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ABSTRACT 

A model of laminar visual cortical dynamics proposes how 3D boundary and surface 

representations arise from viewing slanted and curved 3D objects and 2D images. The 3D 

boundary representations emerge from non-classical receptive field interactions within 

intracortical and intercortical feedback circuits. Such non-classical interactions within cortical 

areas V1 and V2 contextually disambiguate classical receptive field responses to ambiguous 

visual cues using cells that are sensitive to colinear contours, angles, and disparity gradients.  

Remarkably, these cell types can all be explained as variants of a unified perceptual grouping 

circuit whose most familiar example is a 2D colinear bipole cell. Model simulations show how 

this circuit can develop cell selectivity to colinear contours and angles, how slanted surfaces can 

activate 3D boundary representations that are sensitive to angles and disparity gradients, how 3D 

filling-in occurs across slanted surfaces, how a 2D Necker cube image can be represented in 3D, 

and how bistable 3D Necker cube percepts occur. The model also explains data about slant 

aftereffects and 3D neon color spreading. It shows how chemical transmitters that habituate, or 

depress, in an activity-dependent way can help to control development and also to trigger 

bistable 3D percepts and slant aftereffects. Attention can influence which of these percepts is 

perceived by propagating selectively along object boundaries.  

 

Keywords: 3D perceptual grouping, 3D surface perception, cortical development, 

attention, angle cells, disparity-gradient cells, Necker cube, bistable percept, slant aftereffect, 

filling-in, V1, V2, V4, LAMINART model, FACADE model 
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1 Introduction 
A central problem for visual neuroscience concerns how 3D objects are represented by the 

human visual system. Computational models that deal with 3D inputs typically concentrate only 

on planar objects. However, most of the objects in the world are slanted, tilted, or curved and 

span multiple depths with respect to an observer. In this article, the term planar refers to 

frontoparallel planar objects while the terms slanted and tilted refer to slanted and tilted planar 

objects, where slant is defined as deviation around the horizontal axis and tilt is defined as 

deviation around the vertical axis. Both binocular cues, such as disparity, and monocular cues, 

such as perspective, shading, and junctions, provide information about slant and tilt of an object. 

This article proposes how the brain combines monocular and binocular cues in a context-

sensitive way to represent and perceive the 3D structure of slanted, tilted,  and curved objects. 

Monocular cues taken by themselves can be ambiguous. Consider Figure 1a where the 

two objects are made up of same set of surfaces. Depending on how the individual surfaces are 

combined, we perceive two different 3D objects. The same parallelogram can signal a near-to-far 

or a far-to-near slanted surface, depending upon the context. Contextual cues thus play a key role 

in disambiguating ambiguous local cues. In response to some 2D images, such as Necker cube 

images, the percept changes over time and depends on various factors such as attention and 

internal receptive field biases (Kawabata, 1986). 
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Figure 1. (a) Same angles and shapes, but different surface tilts: The two figures in bold lines are 
made of same set of surfaces. But due to the different arrangement of surfaces they give rise to 
completely different percept. The left bold figure has a positive tilt (near to far) while the right 
bold figure has a negative tilt (far to near). (b) Even though the sides of the cube are colinear in 
2D, they are not colinear in their 3D interpretation (Tse, 1999). 
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Binocular disparity is a common cue for generating 3D planar percepts (Grossberg and Howe, 

2002; Grossberg and McLoughlin, 1997; Julesz, 1971; Marr and Poggio, 1976; Ozhawa, 1998). 

Disparity information can also be used to determine the slant of an object. A slanted object is 

registered at multiple disparities and these representations need to be grouped across depth for it 

to be perceived as a single object. Information about tilt and curvature of an object can also be 

gleaned from disparity cues.  

Neurophysiolgical studies have found cells in extrastriate cortex to be tuned to features 

important in 3D perception. In Macaque cortical area V2, cells are tuned to relative disparity 

(Thomas et al., 2002), disparity edges (von der Heydt et al., 2000), angles (Pasupathy and 

Connor, 1999), border ownership (Zhou et al., 2000) and figure-ground relations (Bakin et al., 

2000). There is evidence for cells tuned to slanted 3D boundaries in V4 (Hinkle and Connor, 

2001). Curvature tuning is found in V4 (Pasupathy and Connor, 2001), IT (Janssen et al., 2000), 

and parietal cortex (Taira et al., 2000). 

Psychophysical studies have shown the importance of relative disparity, or disparity 

gradients, in human visual perception. Targets specified by a different stereoscopic slant than the 

distracters are detected pre-attentively (Holliday and Braddick, 1991) and so are targets 

presented on a surface of different slant than that of the distracters (He and Nakayama, 1995; 

Nakayama and Silverman, 1986). Also, multi-element tracking results do not differ if the 

elements are on a planar or a slanted surface (Viswanathan and Mingolla, 1999). Ryan and 

Gillam (1993) provided evidence that three-dimensional aftereffects can result from disparity 

gradient adaptation by showing that the size of the aftereffect varied with the disparity gradient 

of the adapting lines. Lee (1999) showed that the size of aftereffects is also dependent on the 

difference in disparity between the adapting and test surfaces. Many models of perceptual 

grouping (Grossberg and Mingolla, 1985a; Guy and Medioni, 1996; Williams and Jacobs, 1995) 

deal with grouping of 2D percepts. Grouping of objects, however, typically takes place in three 

dimensions. Illusory surface experiments (Nakayama and Shimojo, 1992) illustrate that depth 

needs to be taken into account during grouping. Although in some cases, 2D grouping principles 

work well on the 2D projection of 3D images, in other cases, 2D grouping principles gives rise to 

a different result than the 3D percept. For example, in Figure 1b, even though the two lines of the 

cube are colinear in the 2D plane, they are not colinear in the 3D interpretation (Tse, 1999) and 

hence are not grouped. 
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Grossberg and colleagues (Grossberg, 1984, 1994; Grossberg and Mingolla, 1985a; 

Grossberg and Todorović, 1988) have proposed that the grouping of boundaries and the filling-in 

of surfaces are distinct, indeed complementary (Grossberg, 2000), processes. Whereas 

boundaries complete inwardly in an oriented fashion, surfaces fill-in outwardly in an unoriented 

fashion until a boundary is reached. The outward filling-in process needs to be controlled across 

multiple depth planes when it fills-in 3D curved surfaces. A potential problem is that a multiple-

depth boundary may have gaps at some depths, but not others, which could allow spreading 

colors and brightnesses to spill out during filling-in. A related problem involved in filling-in of 

3D curved surfaces is clearly seen in 3D illusory displays (Carman and Welch, 1992; Liinasuo et 

al., 2000). Here the filling-in signal needs to spread in a controlled way across depths where 

there are no boundaries or filling-in inducers in the original images. 

This article develops a neural model of 3D curved object representation wherein object 

fragments at multiple depth planes can be grouped together by disparity-gradient cells that are 

sensitive to an object's slant and tilt. These disparity-gradient cells can also form illusory 

contours in curved 3D neon color displays. The model also includes cells that are tuned to angles 

and explains how disparity-gradient and angle cells can be self-organized by principles that have 

been previously been used to self-organize 2D colinear bipole grouping cells (Grossberg and 

Williamson, 2001). The model hereby proposes that the statistics of the visual environment help 

to determine the distribution of colinear bipole cells within one depth, colinear bipole cells 

across depths (disparity-gradient cells), and non-colinear bipole cells (angle cells) as variations 

of a single design theme of how horizontal connections form in cortical layer 2/3A. The model 

clarifies how monocular cues in an image, notably combinations of angles, can bias the 

activation of some disparity-gradient cells more than others to form a 3D percept in response to 

2D images, such as Necker cube images. Activity-dependent habituative mechanisms also occur 

in the model. Habituation is essential for the development of disparity-gradient and angle cells as 

well as of other properties of cortical cells (Grossberg and Seitz, 2003; Grunewald and 

Grossberg, 1998; Olson and Grossberg, 1998). These habituative mechanisms can lead to multi-

stable percepts when two or more 3D interpretations of a 2D image are approximately equally 

salient, as in Necker cube percepts. The model also explains how filling-in can be carried out 

across multiple depths. 
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The present model is called the 3D LAMINART model because it generalizes to the 

explanation of 3D data a previously described LAMINART model which proposes how 2D 

perceptual grouping, attention, development, and learning are carried out by the laminar circuits 

of cortical areas V1 and V2 (Grossberg, 1999; Grossberg et al., 1997; Grossberg and Raizada, 

2000; Grossberg and Williamson, 2001; Raizada and Grossberg, 2001). The LAMINART model 

was extended to explain data about stereopsis and 3D planar surfaces in Grossberg and Howe 

(2003). This extension showed how earlier modeling concepts from the FACADE model of 3D 

vision and figure-ground perception (Grossberg, 1994; Grossberg and McLoughlin, 1997; 

McLoughlin and Grossberg, 1998) could be embedded consistently within the LAMINART 

model circuits, and further developed to explain psychophysical, neurophysiological, and 

anatomical data about stereopsis and 3D planar surface perception. Grouping mechanisms were 

not needed to simulate the targeted data in Grossberg and Howe (2003), although it was 

proposed how this 3D LAMINART model could also explain 3D planar grouping data. The 

present article shows how this 3D LAMINART model can be further extended, again in a self-

consistent way, to explain psychophysical, neurophysiological, and anatomical data about the 

perception of slanted and curved 3D surfaces. Here, 3D grouping mechanisms are essential to 

explain targeted data. 

This paper is organized as follows. Section 2 describes the laminar architecture of the 

model. Section 3 provides an overview of how the model interprets 2D images in 3D. Section 4 

discusses the model simulations that show how the long-range horizontal connections in V1 can 

develop into colinear and angle cells and how various Necker cube 2D images are interpreted in 

3D. Section 5 discusses how the model can explain various data related to 3D grouping and slant 

aftereffects. It also explains how the monocular and binocular cues can interact in the model to 

give rise to a stable representation, and compares the present model with alternative models. The 

mathematical description of the model is described in the Appendix. 

2 Model description 

The model carries out this extension by adding three key cell types that are needed to control 3D 

grouping, as shown in model block diagram in Figure 2. The three key additions in the model are 

(1) colinear bipole cells, (2) non-colinear bipole cells (angle cells) and (3) disparity-gradient cells 

(Figure 2a). Colinear bipole cells played an important role in the original 2D LAMINART model 
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to carry out perceptual grouping and boundary completion. They were not needed to simulate the 

data about planar 3D surface perception considered by Grossberg and Howe (2003) because 

boundary completion was not required to explain these data. In the present analysis, colinear and 

non-colinear bipole cells get activated by line segments and angles in the images, respectively. 

They activate the disparity-gradient cells that group boundaries across depth. This multiple-depth 

boundary representation by disparity-gradient cells is used to control filling-in of slanted and 

curved surfaces. The mathematical description of the model is described in the Appendix. We 

give an overview of the model and describe each of its novel features in detail in the following 

sections. 
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                                     (a)                                                               (b) 
Figure 2. (a) Block diagram of the model: The input image undergoes on-center, off-surround 
processing in the LGN. In layer 2/3A of V1, angle cells and colinear bipole cells get activated by 
angles and line segments in the images, respectively. Angle cells and colinear bipole cells 
interact with each other via long-range horizontal connections in layer 2/3A of V1. Colinear 
bipole cells activate disparity-gradient cells, while V1 angle cells activate V2 angle cells. V2 
angle cells and disparity-gradient cells interact via long-range horizontal connections in layer 
2/3A of V2. Disparity-gradient cells group across position and disparity to form closed boundary 
segments, which is used as a barrier for filling-in of surfaces in V4 which receives filling-in 
signal from the LGN. (b) Laminar circuit for 3D boundary grouping: V1 angle cells and colinear 
bipole cells are in layer 2/3A of V1. Layer 2/3A cells in V1 activate layer 2/3A cells in V2. 
Layer 2/3A of V2 contains V2 angle cells and disparity-gradient cells. Layer 2/3A of V2 
feedback to layer 2/3A of V1. In the full 3D LAMINART model this feedback is mediated via 
layer 1 (Figure 3). Disparity-gradient cells group across disparity gradient and disparities. D1, 
D2, and D3 represent various depths. Open (black) circles (triangles) represent excitatory 
(inhibitory) cells (connections). 
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Figure 3. 3D LAMINART MODEL: The 2D LAMINART model (Grossberg and Raizada, 
2000) is extended to 3D. The LGN provides bottom-up activation to layer 4 directly and via 
layer 6 → 4 on-center off-surround pathway, which provides divisive contrast normalization 
(Grossberg,1973, 1980; Heeger, 1992). Monocular simple cells in layer 4 activate binocular 
simple cells in layer 3B. Layer 2/3A complex cells combine the output of contrast sensitive 
simple cells to get contrast insensitive output. Layer 2/3A consists of angle cells and colinear 
bipole cells. Layer 2/3A activates layer 4 of V2 directly and via layer 6 as was the case for V1. 
Layer 2/3A of V2 consists of disparity-gradient cells and V2 angle cells. Open (black) circles 
(triangles) show excitatory (inhibitory) neurons (connections). V2 layer 2/3A cells feedback onto 
V1 layer 2/3A cells via layer 6 of V2, layer 5 and 6→4 of V1.  
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2.1 Laminar Architecture 

The laminar architecture of the model is show in Figure 2b.  Model circuits are consistent with 

all the anatomical and neurophysiological constraints that were used to explain many other types 

of data using earlier versions of the 3D LAMINART and FACADE models.  Definitive 

anatomical and neurophysiological experiments on 3D slanted and curved surface perception 

have not yet been performed.  We nonetheless interpret all model cell types using the best 

information available in order to  make testable predictions that can guide future experiments.  It 

is conceivable that a cell type which we localize in V2 may occur in a different cortical area in 

some species.  What cannot change however, without altering key functional properties is the 

order in which various model operations occur.  

In order to keep the simulations tractable, the model omits interactions in layers 1, 4, and 

6 that are not required to explain its targeted 3D grouping data. Figure 3 shows how these 

interactions can be consistently embedded into a more complete 3D LAMINART model. 

Layer 2/3A of V1 contains complex cells. These cells combine the outputs from simple 

cells that are sensitive to the same orientation but opposite contrast polarities (Callaway, 1998; 

Poggio, 1972). How the inputs from the two eyes are combined in by circuits in layers 3B and 

2/3A has been quantitatively modeled in related work (Grossberg and Howe, 2002). Here we 

assume that these inputs to layer 2/3A have already been computed.  

The complex cells in layer 2/3A are assumed to be of two kinds: They are (1) colinear 

bipole cells that link colinear line segments, or other oriented contrast gradients, over short 

distances and (2) non-colinear bipole cells (angle cells) that get activated by various angles in an 

image of the scene. Section 4.1 shows how model cells in layer 2/3A can self organize into 

colinear and non-colinear bipole cells by developing layer 2/3A horizontal connections. Layer 

2/3A of V1 connects to layer 2/3A of V2 (Tootell and Hamilton, 1989). Layer 2/3A of V2 has 

two kinds of model cells: disparity gradient cells and angle cells (Pasupathy and Connor, 1999). 

The angle cells in V2 are similar to the ones in layer 2/3A of V1 and receive input from V1 angle 

cells. The disparity-gradient cells of V2 receive inputs from V1 colinear bipole cells and link 

cells of different disparities to form straight or curved segments in 3D.   

The formation of curved boundaries in 3D using disparity-gradient cells naturally 

generalizes how curved boundaries are formed in 2D using colinear bipole cells.  The receptive 

field of a colinear bipole cell prefers to group cells that are colinear across space with respect to 
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the cell’s position and preferred orientation, and also have the same preferred orientation.  Bipole 

cells can, however, also group cell activations that deviate from colinearity and the preferred 

orientational preference to form curved groupings (Gove et al., 1995; Grossberg and Mingolla, 

1985b).  Later psychophysical experiments have supported this predicted bipole cell receptive 

field; e.g., Field et al. (1993) and Kellman and Shipley (1991).  Kellman and Shipley (1991) 

have called this ability to group curves relatability conditions.  Recent data have shown that 

these conditions generalize to 3D (Kellman, 2003).  Disparity-gradient cells can generate such 

curved boundaries in 3D by naturally generalizing the 2D colinear bipole cell receptive field; see 

Appendix Section B.4.4.   

