
A neural model suggests how horizontal and interlaminar con-
nections in visual cortical areas V1 and V2 develop within a laminar
cortical architecture and give rise to adult visual percepts. The model
suggests how mechanisms that control cortical development in the
infant lead to properties of adult cortical anatomy, neurophysiology
and visual perception. The model clarifies how excitatory and
inhibitory connections can develop stably by maintaining a balance
between excitation and inhibition. The growth of long-range
excitatory horizontal connections between layer 2/3 pyramidal cells
is balanced against that of short-range disynaptic interneuronal
connections. The growth of excitatory on-center connections from
layer 6-to-4 is balanced against that of inhibitory interneuronal
off-surround connections. These balanced connections interact via
intracortical and intercortical feedback to realize properties of
perceptual grouping, attention and perceptual learning in the adult,
and help to explain the observed variability in the number and
temporal distribution of spikes emitted by cortical neurons. The
model replicates cortical point spread functions and psychophysical
data on the strength of real and illusory contours. The on-center,
off-surround layer 6-to-4 circuit enables top-down attentional signals
from area V2 to modulate, or attentionally prime, layer 4 cells in area
V1 without fully activating them. This modulatory circuit also enables
adult perceptual learning within cortical area V1 and V2 to proceed in
a stable way.

Introduction
A central question in neuroscience concerns how the visual

cortex autonomously develops, stabilizes its own development

and then gives rise to visual perception in the adult. A neural

model is presented of how these processes work and are related.

The model suggests how the mechanisms that enable develop-

ment to stabilize in the infant lead to adult properties of

perceptual grouping, attention and learning. It hereby opens a

path towards unifying three fields: infant cortical development,

adult cortical neurophysiology and anatomy, and adult visual

psychophysics.

A related question concerns why visual cortex, indeed all

neocortex, is organized into layers. What functional properties

are achieved by ‘laminar computing’? The model clarifies how

such laminar computing abets both infant development and

adult perception by enabling cortex to select and complete

correct groupings of visual signals, while actively suppressing

incorrect groupings, without losing sensitivity to the relative

contrasts and spatial positions of these signals.

The model proposes developmental rules whereby cortical

circuits grow whose excitatory and inhibitory signals are

balanced. Several model studies have shown how balanced

excitation and inhibition can produce the highly variable

interspike intervals that are found in cortical data (Shadlen

and Newsome, 1998; van Vreeswijk and Sompolinsky, 1998).

The present study suggests that such variability may ref lect

mechanisms that are needed to ensure stable development and

learning by cortical circuits.

Cells in cortical area V1 are arranged into columns whose

local circuits link together cortical layers. Cells in each column

have similar orientational tuning and sensitivity to eye of origin,

or ocular dominance. The columns are arranged into two-

dimensional maps of orientation and ocular dominance (Hubel

and Wiesel, 1962, 1963, 1968). Cortical simple cells are sensitive

to the contrast polarity of oriented image contrasts, whereas

complex cells pool signals from like-oriented opposite contrast

polarities. The classical, oriented receptive fields of these cells

are derived from local interactions between cells in nearby

cortical columns. A number of models have studied how simple

cells and  complex cells develop  their orientationally  tuned

receptive fields within maps of orientation and ocular dom-

inance (von der Malsburg, 1973; Grossberg, 1976a; Willshaw

and von der Malsburg, 1976; Swindale, 1980, 1982, 1992;

Linsker, 1986a, 1986b; Rojer and Schwartz, 1989, 1990; Durbin

and Mitchison, 1990; Obermayer et al., 1990, 1992; Miller, 1992,

1994; Grossberg and Olson, 1994; Sirosh and Miikkulainen,

1994; Olson and Grossberg, 1998) [these models have been

reviewed by Olson and Grossberg (Olson and Grossberg, 1998)].

None of the models has investigated the functional utility of

organizing visual cortex into layers. Nor have they modeled

development of the longer-range horizontal and interlaminar

interactions that link cells in different cortical columns, or how

such development may be stabilized by self-balancing excitatory

and inhibitory signals. These interactions are often cited as the

basis of ‘non-classical’ receptive fields that are sensitive to the

context in which individual features are found (von der Heydt et

al., 1984; Peterhans and von der Heydt, 1989; Born and Tootell,

1991; Knierim and van Essen, 1992; Sillito et al., 1995). The

present article assumes that receptive fields of individual simple

and complex cells have already substantially developed in their

respective layers and columns, and models how longer-range

horizontal and interlaminar connections develop between

columns. This type of study extends the functional under-

standing of cortical organization, because the perceptual units

that visual cortex processes are spatially distributed patterns of

luminance or color that are processed in parallel by multiple,

interacting columns. The model was brief ly reported previously

(Grossberg and Williamson, 1997; Williamson and Grossberg,

1998).

