chology: Human Perception
and Performance. pp. 680, 683. Copyright 1981 by the A"1erican Psy-
chological Assodiation. Reprinted by permission.)

with the R, N! and U categories' being defined by semantic re-
latedness to tile targets and not be similarity of visu~l features.

Independent experimental evidence for Hypothesis 1 was pro-
vided by the Igap detection experiment of Schvan~veldt and
McDonald (1981). This experiment differed from the lexical de-
cision experiments only in that the altered-word foilsl were con-
structed by introducing a gap in the letter that had beer replaced
in the lexical decision study. The task was to indicate whether
or not a gap had been present. Detecting these gaps ~hould not
have required semantic information. In the tachistoscopic con-
dition of this experiment, word targets (without gaps) were rec-
ognized with (:qual error rates after R, N, or U wo,d primes.
This result would not be expected if the different prime categories
had caused un~qual amounts of interference with the !lisual reg-
istration of the targets. The following discussion comp~res prim-
ing effects first I on words, then on nonwords. After that, we con-
sider word-nonword comparisons to describe effects of responsebo I ,

las.

Word Target I Comparisons- Tachistoscopic

Each tachistoscopic condition is identified by prim~ type fol-
lowed by target type: For example. R/Nw denotes at) R prime
followed by an Nw target. The following discussion suggests why
nonword respQnses to word targets increase in the order from R
to N to U primes.

R/W-N/W i According to Hypothesis 2, the targe~ word re-
ceives approxif11ately equal interference on the item level from
the prior Rand N primes because relatedness is defin~d seman-

The results of these manipulations are summarized in Figure
6. A systematic explanation of these data follows, comparing
every pair of data points within each graph. Because of the qual-
itative nature of the explanation, only the relative values of com-
pared data points, not their absolute values, can be derived from
such an analysis.

The main point of this analysis is to compare and contrast
the interactions between a visual list level and an auditory list
level. The visual list level exists in the visual subsystem V', which
projects to the list levels A4 and/or A, in the auditory system.
Reciprocal connections from {A4' A,} to V. are also assumed
to exist and act as feedback templates. Under conditions of au-
ditory presentation, an analogous analysis could be given of re-
ciprocal interactions between A3 and A4.

A critical issue in our analysis concerns the criteria used by
subjects to select a response. Our microtheory implies that an
individual letter or word can be completely identified within its
modality when the corresponding resonance equilibrates (see
Section 7). Many conditions of lexical decision experiments do
not enable a fully blown resonance to evolve. Thus subjects are
forced to use incomplete processing measures. Within our theory,
the size and speed of an initial burst of activation at the appro-
priate list level correlates well with subject performance. The
characteristics of such a burst depend on factors such as whether
a mask is imposed and whether priming events, among other
factors, lead to a match or mismatch situation. Our explanation
therefore emphasizes the context-dependent nature of subject
response criteria. An analysis of these transient dynamical events
provides new insights into speed-accuracy trade-off (Pachella,
1974; Pew, 1969) and statistical decisionlike performance under
uncertainty (Green & Swets, 1966).

We first consider the tachistoscopic condition (see Figure 6a),
whose analysis is simpler than that of the reaction time condition.
The lower curve in the tachistoscopic condition describes the
error rate when word targets (W) followed related (R), neutral
(N), or unrelated (U) primes. Unrelated primes caused more
errors than did neutral primes, whereas related primes caused
fewer errors than did neutral primes. The upper curve describes
the error rate when nonword targets (Nw) followed R, N, or U
primes. A nonword target is constructed from a word target that
is in the designated relation R, N, or U to a prime by changing
one of the word target's interior letters. With nonword targets,
the reverse effect occurred: Related primes caused more errors
than did neutral primes, and unrelated primes caused fewer errors
than did neutral primes.

These curves are consistent with two hypotheses:
I. The bottom-up pathways from V. to {A4, A,} are capable

of activating the auditory list representations, but the action of
the visual mask 33.3 ms after the onset of the target obliterates
target-induced item activation and prevents top-down template
signals {A4, A,} -V. from causing resonant sharpening and
equilibration. Thus, in this case transient activations are the only
dynamic events on which the model can base a decision.

2. On the average, R, N, and U primes cause equal amounts
of interference in the bottom-up registration of word and non-
word targets at the item level of V'. This hypothesis is compatible
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tically, not in terms of shared item features. By contrast, the R
prime strongly activates list nodes of the word target because of
their semantic relatedness. When the word target occurs after an
R prime, its input to its list representation augments the prior
activation that has lingered since the R prime presentation. The
N prime does not significantly activate the list representations
of target words. Hence the R prime facilitates recognition more
than does the N prime.

N/~V-U/W The N prime and the R prime cause equal
amounts of interference on the item level. The N prime does
not significantly activate the list representations of any target
words. The U prime does not strongly activate list nodes of the
word target. In fact, the U prime can activate list nodes that
competitively inhibit the list nodes of the word target, because
of the recurrent lateral inhibition between list representations
that exists within a masking field (see Section 10). Hence a target
word is recognized more easily after an N prime than after a U

prime.

and the nonword target receive equal amounts of interference
from the prior U word prime activating their item representations
within V*. Because of the brief presentation of word and non-
word targets, both targets activate similar list nodes in A4 and
As. In particular, letters that are interior to words or word syllables
are less important in the adaptive filtering of items into lists than
are letters at the ends of words or syllables (Grossberg, 1978a,
1985). This property is due to the primacy and recency gradients
of temporal order information that form in the pattern ofSTM
activation across active item representations. The rapid pnset of
the target mask prevents the template feedback from lists to items
from correcting the misclassification of a non word target as a
word. Consequently, both word and nonword list represetttations
generate similar activation bursts, both of which are att~nuated
by the prior U prime.

Schvaneveldt and McDonald (1981) obtained a differbnt pat-
tern of results with the same design when no mask was presented
and reaction times were recorded. We now trace the di~erences
between the data of the reaction time condition (Figure 6b) and
of the tachistoscopic condition (Figure 6a) to the actio~ of the
feedback template from list to item representations. To emphasize
these differences, we compare pairs of data points in the lieaction
time condition with the corresponding pairs of data p~ints in
the tachistoscopic condition. Several of our explanations depend
on a trade-off that exists in these networks between ad initial
tendency to misidentify a word at the list level and the ability of
this initial tendency to generate an error-correcting mismatch at
the item level before false recognition can occur. We 4all this
trade-off the list-item error trade-off

Two changes in the reaction time data are of particular ~nterest.
First, there was no increase in reaction time on word trials due
to a U prime relative to an N prime, although a U prime in~reased
error rate relative to an N prime in the tachistoscopic expe~iment.
Second, an R prime decreased reaction time relative to an N
prime whereas an R prime increased error rate relative to an N
prime in the tachistoscopic experiment. We will analyze the dif-
ference between the two types of experiments by making ~airwise
comparisons of the data points.