Appropriate combinations of angle cells help to select the correct disparity-gradient cells 

(flat, near-to-far, far-to-near) through contextual interactions.  The angle cells and the disparity-

gradient cells are proposed to interact with each other via horizontal connections in layer 2/3A of 

V2 (Amir et al., 1993).  Disparity-gradient and angle cells in layer 2/3A of V2 feed back into V1 

layer 2/3A colinear and angle bipole cells, respectively. In the model in Figure 3, this feedback is 

mediated via layer 6 of V2 and layer 6→4 interactions of V1. The feedback enhances V1 layer 

2/3A cells that are supported by V2 groupings, while suppressing non-supported cells. In the 

model shown in Figure 3, the top-down V2-to-V1 feedback has an on-center off-surround form 

(via 6→4 interactions in V1),  which is consistent with data of Hupé et. al. (1998) and was 

modeled in Grossberg (1999) and Grossberg and Raizada (2000).  This property is also 

consistent with results of Lee and Blake (2002), who showed that V1 activity is reduced during 

binocular rivalry.  In the model, off-surround interactions suppress the non-dominant eye signals.   

The present article focuses on straight groupings in 3D—that is, slanted groupings—but 

these results directly generalize to curved surfaces in 3D in much the same way that they do in 

2D.   

2.2 V1 colinear bipole cells 

It is known that layer 2/3A of V1 has long-range horizontal connections (Callaway, 1998). These 

intra-laminar connections primarily connect to cells of similar orientation (Bosking et al., 1997; 

Schmidt et al., 1997). Such connections have been used to explain psychophysical and neural 

data about attention and perceptual grouping (Grossberg and Raizada, 2000). In the present 

model, the long-range horizontal connections of colinear bipole cells link line segments over 
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short distances among cells that are sensitive to the same disparity. Grossberg and Williamson 

(2001) showed how these connections can develop within the laminar circuits of the visual 

cortex.  

Colinear bipole cell excite each other via long-range horizontal connections that also give 

rise to short-range disynaptic inhibition via pools of interneurons; see Figure 2b. This balance of 

excitation and inhibition at target cells helps to implement the bipole property. When the 

inducing stimulus (e.g., a pacman) is only on one side, it excites the corresponding oriented 

receptive fields of layer 2/3A cells, which send out long-range horizontal excitation onto the 

target cell. However, this excitation also activates a commensurate amount of disynaptic 

inhibition (as in Figure 2b). This creates a case of “one-against-one”, and the target cell is not 

excited above-threshold. However, the cell activity can be modulated by input from even one 

side if the cell receives bottom-up input (Bringuier et al., 1999; Crook et al., 2002). The 

modulation is achieved by combining the bottom-up input with input from long-range horizontal 

connections (see Appendix, equation (3)). The combined bottom-up and horizontal input from 

one side can overcome the disynaptic inhibition from the inhibitory interneurons and thus can 

activate the cell. These modulations play an important role in the spreading of attention 

(Grossberg and Raizada, 2000; Ito and Gilbert, 1999; Roelfsema et al., 1998; Roelfsema and 

Spekreijse, 1999), the grouping of 2D and 3D planar percepts (Bakin et al., 2000; Kapadia et al., 

1995; Polat et al., 1998), and the grouping of 3D slanted and curved percepts, as discussed 

below. When two colinearly aligned inducing stimuli are present, one on each side, a boundary 

grouping can form: Long-range excitatory inputs converge onto the cell from both sides and 

summate. These excitatory inputs also activate a shared pool of inhibitory interneurons, which as 

well as inhibiting the target cell, also inhibit each other, thus normalizing the total amount of 

inhibition emanating from the interneuron pool. This summating excitation and normalizing 

inhibition create a case of “two-against- one" and the target cell is excited above-threshold (von 

der Heydt and Peterhans, 1989; von der Heydt et al., 1984). When there is direct bottom-up 

input, it can activate the cell without horizontal interactions. 

2.3 V1 and V2 angle cells 

There is direct neurophysiological evidence of cells tuned to angles in area 17 of the cat, which is 

homologous to V1 in the Macaque monkey (Shevelev, 1998), and in V2 (Hegde and Van Essen, 
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2000) and V4 (Pasupathy and Connor, 1999) of the Macaque. Cells are tuned to both angles and 

to the orientation of the angles. Some cells are tuned to a particular angle with a particular 

orientation. Some are tuned to various angles of a particular orientation; that is, they get 

activated strongly by different angles that have a common orientation, but weakly to colinear line 

segments; and some are tuned to an angle at any orientation.  

The previous section discussed how long-range horizontal connections in layer 2/3A of 

V1 are used by colinear bipole cells to link line segments over short distances. These long-range 

connections can also get tuned to angles in the images (Grossberg and Mingolla, 1987; Neumann 

and Stiehl, 1990). In the model, layer 2/3A of V1 contains bipole cells, called non-colinear 

bipole cells that are tuned to angles by means of long-range horizontal connections that connect 

to different orientations. These non-colinear bipole cells have similar properties to layer 2/3A 

colinear bipole cells. They get input from other cells from two sides, or even three sides, 

depending on the angle that the cell represents. In the absence of direct bottom-up input, such 

cells get activated only if they receive sufficient excitation from all their sides. How the long-

range horizontal connections in layer 2/3A can develop into angle cells and colinear bipole cells 

is shown in Section 4.1.  

Angle cells are also present in layer 2/3A of V2 (Hegde and Van Essen, 2000). The 

model includes angle cells, named V2 angle cells, in layer 2/3A of V2. V2 layer 2/3A also has 

horizontal connections, but these are longer than those in V1 layer 2/3A (Amir et al., 1993; 

Grosof et al, 1993; Ramsden et al., 2001; von der Heydt et al., 1984). The V2 angle cells are 

similar to V1 angle cells and receive bottom-up input from V1 angle cells and horizontal input 

from disparity-gradient cells in the model.  

2.4 V2 disparity-gradient cells 

Many psychophysical data describe how the visual system handles slanted and curved surfaces. 

Humans are often more sensitive to relative disparitiesthat is, disparity differences between 

center and surround stimulithan absolute disparities (DeAngelis, 2000). The aftereffect 

experiments done in Ryan and Gillam (1993) provided evidence that three-dimensional 

aftereffects can result from disparity-gradient adaptation by showing that the size of the 

aftereffect varied with the disparity gradient of the adapting lines. Lee (1999) showed that the 

size of the aftereffect is also dependent on the disparity difference between the adapting and 
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testing surface. He also showed that the slant of the aftereffect produced is always opposite to the 

slant of the adapting surface indicating that the aftereffects are mediated by cells coding 

slantthat is, disparity gradients. Seyama et al. (2000) found that aftereffects can also depend on 

the tilt difference between the testing and the adapting surface. The above data show the 

importance of disparity gradients in the representation of slanted surfaces. 

On the neurophysiological side, there is evidence for cells tuned to relative disparitythat 

is, cells tuned to a constant disparity difference between center and surround independent of the 

disparity of the center or surroundin V2 of the macaque monkey (Thomas et al., 2002). There 

are also cells that are tuned to disparity gradientsthat is, cells that respond to slanted or tilted 

bar stimuliin V4 of the macaque (Hinkle and Connor, 2001). In MT, there are cells tuned to 

slant and tilt of a surface defined by motion (Nguyenkim and DeAngelis, 2001). In the parietal 

cortex (Sakata et al., 1999) and IT (Janssen et al., 2000), some cells are tuned to slanted or tilted 

bar stimuli, just like the cells in V4 mentioned before, and some cells were tuned to slanted or 

tilted surfaces, like the cells in MT mentioned before. These data support the existence of cells 

tuned to disparity gradients in the visual system. 

In the model, V2 layer 2/3A contains cells that are tuned to disparity gradients. These 

disparity-gradient cells are sensitive to disparities, disparity gradients, and are orientationally 

tuned and receive bottom-up input from the colinear bipole cells in layer 2/3A of V1 and 

horizontal input from V2 angle cells and other disparity-gradient cells. 
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Figure 4. Disparity-gradient cells: Positive disparity-gradient cells link from near-to-far; 
negative disparity-gradient cells link from far-to-near; and zero disparity-gradient cells link 
within disparity. Black circles indicate zero disparity-gradient cells, gray circles indicate 
negative disparity-gradient cells, and light gray circles indicate positive disparity-gradient cells. 
D1- D5 indicates different depths from near (D1) to far (D5). 
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Figure 4 illustrates how model disparity-gradient cells connect with each other. Three cells 

corresponding to positive, zero and negative disparity gradients are shown. Positive disparity-

gradient cells connect with other disparity-gradient cells from near depth to far depth, whereas 

negative disparity-gradient cells connect from far depth to near depth. Zero disparity-gradient 

cells connect within depth. The Appendix mathematically describes the connections between 

cells of different disparity-gradients and orientations that enable the cells to smoothly represent 

curved surfaces in both 2D and 3D space. 

2.5 V4 surface representation 

Once the boundaries are registered at corresponding disparities, then filling-in between these 

boundaries is proposed to generate visible 3D surface percepts in cortical area V4 (Grossberg, 

1994; Grossberg and Todorović, 1988). The existence of a filling-in process has been supported 

by psychophysical (Paradiso and Nakayama, 1991; Pessoa and Neumann, 1998; Pessoa, 

Thompson and Noë, 1998) and neurophysiological experiments (Lamme et al., 1999; Rossi et al., 

1996). A filling-in process has been used to explain many percepts, such as da Vinci stereopsis 

(Grossberg and Howe, 2002; Grossberg and Mcloughlin, 1997), figure-ground perception (Kelly 

and Grossberg, 1999), 2D and 3D neon color spreading (Grossberg, 1994; Grossberg and 

Mingolla, 1985a), and both monocular and binocular brightness percepts (Grossberg and Kelly, 

1999; Grossberg and Todorović, 1988). In previous models (Grossberg, 1997; Kelly and 

Grossberg, 2000), the boundary representation at a particular depth acts as a barrier to filling-in 

signals only at that depth. One problem that must be solved to fill-in curved surfaces is that the 

boundary representation for a slanted or curved surface may have gaps at some depths even if it 

has no gaps at other depths. What prevents surface lightness and color from dissipating through 

these gaps? We call this problem the lightness dissipation problem. 
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Figure 5. Filling-in of slanted surfaces. (a) The input is a tilted rectangle. (b) Multiple depth 
representation of the tilted rectangle. (c) Filling-in barriers: The boundary representation act as a 
strong filling-in barriers at the corresponding depth while acting as a weak barrier at the nearby 
depths thus creating closed boundary compartments within each depth. D1 (near) and D2 (far) 
represents different depths. 
 

This problem is overcome in the present model as follows: A boundary signal that acts as a 

strong barrier to filling-in at its preferred depth also weakly acts as a barrier to filling-in at other 

depths. For example, consider a tilted rectangle in depth, as in Figure 5a. Each boundary 
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representation is activated at its preferred depths, as in Figure 5b, and this boundary 

representation has gaps at each depth. If no other boundaries existed, filling-in signals would 

flow out of the boundary gaps at each depth. The model proposes that the boundary at a 

particular depth is also represented, albeit weakly, at nearby other depths. This hypothesis has 

earlier been made to explain how a finite pool of depth-selective boundaries can control a 

continuous change in perceived depth (Grossberg, 1994, 1997). Here it is predicted to also 

contribute to percepts of slanted and curved surfaces in depth. In particular, the total boundary 

signal that acts as a barrier to filling-in at each depth is shown in Figure 5c. Now, a closed 

boundary exists at each depth, and the filling-in signal is at least partially contained at each 

depth. Because of differences in boundary strength, however, the filled-in activity is not 

uniformly strong at each position. It is stronger wherever there is a strong boundary, since 

lightness and color can dissipate more through a weaker boundary than a stronger one. It is 

shown in Section 4.6.2 how a tilted surface representation can be generated by such differential 

filling-in across different depths. 

3 Overview of model interpretation of 2D images in 3D 

An important mechanism in the model for 3D interpretation of 2D images is that angle cells 

contextually bias the activation of disparity-gradient cells, and grouping among disparity-

gradient cells disambiguates the 3D interpretation of the 2D image. Figure 6a illustrates how 

different angles can bias the activation of disparity-gradient cells to favor different depth 

relationships (near-to-far, flat, far-to-near).  Figure 6b suggests one way in which angle cells 

might be organized in cortical hypercolumns.  This organization clusters together angle cells that 

bias disparity-gradient cells with similar depth preferences. Such a clustering of both angle cells 

and disparity-gradient cells would be a plausible outcome of cortical development, but direct 

evidence for it is lacking.  To see how these interactions work, consider a right triangle and a 

parallelogram.  The parallelogram can be seen as a flat 2D surface or as a tilted rectangle in 3D 

(Figure 1a), while the right triangle is seen only as a flat 2D surface. These two interpretations 

arise in the model due to the selective activation of disparity-gradient cells by V2 angle cells 

(Figure 6a) and the subsequent grouping among these disparity-gradient cells (Figure 4). 

As discussed before, non-colinear bipole cells (angle cells) are activated by image 

corners while colinear bipole cells are activated by line segments. So, for the triangle and the 
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parallelogram, V1 angle cells get activated at corners and colinear bipole cells get activated 

along straight edges. This segregation of activation occurs due to the bipole property of these 

cells, since V1 angle cells get maximum input at the corners, whereas the colinear bipole cells 

get maximum input along straight edges. Colinear bipole cells directly activate the disparity-

gradient cells. There are three (populations of) disparity-gradient cells, corresponding to positive, 

negative and zero disparity gradients, at each position, orientation, and disparity. The colinear 

bipole cells corresponding to the same position and orientation activate all threezero, positive, 

and negativedisparity-gradient cells equally. V1 angle cells activate corresponding V2 angle 

cells, which in turn activate the disparity-gradient cells. An important difference is that the V2 

angle cells activate the disparity-gradient cells selectively, unlike colinear bipole cells that 

activate all disparity-gradient cells equally. This selective activation of disparity-gradient cells by 

V2 angle cells is assumed to be learned from general image statistics. Another difference is that 

V2 angle cells activate the disparity-gradient cells at nearby positions, while the colinear bipole 

cells activate disparity-gradient cells at their corresponding positions. 
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(a)                                                               (b) 
Figure 6. (a) Activation of disparity-gradient cells by angle cells and colinear bipole cells. 
Colinear bipole cells activate all disparity-gradient cells equally at the corresponding positions. 
Angle cells selectively activate disparity-gradient cells at nearby positions. Circles represent cells 
at various spatial positions. Shaded circle represents active cell, unshaded circle represents 
inactive cell. The amount of activation depends on the darkness of the shade. (b) Hypercolumn 
representation of angle cells: The top part of the circle represents angles that activate positive 
disparity-gradient cells preferentially, while the bottom part activates negative disparity-gradient 
cells preferentially. The middle part of the circle at the left and right of the circle represents 
angles that activate zero disparity-gradient cells preferentially. The middle part of the circle at 
the top and bottom represents colinear line segments. 
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The activation of disparity-gradient cells by V2 angle cells and colinear bipole cells is shown in 

Figure 6a. Each circle in the figure represents a cell at a particular spatial position and the color 

inside the circle indicates the strength of the activation. In particular, black circles indicate strong 

activation, white circles indicate zero activation and gray circles indicate intermediate activation. 

A colinear bipole cell that codes the vertical orientation activates all disparity-gradient 

cellspositive, zero, and negativeequally, at the same position, orientation, and disparity. The 

activation of disparity-gradient cells by V2 angle cells depends on the angle to which the cell is 

tuned. For example, the V2 angle cell tuned to angle B in the figure mostly activates zero 

disparity-gradient cells at nearby positions along the horizontal and vertical orientations. 

Similarly, the V2 angle cell that codes angle C mostly activates zero disparity-gradient cells 

along the vertical orientation and positive disparity-gradient cells along the oblique orientation. 

The V2 angle cell that codes angle D mostly activates zero disparity-gradient cells along the 

vertical orientation and negative disparity-gradient cells along the oblique orientation. An 

important point to note is that although there is a preference for an angle cell to activate a 

particular disparity-gradient cell strongly, it can also activate other nearby disparity-gradient 

cells weakly.  

Figure 6b shows the arrangement of angle cell preferences in a hypercolumn structure. 

The angles are obtained by combining a vertical line with obliques lines of different orientation. 