Methods

Linking Cortical Development to Adult Perception

Perceptual grouping is the process whereby the brain organizes image

contrasts into emergent boundary structures that segregate objects and

their backgrounds in response to texture, shading and depth cues in

scenes and images (Julesz, 1971; Ramachandran and Nelson, 1976; Beck

et al., 1983; Polat and Sagi, 1994). Perceptual grouping is a basic step in
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solving the ‘binding problem’, whereby spatially distributed features are

bound into representations of objects and events in the world. Illusory

contours are a particularly vivid form of perceptual grouping, since they

illustrate how perceptual groupings can form over image locations that

contain no contrastive scenic elements.

The model suggests that many aspects of cortical design have evolved

to carry out perceptual grouping. In particular, the model proposes how

the laminar circuits of visual cortex enable it to develop connections

capable of actively selecting and completing the perceptual grouping

which best represents a visual scene, and suppressing the weaker

groupings which represent the scene less well. The winning grouping

that is chosen in this way can also represent the relative contrasts and

spatial positions of objects in the scene.

Such a linkage between brain and behavior typically requires a

demonstration of how interactions among many model cells give rise

to emergent properties that match behavioral data. Several types of

emergent properties are simulated by the model. The model assumes that

the classical receptive fields of simple and complex cells have already

developed. This hypothesis is consistent with data showing that the

oriented pattern of lateral geniculate nucleus (LGN)-to-V1 connections

develops prior to eye opening and structured visual input (Chapman et

al., 1991; Antonini and Stryker, 1993a; Chapman and Stryker, 1993). The

model focuses upon how the longer-range non-classical connections

between cortical columns develop both prior to eye opening and after

structured visual inputs occur. We propose rules whereby such cortical

development is controlled. Several such rules work together to control

stable growth of model connections by ensuring that balanced excitatory

and inhibitory connections develop. The emergent properties of this

developmental process are the adult anatomical and neurophysiological

circuits into which the model develops. After model development

stabilizes, visual inputs activate cells within the developed anatomy,

thereby leading to a second type of emergent properties, namely the cell

activity patterns that match data about adult visual perception.

Classical Receptive Fields

The model assumes that three types of circuits with (primarily) classical

receptive field properties develop, at least in part, before the circuits that

subserve non-classical receptive fields. We call the circuits that have

already developed ‘pre-developed’ circuits. The circuits that develop

through model dynamics are called ‘self-organized’ circuits. The model

analyzes one important combination of intracortical and intercortical

pathways. It does not attempt to model all cortical connections, or the

variations that exist across species. It also models the pre-developed

circuits in the simplest possible way, since they are not the focus of the

study, and the computational demands of the simulations are great even

with these simplifications. Preliminary studies indicate, however, that the

computational principles modeled herein can be elaborated and adapted

to handle these variations.

Model analyses will be restricted to cortical area V1, and more

particularly to the interblob organization of V1 that we propose interacts

with area V2 to carry out perceptual grouping of boundary contours.

Converging evidence suggests that area V2 replicates the structure of

Figure 1. The adult network of retinal, V1 and lateral geniculate nucleus (LGN) neurons
to which the developmental model converges. (a) Feedforward circuit from retina to LGN
to cortical layer 4. Retina: retinal ON cells have on-center off-surround organization
(white disk surrounded by black annulus). Retinal OFF cells have an off-center
on-surround organization (black disk surrounded by white annulus). LGN: the LGN ON
and OFF cells receive feedforward ON and OFF cell inputs from the retina. Layer 4: LGN
ON and OFF cell excitatory inputs to layer 4 establish oriented simple cell receptive
fields. Like-oriented layer 4 simple cells with opposite contrast polarities compete before
generating half-wave rectified outputs. Pooled simple cell outputs enable complex cells
to respond to both polarities. They hereby full-wave rectify the image. See text for
details. (b) Cortical feedback loop between layers 4, 2/3 and 6: LGN activates layer 6 as
well as layer 4. Layer 6 cells excite layer 4 cells with a narrow on-center and inhibit them
using layer 4 inhibitory interneurons that span a broader off-surround. Layer 4 cells excite
layer 2/3 cells, which send excitatory feedback signals back to layer 6 cells via layer 5
(not shown). Layer 2/3 can hereby activate the feedforward layer 6-to-4 on-center
off-surround network. (c) The horizontal interactions in layer 2/3 that initiate perceptual
grouping: layer 2/3 complex pyramidal cells monosynaptically excite one another via
horizontal connections, primarily on their apical dendrites. They also inhibit one another
via disynaptic inhibition that is mediated by model smooth stellate cells. (d) Top-down
corticogeniculate feedback from layer 6: LGN ON and OFF cells receive topographic
excitatory feedback from layer 6, and more broadly distributed inhibitory feedback via
LGN inhibitory interneurons that are excited by layer 6 signals. The feedback signals pool
outputs over all cortical orientations and are delivered equally to ON and OFF cells.