Nonword Comparisons-Reaction Time

Each reaction time condition is again identified by priq1e type
followed by target type such that unmasked targets are in~icated
by an apostrophe: For example, N/W' denotes an N prime fol-
lowed by an unmasked W target. I

RjNw'-UjNw' versus RjNw-UjNw. These comparisbns an-
alyze the large difference between the error rates for R/Nw and
U/Nw in the tachistoscopic condition and the insignificilnt dif-
ference between both the error rates and the reaction times of
R/Nw' and U/Nw' in the reaction time condition.

Compare R/Nw with R/Nw'. In R/Nw, both the R prime and
the nonword target activate the list representation of t~ word
from which the nonword was derived. Hence the nonword target
generates a relatively large number of word misidentific~tions.

The processing in R/Nw' starts out just as it does in IR/Nw.
In R/Nw', however, the conjoint activation of the word's list rep-
resentation by both the R prime and the nonword target g~erates
large template feedback from the word list representation to the

Nonword Target Comparisons- Tachistoscopic

The following discussion suggests why word responses to non-
word targets decrease in the order from R to N to U primes.

R/NII'-N/NI\" According to Hypothesis 2, the target word
receives approximately equal interference on the item level from
the prior Rand N primes. The N prime does not significantly
activate the list level. The R prime does. Moreover, the R prime
significantly activates the same list representation that the sub-
sequent target word activates. Thus the nonword target is more
often misidentified as a word after an R prime than after an N
prime.

N/NK'-U/Nw. The N prime does not significantly activate
the list level. The U prime significantly activates word represen-
tations on the list level that inhibit the word representation that
is activated by the nonword target. The nonword target can sig-
nificantly activate its word representation on the list level. Tem-
plate feedback cannot act to correct this misidentification. In-
hibition from the U prime can. Thus a nonword target is mis-
identified as a word more frequently after an N prime than after
a U prime.

We now compare the transient bursts caused by word and
nonword targets after the same type of prime. We show that both
bursts are similar if the mask acts sufficiently quickly after target
onset. The sizes of these bursts increase across the prime con-
ditions from R to N to U. Thus the different error rates in re-
sponse to word and non word targets can be ascribed to response
biases. For example, a subject who demands a fully blown res-
onance in order to respond "word" will be biased to respond
"nonword" in all conditions.

R/W-R/N»'. Both word and nonword targets receive equal
amounts of interference on the item level because of the R prime.
Both word and non word targets similarly activate the list rep-
resentation of the word. This list representation received signif-
icant activation from the prior R prime. The target mask prevents
template feedback from correcting activation of a list represen-
tation of a word by a nonword. Consequently, both word and
nonword list representations generate similar activation bursts,
both of which are amplified by the prior R prime.

U/W-U/NII'. According to Hypothesis 2, both the word target
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nonword item representation. Thus the very factor that causes
many false word identifications of the non word target in R/Nw
leads to a relatively strong feedback signal with which to dis-
confirm this misidentification in R/Nw'. The mismatch between
the nonword's item representation and the word's item repre-
sentation causes a significant collapse in the item-to-list signals
that were supporting the word's list representation. Thus the
number of word misidentifications of the nonword target in
R/Nw' is reduced relative to R/Nw.

Moreover, the fact that the word representation is still active
because of the R prime when the nonword target is presented
speeds up as well as amplifies the read-out of the word template,
thereby causing a speed-up in reaction time.

Compare R/Nw' with U/Nw'. In contrast with R/Nw', in
U/Nw' the U prime inhibits the list representation of the word
that the nonword target activates. Thus the net activation of the
word's list representation by a non word target is weaker in U/
Nw' than it is in R/Nw'. Consequently, the word template that
is read out by the list representation in U/Nw' is weaker than
that read out in R/Nw'. The U/Nw' template is therefore less
effective than the R/Nw' template in mismatching the non word
item representation.

Thus a trade-off (list-item error trade-off) exists between the
initial tendency toward word misidentification at the list level
and the ability of this initial tendency to trigger template feedback
that can correct this tendency before erroneous recognition can
occur. The two factors-degree of incorrect initial list activation
and degree of item mismatch-tend to cancel each other out.

This trade-off holds for both activity levels and rates of acti-
vation. A large prior activation of the word's list representation
by the R prime helps to cause a rapid read-out of the word
template. This rapid reaction elicits a strong item mismatch ca-
pable of undercutting the already large initial activation of the
word's list representation. The greater speed is hereby compen-
sated for by the larger activation that must be undercut. Thus in
both error rate and reaction time, R/Nw' and U/Nw' are similar
despite the large difference between R/Nw and U/Nw.

N/Nw-U/Nw' versus N/Nw-U/Nw. The main points of in-
terest concern why in the reaction time paradigm U/Nw' is re-
liably faster than is N/Nw' even though their error rates are com-
parable, whereas in the tachistoscopic paradigm, the error rate
in U/Nw is reliably less than that ofN/Nw. Our task is to show
how the feedback template in the N/Nw'-U/Nw' comparison
alters the N/Nw-U/Nw dynamics of the tachistoscopic case.
Once again, a list-item error trade-off between the amount and
timing of list representation activation and its effects on the
amount and timing of item mismatch forms the core of our
analysis. Our explanation, moreover, differs from the hypothesis
that Schvaneveldt and McDonald ( 1981) derived from these data.

The N prime does not activate the list representations nearly
as much as a word prime does. Hence a nonword target can
modestly activate its word representation without major inter-
ference or augmentation from the prior N prime. The word's
list representation then reads out a template whose ability to
mismatch the nonword's item representation depends on how
strongly the nonword was able to activate the word's list repre-
sentation. Thus the size of the initial tendency to ~isidentify the
nonword target covaries with the ability of the feedback template
to correct this error.

This balan e between initial list activation and subsequent
item mismatc also occurs in the U prime condition. In this
condition, ho ever, the U prime inhibits the word list represen-
tation that the on word target activates. This list representation
is thus activat by the nonword less after a U prime than after
an N prime. e weaker tendency to misidentify the non word
as a word after a U prime leads to a weaker template read-out
and a weaker it m mismatch with the nonword's item represen-
tation. The simi ar error rates in the N and U nonword conditions
can thus be tra ed to the list-item error trade-off.