The angles that are in the top part of the hypercolumn activate positive disparity-gradient cells 

more than negative disparity-gradient cells, while the angles in the bottom part activate negative 

disparity-gradient cells more than positive disparity-gradient cells. This selectivity can be learned 

from general image statistics. In particular, the angles in the top part of the hypercolumn are 

usually part of a tilted surface going from near to far in the real world. Similarly, the angles in 

the bottom part are usually part of a tilted surface that goes from far to near. The hypercolumn 

representation shows how the preferential activation of disparity-gradient cells by angle cells can 

change smoothly as the angle changes smoothly. 
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Figure 7. Activation of disparity-gradient cells by angle cells and colinear bipole cells. Top part 
shows the input, middle part shows the activation of disparity-gradient cells by angle cells and 
colinear bipole cells and the bottom part shows the _nal representation by disparity-gradient 
cells. Shaded circle represents angle cell and unshaded circle represents colinear bipole cell. The 
thickness of the lines indicates activation strength. (a) For the triangle input, the cross disparity-
gradient cells are activated along oblique lines and zero disparity-gradient cells along horizontal 
lines. The triangle is represented by zero disparity-gradient cells within disparity. See text for 
details. (b) For the parallelogram input, the cross disparity-gradient cells are activated more 
along oblique lines and zero disparity-gradient cells are activated more along vertical lines. The 
parallelogram is represented by positive disparity-gradient cells across depth and zero disparity-
gradient cells. See text for details. 

 

For the triangle, zero disparity-gradient cells are activated strongly along the horizontal and 

vertical edges, while cross disparity-gradient cells (both positive and negative) are activated 

along the oblique edge. Since the zero disparity-gradient cells group more strongly within depth 
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than across depths, all the vertical and horizontal edges of the triangle are represented within 

depth. Thus the corner that is shared by the horizontal and vertical edge is also represented at the 

same depth as the edges. This interaction binds the horizontal and vertical boundaries within 

depth and causes the other angle cells to be activated at that depth. Thus, for the triangle, the 

three corners are all represented within the same depth. This enables the weakly activated zero 

disparity-gradient cells along the oblique edge (cf., angle C in Figure 6a) to group strongly and to 

inhibit the cross disparity-gradient cells. This is because zero disparity-gradient cells group 

preferentially within depth, while cross disparity-gradient cells group across depth. Hence, all the 

edges of the triangle are represented within depth, as shown in Figure 7a. 

For the parallelogram, the zero disparity-gradient cells are activated strongly along the 

vertical edges and the cross disparity-gradient cells are activated along oblique edges. Let us 

assume that one of the vertical edges of the parallelogram is represented at a particular depth. 

Thus the corners shared by the vertical edge are represented at the same depth. The cross 

disparity-gradient cells along oblique edges group strongly across depths than within depth, as in 

angles C and D of Figure 6a. This causes the second vertical line to be pushed into a different 

depth than the first vertical line, as shown in Figure 7b. The difference between the triangle and 

the parallelogram is that the horizontal and vertical edges of the triangle share a corner which 

forces them to be represented at the same depth, while for the parallelogram the vertical edges do 

not share a corner and hence can be represented at different depths. If one of the cross disparity-

gradient cells, either positive or negative, groups more strongly, the parallelogram is either seen 

as going from near-to-far or far-to-near, respectively. If they balance out, then the parallelogram 

is seen in a single depth plane. 

In summary, the 3D interpretation of a 2D image starts by the activation of disparity-

gradient cells by V2 angle cells in the model, and is completed by the grouping of disparity-

gradient cells. The grouping uses the local preferences initiated by angle cells to enforce a 

globally consistent interpretation. Thus the disparity-gradient cells which developed in response 

to 3D image statistics for 3D grouping also help to disambiguate 3D percepts of 2D images. 

4 Model simulations 

This section summarizes model simulations that show how layer 2/3A horizontal connections in 

V1 develop into colinear bipole and angle cells with the properties described in the previous 
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sections.  The model developmental equations are given in Appendix A.  Then it is shown how 

the laminar model circuit can respond to 2D images containing monocular cues, such as angles, 

with a 3D boundary representation. This is demonstrated by simulating a Necker cube 2D image 

in 3D, including its bistability. These model equations are given in Appendix B.  It is also shown 

how the model can represent 3D slanted and curved boundaries using disparity cues alone, 

without any monocular cues. Finally, simulations of 3D surface filling-in are carried out using 

these 3D boundary representations. 

The simulations are done using the laminar circuit shown in Figure 2b, since the 

horizontal connections in V1 and V2 are rate-limiting in generating the targeted properties. The 

self-organization simulations show how connections in layer 2/3A of V1 develop into angle cells 

and colinear bipole cells within depth. A similar scheme can be used to self-organize V2 layer 

2/3A cells into angle cells and disparity-gradient cells across depth. The layer 2/3A cells of V1 in 

both the developmental and the Necker cube simulations receive inputs that were generated by 

hand to be consistent with previous model simulation outputs (Grossberg and Howe, 2002; 

Grossberg and Raizada, 2000; Grossberg and Williamson, 2001). The input generation procedure 

is described for each simulation in later sections. 

4.1 Development of colinear and non-colinear bipole cells 

The cells in layer 2/3A of V1 have long-range horizontal connections with other cells in layer 

2/3A. These horizontal connections have been shown to develop in response to endogenous and 

visual cues to link colinear line segments in such a way as to satisfy the bipole property 

(Grossberg and Williamson, 2001). Here it is shown how such cells can also get tuned to angles 

in the images as well as to their colinear statistics. The challenging aspect in the present 

simulation is that the various angles share some features. Hence, if one cell emerges a winner for 

a particular angle, it has the tendency to emerge as the winner for other angles that have common 

features with the angle that it has learned before. Habituative transmitter gates are used to 

overcome this tendency. The winning cell habituates and does not fire for a while in response to 

subsequent input presentations, thus allowing other cells to code subsequent inputs; see Section 

4.1.3.    
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4.1.1 Simulation set-up 

There are sixteen excitatory cells at each spatial position in layer 2/3A of the model. These 

sixteen cells at each position will code the various angle and colinear bipole cells that develop 

there. Half of them receive inputs from vertically oriented layer 3B cells and half from 

horizontally oriented layer 3B cells (Callaway, 1998; Callaway and Wiser, 1996). Cells also 

receive horizontal inputs from cells at different spatial positions within a defined neighborhood. 

The horizontal input from each spatial position was computed as the total activity, within 

orientation, of all the cells at that spatial position. Figure 8a shows a schematic of the simulation 

setup. 

Each excitatory cell at a spatial position has four inhibitory interneurons associated with 

it whose learned interactions with the excitatory cell will give rise to the bipole property; see 

Figure 8b. The inhibitory interneurons have inhibitory connections with the excitatory cells and 

with other inhibitory interneurons. This setup models the long-range excitation and short-range 

inhibition found in layer 2/3A of V1 (Callaway, 1998). The inhibitory connection from the 

interneurons to the excitatory cell balances the excitation from the horizontal connections to 

ensure that the cell can fire only if it receives direct bottom-up input, or sufficient input from 

both sides. At the same time, the recurrent inhibitory connections among the interneurons 

normalize the total inhibition so that the cell can fire when its inputs satisfy the bipole property. 

Both the excitatory and the inhibitory adaptive weights between these cells are learned, starting 

from zero initial values.  

As in the developmental model of Grossberg and Williamson (2001), the excitatory 

adaptive weights are learned using the instar learning law, which has become the standard law 

for learning self-organizing maps (Grossberg, 1976a, 1980; Kohonen, 1989). During instar 

learning, the activity in the postsynaptic target cell turns on learning, and the adaptive weight 

learns the expected value of the total signal from its presynaptic source cells during the interval 

when the target cell is active. An outstar learning law (Grossberg, 1968, 1980) was used to learn 

the weights between an inhibitory interneuron and its excitatory neuron, and the weights among 

the inhibitory interneurons. Outstar learning accomplishes the balance between inhibition and 

excitation (see Section 2.2) by causing the inhibitory synaptic weight to track the expected 

activation of the target excitatory cells at times when its source inhibitory interneuron has 

positive activity. Likewise, the inhibitory interneuronal weights track the positive activity of the 
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target inhibitory interneuron. This property enables the network to normalize the total inhibitory 

input from the interneurons, which enables layer 2/3A excitatory cells to fire if there is excitatory 

input on both sides sufficient to overcome this normalized inhibition. 

            
(a)                                                     (b) 

 
 

                          
(c)                                                       (d) 

Figure 8. Developmental simulation of layer 2/3A cells into angle cells and colinear bipole cells: 
(a) Simulation setup. Five positions are shown in the figure. At each position there are two cells 
that receive bottom-up input from horizontally oriented cells, shown as shaded circles, and two 
cells that receive bottom-up input from vertically oriented cells, shown as unshaded circles. Each 
cell receives two types of connections from cells at other positions: connections from 
horizontally oriented cells, indicated by shaded triangles, and connections from vertically 
oriented cells, indicated by unshaded triangles. The weights of these connections are learned in 
the simulations. For simplicity, inhibitory interneurons are not shown. (b) Each excitatory cell is 
associated with four inhibitory interneurons (black disks). The four inhibitory interneurons 
receive part of the horizontal input, depending on their position (left, right, top or bottom) 
received by the excitatory cell at their position. (c) Inputs used in the simulation.  There are six 
different inputs corresponding to four different right angles, and vertical and horizontal line 
segments. Horizontal and vertical lines represent input from horizontally and vertically oriented 
cells, respectively. Oblique lines indicate the presence of inputs from both horizontal and vertical 
cells. The length of the lines represents the strength of inputs. (d) Result of the developmental 
simulation showing long-range layer 2/3A connection weights for the sixteen cells at a single 
spatial position. Each cell receives two types of connections from other positions: connections 
from horizontally oriented cells, and connections from vertically oriented cells. Horizontal and 
vertical lines represent weights from horizontally and vertically oriented cells, respectively. 
Oblique lines indicate weight from both horizontally and vertically oriented cells. See text for 
details. 
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4.1.2 Input presentation 

The various inputs used in the simulation are shown in Figure 8c. In order to make the simulation  

more tractable, the input is presented at or around a constant spatial position and the weights that 

develop at that spatial position were used at all other spatial positions. This simplification saves a 

great deal of computational time and is justified by the hypothesis that image statistics are the 

same across position. Since the weights are learned at a single position the inputs were presented 

to the network such that the intersection (in case of angles) or the center of the input (in case of 

colinear line segments) was centered on that position. During each iteration, a random input was 

chosen and then presented to the network. 

4.1.3 Activity-dependent habituative transmitter gates 

The simulation shows that, at each position, each cell can get tuned to one of the input features, 

in our case to a set of angles and colinear lines. As noted above, the challenging aspect of the 

simulation is that the various inputs share similar features. Hence, if one cell emerges a winner in 

the first iteration, then it could become the winner for any subsequent iteration. This is because 

the weights are zero initially and updated at each iteration. Since the inputs share features, the 

winning cell would have a bias to win again over other cells. Chemical transmitters that habituate 

in an activity-dependent way overcome this tendency (Grossberg, 1969, 1976b, 1980). These 

transmitters gate, or multiply, the combined bottom-up and horizontal input before the gated 

signal can activate the cell. Since the transmitter multiples the input, after it habituates, the gated 

input to the cell decreases. This enables other cells to emerge as winners during subsequent input 

presentations and to get tuned to other input features. Recent neurophysiological experiments 

have confirmed the predicted existence of such habituative gates, or depressing synapses, at 

cortical cells (Abbott et al., 1997; Markram and Tsodyks, 1996; Tsodyks et al., 1998). Other 

properties of cortical development have also been shown to depend on habituative thransmitter 

gates, notably properties of cortical maps, such as ocular dominance and orientation columns that  

include singularities, fractures, and linear zones; opponent simple cells that are sensitive to 

opposite contrast polarities; complex cell disparity-tuning properties; and coordinated 

development of receptive field profiles across the cortical layers (Grossberg and Seitz, 2003; 

Grunewald and Grossberg, 1998; Olson and Grossberg, 1998). Later sections show how the same 

habituative gates can also lead to bistable 3D percepts of Necker cube 2D image. This analysis 
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hereby suggests that bistable percepts may arise from mechanisms that are needed to control 

cortical development. 

4.1.4 Simulation results 

The simulation was run until the excitatory and inhibitory weights converged which took 

approximately 6000 input presentations. Since the horizontal weights are zero initially, random 

selection of the bottom-up inputs to each neuron ensures that a single neuron will have more 

bottom-up input than others and hence emerge as a winner through competitive interactions. 

Once the neuron emerges as a winner, it learns the input by self-organizing the excitatory 

horizontal connection weights, and inhibitory connection weights, with other layer 2/3A cells. 

Once the horizontal weights become sufficiently large through learning, they influence the 

activation of the cell such that the cell that codes the input emerges as a winner. The neuron also 

habituates once it emerges as a winner so that, in subsequent input presentations, other neurons 

can win the competition and learn to map other inputs. Since there are at least two neurons for 

each input, even if one gets habituated, the other can win the competition if the same input is 

presented for two consecutive input presentations. The results of the simulation are shown in 

Figure 8d, which shows the horizontal connection weights, from cells at other positions and of 

different orientations, for each of the sixteen cells. The results show that some neurons get tuned 

to different angles and some others are tuned to colinear lines. 

4.2 Necker cube simulation 

In order to clarify how a 2D image can give rise to one or more 3D percepts, a Necker cube 2D 

image was simulated. The simulation shows how a 2D Necker cube image can be interpreted in 

3D and how bistable percepts occur. The simulation was done using the laminar model shown in 

Figure 2b. There are four different cell types in layer 2/3A of V1 and V2: They are angle cells 

and colinear bipole cells in V1, and angle cells and disparity-gradient cells in V2. The layer 2/3A 

cells in V1 input to layer 2/3A cells in V2 and they, in turn, send feedback signals to layer 2/3A 

of V1. This simplification from the full 3D LAMINART model of Figure 3 was done to ease the 

computational load. The simulation results should not change if the full 3D LAMINART model 

is used, since the rate-limiting interactions for the simulated data are captured by the simplified 

model in Figure 2b.  
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Each V1 colinear bipole cell is determined by its position, orientation, and disparity. Each 

V1 angle cell is determined by its position, angle type, and disparity. V2 angle cells are similar to 

V1 angle cells and are also determined by their position, angle type and disparity. Each V2 

disparity-gradient cell is determined by its position, orientation, disparity, and disparity-gradient; 

see Figure 2b. Four orientations (horizontal, vertical and two obliques), three disparities (D1, D2, 

and D3), eight different angles corresponding to the eight corners of the Necker cube, and three 

different disparity-gradients (zero, positive and negative) were used in the simulation. Parameter 

D1 represents the set of all disparities that correspond to the fixation depth of a planar image, 

whereas D2 represents a slightly further depth and D3 a still further depth. The model network is 

similar to the network used in the developmental simulation in Section 4.1. In that simulation, 

layer 2/3A cells developed into V1 angle cells and colinear bipole cells. Similar rules can be 

used to develop V2 angle cells and disparity-gradient cells. All these cells are variants of bipole 

cells. The architectural similarity of different kinds of cells enables the model to be simple but at 

the same time able to simulate a wide variety of data. 
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Figure 9. (a) Schematic of input to Necker cube simulation. Three types of input, with highlights 
at vertex A, B, and H, were used. The terms “first square" and “second square” are used in the 
text to refer to the two squares. (b) Model input with highlight at vertex B to layer 2/3A cells at 
multiple depths. This input is generated by hand to be consistent with previous model 
simulations (Kelly and Grossberg, 2000). D1, D2, and D3 represent different depths.  See text for 
details. 
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4.2.1 Input generation 

As was done for the developmental simulations, the inputs to layer 2/3A of V1 were generated 

by hand to be consistent with previous model simulation outputs (Grossberg and Mcloughlin, 

1997; Kelly and Grossberg, 1999). For the developmental simulations, the inputs were presented 

at a single disparity, since the simulation focused on interactions within disparity. For the Necker 

cube simulation, the inputs to layer 2/3A cells were presented at multiple depths (D1, D2, and 

D3). In all the Necker cube simulations, the input to a single vertex was strengthened by 

increasing the activation of the corresponding horizontal and vertical line segments within a 

small neighborhood near the vertex, as illustrated in Figure 9a. This was done to simulate an 

attentional focus at that particular vertex. Kawabata (1986) showed that the interpretation of the 

Necker cube depends on which angle is attended. In particular, the Necker cube percept for 

which the square on which the highlighted angle is present is seen in front is more probable than 

the other interpretation. The analysis below indicates how attention to any edge fragment, or 

indeed any momentary enhancement of the boundary corresponding to that edge due to internal 

changes of state, can yield similar results. Grossberg (1994) described why and how a 2D image 

can initially activate a population of complex cells that code different disparities. 

Correspondingly, the Necker cube stimulus generated an input to layer 2/3A complex cells at 

multiple depths, as shown in Figure 9b.  In the present simulations, an attentional bias is 

represented by a larger input to the attended features.   