Table 1
Diagram of model connections

Equations Source Target Sign Kernel Learning
equation

(1)–(3) Input ⇒ R E or I 1 –
Input ⇒ R E or I G(σ1) –

(4)–(7) R ⇒ L E 1 –
6E ⇒ L E 1 –
6E ⇒ L I G(σ1) –

(8)–(13), (15)–(17) L ⇒ S E and I G(σ2) –
(14)–(15) S ⇒ C E and I 1 –
(18)–(19) C ⇒ 4E E 1 –

6E ⇒ 4E E 1 –
4I ⇒ 4E I W+ (28)

(20)–(22) C ⇒ 6E E 1 –
2/3E ⇒ 6E E 1 –

(23) 6E ⇒ 4I E 1 –
4I ⇒ 4I I W– (27)

(24)–(25) 4E ⇒ 2/3E E 1 –
2/3E ⇒ 2/3E E H (U V) (31), (35)
2/3I ⇒ 2/3E I T+ (38)

(26) 2/3E ⇒ 2/3I E H(UV) (31), (35)
2/3I ⇒ 2/3I I T– (37)

The first columns lists equations describing the model dynamics for each type of target cell. The
second column lists the relevant source and target cells, with the sign of their interaction listed in
the third column. Key: R, retina; S, simple cells; C, complex cells; 6, layer 6; 4, layer 4; 2/3, layer
2/3; E, excitatory; I, inhibitory. The fourth column lists the interaction kernels. Here, ‘1’ means a
point-to-point connection, i.e. to a cell in a different layer at the same position and (if applicable)
with the same orientation preference. G(σ) refers to a spatial Gaussian kernel with a standard
deviation of σ. The remaining kernels, W+, W–, U, V, T+ and T–, are learned. These kernels are
completely general, having both iso- and cross-orientational connections within their spatial
extent. The final column lists the relevant learning equations next to these kernels.
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area V1, but at a larger spatial scale (van Essen and Maunsell, 1983; von

der Heydt et al., 1984; Felleman and van Essen, 1991; Grosof et al., 1993;

Kisvarday et al., 1995). We therefore assume that similar develop-

mental processes may be operative in both V1 and V2. The model’s

predeveloped and self-organized properties are described below, first

intuitively and then mathematically. Figure 1 and Table 1 schematize

the model’s connections. The proposed role  of  the blob stream in

forming surface representations, and its predicted interactions with the

boundaries formed in the interblob stream, are discussed elsewhere

(Gove et al., 1995; Grossberg, 1994, 1997; Grossberg and McLoughlin,

1997; Grossberg and Pessoa, 1998).

Direct LGN Inputs to Layer 4

In both the brain and the model, the retina activates the LGN, which, in

turn, inputs to cortical area V1. LGN inputs directly excite layer 4C in

both the cat and macaque, as well as layer 4A in the macaque (Hubel and

Wiesel, 1962; Chapman et al., 1991; Reid and Alonso, 1995). In the

model, a single, generic, layer 4 is used for simplicity; see the pathways

with open triangles in Figure 1a. These inputs play  a key role  in

establishing the orientational tuning of V1 simple cells.

Simple cells in the brain respond to a given orientation and contrast

polarity, i.e. they respond best to visual inputs that have a prescribed

orientation and whose luminance preference, across this oriented axis,

goes either from dark-to-light, or from dark-to-light, but not both. Simple

cells in the model are pre-developed and are represented by circular

symbols with half white and half black hemidisks in Figure 1a. Model

simple cell properties arise as follows from model LGN inputs and

intracortical interactions: LGN ON cells (cells that are turned on by input

onset; see symbols with white disks and black annuli in Fig. 1a) and LGN

OFF cells (cells that are turned off by input onset; see symbols with black

disks  and white annuli in Fig. 1a) both input to  layer 4. They are

organized into spatially offset arrays, with the ON cell inputs spatially

displaced with respect to the OFF cell inputs, as in Figure 1a. Due to this

input array, layer 4 simple cells can respond to an oriented input whose

luminant area excites the ON cells, and whose dark area excites the OFF

cells.