Why then is t e reaction time in the U prime condition reliably
faster (36:t 12 s,p < .01) than in the N prime condition? We
suggest that a ajor factor is the following one. In the U prime
condition, the onword target causes a relatively small initial
activation of th word level because of the prior occurrence of
the U prime. Th s relatively small initial activation tends to cause
a relatively wea item mismatch that can only cause the initial
list activation to come even smaller. We suggest that the absence
of a large rate or mount of activation within the list level at any
time provides a r latively rapid cue that a nonword has occurred.

By contrast, w thin the N prime condition, the nonword target
can cause a relat vely large initial activation of the list level. Al-
though the large t mplate read-out that is caused by this activation
can compensate or it, via list-item error trade-off, more time
is required to in ibit this initial activity surge than is required
to register the ab nce of such a surge in the U prime condition.
Thus the reaction ime tends to be longer in the N prime condition
than in the U pri e condition. This explanation assumes that
subjects in the re ction time condition tend to respond to the
network's equilib ated activities rather than to momentary ac-
tivity surges. Sub cts who do respond to initial surges might
respond faster an be more prone to make word misidentifica-
tions.

Schvaneveldt an McDonald (1981) discuss these data in terms
of the hypothesis hat "the priming event can lead to general
activation oflingui tic information-processing mechanisms" (p.
681) in response t an R prime or U prime but not an N prime.
This hypothesis is used to explain why the reaction times to
nonword targets a er R or U primes are faster than those after
an N prime. This e planation does not seem to suffice to explain
these data, at least ot using a serial search model of verification.
This is because the N prime should not generate any semantic
set. Even if R and primes can speed up search through their
semantic sets, such search would presumably take longer than
no search at all.

Our questioning how a nonspecific activating mechanism
could modulate ser al search does not mean that we deny the
existence of nonspe ific activating mechanisms. Within the con-
text of adaptive r nance theory, a level Fi can also nonspecif-
ically activate a lev I F;+I in addition to specifically activating
Fi+l. This nonspeci c activation lowers the gain of F;+I and
thereby enables the; ---F;+I signals to supraliminally activate
the STM traces of '+1. As summarized in Section 9, the need
for such nonspecific in control can be seen by considering how
a higher stage Fi+2 re ds tOP-down templates into F;+I. The the-
ory suggests that F;+2 an actively read such template signals into
Fi+1 without supra~i inally activating Fi+l. These templates
subliminally prepare ;+1 for supraliminal bottom-up activation
from F;. When Fi d s send bottom-up signals to Fi+I' it "opens
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the F;+1 gate"-that is, nonspecifically alters the gain-to enable
the bottom-up signals from F; and the top-down template from
F;+2 to begin to supraliminally match or mismatch, as the case
might be.

A role for bottom-up nonspecific gain control within our
theory would require that Rand U primes are more vigorously
processed by V* than are N primes and hence can elicit larger
nonspecific signals to {A4' As}. This property does not occur in
the outputs of the V* item level, because all the R, N, and U
primes are constructed from equal numbers of letters. The prop-
erty can, however, occur in the outputs of the V* list level, because
a familiar word prime of a fixed length can generate greater ac-
tivation within a masking field than can an unfamiliar prime
with the same number of letters (Section 10). Thus, the Schva-
neveldt and McDonald (1981) hypothesis can be restated as the
suggestion that V* contains a list representational stage that obeys
the laws of a masking field. Then the present analysis still holds
if lists in V* project to lists in A4 and/or As.

R/Nw'-N/Nw' versus R/Nw-N/Nw. This comparison is al-
ready implicit in the R/Nw'-U/Nw' versus R/Nw-U/Nw and
N/Nw'-U/Nw' versus N/Nw-U/Nw comparisons. It is included
to emphasize the importance of the list-item error trade-off.

In the tachistoscopic experiments, R/Nw has a higher error
rate than condition N/Nw due to significant conjoint activation
of word list representations by the R prime and the subsequent
nonword target. In R/Nw', by contrast, the large initial activation
of the nonword target due to the prior R prime elicits a faster
and stronger template read-out and item mismatch than in the
N prime condition. The faster acting template in the R prime
case than in the N prime case leads to a faster reaction time in
R/Nw' than in N/Nw'. The stronger template read-out and item
mismatch in the R prime case than in the N prime case com-
pensates for the larger initial activation via the list-item error
trade-off, thereby reducing the relative error rates of R/Nw' to
N/Nw' compared with the error rates of R/Nw to N/Nw by
causing a significant collapse in the incorrect initial activation
of word list representations.

Our theory overcomes the objection we made to a serial search
version of verification in the following way. At the moment when
an Nw' target occurs, a word representation is already signifi-
cantly active in case R/Nw' but not case N/Nw'. Even if the word
representation were capable of generating suprathreshold top-
down signals to the item level at this time, these signals would
not elicit suprathreshold item activation until the target occurred
(see Figure 4a). In any case, the Nw' target causes the list rep-
resentation of the corresponding word to exceed its output
threshold faster when it follows an R prime than when it follows
an N prime, because the N prime does not significantly activate
this list representation. Thus list-item error trade-off begins to
act sooner and more vigorously in the R/Nw' case than in the
N/Nw' case.

larger (.042) tha in the N prime condition (.029), although this
trend was not s gnificant. A similar pattern of error rates was
found in the tac istoscopic experiments (N/W-U/W). By con-
trast, the reactio time to a nonword target after a U prime was
significantly less han the reaction time to a non word target after
an N prime (N/ w'-U/Nw'). Why does letting a nonword-ac-
tivated template ct preserve relative error rates while producing
approximatelye ual reaction times (N/W'-U/W' versus N/W-
U /W), whereas etting a word-activated template act does not
produce approx.mately equal reaction times?

When a word target occurs after an N prime, it can activate
its representatio on the list level without experiencing inhibition
or facilitation d e to the prior N prime. In the reaction time
experiments, the ord target can also cause read-out of a template
capable of matc ing its item representation. By contrast, when
a word target 0 urs after a U prime, its list representation is
still experiencing residual inhibition because of the prior U prime.
However, the w rd target remains on long enough for its list
representation t be activated and to read out a template capable
of matching its tern representation. Matching the item repre-
sentation can in urn further amplify input to the list represen-
tation. In all, de pite a slower initial start in being activated, if
the word target says on long enough, it generates equal levels of
equilibrated list ctivation after both an N prime and a U prime.
The initial differe ce in list activation levels, which is so important
in the tachistosc pic experiments (N/W-U/W), becomes less so
in the reaction t.me experiments (N/W'-U/W') because of the
similar course of ist-item equilibration after the initial activation
difference is ove come. Nonetheless, a slightly longer reaction
time can be cau ed by the U prime's inhibitory effect on the
initial course of rocessing.