4.2.2 Activation of layer 2/3 cells in V1 

In the model V1, angle cells get activated at the corners and the colinear bipole cells get 

activated by the straight edges. This segregation of activation occurs by two mechanisms. First, 

due to the bipole property of these cells, angle cells get maximum input at corners, while the 

colinear bipole cells get maximum input along straight edges.  Second, competition between 

different angle and colinear bipole cells at the same position and disparity sharpens the responses 

of the cells to the input. As a result, angle cells are activated at corners while colinear bipole cells 

are activated along straight edges. The simulation output for the segregation of activation for V1 

angle cells and colinear bipole cells is shown in Figure 10.  
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Figure 10. Model output for the activation of V1 colinear bipole and angle cells in layer 2/3A for 
the Necker cube input. (a) V1 colinear bipole cells, (b) V1 angle cells. There are eleven colinear 
bipole and angle cells along each edge of the Necker cube. The colinear bipole cells (a) get 
activated along straight edges while angle cells (b) get activated at corners. D1, D2, and D3 
represent different depths.   

 

4.2.3 Activation of layer 2/3A cells in V2 
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Figure 11. Activation of disparity-gradient cells by colinear bipole cells and V2 angle cells. The 
colinear bipole cells activate all disparity-gradient cells equally at the corresponding position.  
Angle cells activate disparity-gradient cells selectively at nearby positions. Shaded circle 
represent active cell, unshaded circle represents inactive cell. The strength of the activation is 
indicated by the darkness of the shade. See text for details. 
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Figure 11 shows how V1 colinear bipole cells and V2 angle cells activate the disparity-gradient 

cells for some of the corners of the Necker cube. A colinear bipole cell in V1 activates all 

disparity-gradient cells in V2 equally at their corresponding position, orientation and depth. V2 

angle cells strongly activate zero disparity-gradient cells along the horizontal and vertical 

orientations, and cross disparity-gradient cells along the oblique orientations, at nearby positions. 

As discussed in Section 3, the selectivity of the angle cells in activating disparity-gradient cells 

can be learned from 3D image statistics, and is described mathematically in the Appendix for 

various angles corresponding to the corners of the Necker cube. The activation of disparity-

gradient cells by colinear bipole cells and V2 angle cells for the complete Necker cube input is 

shown in Figure 12a and the combined activation of disparity-gradient cells is shown in Figure 

12b. 
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Figure 12. (a) Activation of disparity-gradient cells by angle and colinear bipole cells for the 
Necker cube input. Colinear bipole cells activate all disparity-gradient cells equally along 
straight edges, while angle cells selectively activate disparity-gradient cells near corners. 
Thickness of the lines indicates strength of activation. (b) Combined activation, by angle and 
colinear bipole cells, of disparity-gradient cells. 
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V2 angle cells and disparity-gradient cells at the same position, but different disparities, angles, 

and disparity-gradients, compete with each other. This competition sharpens the response of the 

cells to the input and helps to disambiguate ambiguous activations. 

4.2.4 Grouping and attentional propagation by disparity-gradient cells 

Disparity-gradient cells interact with disparity-gradient cells at other positions, disparities, and 

disparity-gradients, through long-range horizontal connections in layer 2/3A of V2. This 

anatomical interpretation is consistent with neurophysiological data showing that bipole 

grouping capable of completing boundaries, including illusory countours, occurs in V2 

(Peterhans and von der Heydt, 1999; von der Heydt et al., 1984), and that boundaries in V2 

reflect 3D figure-ground properties (von der Heydt et al., 2000; Zhou et al., 2000).  These 

horizontal interactions play a key role in explaining the type of 3D grouping percepts that have 

been reported; e.g., Tse (1999) and Liinasuo et al. (2000). The grouping principles are a natural 

extension to the explanation of 3D slanted and curved surfaces of grouping principles that have 

been used before to explain 2D and 3D planar surface percepts (Gove et al., 1995; Grossberg, 

1994, 1997; Grossberg and Howe, 2003; Grossberg and McLoughlin, 1997; Grossberg and 

Mingolla, 1985a, 1985b; Kelly and Grossberg, 2000). 

For the Necker cube input, the zero disparity-gradient cells group along horizontal and 

vertical arms of the cube while the cross disparity-gradient cells group along the oblique arms. 

At the same time, attentional highlighting of the angle at vertex B increases the activation of 

horizontal and vertical arms of the first square (Figure 9a). The increased activation of the 

horizontal and vertical arms of the first square, as depicted in Figure 13a, is caused by the spread 

of attention along the boundary of the first square.  Roelfsema et al. (1998) showed how attention 

to one position on a curve can enhance activation of cortical cells at distal positions on the curve.  

These data are consistent with the hypothesis that attention spreads along the cortical cells that 

represent the curve.  Grossberg and Raizada (2000) simulated the Roelfsema et al. (2000) 

neurophysiological data, using the 2D LAMINART model, by showing how attention can 

amplify boundary groupings that form via long-range horizontal connections in layer 2/3A.  A 

similar mechanism is used here to propagate the attentional highlight along the horizontal and 

vertical arms of the first square. In particular, the activity of the horizontal and vertical disparity-
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gradient cells in the model can be modulated by their horizontal and vertical inputs from either 

side, if they also receive bottom-up input from V1 colinear bipole cells. Thus, the disparity-

gradient cells on the highlight translate their increased activation to other disparity-gradient cells 

along the vertical and horizontal arms, as schematized in Figure 13a and simulated in Figure 13b. 

4.2.5 Breaking of T-junctions 

The FACADE model proposed how boundaries corresponding to the stem of a T-junction in an 

image or scene can be split from boundaries corresponding to the top during figure-ground 

separation (Grossberg, 1994). In particular, long-range grouping combined with short-range 

competition, across orientations and positions, can break the stem of the T from its top (Figure 

13). In the present example, the long-range grouping by disparity-gradient cells increases the 

activation of boundaries that correspond to the attended square. At the T junctions of the Necker 

cube, depicted by shaded circles in Figure 13a, the activity of the horizontal and vertical arms of 

the first square is greater than the corresponding activity of the horizontal and vertical arms of 

the second square. Spatial and orientational competition among vertical and horizontal disparity-

gradient cells enable the first square to inhibit the activity of second square near the T junctions, 

thereby detaching the stem of the T from its top (Kelly and Grossberg, 1999). The simulation 

output is shown in Figure 13b.  
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Figure 13. (a) T junction gap formation: The increased activation of vertical and horizontal arms 
near vertex B spreads through long-range horizontal connections among disparity-gradient cells 
along the arms, and thorough V2 angle cells at corners. The increased activation of the first 
square (Figure 9a) inhibits the activation of vertical and horizontal arms around T junction by 
spatial and orientational competition across positions and orientations. (b) Corresponding model 
output. Note that due to T junction break-up, there is a closed boundary that supports filling-in 
for the first square, but not for the second square.  
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4.2.6 Filling-in and near-to-far inhibition 

As discussed in Section 2.5, filling-in a boundary representation can lead to visible surface 

percepts. In the FACADE model, boundary signals at multiple depths are used to capture surface 

signals within depth-selective filling-in domains, or FIDOs. Grossberg (1994) showed that too 

many boundary and surface fragments are initially formed because each complex cell is sensitive 

to a range of disparities. In particular, for the Necker cube input, the first square is represented at 

multiple depths (Figure 9b), which leads to redundant boundary representations. Elimination of 

the redundant boundaries is realized by the process whereby the boundary and surface properties 

are bound into a consistent boundary-surface percept. In particular, if a region within a FIDO is 

surrounded by a closed boundary, then it can contain its filling-in signals. A contour-sensitive 

output process can sense the bounding contour of this region. These output signals strengthen the 

boundaries at the same depth and corresponding positions. They also inhibit the redundant 

boundaries at further depths and the same positions. This inhibition from near to far depths is 

called boundary pruning (Grossberg, 1994). Boundary pruning spares the closest surface 

representation that successfully fills in a closed boundary at a given set of positions. The process 

is illustrated in Figure 14. 
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Figure 14. Boundary pruning: The initial multiple depth representation of a 2D image is pruned 
by filling-in and near-to-far inhibition. (a) Initial representation. (b) T junction breakup (c) 
Filling-in at depths D1 and D2. (d) The boundaries extracted from the FIDOs enhance the BCS 
signals within depth while inhibiting the BCS signals at far depths. (e) This near-to-far inhibition 
prunes the redundant boundaries which allow boundaries at far depth to get completed (dashed 
lines).   
 

Initially, the 2D image of the two overlapping rectangles is represented at multiple depths as 

discussed in Section 4.2.1 (Figure 14a). The T-junctions are broken due to grouping and spatial 

and orientational competition, as described in Section 4.2.5 (Figure 14b). This allows filling-in to 

occur selectively within the horizontal rectangles at both depths D1 and D2 (Figure 14c). The 

contour-sensitive signals extracted from the filled-in FIDOs inhibit the boundary signals at 

further depths (Figure 14d). As a result, the redundant representations of the horizontal rectangle 

are pruned. The partially occluded vertical rectangle boundaries in Figure 14e can then be 
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amodally complete by bipole grouping (dashed lines). This example illustrates how surface 

filling-in can influence figure-ground segregation (Albert, 1999). 

In the model, all disparity-gradient cells  positive, negative, and zero  within depth act 

as strong filling-in barriers for the FIDOs at the corresponding depth, and weak filling-in barriers 

at other depths. This boundary representation, shown in Figure 13, supports filling-in within the 

first square of the Necker cube, but not within the second square. This is because there is a 

closed boundary corresponding to the first square but there is no closed boundary for the second 

square. The redundant boundaries are pruned as follows: In order to ease the computational load, 

the boundary representation that corresponds to the successfully filled-in square directly inhibits 

the boundary representations at further depths, as shown in Figure 15. 

 

(a) 
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−

D2 D3

0

+

 
(b) 

 
Figure 15. (a) Boundary pruning by near-to-far inhibition inhibits the boundary representation of 
the first square at depths D2 and D3. (b) Simulated boundaries after near-to-far inhibition.   
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4.2.7 Disambiguation by grouping 

Once the near-to-far inhibition occurs, the first square is represented at depth D1 while the 

second square is represented at all depths, D1, D2, and D3. This causes an increase in activation 

of angle cells corresponding to the corners of the first square at depth D1, compared to other 

depths. This is because the angle cells corresponding to corners of the first square at depth D1 

receive both bottom-up input from V1 angle cells, and horizontal input from disparity-gradient 

cells, whereas the angle cells at depths D2 and D3 get bottom-up input from V1 angle cells but 

zero horizontal input from disparity-gradient cells. Due to competition between angle cells 

across depths within position, the angle cells at depth D1 inhibit the corresponding angle cells at 

other depths. This causes the cross disparity-gradient cells near the corners of the first square to 

get activated more in depth D1 than at other depths. This is because the disparity-gradient cells at 

the corners of the first square are not activated by angle cells at depths D2 and D3, but only by 

colinear bipole cells. In depth D1 though, the disparity-gradient cells are activated by both angle 

cells and colinear bipole cells. The weak representation of the disparity-gradient cells in D2 and 

D3 is then inhibited by competition across disparity and within position among disparity-gradient 

cells. The representation of cross disparity-gradient cell activation is schematically shown in 

Figure 16a. 
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Figure 16. Positive disparity-gradient cells (+) group more strongly than negative disparity-
gradient cells (-) and inhibit negative disparity-gradient cells. (a) Positive disparity-gradient cells 
at depth D2 get input (arrows in the figure) from other colinear positive disparity-gradient cells 
at depths D1 and D3. Negative disparity-gradient cells at depth D2 get input only from depth D1. 
(b) As a result, positive disparity-gradient cells are activated more than negative disparity-
gradient cells. (c) Competition across disparity-gradients and disparity inhibits weaker 
representations. See text for details. 
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As discussed before (Figure 4), positive disparity-gradient cells group from near to far while 

negative disparity-gradient cells group from far to near. As shown in Figure 16a, positive 

disparity-gradient cells at depth D2 get input from other colinear positive disparity-gradient cells 

from depths D1 and D3 at nearby positions, thus increasing its activation at depth D2, as shown 

in Figure 16b. Negative disparity-gradient cells get input from other colinear negative disparity-

gradient cells only at depth D1, but not D3, and hence the activation of the negative disparity-

gradient cell is not increased. This is because negative disparity-gradient cells group from far-to-

near and hence receive input from cells at far depths and cells at near depths, as illustrated in 

Figure 4. The increased activation of positive disparity-gradient cells together with competition 

across disparities and disparity-gradients leads to inhibition of negative disparity-gradient cells at 

all depths, as shown in Figure 16c. 

D1 D2 D3

 
(a) 

 
D1 D2 D3

 
(b) 

 
D1 D2 D3

 
(c) 

 
Figure 17. (a) Strong positive disparity-gradient cell activations at depth D1 increases the 
activation of zero disparity-gradient cells at that depth through V2 angle cells (b). The strong D1 
activations enhance the activations of positive disparity-gradient cells, leading to enhanced 
activation of zero disparity-gradient cells of depth D3.  (c) Zero disparity-gradient cells at depth 
D3 inhibit zero disparity-gradient cells at other depths.  
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Now the angle cells corresponding to the corners of the second square, at depth D3 receive more 

input than the corresponding angle cells at depths D1 and D2. This is because, the angle cells at 

depth D3 receive input from positive disparity-gradient cells and zero disparity-gradient cells, 

while the ones at depths D1 and D2 receive input only from zero disparity-gradient cells. The 

increased activation of angle cells lead to increased activation of zero disparity-gradient cells in 

depth D3, as shown in Figure 17. Again, due to competition between disparity-gradient cells 

across disparity-gradients and depths, the zero disparity-gradient cells at depth D3 inhibit the 

zero disparity-gradient cells at depths D1 and D2, thereby leading to a stable representation of 

the Necker cube. The simulated boundaries of the Necker cube are shown in Figure 18. 

D1

−

D2 D3

0

+

 
 
 
Figure 18. Model simulation of Necker cube boundaries via the process described in Figure 17.  
The columns D1, D2, and D3 represent different depths. The top row represents negative 
disparity-gradient cells (-), the middle row represents zero disparity-gradient cells (0), and the 
bottom row represents positive disparity-gradient cells (+). This notation is also used in 
subsequent figures.   
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In summary, the interpretation of the Necker cube involves three main processes. First, angle 

cells selectively activate disparity-gradient cells locally near the corners. Increased attention to a 

particular angle of the Necker cube lead to the asymmetric breaking of the X junction and figure-

ground separation. Then, cooperative grouping among disparity-gradient cells and competition 

between disparity-gradient cells across disparities and disparity-gradients lead to a final 

boundary representation of the Necker cube. 

4.3 Necker cube simulation with different attentional focus 

The present simulation shows how attention to a different angle of the Necker cube can bias the 

interpretation of the Necker cube to form a different 3D percept. The difference in where the 

attentional highlight is present leads to a different figure-ground segregation. Since an angle of 

the second square is highlighted (angle H in Figure 9a; see Figure 19a), the zero disparity-

gradient cells that represent vertical and horizontal arms of the second square are activated more 

than those of the first square. This causes the same cascade of events to occur for the second 

square that was summarized in Figures 13 and 15 for the first square. In particular, attention 

propagates along the boundary of the second square and leads to inhibition of the vertical and 

horizontal arms of the first square near the T junctions. Near-to-far inhibition leads to a 

representation where the second square is represented in depth D1. This representation increases 

the activity of negative disparity-gradient cells, as opposed to positive disparity-gradient cells in 

the previous simulation, thereby leading to a different 3D boundary representation of the Necker 

cube, as shown in Figure 19. All parameters and settings for the simulation remained the same 

except for the slight attentional bias in the input. 
D1 D2
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(a) (b) 

 
Figure 19. (a) Input with attentional highlight at vertex H (see Figure 9). (b) Model simulation of 
boundary representation. Note that attentional highlight at a different vertex from Figure 18 leads 
to a different interpretation of the Necker cube.  
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4.4 Necker cube simulation with different length 

The depth at which the second square gets represented in the previous simulations is dependent 

on the length of the oblique lines of the Necker cube. This section shows how the cross disparity-

gradient cell groups for a smaller Necker cube. The input to the network, shown in Figure 20a, is 

similar to the one used in the previous simulations except that it is smaller in size. This forces the 

grouping of disparity-gradient cells to group between depths D1 and D2, thereby representing the 

second square at depth D2 as shown in Figure 20b, instead of D3, as shown in Figure 18 for a 

larger Necker cube. 
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Figure 20. (a) Small Necker cube input with highlight at vertex A. (b) Model simulation of 
boundaries.  Here the further cube surface is closer than in Figure 18.     