Selectivity of simple cell responses to oriented contrasts is improved

by including mutually inhibitory interactions between cells that are

sensitive to the same orientation but opposite contrast polarities (Palmer

and Davis, 1981; Pollen and Ronner, 1981; Ferster, 1988; Liu et al., 1992;

Gove et al., 1995); see the pathways with black triangles in Figure 1a.

Then, when model cells that code opposite contrast polarities are equally

activated by a uniform pattern of activation in the LGN, they shut each

other off by mutual inhibition. On the other hand, when there is an

oriented transition from ON to OFF activations in the LGN, the simple

cells that best match its position, orientation and polarity will be most

activated. Olson and Grossberg (Olson and Grossberg, 1998) have

modeled how mutually inhibitory simple cells develop which are

sensitive to the same orientation and opposite contrast polarities, at the

same time that a cortical map develops whose orientation and ocular

dominance columns exhibit the fractures, singularities and linear zones

reported by others (Blasdel, 1992a; 1992b; Obermayer and Blasdel, 1993).

Balanced LGN Inputs to Layer 4 via Layer 6

In both brain and model, LGN inputs also directly excite layer 6 (Ferster

and Lindström, 1985), which then indirectly inf luences layer 4 via an

on-center off-surround network of cells (Grieve and Sillito, 1991a,b, 1995;

Ahmed et al., 1994, 1997). In both brain and model, cells in the on-center

receive excitatory inputs from layer 6, whereas those in the spatially

broader off-surround, which spans more than a single hypercolumn

(Grieve and Sillito, 1995), receive inhibitory inputs from layer 6 via

inhibitory interneurons in layer 4. In Figure 1b, open triangles desig-

nate excitatory connections and black triangles designate inhibitory

connections. Such a combination of direct and indirect input pathways to

layer 4 is found in many neocortical areas (van Essen and Maunsell, 1983;

Felleman and van Essen, 1991). The model suggests that it helps to

preserve stable development and learning in all these areas, while also

allowing them to be activated by bottom-up inputs. In particular, the

model predicts that the excitation and inhibition within the on-center of

the 6-to-4 pathway are approximately balanced. The model also predicts

that, if the on-center inputs from layer 6 get too strong relative to the

off-surround inputs from  layer 6 to 4, then development does not

self-stabilize. Instead, the non-classical receptive fields of the model

proliferate uncontrollably. On the other hand, if the inhibition gets too

strong, then it can inhibit the inputs arriving at layer 4 too much, thereby

preventing the cortex from becoming activated at all.

Maintaining a balance between the excitation and inhibition within

the on-center from layer 6 to 4 has important implications for cortical

design. Direct activation of layer 6 is predicted to modulate, prime or

subliminally activate, cells in layer 4, but not to fire them vigorously. This

prediction is consistent with the finding that layer 4 EPSPs elicited by

layer 6 stimulation are much weaker than those caused by stimulation of

LGN axons or of neighboring layer 4 sites (Stratford et al., 1996), and also

with the fact that binocular layer 6 neurons synapse onto monocular layer

4 cells of both eye types without reducing these cells’ monocularity

(Callaway, 1998, p. 56). Other compatible data have been reported

(Hupé et al., 1997; Wittmer et al., 1997). We suggest that the on-center

excitation is inhibited down into being modulatory by the overlapping

and broader off-surround. Thus, although the center excitation is weak,

the suppressive effect of the off-surround inhibition can be strong. The

need to maintain the on-center excitatory–inhibitory balance also

predicts why direct inputs to layer 4 are needed, in addition to the

indirect on-center inputs via layer 6, in many cortical areas. The model

predicts that, by themselves, the indirect 6-to-4 inputs cannot activate

layer 4 cells without destabilizing cortical development and learning.

Hence the direct bottom-up inputs to layer 4 are predicted to be

necessary to initiate cortical firing.

Given that strong direct inputs from LGN to layer 4 do exist, the

combined effect of both the direct and indirect pathways from LGN to

layer 4 is to form an on-center off-surround network whose net on-center

excitatory input can fully activate layer 4 cells. When cells in such a

network obey the membrane equations of neurophysiology, they can

maintain their sensitivity to input intensities that may vary over a large

dynamic range (Grossberg, 1973, 1980b; Heeger, 1993; Douglas et al.,

1995). This is because the membrane equations contain ‘shunting’, or

automatic gain control terms, that respond to properly balanced

on-center and off-surround inputs by normalizing the activities of target

cells without destroying their sensitivity to the relative sizes of the inputs.