This explanati n makes important use of the different effects
of template-med ated item matching or mismatching on sub-
sequent list acti ation. An item match due to a word target
tends to strengt n the word list representation. An item mis-
match due to a onword target tends to weaken the word list
representation a cording to list-item error trade-off. These dif-
ferent consequen es of word targets and nonword targets suffice
to explain the rea tion time differences between N/W'-U /W' and
N/Nw'-U/Nw'.

It remains to say why the error rates are not the same in
N/W'-U/W', wh reas the reaction times are approximately the
same. The upper limit on reaction time differences is set by the
equal equilibrati n of list activation due to word targets that
follow N primes nd U primes. Even if subjects respond with a
statistical distrib tion of reaction times that is concentrated
throughout the ti e interval until equilibration is finalized, the
difference in mea reaction times should not significantly exceed
the brief interval needed to offset U prime inhibition. Nonethe-
less, if some sub ects do respond at times before equilibration
occurs and use t e level of list activation to determine word or
nonword respon s, then the initial U prime inhibition can cause
a significant incr ase in non word responses to the word target.
This tendency sh uld correlate with shorter reaction times.

R/W'-N/W' v rslts R/~'-N/W The R/W error rate is less
than the N/W e or rate because of the priming of the correct
word list repre tation after an R prime but not after an N
prime. The sam is true for the relative sizes of the RfW' and
N/W' error rate, although this trend was not significant. In

Word Comparisons-Reaction Time

N/»"-U/w' versus N/W-U/W versus N/Nw'-U/N»,'. The
main points of interest are that in the reaction time experiments,
the reaction times to word targets after Nand U primes were
not significantly different (the U prime condition was slightly
slower), although the error rate in the U prime condition was
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R/W' and N/W', a word target that follows an R prime can more
quickly and strongly read out its template than can a word target
that follows an N prime. These templates tend to match and
amplify the word item representation. Thus R/W' possesses
a faster reaction time and a lower error rate than does condi-
tion N/W'.

In summary, these lexical decision data 'Can be qualitatively
explained using the following properties:

I. R, N, and U primes all generate comparable levels of in-
terference to later targets at the item level.

2. R primes subliminally activate semantically related word
list representations via recurrent conditioned excitatory pathways
within the list levels. U primes inhibit semantically unrelated
word list representations via recurrent unconditioned inhibitory
pathways within the list levels. N primes neither activate nor
inhibit word list representations by a significant amount.

These priming properties assume that the list representations
of words with more than one letter can inhibit the list represen-
tations of their constituent letters, including the list representa-
tions of letters that form the N prime. This property, which is
needed to learn selective word list representations, is achieved
by designing the list levels as masking fields (see Section 10).

3. A larger activation of a word list representation due to a
word target causes faster and stronger item matching and activity
amplification at the item and list levels.

4. A larger activation of a word list representation due to a
non word target causes faster and stronger item mismatch and
activity suppression at the item and list levels. This compensatory
property is called the list-item error trade-off.

This property assumes that mismatch of a single letter in a
word at the item level can cause a significant collapse in the
activation of the word's list representation. Thus for our expla-
nation to hold, activation of a list level representation must be
selectively sensitive to word length in a manner that is consistent
with the properties of a masking field (Cohen & Grossberg, in
press).

;.
~~
?:

typically does not have a signficant effect on accuracy of word
recognition, although insignificant improvements in recognition
have been noted as a function of increasing frequency (Manelis,
1977; Paap & Newsome, 1980). By contrast, if a backward mask
is not used, then high-frequency words are consistently classified
faster than low-frequency words (Landauer & Freedman, 1968;
Rubenstein, Garfield, & Millikan, 1970; Scarborough, Cortese,
& Scarborough, 1977). This difference has been used to support
the verification model hypothesis that word frequency does not
influence word encoding but does influence the later stage of
word verification.

A paradoxical pattern of data emerges when influences of word
frequency on recognition and recall are contrasted. This data
pattern, which is often called the word frequency effect. states
that high-frequency words are recalled better than low-frequency
words, but low-frequency words are recognized better than high-
frequency words (Glanzer & Bowles, 1976; Gorman, 1961;
Schulman, 1967; Underwood & Freund, 1970). To explain this
effect, it is necessary to carefully define the relevant experimental
procedures.

Underwood and Freund (1970) used a two-alternative forced-
choice recognition procedure. In Stage 1 of their experiment,
subjects studied a list of 50 low-frequency (L) words or a list of
50 high-frequency (H) words. In Stage 2, subjects were shown
pairs of words. One word in each pair was chosen from the list
of study words. The other word in each pair was chosen from a
list of either H words or from a list of L words. Thus subjects
fell into one of four categories-L-L, L-H, H-L, H-H-in
which the first letter designated whether the study list was com-
posed of L or H words and the second letter designated whether
the distractor word in each pair was chosen from an Lor H list.
The subjects were instructed to identify the word in each pair
that they had seen on the study trial.

The results of Underwood and Freund (1970) are summarized
in Figure 7. The main word frequency effect compares H-H
with L-L; that is. when studied L words were paired with un-
studied L words, recognition was better than when studied H
words were paired with unstudied H words. This effect reversed
in the H-L and L-H conditions. Studied H words in the H-L
condition were recognized with fewer errors than studied L words
in either the L-H or L-L conditions. To understand these results,
one needs to consider the effect of word frequency on the study
trial as well as the effect of word frequency differences on the
test trial. Underwood and Freund (1970) offered an interesting
explanation of their results. Our explanation is compared and
contrasted with theirs below.

This experiment raises fundamental questions about the pro-
cesses that lead to judgments of recognition. Unlike a judgment
between word and nonword, all items in the Underwood and
Freund (1970) experiment are words. The task is to judge which
of these words have recently been seen. This type of recognition
has been called different names by different authors. Concepts
such as "the judgment of previous occurrence" (Mandler, 1980;
Mandler, Pearlstone, & Koopmans, 1969), "familiarity" (Juola,
Fischler, Wood, & Atkinson, 1971; Kintsch, 1967; Mandler,
1980), "situational frequency" (Underwood & Freund, 1970),
and "encoding specificity" (Tulving, 1976; Tulving & Thomson,
1973) have been used to distinguish this type of recognition from
other types, such as the word-nonword recognition of lexical

12. Word Frequency Effects in Recognition and Recall

Recognition events that occur during lexical decision exper-
iments are often analyzed as a world unto themselves. Relations
with other sorts of word recognition and recall phenomena are
often neither noted nor used to provide additional constraints
upon understanding of word recognition phenomena. The re-
maining sections of this article relate lexical decision data to
another sort of word recognition and to recall.