 

4.5 Necker cube reversals and cortical development 

The previous simulations showed how the Necker cube image generates a stable 3D boundary 

representation when attention is focused on a single angle at a vertex, or for that matter, when 

any fluctuation in boundary strength favors one representation over the other. The Necker cube 

percept is, however, bistable and its interpretation switch over time (Heath, Ehrlich and Orbach, 

1963; Kawabata, 1986; Maier, Wilke, Leopold, Treue and Logothetis, 2001). Section 4.1 noted 
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that habituative transmitters are needed to develop horizontal connections in layer 2/3A of V1 

into angle and colinear bipole cells, and by extension, angle and disparity-gradient cells in V2. 

Such habituative transmitters in V2, when they interact with the rest of the network, can also 

generate bistable percepts. In particular, the model switches its boundary representations through 

time when habituative transmitters gate the excitatory and inhibitory inputs to layer 2/3A cells of 

V2. This result links development to perception by showing that habituative mechanisms 

necessary for development can also explain bistable percepts. 

Layer 2/3A cells of V2 receive long-range horizontal inputs from other layer 2/3A cells 

in V2 and bottom-up input from layer 2/3A of V1. Layer 2/3A cells also receive inhibitory inputs 

from other layer 2/3A cells of V2. Habituative transmitters are proposed to gate both the 

excitatory and inhibitory inputs to layer 2/3A cells. For simplicity, one transmitter is proposed to 

gate all excitatory inputs, both bottom-up and horizontal, and another to gate all inhibitory inputs 

to a cell. 

Figure 21 shows the Necker cube representation of the network at different time steps. 

Figure 21a shows the initial interpretation of the Necker cube. This is similar to the previous 

simulation output discussed before, which shows how the network behaves when its transmitters 

are fully accumulated. After some time, the winning disparity-gradient cells habituate. In 

particular, the disparity-gradient cells corresponding to the first square at depth D1 and the 

disparity-gradient cells corresponding to the second square at depth D3 habituate. The second 

square get activated at depths D1 and D2 as the activation of, and inhibition from, the disparity-

gradient cells corresponding to the second square at depth D3 decreases due to habituation. At 

the same time, the first square get activated at depths D2 and D3 as the disparity-gradient cells 

corresponding to the first square at depth D1 habituate. Since the activation of disparity-gradient 

cells corresponding to the second square is more than the activation of disparity-gradient cells 

corresponding to the first square at depth D1, the T-junctions are broken. Now, the network state 

is similar to that in Section 4.3. The model boundary representation now supports the second 

interpretation, as shown in Figure 21b, which is similar to the output of the model in Figure 19. 

After some time, the network cycles back to the initial interpretation as habituation and recovery 

proceed, as shown in Figure 21c. Thus, even though habituation operates locally at individual 

cells, the model switches between globally consistent interpretations. This is because the various 

cells in the network are coupled in a context-sensitive way by both intralaminar and interlaminar 



 43

feedback.  Such a stable oscillation that reproduces the correct 3D grouping cannot be taken for 

granted in a distributed, hierarchical, multiple time-scale system like the present one.  In our 

hands, all of the model mechanisms, interacting together, were needed to generate this basic 

result.   

D1

−

D2 D3

0

+

 

D1

−

D2 D3

0

+

 
 
 

(a) (b) 
 
  

D1

−

D2 D3

0

+

 

D1

−

D2 D3

0

+

 
 

       (c)                                                                     (d) 
 
 

Figure 21. Necker cube reversal simulation. Model simulation of boundary representation at 
different times: (a) Time step 15. (b) Time step 49. (c) Time step 77. (d) Time step 100.  This 
simulation shows that the model can cycle between the perceived 3D representations.   
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4.6 Model simulations of slant representation without monocular cues 

A slanted rectangle, when viewed in 3D, is represented at multiple depths by matching its 

binocular disparities. Recent modeling has shown how such binocular matches can be carried out 

in layers 3B and 2/3A of V1 (Grossberg and Howe, 2002). These V1 cell responses can be 

grouping by V2 disparity-gradient cells to code the slant of a 3D object. This section describes 

simulations that illustrate this property. It is also shown how disparity-gradient cells can 

complete groupings across depth, as during percepts of 3D neon color displays. 

Since these simulations focus on interactions between disparity-gradient cells, angle cells 

in both V1 and V2 are not used. Colinear bipole cells directly activate disparity-gradient cells. 

Three different inputs to layer 2/3A cells of V1 were generated corresponding to (1) a flat 

surface, (2) a slanted surface, and (3) a slanted neon surface, as shown in Figure 22. The flat 

surface is represented by activation within depth, the slanted surface is represented by activation 

across depths (Figure 5), and the slanted neon surface is represented similarly to the slanted 

surface case but with zero activation in depth D2. These inputs were generated to show how the 

disparity-gradient cells group and complete boundaries across depths, and are consistent with 

previous model simulations of 3D boundary and surface perception; e.g., Grossberg and Howe 

(2002) and Grossberg and McLoughlin (1997). The slanted surface is represented as a 

parallelogram made of vertical and oblique line segments (Figure 5).  

4.6.1 Simulation results 

The colinear bipole cells get activated by the representations at various depths for the inputs 

discussed before. As discussed before, colinear bipole cells at a particular depth activate all 

disparity-gradient cells  zero, positive, and negative  equally at their corresponding depths. 

Even though the initial activation of all disparity-gradient cells at corresponding depths are 

equal, the long-range horizontal connections between disparity-gradient cells together with short-

range inhibition across depths and disparity-gradients lead to the correct 3D boundary 

representation. 
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Figure 22. 3D input simulation. (a) Input and output for the at surface. Note that the output is 
represented by zero disparity-gradient cells within depth.  (b) Input and output for the slanted 
surface. Note that the output is represented by zero disparity-gradient and positive disparity-
gradient cells indicating the slant of the input. (c) Input and output for the slanted neon surface. 
Even though there is no input in depth D2, the disparity-gradient cells complete correctly at 
depth D2. Note the similarity between this output and the output for the slanted surface.  

 

For the flat surface (Figure 22a), the input is represented within a single depth. The colinear 

bipole cells activate all disparity-gradient cells at that depth equally. Since zero disparity-
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gradient cells group strongly within depth, their activation increases, and competition between 

disparity-gradient cells across disparity-gradients and depths, eliminate the activity of cross 

disparity-gradient cells. The final output, shown in Figure 22a, is represented by zero disparity-

gradient cells within depth. 

For the slanted surface (Figure 22b), the input is represented at multiple depths. The 

colinear bipole cells activate all disparity-gradient cells at the corresponding depths. Since the 

input is present at multiple depths, cross disparity-gradient cells group more strongly than zero 

disparity-gradient cells. In particular, positive disparity-gradient cells group strongly than 

negative or zero disparity-gradient cells. This is because positive disparity-gradient cells group 

from near to far, and hence cells at depth D2 get horizontal input from depth D1 and D3, whereas 

negative disparity-gradient cells at depth D2 do not get any horizontal input (Figure 16). Again, 

positive disparity-gradient cells inhibit negative and zero disparity-gradient cells through 

competition between disparity-gradient cells across depths. The final representation of the input 

by disparity-gradient cells is shown in Figure 22b. 

The slanted neon surface input (Figure 22c) is similar to the slanted surface input except 

that there is no activation at depth D2. This representation schematically models a slanted neon 

surface. The output of the simulation is shown in Figure 22c. The simulation shows that the 

positive disparity-gradient cells correctly complete the boundary at appropriate depths, yielding a 

boundary like that for the slanted surface (Figure 22b).  

4.6.2 Filling-in of slanted and neon surfaces 

This section proposes how surface filling-in of a slanted surface occurs. As discussed in Section 

2.5, a slanted or curved boundary could have gaps at certain depths through which filling-in 

signals may escape. In the model, the boundary signals at their preferred depth act as a strong 

barrier to filling-in and weaker barrier at other depths (Figure 5). Closed boundaries are hereby 

generated within depth and filling-in can be contained, at least partially, within depth.  

So far, the model simulations have focused on boundary representations. Boundary 

representations need to be complemented with surface filling-in to generate visible percepts 

(Grossberg, 1994).  Grossberg and Todorović (1988) showed that a first step in computing the 

relative lightness of two surfaces, while discounting the illuminant, can be achieved by cells that 

interact thorough a center-surround symmetric receptive fields. Two kinds of cells, on-center off-
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surround (ON), and off-center on-surround (OFF), that respond to increases or decreases in 

intensity, respectively, are used in the model (Kandel, Schwartz and Jessell, 2000). The 

excitatory and inhibitory components are balanced so that the cell responses are attenuated to 

spatially uniform stimulation and the cell, therefore, respond preferentially to lightness borders.  

The ON and OFF cells generate ON and OFF filling-in signals, as shown in Figure 23a, 

in response to the input image shown in the figure. These filling-in signals are then used to fill-in 

the ON and OFF FIDOs (Section 4.2.6). The relative lightness of a surface is represented by the 

balance of activation of the ON and OFF FIDOs. That is, a darker color is represented by strong 

activation of the OFF FIDO and weak activation of the ON FIDO. At the same time, lighter color 

is represented by strong activation of the ON FIDO and weak activation of the OFF FIDO. 

Hence, the relative strength of the ON and OFF FIDOs indicates the color of the surface, and is 

computed as [ON-OFF]+ in model simulations. 

The simulation uses the disparity-gradient boundaries shown in Figure 22 as filling-in 

barriers. The ON and OFF filling-in signals are not depth-sensitive and hence project to all 

depths. The boundary signals at each depth act as a barrier to the filling-in signals and restrict the 

filling-in to create visible surfaces. 

The simulation output for the flat surface, along with the corresponding boundary signals, 

is shown in Figure 23a. The filling-in is strong at depth D1 while it weak or non-existent at 

depths D2 and D3. This is because the boundary signals at depth D1 project strongly to the 

filling-in domains at depth D1 to restrict the filling-in. At the same time, there are no boundary 

signals at depths D2 and D3. Only the weak projection from depth D1 acts as a barrier for the 

filling-in signals at depths D2 and D3, and hence filling-in at that depth is weak. The filled-in 

representation for the flat surface is uniform at depth D1. The slant of the surface at a position is 

indicated by the relative strength of the filled-in signals across depths. For example, for the flat 

surface, the strength of the filled-in signal is greater at depth D1 throughout the surface to 

represent the flatness of the surface. 

The simulation output for the slanted surface and the corresponding boundary signals, are 

shown in Figure 23b. Here, the boundary signals are present at all depths, but at different 

positions. This set of filling-in barriers support weak filling-in at all depths and the slant of the 

surface is represented by the relative amount of filling-in across depths. The filled-in signal at 

depth D1 is stronger in the initial part of the surface, while the filled-in signal is stronger at depth 
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D3 for the final part of the surface. In the middle, the filled-in signal is equal at all depths. The 

slant of the surface is represented by the relative strength of the filled-in signal across depths. 

A neon slanted surface can be filled-in as follows. First, the boundaries need to get 

completed across depths. This is achieved by grouping among disparity-gradient cells in our 

model. Second, the lightness inducers are present only along certain boundary segments. For 

filling-in of planar surfaces, even if inducers are present only along certain parts of the boundary, 

the filling-in signal from those parts can fill-in the whole region bounded by the boundary (Gove, 

Grossberg and Mingolla, 1995). But when the surface is curved, the boundaries along which the 

inducers are present may be at a different depth than the boundaries along which there are no 

inducers. Hence, the filling-in signal needs to spread across depths. In the model, the filling-in 

signal projects to all depths, and since a strong boundary at a given depth also acts as a weak 

barrier at other depths, the filling-in signals are at least partially contained at all depths. The ON 

and OFF filling-in signals and the resultant filled-in surface output are shown in Figure 23c. The 

model output is similar to that in the slanted surface case even though the boundaries and filling-

in signals are not present at certain depths along the surface.  

A measure of depth can be obtained from the activity of the filled-in regions. In 

particular, Figure 23 shows the filled-in activity at three depths, D1, D2 and D3. The depth value 

at a particular point can be calculated as 
321
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= , where D1, D2, and 

D3 are the relative depth values, and Ad1, Ad2 and Ad3 are the activities of the filled regions at the 

respective depths. The depth value, D, which is between D1 and D3 can then indicate the relative 

depth of the surface (see Figure 23d). 
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Figure 23. 3D filling-in simulations. D1, D2, and D3 represent different depths. (a) Flat surface, 
(b) Slanted surface, and (c) Slanted neon surface. The left part of the figures shows the boundary 
signals (B) for filling-in, and the ON (+) and OFF (-) filling-in signals. The right part shows the 
ON FIDO output (+), OFF FIDO output (-), and [ON -OFF]+ output (R). For the at surface the 
[ON -OFF]+ output is maximal at depth D1, while it is weak or non-existent at other depths. For 
the slanted surface, the [ON -OFF]+ output is greater in the initial part of the rectangle at depth 
D1, greater in the middle part at depth D2, and greater in the final part at depth D3. The output 
for the slanted neon surface is similar to the slanted surface result. (d) The depth values 
calculated from the filled-in values for flat (-.), slanted (--) and slanted neon (-) surfaces. The 
depth value for the flat surface is constant while the depth value for the slanted surface is 
increasing indicating the positive slant of the surface. See text for details. 
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5 Discussion 

5.1 3D grouping 

This article extends 2D boundary grouping and surface formation principles to explain data 

about 3D slanted and curved surface percepts. 3D contour interpolation has been shown to obey 

similar constraints to those governing 2D grouping (Garrigan and Kellman, 2002), such as 

relatability (Kellman and Shipley, 1991). Our extension of 2D grouping principles to 3D clarifies 

the neural mechanisms that create these perceptual constraints, and provides the first 

mathematical description of the kernels that can be used for 3D grouping, including an 

explanation of how illusory contours can form across depth. This is accomplished using 

disparity-gradient cells that are interpreted to occur in layer 2/3A of V2. A number of studies 

have shown that cells in V2 code complex properties, such as figure-ground sensitive boundary 

coding (Zhou et al., 2000), tuning to stereo edges (von der Heydt et al., 2000), and tuning to 

illusory contours that is dependent on the depth of the inducers (Bakin et al., 2000). Recently, 

cells having similar properties to disparity-gradient cells were found in area V4 of the Macaque 

(Hinkle and Connor, 2001). We predict that cells having such properties may be found as early 

as area V2.  We have proposed anatomical locations for the model cells that are needed to 

explain our targeted data based on the best available neurological data, and to be consistent with 

other theoretical constraints on models of 3D vision and figure-ground perception (Grossberg, 

1994, 1997; Kelly and Grossberg, 2000).  This anatomical interpretation can be directly tested.  

What is critical for model properties, however, is not a particular anatomical interpretation, but 

rather a certain ordering of model processes.   

 For example, using the model’s ordering of processes enables its 3D grouping cells to 

explain percepts like the one shown in Figure 1b (Tse, 1999). In this figure, even though the lines 

of the cube are colinear in the 2D image, they do not complete behind the occluder. This is 

explained in the model as follows. When the 3D interpretation is taken into account, the oblique 

lines of the cube on the left are coded by positive disparity-gradient cells while the oblique lines 

of the cube on the right are coded by negative disparity-gradient cells. The positive and negative 

disparity-gradient cells do not group in the model, and hence the lines are not completed behind 

the occluder. 
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Figure 24. (a) Necker cube with curved lines. (b) Necker cube in which the two squares are 
brought together. 

5.2 Slant aftereffects, habituation, and development 

Disparity-gradient cells can also code the slant of an object or image. As noted in Section 1, the 

aftereffect experiments done in Ryan and Gillam (1993) showed that the slant aftereffects are 

mediated by cells that code slant. Lee (1999) showed that the size of the aftereffect is dependent 

on the disparity difference between the adapting and test surface.  These results can be explained 

by hypothesizing cells tuned to positive and negative disparity-gradients that are also tuned to 

disparity. The disparity-gradient cells in the model are tuned to different disparity-gradients and 

are also tuned to various depths, as in Lee (1999). The model also illustrates how habituative 

mechanisms are needed for the development of layer 2/3A cells in V1 into angle and colinear 

bipole cells, and how such habituative mechanisms can also lead to bistable percepts. When 

habituative mechanisms interact with competing disparity-gradient cells, slant aftereffect data 

can also be explained. In particular, let us assume that a slanted surface with positive slant is 

shown as the adapting stimuli. The slanted surface will then be represented by the positive 

disparity-gradient cells in the model. When a test surface with zero slant is shown, the zero and 
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negative disparity-gradient cells are activated more than the positive disparity-gradient cells. 