In the present instance, such a model network maintains the sensitivity of

cells in layer 4 to inputs from the prior processing level, whether it be

cells in V1 responding to LGN inputs, cells in V2 responding to inputs

from V1, or any other combination of inputs. The layer 6-to-4 network is

also used to preattentively select and attentively modulate the perceptual

groupings that form in layer 2/3 (Grossberg, 1999; Grossberg and

Raizada, 2000).

In summary, the model predicts that the mechanism whereby the

balance between excitation and inhibition is maintained in the layer

6-to-4 circuit is of the greatest importance for achieving stable cortical

development and later visual perception. This issue has hardly been

explored experimentally. This prediction implies that a key cortical

design problem is the following: as more and more cells in the

off-surround become activated by increasingly dense patterns of inputs,

what prevents the total inhibition that is converging on a layer 4 cell from

growing linearly? If there was just enough inhibition to balance the

excitation when just a few inputs were active, then why would not the

inhibition become much too strong when many inputs were active,

thereby shutting down the network? On the other hand, if the inhibition

is well  balanced when many  inputs are  active,  then why does not

runaway excitation occur when just a few inputs are active?

Development of Self-normalizing Inhibitory Interneurons in Layer 4

The model solves this problem by assuming that the inhibitory inter-

neurons in layer 4 inhibit one another, as well as target cells in layer 4

[see Ahmed et al. (Ahmed et al., 1994, 1997) for consistent data]. In

particular, the model suggests how layer 4 inhibitory interneurons

connect to layer 4 spiny stellate excitatory cells as well as to other nearby

layer 4 inhibitory interneurons during development. These connections

eventually span all the orientation columns within a hypercolumn, as well

as all the orientation columns of  neighboring  hypercolumns.  This

recurrent inhibition converts the network of inhibitory interneurons into
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a recurrent feedback network. Because the cells of this network obey

membrane equations, the inhibitory interneurons within such a popu-

lation of recurrent interactions tend to normalize their total activity

across the entire interneuron population (Grossberg, 1973, 1980b). The

total inhibition that converges on a target cell thus tends to be conserved

as the total number of inputs varies, thereby preventing the problems

stated above. If this property is experimentally confirmed, then it will be

an interesting example of how less order on one level of biological

organization generates more order on a higher level. In particular, the

crucial self-normalization property can be achieved simply by allowing

the inhibitory interneurons to randomly inhibit all cells within their

range, rather than restricting their inhibition to excitatory target cells. As

a result of this less ordered growth of inhibitory connections, the stability

of the total network is facilitated.

Maintaining the balance between excitation and inhibition within the

layer 6-to-4 on center does not imply that inhibition is weak. In fact, layer

4 cells that receive only off-surround inputs can be strongly inhibited. The

model suggests below how the on-center off-surround network from

layer 6-to-4 can use this property to selectively amplify the strongest

perceptual groupings in layer 2/3 while using the off-surround to actively

suppress LGN inputs to layer 4 that correspond to weaker groupings in

layer 2/3. The weaker groupings hereby collapse. This is proposed to

happen as follows.

Columnar Organization via Folded Feedback

Active model layer 4 cells are assumed to generate inputs to pyramidal

cells in layer 2/3 via pre-developed pathways. These layer 2/3 cells initiate

the formation of perceptual groupings via horizontal connections that

self-organize during model development. How these horizontal con-

nections develop in the model is described below. Before describing

this, we first note what happens when layer 2/3 cells are activated.

Throughout the developmental process, all cells that are activated in layer

2/3, whether by bottom-up or horizontal inputs, send excitatory

feedback signals to layer 6 via layer 5 (Gilbert and Wiesel, 1979; Ferster

and Lindström, 1985), as in Figure 1b. (The model does not attempt to

discuss any other functional role for layer 5, notably its role in generating

signals to motor control centers.) Layer 6, in turn, once again activates the

on-center off-surround network from layer 6-to-4. This process is called

folded feedback (Grossberg, 1999), because feedback signals from layer

2/3 get transmitted in a feedforward fashion back to layer 4. The feedback

is hereby ‘folded’ back into the feedforward f low of bottom-up

information within the laminar cortical circuits.

Folded feedback is predicted to be a mechanism that binds the cells

throughout layers 2/3, 4, 5 and 6 into functional columns (Mountcastle,

1957; Hubel and Wiesel, 1962, 1977). The on-center off-surround

network from layer 6-to-4 responds to its layer 2/3 inputs by helping to

control which combinations of cells remain simultaneously active during

development, and thus which cells will wire together, because ‘cells that

fire together wire together’.