A number of experiments have demonstrated that word fre-
quency manipulations can have different effects on recall than
on recognition of prior occurrence. A unified explanation of
these effects is suggested by our theory and leads to interesting
comparisons with previous explanations. Our explanation in-
vokes unitization and interlist associative reactions in a basic
way. Thus whereas our explanation of lexical decision data did
not require an analysis of L TM changes, our analysis of memory
of previous occurrence does. Some of the main experimental
phenomena are now summarized.

In lexical decision experiments, different effects of word fre-
quency occur with and without the use of a backward pattern
mask. Under conditions of backward masking, word frequency



WORD RECOGNITION AND RECALL 67

.-

~
.,.

?

decision tasks, or recognition of the individual items in a list.
The Underwood and Freund (1970) experiment underscored the
difficulty of making such a concept precise by showing that recent
presentation can interact in a complex fashion with word fre-
quency. In other words, these data show that subjects may confuse
the internal recognition indices that are due to recent presentation
with internal recognition indices that are due to the cumulative
effects of many past presentations. This is not surprising when
one considers that it is the long-term cumulative effects of many
"recent presentations" that yield the internal representations that
subserve word frequency effects. How one should proceed from
such general observations is, however, far from obvious, as we
shall see by reviewing two of the leading models of this type of

recognition.

assumed to increase the situational frequency to 2. However,
discriminability of an item increases as a slower-than-linear
function of situational frequency, so that two study trials have
little more effect than one study trial on discriminability. Jt is
also assumed that a subject chooses that item in a pair of items
with the higher discriminability.

A critical assumption that differentiates the effects of Hand
L words concerns the role of implicit associational responses
(JARs). Jf a studied item elicits an IAR, then the JAR also acquires
a frequency of 1. It becomes an "old" item even if it does not
explicitly appear in the study list. Jt is also assumed that H words
have more JARs than do L words and that the JARs ofH words
tend to be other H words.

Consequently, H-L recognition is best. H words directly receive
an increment of 1 due to study. They may also indirectly achieve
a greater discriminability than 1 by being the IARs of other
studied H words. By contrast, the unstudied L words are unlikely
to be the JARs of studied H words, so that the frequency differ-
ences between Hand L words in H-L pairs is maximal. By
contrast, in the H-H situation, many of the unstudied JARs of
studied H words may be the new words in the H-H pairs. Fur-
thermore, studied H words that are JARs of other studied H
words derive little extra advantage from this fact. Hence many
of the H-H pairs tend to have similar discriminability values,
so that many errors occur. L-H should produce fewer errors
than H-H, because the studied L words acquire a large frequency
1 without increasing the frequency of the unstudied H words.
L-L should also produce fewer errors than H-H, for a similar
reason.

The other comparisons follow less easily from this analysis.
The advantage of H-L over L-L can be attributed only to the
slight benefit received by studied H words that are JARs of other
studied words. In the data, the error difference between H-L
and L-L is at least a third of the difference between H-L and
H-H. Jf studied words derive little benefit from being JARs of
other studied H words, then this difference should be small. Jf,
however, studied H words derive a great deal of benefit from
being JARs of other studied H words, then H-H should not
produce nearly so many errors. However, this difficulty would
be less pronounced if L words have more L word JARs than do
H words.

A further difficulty concerns the model's implications con-
cerning the real-time events that translate situational frequencies
into decisions. The situational frequency changes may be likened
to changes in LTM. The theory does not, however, explain how
a new H item that was an JAR of a studied H item translates its
LTM situational frequency value of 1 into a decision on a test
trial. In particular, suppose that the frequency change between
a studied H word and an JAR H word were due to a change in
the L TM strengths within the conditionable pathways between
internal representations of these words. Tlten these LTM traces
would have no effect on the activation of the JAR H word on a
test trial unless the studied H word with which it is paired is the
word that activated it as an JAR on the study trial. Thus, some-
thing more than the strengthening ofinterword associative link-
ages is needed to explicate the situational frequency concept.
Suppose, for example, that all the activated H words, both studied
words and JAR words, form new LTM linkages with internal
representations of contextual cues, notably with visual reDre-
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13. Analysis of the Underwood and Freund Theory

Underwood and Freund's (1970) explanation of the data in
Figure 7 is a prototype of later explanations of the word frequency
effect. A measure of "situational frequency" is assigned to each
item. A study trial is assumed to increase the situational fre-
quency of a studied word from 0 to I. A second study trial is
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sentations of the experimental context. Then these contextual
cues could activate the list representations of the studied words
and the fAR H words on recognition trials. Such a contextual
contribution could save the formal properties of the situational
frequency concept but still could not explain the relatively large
error difference between H-L and L-L. Despite these uncertain
and incomplete aspects, the Underwood and Freund (1970)
model provided a seminal framework for later models of the
word frequency effect.

14. Analysis of the Mandler Theory

oped the properties of the familiarity concept to explain the word
frequency effect.

Familiarity of an event is determined by the integration. perceptual
distinctiveness, and internal structure of that event. ..and by the amount
of attention expended on the event or item itself[italics ours]. Retriev-
ability. ..is determined by interevent relationships and the elaboration
of the target event in the context of other events or items. (Mandler et
al., 1982, p. 33)

Thus intraitem changes in familiarity bear the total burden of
explaining the recognition reversal in the Mandler (1980) model,
unlike the role of IARs in the Underwood and Freund (1970)
model.

The actual implementation of the familiarity concept to ex-
plain the word frequency effect faces several difficulties. Despite
these difficulties, the intuitions that led to the Mandler (1980)
theory are instructive. Hence we describe both the model's in-
tuitive basis and its formal difficulties before suggesting how our
theory overcomes these difficulties.

Mandler (1980) assumed that every word has a "base famil-
iarity" before it is presented in a recognition experiment. Typ-
ically the base familiarity Fa of a high-frequency word is larger
than the base familiarity value 10 of a low-frequency word. In a
theory that explains judgments of recent occurrence using a fa-
miliarity concept, a base familiarity value must be defined or
one could not even compare the familiarities of old-word targets
and new-word distractors. Mandler (1980) and Mandler et al.
(1982) acknowledged this need with their discussions of the Un-
derwood and Freund (1970) experiment and the Glanzer and
Bowles (1976) experiment. The latter experiment revealed the
basic fact that

false alarms demonstrate the dominance of high-frequency words; that
is, hit rates are higher for low-frequency words, but false alarm rates are
higher for high-frequency words. In other words, in the absence of re-
trievability the recognition judgement (for distractors) depends on the
familiarity of the item. (Mandler, 1980, p. 267)

The crucial step in a theory based on familiarity is to explain
how base familiarity is altered when a word is presented, or how
a new word becomes an old word. Because