This is because the positive disparity-gradient cells have habituated in response to the adapting 

stimuli. Hence, the balance of activation shifts toward negative slant, albeit slightly. Since the 

disparity-gradient cells in the model are also tuned to disparity, the size of aftereffect is 

dependent on the disparity difference between the adapt and test stimuli, as in the data of Lee 

(1999). 

5.3 Other models of 3D interpretation of 2D images 

The 3D LAMINART model embodies a detailed neural explanation of how cells that are used 

for 3D grouping can also be used to disambiguate ambiguous interpretations of 2D images. 

There are two classes of models that deal with 3D interpretation of 2D images. In the first class 

(Sugihara, 1986; Waltz, 1972), the edges in the 2D image are labeled as either being convex, 

concave, or occluded, depending on the angles that they subtend. This initial assignment of 

labels, and the further enforcement of a globally consistent labeling scheme by constraint 

satisfaction, gives rise to a stable 3D interpretation. Thus, the output of the model is a labeling of 

the edges in the 2D image. Even if the edges are consistently labeled, however, they still need to 

be represented in depth. For example, if the length of the oblique lines of a Necker cube image is 

increased, then, even though the angles are the same, the interpretation is different because the 

relative depth between the first and the second square varies. Hence, a model needs to explain 

where the various parts of the 2D image are in depth, and to generate a 3D surface representation 

that matches the human percept. 

The second class of models takes a minimization approach to deal with the interpretation 

of a 2D image (Leclerc and Fischler, 1992; Marill, 1991). In these models, the vertices of the 2D 

image are moved in the 3D space such that a measure, such as standard deviation of the angles, is 

minimized subject to certain constraints such as planarity of the surfaces, and the compactness of 

the surface (Sinha and Poggio, 1996). In this approach, the whole image is taken into account 

and hence it is unable to deal with local variations. For example, consider a variation of the 

Necker cube image shown in Figure 24a. The figure shows a Necker cube-like image that has 

similar local information near the corners as that of the Necker cube, but is different in how these 

corners are connected. They are connected by curved lines rather by straight lines. The models 

that use a global minimization approach cannot deal with such local variations. In order to 
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explain the above figure, a local representation of the oblique lines in the image is needed. In the 

3D LAMINART model, the interpretation is built up locally by activating disparity-gradient cells 

through angle cells, and global constraints emerge through grouping among disparity-gradient 

cells. Because, the lines are curved, the disparity-gradient cells group in such a way so as to 

represent the initial part of the curve by positive disparity-gradient cells and the middle part by 

zero disparity-gradient cells and the final part by negative disparity-gradient cells, thus indicating 

the change in slant of the image. 

Figure 24b shows a Necker cube in which the two squares are brought together in a single 

vertex. This image leads to a 2D planar interpretation rather than the 3D interpretation, even 

though the local characteristics near the vertices are similar to those in the usual Necker cube 

image. Usually, this interpretation is explained by the non-accidental viewpoint hypothesis 

(Witkin and Tanenbaum, 1983); namely, if the 2D image is interpreted as a cube, then slight 

variations, such as rotation of the cube, lead to a dramatically different 2D projection. 

Interpreting the image as a 2D planar image leads to a more stable representation. This 

explanation does not, however, explain what a 3D representation is in the brain, or how a 3D 

perturbation of this representation that never takes place can influence it. The 3D LAMINART 

model explains the 2D percept as follows. Assume that there is an attentional focus at vertex A 

and that the first square is represented at depth D1 initially. Note that one of the corners of the 

first square is shared by the second square; namely, the upper right corner of the first and the 

lower left corner of the second squares. When the first square is represented at depth D1, then 

that shared corner is also represented at depth D1. This is true because the angle cells activate 

mostly zero disparity-gradient cells along the vertical and horizontal lines. For the same reason, 

other corners of the second square are also represented at depth D1. This causes the oblique lines 

to get grouped within depth and hence the figure is represented within depth. This explanation is 

similar to the model explanation of why a triangle is seen as a 2D planar image whereas a 

parallelogram can be seen in 3D.  

5.4 Interaction of monocular and binocular cues 

The 3D LAMINART model clarifies how 3D cues, such as disparity, and 2D cues, such as 

angles, can interact when they are present in the same image. Psychophysical data for the 

combination of 3D cues and 2D cues support a weak fusion model (Landy et al., 1995), which 
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argues that cues that are more reliable are weighted more than the cues that are less reliable. For 

example, at near distances, disparity is more reliable than at far distances. Hence, disparity 

information is weighted more at near distances than at far distances. On the other hand, 

monocular cues are more reliable for computing slant information than disparity cues (Stevens et 

al., 1991) and hence are weighted more than disparity in such cases. In cases where both cues are 

equally strong, information from both cues is averaged. In the 3D LAMINART MODEL, 

disparity-gradient cells in V2 are activated by both V1 colinear bipole cells and V2 angle cells. 

The 3D cue information comes from the disparity-sensitive, primarily vertically oriented, V1 

colinear bipole cells, whereas the 2D cue information comes from V2 angle cells. These separate 

paths interact to give rise to a stable 3D percept. If the 2D monocular cues are stronger, they will 

activate the disparity-gradient cells more and hence the interpretation would be more dependent 

on 2D cues. If disparity information is stronger, then the disparity-gradient cells would group 

according to disparity and the interpretation would be consistent with disparity information. The 

existence of separate paths for disparity and perspective information is also supported by the 

results in van Ee et al. (2002). They show that when conflicting disparity and perspective 

information is presented, subjects see the percept specified either by disparity or by perspective, 

but not both. They also show that the percept is bistable, so that subjects alternately see the 

percept dominated by either type of cue. As discussed in the previous section, the mechanism 

responsible for bistability for Necker cube images in our model can also explain the bistability in 

displays where perspective and disparity information are presented in conflict. 
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APPENDIX 

This section describes the model equations. First described are the equations that were used to 

simulate the development of colinear and non-colinear bipole cells in layer 2/3A. Then the 

equations for the Necker cube and 3D simulations are provided. Each model neuron is typically 

modeled as a single voltage compartment in which the membrane potential, )(tv , is given by 

(1) 

where E  represent reversal potentials, leakg  is a constant leakage conductance, and the time-

varying conductances )(excite tg and )(inhib tg  represent the total inputs to the cell (Grossberg, 

1973; Hodgkin, 1964). The following network equations are instances of this general membrane 

equation, where, for simplicity, the capacitance term mC was set equal to 1, the reversal 

potentials are set to: exciteE = 1, inhibE = -1, and leakE = 0, except where indicated. Then equation 

(1) can be rewritten in the form,  

 
(2) 

 
where α  is a constant decay rate, exciteg  is the total excitatory input, and inhibg is the total 
inhibitory input.  

The differential equations were implemented in Matlab and numerically integrated using 

an adaptive step size Runge-Kutta 4,5 method. For computational simplicity, the equations for 

learning of the adaptive weights were solved at a slower time scale using Euler's method.  

The developmental simulations describe only layer 2/3A of V1. The Necker cube 

simulations describe the dynamics of layers 2/3A of V1 and V2, as in Figure 2b.  

A  Development of colinear and non-colinear cells in layer 2/3A of V1  
 
A.1 Activation Equations.  The following equations were used to simulate how the horizontal 

connections in layer 2/3A of V1 develop into two types of cells: colinear bipole cells that link 

colinear line segments over short distances and non-colinear bipole cells that get tuned to angles 

in the image. The model self-organizes both the longer-range excitatory connections and shorter-

),())(()())(())(()(
inhibinhibexciteexciteleakleak tgtvEtgtvEgtvE

dt
tdvCm −+−+−=
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range inhibitory connections that are needed to realize cell selectivity to these inputs; cf.,  

Grossberg and Williamson (2001). The layer 2/3A excitatory neurons are modeled as follows:  

 
 

(3) 
 
 
 
where variable ijklz  is the activity of the excitatory layer 2/3A cell at position ),( ji , orientation 

k , and cell number l . Two orientations, horizontal and vertical, were used in the simulation. 

There are eight excitatory cells (indicated by subscript l ) associated with each spatial position 

),( ji and orientation k . Since two orientations, horizontal and vertical, are used in the 

simulation, there are sixteen excitatory cells present at each position. These sixteen cells code the 

various colinear and non-colinear bipole cells that will develop there. 

Parameter α in (3) is the decay constant and ijklh  indicates the level of habituative 

transmitter (see equation (7)) associated with the excitatory cell at position ),( ji , orientation k  

and cell number l . Habituative transmitters prevent the earliest cells that learn from persistently 

dominating network dynamics. Term [ ]+− 11 τγ ijklz  in (3) describes self-excitatory feedback to 

the cell, where notation +][x  describes a threshold, or half-wave rectification, operation such that 
+][x = x , if >x 0, 0 otherwise. Parameter 1γ is the feedback gain constant. Feedback increases 

the activity of the winning neuron, which in turn inhibits other weakly activated cells, thereby 

enabling a winning cell to be selected in each cluster.  

The excitatory input E
ijklH  in (3) is due to long-range connections from neighboring cells 

in (3).  It is defined by:  

 
  (4) 
 

The horizontal connection weight is the product of a spatial Gaussian 2

22 )()(
σ

qjpi

e
−+−

−
 that reflects 

axonal growth (Grossberg and Williamson, 2001) and an adaptive connection weight pqrijklW  

from a cell at position ),( qp  and orientation r  to a cell at position ),( ji , orientation k , and cell 

number l . Each cell receives the total input [ ]+∑ −
t pqrtz 3τ summed over cell number, from each 
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neighboring position and orientation; see Figure 8a. The total input was normalized by dividing 

by the total number of cells (N). Other scaling parameters work just as well. Variable ijklI in (3) is 

the bottom-up input, generated by hand to be consistent with previous model simulation 

outputs (Grossberg and Williamson, 2001; Grossberg and Howe, 2003, Grossberg and Raizada, 

2000), and shown in Figure 8c. In vivo, a horizontally oriented layer 2/3A cell receives input 

from horizontally oriented layer 3B cells, and a vertically oriented layer 2/3A cell receives input 

from vertically oriented layer 3B cells (Callaway and Wiser, 1996). In the simulations, inputs are 

delivered directly to layer 2/3A cells. All the eight cells at a particular position and orientation 

receive the same bottom-up input to which small random input perturbation, in the range of 

0.002 to -0.002 using the rand function in Matlab, was added to simulate randomness in initial 

cortical connections. This random perturbation is generated for each of the eight cells before the 

simulation and is fixed for all iterations. The bottom-up input is added to the input from the long-

range horizontal connections. As a result, the activity of a layer 2/3A cell that receives bottom-up 

input can be modulated by the input from the long-range connections even if there is input from 

only one side.  

Input I
ijklH  in (3) from the inhibitory interneurons is defined by: 

 
(5)  

 
where variable ijrfgs  is the activity of the thg  inhibitory interneuron (see below) associated with 

the excitatory neuron at position (i, j),  orientation r, and cell number f, and +
ijrfgklB  is the weight 

from this inhibitory interneuron to an excitatory neuron at the same position, but different 

orientation k, and cell number l. This inhibition balances the excitation E
ijklH  from the long-range 

connections in (3) to implement the bipole property. In particular, cells which receive no bottom-

up input and signals from only one side of the horizontal receptive field are not activated enough 

to exceed the inhibitory input and thus are not able to propagate the grouping signal any further. 

Cells that receive sufficiently strong horizontal excitation from both sides, however, may exceed 

the inhibitory input and thereby fire. Along with the inhibitory input from the interneurons, layer 

2/3A excitatory cells also receive inhibition +
≠≠∑ − ][

, 2ltkr ijrtz τ  in (3) across all the cells that 

represent a given position (i, j). This competition enables a winning cell to be selected in each 

cell cluster.  
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As described in Section 2.2, each excitatory neuron is associated with a pool of inhibitory 

interneurons. The inhibition from the interneurons to the excitatory cell and the inhibition among 

inhibitory interneurons helps to implement the bipole property. In the developmental 

simulations, each excitatory cell is associated with four inhibitory interneurons corresponding to 

the left, right, top and bottom side of the excitatory cell (see Figure 8b). Each interneuron 

receives the same long-range input that is received by the excitatory cell from its corresponding 

side. In the Necker cube simulations below, depending on the type of cell (angle, colinear, 

disparity-gradient), each excitatory cell is associated with two or three inhibitory interneurons 

since it is assumed that these selective horizontal long-range connections have already 

developed.  

A.2  Habituative transmitter gates.  In equation (3), the total input,  
 

(6) 
 
to each layer 2/3A excitatory cell is multiplicatively gated by a habituative, or depressing, 
transmitter ijklh  that obeys the equation:  
 

(7) 
 
 
(Abbott et al., 1997; Grossberg 1969, 1976b, 1980; Tsodyks et al., 1998). In (7), transmitter 

starts out at its maximal value 1. Term [ ] )1(
1

1
ijkl

ijkl
h h

J
A −


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
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describes the 

accumulation, or recovery, of the transmitter to its maximum value 1 at the variable rate 

[ ] 










−+
+ +εθ ijkl

h J
A

1
1 , and term +−− ][ εijklijklh JhB  describes transmitter habituation at the 

variable rate +− ][ εijklh JB . Other examples of rate-dependent recovery from habituation during 

vision are proposed to include motion perception (Grossberg and Rudd, 1992) and photoreceptor 

adaptation (Carpenter and Grossberg, 1981). The recovery proceeds at a slower rate when the 

total input, ijklJ , is above the threshold, but proceeds at a faster rate when the input is below 

threshold ε . This property helps the neuron to recover faster when it receives less total input and 

does not take part in the representation of the input. In particular, suppose a neuron wins the 
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competition and habituates for a particular input. When another input then enables a different 

cell to win the competition, the previously habituated cell can recover faster and thus can recover 

fully before the input that the neuron codes is presented once again. In the Necker cube 

simulations below, this property enables the neurons that habituate when one interpretation of the 

cube is represented to recover fully before the neurons that represent the other interpretation 

habituate, thus enabling the network to switch back to the initial interpretation. Parameter hB  in 

(7) governs the rate of habituation. Habituation in (7) occurs at a rate proportional to the rate of 

release, or inactivation, of transmitter, ijklh , in (3).  

The activity, ijklms , of the inhibitory interneurons is modeled as follows:  

 
(8) 

 
 
Each inhibitory interneuron in (8) receives part, Em

ijklH , of the total long-range input, E
ijklH  in (4), 

to the excitatory layer 2/3A cell at its position. Since there are four inhibitory interneurons for 

each excitatory cell in the developmental simulations, each interneuron receives horizontal input 

from one of the four sides (L=left, R=right, T=top, B=bottom) of the excitatory cell; namely,  

 
(9) 

 
 
 
 

(10) 
  

 
 

(11) 
 

 
and 

(12)  
 
 
 
where )/tan(),( xyyx =θ . The inhibitory interneurons inhibit each other in (8) via the term 

∑ +−
efg ijrfgijrfgklm sB ][ . −

ijrfgklmB  is the inhibitory weight from interneuron number g, at position (i,j), 
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orientation r, and cell number f, to an interneuron number m, at the same position, but orientation 

k, and cell number l. This recurrent inhibition among the interneurons normalizes the total 

inhibition that is received by the excitatory cell and helps to realize the bipole property, as 

described in Section 2.2. 

 

A.3 Learning of adaptive weights.  The adaptive weights, pqrijklW  in (3) and (9)-(12), for the 

layer 2/3A long-range connections were modified through learning using the equations:  

 

(13) 
 
 
As in the simulations of horizontal cell development in Grossberg and Williamson (2001), 

equation (13) is an instar learning law, which has become the standard law for learning self-

organizing maps (Grossberg, 1976a, 1980; Kohonen, 1989). During instar learning, the activity, 

ijklz , in the postsynaptic target cell turns on learning, and the adaptive weight, pqrijklW , learns the 

expected value of the total signal ∑ +− ][1
4τpqrtt z

N
 from its presynaptic source cells during the 

interval when the target cell is active. In order to ease the computational load, the adaptive 

weights for cells at a single position were learned and these weight values were used for cells in 

other spatial positions as well. This simplification is justified by the hypothesis that image 

statistics are the same across position. 