In particular,  early during the development of model horizontal

connections in layer 2/3, the activation of layer 2/3 cells can cause

horizontal activations that are relatively unselective for colinear position

and orientation (Galuske and Singer, 1996; Ruthazer and Stryker, 1996).

Without further selection among the possible activations, cortical

interactions could remain both spatially and orientationally dispersed.

This is corrected in the model via the intracortical folded feedback loop.

In  particular, suppose that a combination of bottom-up inputs and

horizontal connections activates one subset of layer 2/3 cells a little more

than a nearby subset of cells. Then, other things being equal, the favored

layer 2/3 cells more vigorously activate their layer 2/3-to-5-to-6 pathway,

and then their on-center off-surround layer 6-to-4 circuit. As a result, the

cells whose activities form the strongest layer 2/3 grouping will suppress

the activities of other cells via the layer 6-to-4 off-surround. The winning

cells then get connected together via development, leading to a

progressive increase in the projection range and orientational selectivity

of these cells, as simulated in the Results section.

This refinement process exploits the fact that orientationally tuned

simple cells in the model and the brain can bias development to favor

long-range horizontal connections that are colinear with the preferred

orientations of spatially aligned simple cells (Fitzpatrick, 1996; Schmidt et

al., 1997a). It is shown below how such oriented and colinear horizontal

connections develop from an initial state in which no horizontal connec-

tions exist at all. It is also shown that, after development self-stabilizes, the

same properties play a key role in generating perceptual groupings which

exhibit properties of adult neurophysiological and psychophysical data.

Horizontal Connections and Perceptual Grouping

How these developing horizontal connections are prevented from

generating run-away excitation and uncontrollable growth is one of the

key properties of the model. A clue may be derived from properties of

adult horizontal connections. In areas V1 and V2 of the adult, layer 2/3

pyramidal cells excite each other using monosynaptic long-range

horizontal connections. They also inhibit each other using short-range

disynaptic inhibitory connections that are activated by the excitatory

horizontal connections (Hirsch and Gilbert, 1991; McGuire et al., 1991)

(see Fig. 1c). The excitatory connections, which span several hyper-

columns (Gilbert and Wiesel, 1979, 1989), are hereby balanced by inhib-

itory connections, which span a single hypercolumn (Lund and Yoshioka,

1991). Thus, the excitatory connections within layer 2/3 have a broader

spatial extent than the inhibitory off-surround connections from layer

6-to-4, which in turn have a broader spatial extent than the inhibitory

interneurons in layer 2/3. These relative relationships are also simulated

in the model. A range of numerical values could be chosen which

obey these qualitative constraints without disrupting the model’s key

properties. In fact, in simulations of how the model performs perceptual

grouping and attention, the excitatory connections within model layer

2/3 in cortical area V2 are chosen to be longer than those in cortical area

V1, as is also true in anatomical data (Grossberg and Raizada, 2000).

We show below how both types of connections can develop to

generate perceptual groupings ‘inwardly’ between two or more image

contrasts that are aligned colinearly across space (von der Heydt et al.,

1984; Redies et al., 1986; Peterhans and von der Heydt, 1989; Grosof et

al., 1993), but not ‘outwardly’ from a single image contrast (Hirsch and

Gilbert, 1991; Knierim and van Essen, 1992; Cannon and Fullenkamp,

1993; Somers et al., 1995; Stemmler et al., 1995). This is called the bipole

property (Grossberg and Mingolla, 1985). Illusory contours provide an

excellent example of the bipole property: if a single image contrast could

generate outward groupings, then our percepts would become crowded

with webs of illusory contours spreading out from every feature in a

scene. On the other hand, percepts of illusory contours between two or

more colinear inducers are commonplace (Kanizsa, 1979, 1985).

We now describe how a balance between layer 2/3 excitation and

inhibition develops that helps to stabilize cortical development and leads

to the bipole property in the adult. We call layer 2/3 pyramidal cells that

receive bottom-up input from layer 4 ‘supported’ cells, and those that do

not ‘unsupported’ cells. In the model, if an unsupported cell, or cell

population, receives a sufficient amount of horizontal excitation, then it

will be driven above its firing threshold. The cell population will then

output horizontal excitation to itself as well as to other pyramidal cell

populations. Unsupported cells can generate suprathreshold excitation if

they receive enough horizontal excitation from supported cells. Turning

off input support from layer 4 causes all supported cells, and then all layer

2/3 activities, to decay to zero. Therefore, boundaries can group across a

gap provided the gap is small enough and the grouping signals from the

supported cells on each end of the gap are sufficiently strong to drive the

interior, unsupported cells above threshold.