Fa> 10, (6)

one needs an operation that can reverse the effect of word fre-
quency on the base familiarity value. Formally, the question be-
comes, How do increments AF and Afin familiarity alter the
base familiarity values Fa andlo to generate new familiarity values
F. andfj such that

Mandler (1980) and Mandler, Goodman, and Wilkes-Gibbs
(1982) further developed the theory and the data of these rec-
ognition and recall differences. In the Mandler et al. (1982) ex-
periments, a lexical decision task provided the occasion for
studying Hand L words. The subjects' task, as usual, was to
identify words and nonwords. They were not told that they would
be asked to remember these stimuli. Half the subjects were then
given the same words and asked to define them. The remaining
subjects were not. Then all subjects were asked to return in 24
h. At that time. half of the subjects in each group underwent a
recognition test in which old and new words were intermixed.
More L words were recognized than H words. After the recog-
nition test, these subjects were also given a recall test. Recall was
better for H words than for L words. The other half of the subjects
were tested for recall before recognition. A prior recognition test
was found to increase recall significantly, but it also increased
errors due to distractors from the recognition test.

Mandler et al. (1982) also did an analysis aimed at replicating
the major results of Underwood and Freund (1970), although
they did not use a two-alternative forced-choice paradigm. This
analysis was restricted to data from the definition task group.
because this task provided a learning experience analogous to
that in the Underwood and Freund (1970) study. Mandler et al.
(1982) analyzed the hit rates and false alarm rates for the Land
H new and old words that were used during the recognition test.
They showed that the d' for the L-L comparison was larger than
that for the H-H comparison, whereas the d' for the H-L com-
parison was larger than that for the L-H comparison. Also the
d' for the H-L comparison was larger than that for the H-H
comparison.

The model of Mandler (1980) introduces refinements and
modifications of the Underwood and Freund (1970) model but
also new difficulties. Mandler replaces the notion of situational
frequency and the slower-than-linear increase of discriminability
with frequency by introducing his concept of familiarity. Mandler
discusses how an event's familiarity and a retrieval process can
work together to determine recognition. He lets ..F = the prob-
ability that an event will be called old on the basis of its familiarity
value; R = the probability that an event will be called old as a
result of retrieval processes; Rg = the probability that an event
will be called old" (1980, p. 257). These probabilities obey the
equation

F1 <.Ii? (7)

Mandler (1980) makes the plausible assumption that "the in-
crement in familiarity (integration) for all words is a constant
function of the amount of time that the item is presented"
(p. 268). In other words,

d=M=~f. (8)Rg = F + R -FR. (5)

Both Mandler (1980) and Mandler et al. (1982) argued that re-
trieval processes are not rate limiting in determining the reversal
that occurs during word recognition. Consequently, they devel-

Given Assumption 8, no obvious additive model can convert
Inequality 6 into Inequality 7. Mandler therefore chooses a
ratio model. He suggests that "the operative F value for a word
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be df(d + F), where F is the preexperimental base familiarity
value of the word" (1980, p. 268). In other words,

dFt = (9)

Fl = Fo + -.:.-- (16)
Xd

d+F~'
and

d+Fo' Xd
jj=lo+d+Io' "fl

where A is a positive constant. Then the desired limit Properties
12 and 13 hold. Moreover, if A is sufficiently large and d is not
too small, then F1 < jj even if Fa > 10. Using this new model,
one can explain the Underwood and Freund (1970) data as fol-
lows. To explain th~ greater errors for H-H than for L-L, we
need to show that

and

(10)
djj=~

Mandler goes on to apply this definition by using Equation 5 to
determine when

~

F.-Fo<Jj-Jo. (18)

By Equations 16 and 17, this reduces to the inequality

Fo > Jo (6)

for the base familiarities. To explain the greater errors for L-H
than for H-L, we need to show that

FI-Jo>Jj-Fo. (19)

h + r -rj; > F1 + R -RF. (II)

(1980, p. 268) under the condition that the retrievability (r) of
low-frequency words and that of high-frequency words (R) are
equal. He notes that Inequality 6 is the basis for deriving In-
equalities 7 and II.

Despite the ingenuity of this familiarity concept, it is not en-
tirely satisfactory. For example, a comparison of Inequalities 6
and II shows that a single study trial, no matter how short, must
reverse the Inequality 6 governing base familiarities, which are
determined by a large number of prior word exposures under
natural conditions. This paradoxical conclusion follows because
for any positive Ilf= IlF, no matter how small, F1 <h if Fo >
.10. Another way to state this problem is as follows. One might
expect the operative familiarity value to approach the base fa-
miliarity value as the increment in familiarity approaches zero:
that is,

This inequality reduces to

(20\

jj -fa as 6./-0. (12)

which is attainable for a range of d values, given any X, 10,
and Fo.

Although the new definitions of familiarity (Definitions 16
and 17) escape some problems of the Mandler (198O) model,
they face challenges of a more subtle nature. Mandler himself
has emphasized the cumulative nature of familiarity: "Each ad-
ditional presentation and processing of an event adds some spec-
ified degree of integration to the target. ...Repeated recogni-
tion tests (presentations) not only prevent loss of familiarity but
actually increment it" (Mandler, 1980, pps. 267, 269). If pre-
sentations alter an item's familiarity by incrementing the inte-
gration of an item's internal representation, then where do in-
cremental terms such as df(d + F) leave off and new base fa-
miliarities begin? In other words, no matter how large d gets in
a formula such as

and
( 13)F1 ---Fo as ~F ---O.

Instead, the Definitions 9 and 10 imply that

j; ---0 as ~f ---0 (14)
and

F1 =Fo+- (16)
Xd

d+Fo'

whether because of a single sustained presentation or many brief
presentations, the formula does not show how an old "base"
familiarity Fo generates a new "base" familiarity Fl, It makes
no physical sense to arbitrarily write

XdF2 = F. + d+"F; (17)

for the next round of recognition experiments. A formula such
as Equation 16 fails to explain how the cumulative effects of
many presentations determine the influence of word frequency
on the base familiarities Fa andfo. It is also difficult to understand
how a subject could separately store, as part of an item's "in-
tegration," an increment d and a base value Fa for 24 hr before
comparing them on later recognition trials. Because of the fun-
damental nature of these issues in explaining the word frequency

F OasM---O. (15)

One might wish to salvage the situation by replying that if an
item has not been studied in the experiment, it has a zero fa-
miliarity value. However one cannot then explain how new dis-
tractors generate false alarms on the basis of word frequency in
the Underwood and Freund (1970) and Glanzer and Bowles
(1976) experiments.