An outstar learning law (Grossberg, 1968, 1980) was used to learn the weights, +
ijrfgklB  in 

(5) between an inhibitory interneuron and its excitatory neuron, and the weights, −
ijrfgklmB in (8), 

among the inhibitory interneurons. The weights, +
ijrfgklB and −

ijrfgklmB , have only two spatial indices 

(i, j) because they are short-range interactions whose spatial extent is limited to a single 

hypercolumn that is indexed by position (i, j). The learning law for +
ijrfgklB  is:  

 
(14) 

 
 
It helps to create and maintain the balance between inhibition and excitation that is needed to 

realize the bipole grouping property. Outstar learning accomplishes this by causing the inhibitory 
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synaptic weight +
ijrfgklB  to track the expected activation, Eg

ijklH , of the target excitatory cells at 

times when its source inhibitory interneuron has positive activity +][ ijrfgs . Likewise, the 

inhibitory interneuronal weights −
ijrfgklmB  obey the outstar equation:  

 
(15) 

 
The weight −

ijrfgklmB tracks the positive activity +][ ijklms of the target inhibitory interneuron. This 

property enables the network to normalize the total inhibitory input I
ijklH  in (3) from the 

interneurons, which enables layer 2/3A excitatory cells to fire if there is excitatory input on both 

sides sufficient to overcome this normalized inhibition.  

Both the long-range horizontal excitatory connections pqrijklW  and short-range inhibitory 

connections +
ijrfgklB  and −

ijrfgklmB  develop from zero initial values in the model; that is, 

0)0()0()0( === −+ BBW . The parameter values are 5.0=α , 51 =γ , 1.02 =γ , 1.0=ε , 7=σ , 

35.01 =τ , 15.02 =τ , 03.03 =τ , 2.04 =τ , δ =0.1, θ =1000, 1.0=hA , and 0.1=hB . The 

simulation results are shown in Figure 8d. Each subplot in the figure depicts the weights for each 

of the sixteen cells at a single spatial position. In particular, each subplot shows the connection 

weights from cells at position (p, q) within a 11x11 neighborhood. The first eight subplots (l=1, 

…8) in the first two rows show the connection weights from vertically oriented cells, ijklpqW 0 , to 

cells at position (i,j), orientation k, and cell number l. These cells receive long-range input from 

the neighboring horizontally and vertically oriented cells. The weight from horizontally oriented 

cells is indicated by the horizontal lines, while the weight from vertically oriented cells is 

indicated by vertical lines. Weights from both horizontally and vertically oriented cells are 

indicated by oblique lines. The length of the line indicates the strength of the connection. The 

second eight subplots in the last two rows shows the connection weights from horizontally 

oriented cells, ijklpqW 1 .  

B Dynamics of 3D Necker cube Bistability  

The Necker cube simulations were done using the laminar circuit shown in Figure 2b with the 

activity equations describing interactions within and between layers 2/3A of V1 and V2. As 
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described in Section 4.2, V1 layer 2/3A of the model contains colinear and non-colinear bipole 

cells (angle cells), while V2 layer 2/3A contains disparity-gradient and angle cells. Below, V1 

colinear bipole cells are indicated by the letter c, V1 non-colinear bipole cells by letter n, V2 

angle cells by letter a, and disparity-gradient cells by letter g. Letters (i,j) and (p,q) indicate 2D 

positions, d and e disparities, k and r orientations, m and o disparity-gradients, and l and t angle 

cell types. Inhibitory interneurons are indicated by letter s, and the inhibitory interneuron number 

by letters u and v. In the developmental simulations, there are four inhibitory interneurons 

(equation (8)) for each side (top, left, right, and bottom) of the excitatory cell. Here, we use only 

two (left and right for horizontally oriented cell or top and bottom for vertically oriented cell) or 

three (for angle cell) inhibitory interneurons, since it is assumed that these selective horizontal 

long-range connections have already developed. Four orientations [vertical )1( =k , o45 oblique 

)2( =k , horizontal )3( =k , and o135  oblique )4( =k ] eight angles corresponding to the eight 

corners of the Necker cube )8,...,1( =l , three disparities )3,2,1( DDDd = , and three disparity-

gradients [positive ( 0=m ), zero ( 1=m ), and negative ( 2=m )] were used in the simulations. 

Both excitatory and inhibitory habituative transmitters were used in layer 2/3A of V2 for the 

Necker cube simulations. The inhibitory habituation helps the neurons of the alternate 

interpretation of the Necker cube to get activated before the activity of neurons representing the 

present interpretation goes below threshold. This property helps the network to make the switch 

to various interpretations faster. Habituation was not used in layer 2/3A of V1 as there are no 

competing interactions between which the network can switch in layer 2/3A of V1 and hence the 

network would reach an equilibrium state and stay in that state even if habituation was used.  

 
B.1 V1 colinear bipole cell activation equations. Activity ijkdc  obeys the equation:  

 
 
 

(16) 
 
 
 
 
In (16) cα is the decay rate. Term Ec

ijkdvH  describes excitatory input from the long-range 

connections in layer 2/3A of V1; namely: 
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Figure 25. (a) Kernels for V1 colinear bipole cells. The four subplots show the connection 
weights for vertical, horizontal and two oblique oriented cells from other cells of similar 
orientation but different positions. (b) Kernels for the disparity-gradient cells. The figure shows 
the kernel for horizontally oriented disparity-gradient cells. For simplicity, the kernels are shown 
only across depths and not across disparity-gradients and orientations. The rows indicate 
different disparity-gradient cells—positive, zero, and negative—while the columns indicate 
different relative depths with respect to the depth of the disparity-gradient cell. The left columns 
indicate near relative depths while the right columns indicate far relative depths. (c) Kernels for 
V1 angle cells. The eight subplots depict the kernels for eight different angles of the Necker 
cube. The kernels show the summed weight across orientations for each angle. (d) Kernels for 
V2 angle cells. The kernels are the same as for V1 angle cells but slightly longer. (e) Activation 
of disparity-gradient cells by angle cells. The columns indicate the activation of 75 disparity-
gradient cells by each of the eight angle cells. The rows represent the activation of positive, zero, 
and negative disparity-gradient cells by the corresponding angle cells. 
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(17) 

 
where c

pqijkvW  in (17) is the long-range connection weight from side v [left ( ov = ) and right 

( 1=v ) for colinear bipole cells] in layer 2/3A of V1 from colinear bipole cells at position (p,q), 

and orientation k to colinear bipole cells at position (i,j) and orientation k. The connection 

weights in (17) are defined for the horizontal orientation (k=3) as follows:  

 
(18) 

 
 
and 
  

 (19) 
 

where )(xsign = -1, if 0<x , 1 otherwise. The connection weights for other orientations are 

obtained by appropriate rotation. These weights are represented graphically in Figure 25a. Term 

ijkdI  in (16) is the bottom-up input from layer 3B cell at position (i,j) orientation k, and disparity 

d, generated by hand as described in Section 4.2.1. As for the developmental simulations, the 

bottom-up input is added to the input from the long-range connections. The activity of layer 2/3A 

cell that receive bottom-up input can hereby be modulated by the input from the long-range 

connections even if there is input from only one side.  

Input Ic
ijkdH  in (16) is the inhibitory signal from the inhibitory interneurons, and is defined 

by:  

(20) 

Variable c
ijrdvs  in (20) represents the activity of inhibitory interneuron number v associated with 

the excitatory layer 2/3A colinear bipole cell at position (i,j), disparity d, and orientation r. 

Variable n
ijtdvs  in (20) represents the activity of inhibitory interneuron number v associated with 

an excitatory non-colinear (angle) bipole cell in layer 2/3A of V1 at position (i,j), disparity d, and 

angle type t. The inhibitory interneurons of a layer 2/3A colinear bipole cell of orientation r 

inhibit an excitatory colinear bipole cell of orientation k with weight +cc
krB , and the inhibitory 
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interneuron number v of layer 2/3A non-colinear bipole cell of angle type t inhibits an excitatory 

colinear bipole cell of orientation k with weight +nc
ktvB . This inhibition from the inhibitory 

interneurons helps to maintain the balance between excitation and inhibition to enforce the 

bipole property; see equation (3).  

Term +− ][3 cijkdc βγ  in (16) is the self-excitatory feedback. Term ∑ +−
o gijkdog ][3 βγ  in 

(16) is the feedback input from V2 disparity-gradient cells at position (i,j), orientation k, and 

disparity d summed across disparity-gradients o, to V1 colinear bipole cells. The inhibitory input, 
P
ijkdC , at the same position and disparity from other angle and colinear bipole cells is defined by:  

 
(21) 

 
where ijtdn  is the activity of V1 layer 2/3A angle cell of angle type t at the same position (i,j) and 

disparity d. Since both the colinear bipole cell and angle cell receive same bottom-up input, this 

inhibition and the horizontal input from long-range connections help to disambiguate ambiguous 

activation of colinear bipole cells and angle cells such that angle cells are activated at corners 

and colinear bipole cells are activated along straight edges. Term S
ijkdC  in (16) is the inhibitory 

input from spatial and orientational competition across position and orientation but within 

disparity; namely,  

(22) 
 

where the orientation kernel ,1)( =xK  if x  = 2, 0 otherwise, and notation x  indicates the 

absolute value of x. In particular, term )( krK −  in (22) is non-zero only if orientations r and k 

are perpendicular. Spatial competition term ijrdY  in (22) is defined by:  

(23) 
 

The spatial and orientational competition enables cells of perpendicular orientation to inhibit 

each other across positions to achieve T-junction sensitivity without using T-junction 

operators (Grossberg, 1994; Kelly and Grossberg, 2000).  

The activity of the inhibitory interneurons are defined by:  

 
  (24) 
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where c
ijkdus  represent the activity of the inhibitory interneuron number u associated with the 

excitatory cell at position (i,j), orientation k and disparity d. Term Iδ  in (24) determines the rate 

at which the activity changes. Term Ec
ijkduH  in (24) is as defined in (17). −cc

krB  is the inhibitory 

weight between inhibitory interneurons of colinear bipole cells and −nc
ktvB  is the inhibitory weight 

between inhibitory interneurons of non-colinear and colinear bipole cells. This recurrent 

inhibition among the interneurons helps to normalize the total inhibition received by the 

excitatory cell to help implement the bipole property. The values for the weights are +cc
krB = 0.33, 

if rk = ; 0.01, otherwise; +nc
ktvB = 0.33, if the orientation of the arm v of the angle t is k, 0.01; 

otherwise; −ccB = 0.33, and −ncB = 0.33. The parameter values are cα =0.6, 1γ =0.6, 2γ =1.67, 

3γ =0.15, 4γ =5, gβ =0.3, cζ =0.02, pσ =3, qσ =0.3, cβ =0.3, nβ =0.3, and Iδ =3.  

 
B.2 V1 angle cell activation equations. The activity, ijldn , of V1 layer 2/3A angle cell at 

position (i,j), angle type l, and disparity d, is defined by:  

 

ijldnijld nn
dt
d α−=  

 
(25) 

 
 
 
Eight different angle cells (l=1, …8) corresponding to the eight corners of the cube (Figure 9) are 

used in the simulation. Other type of angles were not included to simplify the simulations. Since 

each angle cell gets activated most for a particular angle, including other types of angle cells will 

not change the result of the simulation. Parameter nα  in (25) is the decay rate. Term En
ijldvH in (25) 

define the input received from the long-range connections for branch v of the angle cell, and is 

defined by:  

 
(26) 
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where term n
pqrijlvW  is the connection weight from colinear bipole cell at position (p,q) and 

orientation r, to an angle cell of angle type l at position (i,j) for branch v of the angle cell. The 

connection weights are similar to the ones defined for colinear bipole cells in equations (18) and 

(19). In particular, the connection weights for branch 1 of the angle cell of angle type 1=l  

(angle A in Figure 9), from horizontally oriented colinear bipole cells ( )3( =r ), are defined as 

follows,  

 
(27) 

 
 
 

The connection weights for the other branches and other angle cells are obtained by appropriate 

rotation, and are shown graphically in Figure 25c. Input ∑= r ijrd
N
ijd II  in (25) sums the bottom-

up input ijrdI  across orientation r at position (i,j) and disparity d. The angle cells receive the 

same bottom-up input as that of the colinear bipole cells, summed across orientations. The 

bottom-up input to V1 non-colinear bipole cells is added to the input from the horizontal long-

range connections. As a result, horizontal interactions can modulate cell response.  

Input In
ijldH  in (25) is the inhibitory input from the interneurons, and is defined by: 

   (28) 

There are three inhibitory interneurons associated with each excitatory angle cell in layer 2/3A of 

V1. Variable n
ijtdvs in (28) is the activity of the inhibitory interneuron number v associated with a 

non-colinear (angle) cell at position (i,j), angle type t, and disparity d. Variable c
ijrdvs in (28) 

represent the activity of the inhibitory interneuron number v associated with the excitatory layer 

2/3A colinear bipole cell at the same position and orientation r. Term +nn
ltvB  is the inhibitory 

weight from the interneuron number v associated with an angle cell of angle type t to an 

excitatory angle cell of angle type l, and +cn
ltvB  is the inhibitory weight from the interneuron 

number v associated with a colinear bipole cell of orientation r to an excitatory angle cell of 

angle type l. The inhibition from the inhibitory interneurons helps to maintain the balance 

between excitation and inhibition to enforce the bipole property.  
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Term +− ][3 nijldn βγ  in (25) is the self-excitatory feedback and term +− ][3 aijlda βγ  in 

(25) is the feedback input from V2 angle cells. Angle cells in layer 2/3A of V1 also receive 

inhibitory input from other angle cells and colinear bipole cells, at the same position and 

disparity, but across orientations and angles, depicted by the term, P
ijldN in (25), which is defined 

by:  

(29) 
 
 

In (29), variable ijtdn  is the activity of the V1 angle cell at position (i,j), angle type t and disparity 

d, and ijrdc  is the activity of the V1 colinear bipole cell at the same position and disparity, but 

orientation r. The inhibition helps to disambiguate ambiguous activation of colinear bipole cells 

and angle cells such that angle cells are activated at corners and colinear bipole cells are 

activated along straight edges.  

The activity of the inhibitory interneurons is defined by: 

 
(30) 

 
where Iδ  is the rate at which the activity changes, and En

ijlduH  is defined in (26). Term −nnB  is the 

inhibitory weight between inhibitory interneurons of angle cells. −cnB  is the inhibitory weight 

from inhibitory interneurons of colinear bipole cells to angle cells. This inhibition normalizes the 

total inhibition and helps to implement the bipole property. The values for the weights are +nn
ltvB = 

0.33, if angle l and t share the same branch of that of the inhibitory interneuron v, 0.01, 

otherwise; +cn
lrvB = 0.33, if the orientation of the arm v of the angle l is r, 0.01, otherwise; −nnB = 

0.33, and −cnB = 0.33. The parameter values are nα =0.6, 1γ =0.6, 2γ =1.67, 3γ =0.15, 4γ =5, 

aβ =0.3, cζ =0.02, pσ =4, qσ =0.3, nβ =0.3, cβ =0.3, and Iδ =3.  

 
B.3 V2 angle cells  
 
B.3.1 Activation equations. Layer 2/3A of V2 in the model contains angle cells and disparity-

gradient cells. As with V1 layer 2/3A, V2 layer 2/3A contains eight different angle cells 
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corresponding to the eight corners of the cube. The activity, ijlda , of V2 layer 2/3A angle cell at 

position (i,j), angle type l, and disparity d, is defined by:  

 

 
(31) 

 
 

where Eδ  is the rate at which the activity of V2 angle cell changes. Term aα in (31) is the decay 

rate and aE
ijldh  in (31) indicates the level of excitatory habituative transmitter (see equation (38)) 

associated with this angle cell. Habituative transmitters which were useful for the self-

organization of angle and colinear cells in the developmental simulations enable the network to 

switch between alternate interpretations of the Necker cube. Term Ea
ijldvH  in (31) represents long-

range connections in layer 2/3A of V2 from disparity-gradient cells for each branch v of the 

angle cell. It is defined by:  

 
(32) 

 
where pqrdog  in (32) represents the activity of disparity-gradient cells at position (p,q), 

orientation r, disparity d and disparity-gradient o, and a
pqrijlvW is the connection weight from the 

disparity-gradient cell at position (p,q) and orientation r, to an angle cell of angle type l, at 

position (i,j), for branch v of the angle cell. The connection weights are the same as described for 

V1 angle cells but slightly longer. In particular, the connection weights for an angle cell branch 

1, angle type 1=l , from horizontally oriented disparity-gradient cells ( 3=r ), are defined as 

follows:  

 
(33) 

 
 
 
The connection weights for the other branches are obtained by appropriate rotation and are 

shown graphically in Figure 25d. Term +−= ][ nijldijld nI β  in (31) is the bottom-up input from 

V1 angle cells at the same position (i,j), angle type l, and disparity d. As for the V1 layer 2/3A 
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neurons, the bottom-up input is added to the input from long-range connections. Term Ia
ijldH in 

(31) is the inhibitory input from the interneurons and is defined by:  

(34) 
 
 
As described for V1 angle cells, each V2 angle cell is associated with three inhibitory 

interneurons. Variable a
ijtdvs  in (34) is the activity of the inhibitory interneuron number v at 

position (i,j) angle type t, and disparity d, and variable g
ijrdovs  in (34) is the activity of the 

inhibitory interneuron number v associated with the disparity-gradient cell at the same position 

and disparity, but disparity-gradient o and orientation r. Term +aa
ltvB is the inhibitory weight from 

the interneuron number v associated with an excitatory V2 angle cell of angle type t to an 

excitatory angle cell of angle type l, and +ga
lrvB is the inhibitory weight from the interneuron 

number v associated with a disparity-gradient cell of orientation r to an excitatory angle cell of 

angle type l. The inhibition from the inhibitory interneurons helps to maintain the balance 

between excitation and inhibition to enforce the bipole property.  