The horizontal excitation from a single supported cell population

cannot cause  runaway excitation and outward  grouping among un-

supported cells because it also activates balanced disynaptic inhibition

from smooth stellate cells. In this situation, the disynaptic inhibition is

proportional to the horizontal excitation because both pyramidal and

smooth stellate cells receive the same horizontal input signal. Given that

horizontal excitation from a single supported cell population is inhibited

by disynaptic inhibition, how do groupings ever span a region of

unsupported cells? One factor is that inhibition from smooth stellate cells

to pyramidal cells can lag behind the direct excitation between pyramidal

cells due to the time it takes the smooth stellate cells to integrate their

inputs. Therefore, synchronized inputs to layer 2/3 facilitate grouping

because they allow the horizontal signals to summate at the target

pyramidal cells before inhibition from local smooth stellate cells takes
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effect. This property is consistent with the finding of Usher and Donnelly

that visual groupings are facilitated when inducers are presented syn-

chronously (Usher and Donnelly, 1998).

This argument about synchrony is not sufficient, however, to explain

how inward grouping succeeds whereas outward grouping does not. The

model notes that when two or more pyramidal cell populations are

activated at positions that are located at opposite sides of an unsupported

pyramidal cell, then excitation from these cells more easily summates at

the unsupported cell, which can therefore exceed its firing threshold. In

addition, this excitation activates the corresponding disynaptic inhibitory

interneurons. As in the case of the layer 4 off-surround, the model

disynaptic inhibitory interneurons are predicted to inhibit each other as

well as the pyramidal cells. This model hypothesis is consistent with

anatomical data showing that inhibitory layer 2/3 interneurons synapse

on both pyramidal cells and other interneurons (McGuire et al., 1991;

Kisvarday et al., 1993). Hence the total activation within such a

population of inhibitory interneurons is predicted to be at least partially

normalized. As a result, total activation may grow less quickly than

summating activation of the pyramidal cells. The model hereby predicts

that recurrent inhibition may inf luence the excitatory–inhibitory

balance in both layer 2/3 and layer 4. In summary, due to a combination

of spatial summation factors in the sources of excitation, and delays and

amplitude properties of inhibition, net activation of the target pyramidal

cells is possible, and grouping can occur inwardly but not outwardly,

thereby realizing the bipole property (Grossberg and Mingolla, 1985),

which has been used to explain and predict many perceptual grouping

data (Born and Tootell, 1991; Shipley and Kellman, 1992; Watanabe and

Cavanagh, 1992; Field et al., 1993; Grossberg, 1994, 1997; Polat and Sagi,

1994; Gove et al., 1995; Dresp and Grossberg, 1997; Grossberg and

Pessoa, 1998).

There is more neurophysiological evidence for the bipole property in

cortical area V2 (von der Heydt et al., 1984; von der Heydt and Peterhans,

1989) than in V1. In V1, just a few unsupported cells have, to date, been

found that show full activation of unsupported cells by pairs of

supporting cells. More V1 cells show a modulatory inf luence from

neighboring pyramidal cells (Redies et al., 1986; von der Heydt and

Peterhans, 1989; Grosof et al., 1993; Kapadia et al., 1995). These are

challenging experiments to do in V1 because of the shorter horizontal

connections there, and the existence of feedback from V2, which has

longer horizontal connections. Unsupported V2 cells could be fully

activated by stimuli that fall outside the V1 receptive fields, and could

modulate V1 cells by top-down feedback. For simplicity, the present

model assumes that the bipole property holds in both V1 and V2. Altering

the model to allow only modulatory bipole inf luences in V1 can be

accomplished by changing the model parameters that control whether

convergent horizontal connections can fire the cell in the absence of

bottom-up input; see the Appendix, equations (26)-(28).

Developmental Growth Rules

These properties of adult grouping arise in the model by specializing

two well-known developmental rules. The first rule is that axons are

attracted to cell targets when the source and target cells are both active

(Gunderson and Barrett, 1979, 1980; Letourneau, 1978; Purves and

Lichtman, 1980; Lichtman and Purves, 1981). The second rule is that

axons compete intracellularly for growth resources (Purves and

Lichtman, 1980; Lichtman and Purves, 1981). In the present instance, the

first rule enables horizontal connections to form if activations in a source

pyramidal cell and a target pyramidal cell are sufficiently correlated — in

particular, if the target cell satisfies the bipole property — and removed if

they are not (Callaway and Katz, 1990, 1991; Lowel and Singer, 1992).