Moreover, the Mandler et al. (1982) analysis of d' scores in
their definition task experiment is inconsistent with the Under-
wood and Freund (1970) data in an important respect. Mandler
et al. (1982) assume that familiarity is an intraitem variable and
that forced-choice responses are based on selection of the more
familiar word in each pair. Under such assumptions, a d' analysis
requires that the lines between points (L-H, H-H) and points
(L-L, H-L) be parallel. This is not true in the Underwood and
Freund (1970) data (Figure 7). Thus, although the Mandler (1980)
model escapes its worst difficulties when it does not combine old
words with new words, it fails to be able to make such a com-
parison both formally and in important data. These difficulties
suggest that the Mandler (1980) familiarity concept is insufficient
to capture major properties of subjects' ability to judge previous
occurrences.

One can escape the limit problem expressed in Properties 12
and 13 by redefining F1 andJj as follows. Let
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effect, a different theory must be
of the Underwood and Freund (1
but escapes their pitfalls.

on study trials and test trials, context can differentially act pri-
marily via V* --+ {A4' As} associations. Then the subject is re-
duced to using STM indices such as the differential sizes ofSTM
bursts or equilibration values to judge old from new. These are
the same types of STM indices that subjects use to make their
judgments in a lexical decision task (see Section II). Our theory
hereby unifies the explanation of lexical decision and word fre-
quency data by showing how different types of experiments can
differentially probe the same perceptual and cognitive mecha-
nisms.

:,

~
t:
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16. Explaining Recognition and Recall Differences

To start our explanation of the main recognition and recall
differences described in Sections 12-14. we note the obvious fact
that both Land H words can be recognized as words by exper-
imental subjects. Both types of words possess unitized internal
representations at the list level (see Figure 5). Their differences,
or lack of differences, in recognition and recall properties thus
cannot be attributed to unitization or lack thereof per se. How-
ever. several quantitative differences in the learned encoding and
interlist interactions between Hand L words are relevant to our
discussion.

The first difference can be understood by considering a prop-
erty of the bottom-up feature tuning process described in Section
7. There we concluded that an LTM Vector Zj(t) equals a time-
average

L ~k)(t)S(k)k J

;.
t
',=".

15. Role of Intralist Restructuring and
Contextual Associations

Our explanation of the word frequency effect contains elements
in common with both the Underwood and Freund (1970) model
and the Mandler (1980) model in that we suggest both interitem
and intraitem organizational changes subserve this effect. As in
our interpretation of the IARs of the Underwood and Freund
(1970) model, we note that contextual associations between V.
and {A4' A,}, as well as between A4 and A" can form as a result
of studying a list of old words. This conclusion does not require
any new assumptions within our theory. Such L TM associations
always form when the relevant item and list representations are
simultaneously activated in STM. Such associations can also be
quickly restructured by competing LTM associations or masked
by competitive STM interactions unless their triggering environ-
mental events can utilize or form distinctive list representations,
buffered by their own top-down templates, between which to
build these new associative bonds (Grossberg, 1978a).

Thus a unique visual experience, via contextually mediated
bonds between V. and {A4' A,}, can have an enduring effect on
word recognition. In a similar way, embedding an item in a
unique verbal list can generate strong contextual effects due to
the formation of new list representations within {A4' A,}. Such
contextual effects are not usually important in a lexical decision
task because such a task does not define lists of old items and
of new items. Contextual effects are important, however, in ex-
periments studying the word frequency effect, serial verbal
learning, and the like.

To understand how contextual associations can be differentially
formed with old L words and old H words, we first need to
understand how L words and H words differentially activate their
internal representations in STM. We show how such differential
STM activations can differentially alter the intralist LTM orga-
nization or "integration," to use Mandler's phrase, of the cor-
responding list representations. These differential STM activa-
tions can also differentially form new interlist L TM associations
with contextual representations in V. and, under appropriate
experimental conditions, with A,. Such interlist LTM reactions
are closer to the Underwood and Freund concepts of IARs. Both
of these types of L TM changes cooperate to alter the total reaction
to old words on test trials.

Even in an experiment in which old words are not divided
into two classes, such as Land H, contextual associations can
still contribute an increment in integration over and above the
increment caused within the internal representations of the old
words. This contextual increment helps to reduce the overall
error rate in recognizing old words as distinct from new words.

We suggest that subjects use relatively simple STM indices to
make these recognition judgments. In experiments in which pre-
sentation of a memory item can activate an informative contex-
tual impression, say, via an A4 --+ A, --+ V. pathway or a V. --+
{A4' A,} --+ V. pathway, then differential STM activations of
the contextual representations themselves may be used as cues.
In experiments in which the experimental context is the same

of all the bottom-up signal patterns SJk) that its node Vj can ever
sample. If a particular pattern SJM> appears with a high relative
frequency, then its weight aJM>(t) in Summation 21 becomes rel-
atively large. Once Zj(t) approximately equals S~M> further pre-
sentations of S~M> cause relatively small changes in Zj(t). The
converse is also true. If a particular SJM> has not been occurring
frequently, then its reoccurrence can begin to cause a significant
change in Zj(t) toward SJM>. Thus presentation of infrequent pat-
terns can begin to significantly retune LTM, other things being

equal.
This conclusion depends on the fact that the pattern of signals

1j = SJM>. Zj that is caused by an infrequent pattern SJM> is sharp-

ened by contrast enhancement before being stored as a pattern
ofSTM activities Xj- Thus relatively infrequent patterns SJM> can
cause relatively large xis in those encoding populations Vj whose
STM activities survive the process of contrast enhancement.
These surviving STM activities can then drive learning within
the corresponding L TM vectors Zj via the learning equation

(Equation I).
The contrast enhancement property helps to explain the in-

significant difference between Hand L word recognition in lexical
decision tasks using a backward mask. The differences that may
exist between the tuning of the L TM vectors to Hand L words
tend to be offset by contrast enhancement in STM. Nonwords,
by contrast, cannot easily activate any list representations.

This conclusion no longer follows when the bottom-up acti-
vation process can read out top-down templates, as in lexical
decision tasks that do not use backward masks. Then the same
template-matching property that implies the list-item error trade-

sought that captures the insights
970) and Mandler (1980) models
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a new H word is also easily understood from this perspective.
To understand the reversal effect, note that an old H word gen-
erates significantly more STM activation than does a new L word
(Property 2), whereas the additional STM activation caused by
an old L word (Property I) is offset by the large STM activation
caused by a new H word (Property 2).

Property 3 in our explanation is the formation of contextual
associations to old L word and H word list representations. Con-
textual associations can form to all old words and their associates
but not to new words that are not associates of old words. Con-
textual associations can hereby lower the overall error rate in a
recognition task by augmenting the STM activations of all old
words.