Angle cells in layer 2/3A of V2 also receive inhibitory input from other angle cells and 

disparity-gradient cells at the same position, but across disparities and angles, defined by term 
P
ijldA  in (31):  

(35) 

where variable ijtea  is the activity of a V2 angle cell at position (i,j), angle type t and disparity e, 

and variable ijreog  is the activity of a disparity-gradient cell at the same position and disparity, 

but orientation r, and disparity-gradient o. Term aI
ijteh  in (35) represents the inhibitory habituative 

transmitter associated with the angle cell at position (i,j), angle type t and disparity e; see 

equation (39). Similarly, term in (35) represents the inhibitory habituative transmitter associated 

with a disparity-gradient cell at position (i,j), orientation r, disparity e, and disparity-gradient o; 

see equation (40). Both excitatory and inhibitory habituative transmitters were used in the 

Necker cube simulations. The inhibitory habituation helps the network to switch to an alternate 

interpretation before the activity of the neurons representing the present interpretation goes 

below the threshold for inhibition. The activity of the inhibitory interneurons is defined by:  
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(36) 

 
 

Term Iδ  is the rate at which activity changes, and Ea
ijlduH  is defined in (32). Term −aaB  is the 

inhibitory weight between inhibitory interneurons of angle cells and −gaB  is the inhibitory 

weight between inhibitory interneurons of angle and disparity-gradient cells. The recurrent 

inhibition among the interneurons normalizes the total inhibition and helps to implement the 

bipole property. The values for the weights are +aa
ltvB = 0.4, if angle l and t share the same branch 

of that of the inhibitory interneuron v; 0.01, otherwise; +ga
lrvB = 0.4, if the orientation of the arm v 

of the angle l is r; 0.01, otherwise; −aaB = 0.4, and −gaB = 0.4. The parameter values are Eδ = 0.5, 

aα =0.8, 1γ =1.2, 2γ =0.7, 3γ =2.0, nβ =0.2, gζ =0.1, pσ =15, qσ =0.1, aβ =0.25, gβ =0.1, and 

Iδ =3.  

 
B.3.2 Habituation of excitatory input.  In equation (31), the total input, 

 

(37)  
 

to each layer 2/3A angle cell is multiplicatively gated by habituative transmitter, aE
ijldh , that obeys 

the following equation:  

 
(38) 

 
 
The interpretation of (38) is the same as that of (7). The parameter values are hA = 0.0065, hB = 

0.0585, θ =1000, and ε =0.3697.  

 
B.3.3 Habituation of inhibitory input from V2 angle cells.  The inhibitory input, 

∑ ≠≠
+−

delt aijte
aI
ijte ah

,
][ β , from other V2 angle cells in (35) is gated by an inhibitory habituative 

transmitter, aI
ijldh , whose dynamics are defined by:  

 
(39) 
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The habituative transmitter dynamics are the same as described before, except that the 

habituation occurs at a rate proportional to the total signal +− ][ aijlda β  that the transmitter gates. 

The parameter values are hA = 0.005, hA = 0.03, θ =1000, and aβ =0.25.  

 
B.3.4 Habituation of inhibitory input from V2 disparity-gradient cells. The inhibitory input, 

∑ +−
reo gijreo

gI
ijreo gh ][ β , from V2 disparity-gradient cells in (35) is gated by inhibitory habituative 

transmitter, gI
ijkdmh , whose dynamics are defined as follows:  

 
(40) 

 
 
The habituative transmitter dynamics are the same as described before for V2 angle cells except 

that the habituation occurs at a rate proportional to the total signal +− ][ gijkdmg β  that the 

transmitter gates. The parameter values are hA = 0.005, hB = 0.045, and θ =1000.  

 
B.4 V2 disparity-gradient cells  
 
B.4.1 Activation Equations. As described in Section 4.2, three different types of disparity-

gradient cells corresponding to negative, positive and zero disparity gradients, were used in the 

simulation. The activity, ijkdmg , of a V2 layer 2/3A disparity-gradient cell at position (i,j), 

orientation k, disparity d, and disparity-gradient m, is defined by:  

 
 

(41) 
 
 
where Eδ  determines the overall rate at which the activity of the neuron changes. Term gα  is the 

decay rate, and gE
ijkdmh  is the excitatory habituative transmitter; see equation  (51). V2 disparity-

gradient cells receive long-range input from other disparity-gradient cells in nearby positions and 

disparities. Term Eg
ijkdmvH  in (41) is the input from the branch v of the disparity-gradient cells:  

 
(42) 
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The connection weight, g

pqeijkdmvW  in (42), is described in detail in Section B.4.4 below. In 

particular, g
pqeijkdmvW  is the connection weight from a disparity-gradient cell at position (p,q), 

orientation k, disparity e, and disparity-gradient m, for branch v of a disparity-gradient cell at 

position (i,j), orientation k, disparity d, and disparity-gradient m. Term g
ijkdmI in (41) is the input 

from V1 colinear bipole cells and V2 angle cells:  

 
(43) 

 
where +− ][ cijkdc β  is the bottom-up input from V1 bipole colinear cells and  

∑ +−
pqt apqtd

ga
pqtijkm aW ][3 ζγ  is the input from V2 angle cells. The V2 angle cells selectively 

activate the disparity-gradient cells, as described in Section 3. In particular, ga
pqtijkmW  defines the 

weight from an angle cell at position (p,q) and angle type t, to a disparity-gradient cell at position 

(i,j), orientation k, and disparity-gradient m. The connection weight from an angle cell of angle 

type 1=t  to a horizontally oriented ( 3=k ), zero disparity-gradient cell ( 1=m ) is defined by:  

 
(44) 

 
 
The connection weights for the other orientations are obtained by appropriate rotation and are 

shown in Figure 25e. Terms 2γ  and 3γ  in (43) control how much of the binocular input from V1 

colinear bipole cells and monocular input from V2 angle cells can affect the disparity-gradient 

cells; see Section 5.4. As for the V2 angle cells, the bottom-up input is added to the input from 

the long-range connections.  

Term Ig
ijkdmH  in (41) is the inhibitory input from the interneurons:  

 
(45) 

 
 

As with the V1 colinear bipole cells in (16), each V2 disparity-gradient cell is associated with 

two inhibitory interneurons. Variable g
ijrdovs  is the activity of the inhibitory interneuron number v 

associated with the disparity-gradient cell at position (i,j), orientation r, disparity d, and 

disparity-gradient o. Variable +gg
krmoB  in (45) is the connection weight from inhibitory interneurons 
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of a disparity-gradient cell of disparity-gradient o and orientation r to a disparity-gradient cell of 

disparity-gradient m and orientation k at the same position and disparity. Similarly, variable +ag
ktvB  

in (45) is the weight from inhibitory interneuron number v of an angle cell type t to a disparity-

gradient cell of orientation k at the same position and disparity. The inhibition from the 

interneurons balances the excitation from long-range connections to implement the bipole 

property.  

V2 disparity-gradient cells also receive inhibitory input from the same position due to 

other disparity-gradient cells of different disparity gradient and disparity, and from V2 angle 

cells. Term P
ijkdmG in (41) represents this inhibitory input:  

 
(46) 

 
 
This inhibition helps to disambiguate ambiguous activation of the disparity-gradient cells and V2 

angle cells in layer 2/3A of V2. Term aI
ijteh  is the inhibitory habituation at V2 angle cells; see 

equation (39). Term gI
ijkeoh  is the inhibitory habituation at V2 disparity-gradient cells; see equation 

(40). Term S
ijkdmG  in (41) is the inhibitory input from spatial and orientational competition across 

position and orientation, but within disparity:  

(47) 
 

 
where 1)( =xK = 1, if x = 2; 0 otherwise. Term ijrdmY  in (47) is defined by:  
 

(48) 
 

 
which is analogous to (23). As in (22), the spatial and orientational competition enables cells of 

perpendicular orientation to inhibit each other across positions to achieve T-junction sensitivity 

without T-junction operators (Grossberg, 1994).  

The activity of the inhibitory interneurons are defined by:  
 

(49) 
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where Iδ  is the rate at which the activity of the inhibitory interneuron changes, and g
ijkdmus  

represent the activities of inhibitory interneuron number u associated with the disparity-gradient 

cell at position (i,j), orientation k, disparity d, and disparity-gradient m. Term Eg
ijkdmuH is defined in 

(42); −ggB  is the inhibitory weight between inhibitory interneurons of disparity-gradient cells; 

and −agB  is the inhibitory weight between inhibitory interneurons of angle cells and disparity-

gradient cells. This inhibition among the interneurons helps to normalize the total inhibition 

received by the excitatory cell so as to implement the bipole property. The values for the weights 

are +gg
krmoB = 1.2, if rk = and om = ; 0.01, otherwise; +ag

ktvB = 0.4, if the orientation of the arm v of 

the angle t is k; 0.01, otherwise; −ggB = 1.2 and −agB = 0.4. The parameter values are Eδ =0.5, 

gα =0.8, 1γ =1.7, 2γ =3, 3γ =1, 4γ =2, cβ =0.2, aζ =0.1, gζ =0.05, gβ =0.1, aβ =0.25, and 

gθ =0.15, and Iδ =3.  

 

B.4.2 Habituation of excitatory input. In equation (41), the total input,  

(50) 
 
 

to each layer 2/3A disparity-gradient cell is multiplicatively gated by habituative transmitter, 
gE
ijkdmh , that obeys the following equation:  

(51) 
 
 
 
as in (7). The parameter values are hA = 0.005, hB = 0.030, θ =1000, and ε =0.64.  
 
B.4.3  Habituation of inhibitory input. The inhibitory inputs in P

ijkdmG  of equation (46) 

habituate via the same transmitter equations aI
ijldh and gI

ijkdmh  as in (39) and (40) because the level 

of habituation is determined only by the source angle and disparity-gradient cells, respectively. 

 

B.4.4 Disparity-gradient cell kernels.  These kernels generalize 2D bipole kernels to enable 3D 

groupings of slanted and curved contours.  The connection weight, g
mvkijdW 100  in (42), from a 

disparity-gradient cell at position (i,j), disparity d, orientation k, and disparity-gradient m for the 
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left and right branches ( 1=v  and 2=v ) of a disparity-gradient cell at position (0,0), zero 

disparity, orientation k and disparity-gradient m, is defined as follows:  

(52) 
and  

(53) 
 

The connection weight for other orientations and disparity-gradients are obtained by appropriate 

rotation. Term ijkdmH  is, in turn, defined by:  

(54) 
 
and consists of six terms that determine how the weight values vary as a function of the 

differences in distance, orientation, disparity, and disparity-gradient between the source and the 

target cells. This kernel generalize the bipole kernel used in Gove et al. (1995) to the case of 3D 

grouping of both slanted and curved contours. The individual terms in (54) have a multiplicative 

effect on the final value of the weight. Because each term is an exponential, all the terms in (54) 

can be combined within a single exponential term 

  
 (55) 

 
The first term, ije Γ−  in (54), describes how the connection weight decreases as a Gaussian 

function of the distance between the two cells. Thus:  

 
(56) 

 
The second term, ke Γ− , decreases as a Gaussian function of the orientation of the position (i,j) of 

the target cell with respect to the preferred horizontal grouping of the source cell at position 

(0,0). Thus:  

 
(57) 

 
where K is the orientation of position (i,j) with respect to (0,0), namely:  
 
 
 

(58) 
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The third term, kke Γ− , decreases as a Gaussian function of the difference between the preferred 

orientation k of the cell at position (i,j), with respect to K:  

 
(59) 

 
The two terms, kΓ and kkΓ , enable the network to complete boundaries smoothly in a way that 

satisfies the relatability conditions of Kellman and Shipley (1991). The remaining three terms 

help to realize 3D grouping: The fourth term, de Γ− , decreases as a Gaussian function of the 

difference in disparity between the source and the target cell:  

 

 (60) 
 

The fifth term, me Γ− , decreases as a Gaussian function of the difference in disparity gradient of 

the source cell at position (0,0) and disparity 0 with respect to the position (i,j) and disparity d of 

the target cell. Thus:  

 
 (61) 

 
 
where M is the disparity gradient of (i,d) with respect to (0,0) in the space-disparity plane:  
 
 
 

(62) 
 
 
 

Since the kernel is defined for disparity-gradient cells of horizontal orientation, index j is not 

used in the above equation, as 0=j  for horizontal orientation. The sixth term, mme Γ− , decreases 

as a Gaussian function of the difference between the preferred disparity gradient m of the cell at 

position (i,j), with respect to M:  

 
(63) 
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The two terms mΓ  and mmΓ  are similar to terms kΓ  and kkΓ  except that the former two operate in 

the space-disparity domain while the latter two operate in 2D space. The parameter values are 

ijσ =10, kσ =0.5, kkσ =0.3, dσ =4, mσ =0.1, mmσ and =0.1.  

 
B.5 Surface filling-in equations.  The boundaries represented by disparity-gradient cells act as a 

barrier to the 3D filling-in process in V4. The filling-in equations generalize those used in 

Grossberg and Todorović (1988) by developing the proposal in Grossberg (1994) that the 

boundary signal at a particular depth acts as a barrier to filling-in signal at that depth, as well as a 

weak barrier at other depths; see Figure 5.  

The model LGN (see Figure 2a) discounts the illuminant and computes Weber-law 

modulated and normalized estimates of image contrasts above an adaptation level; see Grossberg 

(1980) and Mingolla et al. (1999). To accomplish this, the LGN ON and OFF activities obey on-

center off-surround, and off-center on-surround, shunting networks, respectively:  

 

(64) 
 
and 
 

 (65)  
 
 
where xα is the decay constant and U and –L are the upper and lower activity bounds, 

respectively. The on-center, ijP , and the off-surround, ijQ , are defined by Gaussian kernels:  

(66) 
 
and  
 

(67) 
 
where term ijI  is the input, and  

(68) 
 
 

and  
(69) 
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The width of the center and surround are described by the parameters cσ  and sσ . At 

equilibrium, (64) and (65) become:  

 
(70) 

 
 
and  

 
(71) 

 
 
 

The difference of these ON and OFF activities is computed to generate opponent output signals:  
 

(72) 
 
and  

 (73) 
 

where +
ijX  is the ON LGN output and −

ijX  is the OFF LGN output. The activity of the filling-in 

cells is defined by:  

(74) 
  
and  

(75) 
 
 

where +
ijdF  is the activity of the cell the ON FIDO (see Section 4.2.6) at position (i,j) and 

disparity d, and −
ijdF is the activity of the corresponding cell in the OFF FIDO. Term fα is the 

decay rate, and the boundary-gated diffusion coefficient ijpqdψ is defined by:  

 
(76) 

 
 
where  
 

(77) 
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is the boundary signal at position (i,j) and disparity d that creates resistive barriers to the 

diffusion process at that depth when it is activated by disparity-gradient cell signals 
+− ][ fijrdog θ . Term N in (74) and (75) consists of four nearest neighbors to a cell. The boundary 

signals in (77) from other depths, ijLZ and ijMZ , act as a weak barriers to the diffusion. 

Parameters 1θ  and 2θ  control how much of the boundary signal at a particular depth can 

influence the filling-in signals at different depths. Since only three depths are used in the 

simulations (D1, D2, and D3; see Section 4.2), subscript d refers to the boundary signal at the 

same depth, L refers to the boundary signal at the nearest depth, and M refers to the boundary 

signal at the second nearest depth. The terms δ  and ε  control how much a boundary signal can 

block the diffusion process. The parameter values are 1.0=fα , 100=δ , 1000=ε , 1.01 =θ , 

05.02 =θ , 1.0=fθ , 100=xα , 50=U , 50=L , 11 =A , 03361.2 =A , 5.0=cσ , and 5.1=sσ .  
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