Some finer learned interactions can occur among the list rep-
resentations of study items and with contextual list representa-
tions when the study period is organized in a way that approx-
imates serial verbal learning or paired associative learning con-
ditions (Grossberg, 1969d, 1982a, 1982c; Grossberg & Pepe,
1971), such as when lists of L words are studied together (Un-
derwood & Freund, 1970). Although such learned interactions
have not been needed to explain the main comparisons within
the data described above, they do provide a clearer understanding
of how H items become associatively linked with many list rep-
resentations, and they may eventually help to explain why certain
H-H, L-L, H-L, and L-H comparisons are not invariant across
experimental conditions. Finally, other mechanisms described
in this article may help to expand the data base explained by
our theory. For example, the competitive interaction of all viable
sublist representations in the masking field (see Section 10) could
explain why new distractors that are compounds of previously
presented words produce increased false alarm rates (Ghatala,
Levin, Bell, Truman, & Lodico, 1978).

17. Concluding Remarks

off (see Section II) progressively amplifies the small differences
between Hand L word LTM tuning that exist in the bottom-
up and top-down pathways to generate large STM differences
in the list representations ofH and L words. Thus, whereas initial
contrast enhancement within a list level tends to reduce word
frequency effects, asymptotic template match-mismatch differ-
ences between list and item levels tend to amplify word frequency
effects. A significant difference in the speed of Hand L word
recognition is also generated by the better top-down matching,
and hence larger and faster STM activation, that occurs in re-
sponse to H words than to L words.

This difference in the size and degree of sharpening of the H
word list representations also helps to generate better H word
recall than L word recall. In recall, as opposed to recognition,
the task is to generate old words, whether H words or L words.
On a study trial, H words generate greater STM activations than
do L words. This difference is reflected on later recognition trials
in the lower error rates of H-L than of L-L. During a study
trial, the greater activation of H words facilitates the formation
of inter item chunks (with A,) and contextual associations (with
V*). On a later recall trials, those chunks and contextual asso-
ciations that survive intervening competitive recoding can lead
to better retrieval of old H words than of old L words. The better
tuning of the sensory-motor associative map A. --+ A3 --+ M3
(see Section 10) to H words than to L words also contributes to
this effect.

We can use these properties to begin our explanation of why
old L words paired with new L words are recognized better than
old H words paired with new H words yet old H words paired
with new L words are recognized better than old L words paired
with new H words. Before turning to the role of contextual as-
sociations, we consider the interaction of two properties: (I) the
greater LTM retuning of list representations caused by L word
presentation than H word presentation and (2) the greater STM
activations, both of a word's list representation and its interlist
associates, caused by an H word than an L word.

Property I may be compared with the Mandler (1980) concept
of a change in familiarity. As in Mandler's model, L words cause
a larger tuning change than do H words. Unlike Mandler's model,
a very brief training trial need not reverse the base "familiarity"
values. Property 2 may be compared with the IAR concept of
Underwood and Freund (1970). As in their model, we assert that
learned interlist interactions playa role. Unlike their model, we
do not associate values of I with all the IARs of a study item.
Instead we focus on the effect of study conditions on the total
STM activation generated by a new or old L word or H word.

Using these properties, we draw the following conclusions.
The old-H-new-H comparison causes a relatively high number
of errors, in part because study of an H word causes relatively
little LTM tuning of its chunk (Property I). Hence on a later
recognition trial, both the old H words and the new H words
cause large and similar amounts of total STM activation (Property
2). The old-L-new-L case causes a relatively low number of errors
because the study of an L word causes relatively rapid LTM
tuning of its chunk (Property I). Hence on a later recognition
trial, an old L word causes a relatively large STM activation,
whereas a new L word causes a relatively small STM activation
(Property 2). The better recognition of an old H word paired
with a new L word compared with an old H word paired with

The present article describes a macrotheory and a microtheory
capable of modifying and unifying several models of language-
related behavior and of characterizing the relations between dif-
ferent types of language-related data that are often treated sep-
arately from one another. Development of circular reactions,
analysis by synthesis, motor theory of speech perception, serial
and paired associate verbal learning, free recall, categorical per-
ception, selective adaptation, auditory contrast, word superiority
effects, word frequency effects on recognition and recall, and
lexical decision tasks can now all be analyzed using a single pro-
cessing theory (see Figure 5). The core of this theory consists of
a few basic design principles such as the temporal chunking
problem, the L TM invariance principle, and the factorization
of pattern and energy (see Sections 9 and 10). These principles
are realized by real-time networks built up from a few basic
mechanisms such as bottom-up adaptive filters, top-down
learned templates, and cooperative-competitive interactions of
one sort or another.

No alternative theory has yet been shown to have a comparable
explanatory and predictive range. In particular, as the debate
continues concerning the relative virtues of matrix models and
convolution models (Anderson, Silverstein, Ritz, & Jones, 1977;
Eich, 1985; Murdock, 1983, 1985; Pike, 1984), it should be re-
alized that the embedding field theory, which is assimilated within
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the adaptive resonance theory, long ago provided a detailed anal-
ysis of the classical bowed and skewed serial position curve and
of the error distributions found in serial verbal learning (Gross-
berg, 1969d, 1982c; Grossberg & Pepe, 1971). These fundamental
data have not yet been explained by either the matrix model or
the convolution model. We trace this explanatory gap to the
absence within these models of the very sorts of design principles
and nonlinear mechanisms that we have used to explain data
about word recognition and recall. We suggest that any future
theory that may supplant the present one must also include such
design principles and nonlinear mechanisms.

Superimposed upon these design prinicples and mechanisms
are a number of new functional ideas that can be used in a
model-independent way to think about difficult data. For ex-
ample, the idea of adaptive resonance provides a new vantage
point for understanding how learned codes are stabilized against
chaotic recoding by the "blooming buzzing confusion" ofirrel-
evant experience, and for thinking about processing stages that
interact via rapidly cycling feedback interactions. The concept
of resonant equilibration provides a helpful way to think about
verification and attentional focussing without being led into a
serial processing metaphor that seems to have no plausible phys-
ical realization. The list-item error trade-off provides a new per-
spective for analyzing certain deviations from speed-accuracy
trade-off, especially in situations wherein matching due to top-
down feedback can compensate for initial error tendencies. The
concepts of top-down subliminal control and bottom-up supra-
liminal control rationalize the distinction between attentional
gain control and attentional priming and indicate how to supplant
the intuitive concepts of "automatic activation" and "conscious
control" by a mechanistic understanding. Such known principles,
mechanisms, and functional ideas enable a large data base to be
integrated concerning how humans learn and perform simple
language skills and provide a foundation for future studies of the
dynamical transformations whereby higher language skills are
self-organized.
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