This rule is realized by an activity-dependent morphogenetic gradient

whose strength decreases with distance from the target cell that emits it.

The gradient inf luences horizontal growth only in active source cells.

As contact between two cells  is  achieved, a synaptic learning law

strengthens the synaptic contact by continuing to sense the correlation

between presynaptic and postsynaptic activity.

The second rule prevents uncontrolled proliferation of horizontal

connections by withdrawing  connections from  target  cells  that are

receiving more poorly correlated signals than other target cells. The two

rules work together to withdraw connections from cells that may be

activated by weakly correlated image features or statistically insignificant

noise. These model mechanisms for axonal growth and synaptic tuning

dynamically stabilize cortical development as the developing cortical

structure matches the statistics of its environmental inputs. If this match

is disrupted later in life, then a new bout of development and/or learning

can be triggered by the same mechanisms. Because of this property, the

model can be used to clarify data about shared molecular substrates of

neonatal development and adult learning (Bailey et al., 1992; Kandel and

O’Dell, 1992; Mayford et al., 1992), plasticity of adult cortical repres-

entations after lesions (Merzenich et al., 1988; Chino et al., 1992; Gilbert

and Wiesel, 1992; Darian-Smith and Gilbert, 1994; Kapadia et al., 1994;

Das and Gilbert, 1995; Schmidt et al., 1996), dynamical reorganization of

long-range connections in the visual cortex (Gilbert and Wiesel, 1992;

Zohary et al., 1994), and perceptual learning in the adult (Karni and Sagi,

1991; Poggio et al., 1992). In fact the model equations for activity-

dependent control of synaptic strength have already been used to explain

properties of adult learning (Grossberg, 1980a; Carpenter and Grossberg,

1991).

Top-down Feedback from V1 to LGN

Layer 6 of model area V1 sends top-down feedback to the LGN via an

on-center off-surround network, as also occurs in vivo (Murphy and

Sillito, 1987; Weber et al., 1989; Murphy and Sillito, 1996) (see Fig. 1d).

The feedback on-center reinforces the activities of those LGN cells which

have succeeded in activating V1 cells, notably V1 cells whose activations

represent the strongest perceptual groupings. The feedback off-surround

suppresses the activities of other LGN cells. As in the brain, this model

feedback circuit increases the useful visual information that is

transmitted from LGN to cortex by enhancing contextually significant

differences between LGN responses (McClurkin et al., 1994), and also

inf luences the length tuning of LGN cells (Murphy and Sillito, 1987). The

LGN to V1 circuit is also known to be modulatory (Sillito et al., 1994).

Earlier modeling work predicted that this feedback pathway plays a role

in stabilizing the development of bottom-up connections from LGN to V1,

as well as the reciprocal top-down connections from V1 to LGN

(Grossberg, 1976b, 1980b). Grunewald and Grossberg have modeled how

the normal development of bottom-up disparity tuning can occur at V1

complex cells when such top-down feedback is operative, and have

shown how this development may break down when it is not (Grunewald

and Grossberg, 1998). Further experimental study of this question is

needed. For purposes of the present modeling analysis, it is assumed that

these top-down connections are pre-developed and are available to facili-

tate activation of the correct combinations of simple and complex cells.

Results

Developmental Data and Simulations

The next three sections summarize how the model simulates

data about the development of long-range horizontal con-

nections in area V1. After development self-stabilizes, the

resultant network can, without further change, simulate adult

neurophysiological and psychophysical data. As in the brain, the

model undergoes two stages of development (Fig. 2). One occurs

prior to eye opening, when endogenous random geniculate and

cortical activity determine the initial specificity of horizontal

connections (Ruthazer and Stryker, 1996). The other occurs

after eye opening, when patterned visual inputs can strengthen

and refine these connections (Galuske and Singer, 1996).

Several anatomical studies have investigated how horizontal

projections develop in the superficial layers of visual cortex into

adult connections that connect columns of similar orientation

preference (Callaway and Katz, 1990; Durack and Katz, 1996;

Galuske and Singer, 1996). Callaway and Katz used neuronal

tracing and intracellular staining to investigate the development

of clustered horizontal connections in cat striate cortex

(Callaway and Katz, 1990). They found an even, unclustered

distribution up to 2 mm from the injection site during the first
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postnatal week, followed by an increase  in  the range  and

clustering of the projections in the second postnatal week, when

the eyes are opened, and finally a long, slow refinement of

projections due to the elimination of some connections until an

adult level of clustering was reached in the sixth postnatal week.

Increase of Projection Range

The Galuske and Singer investigation of long-range projections in

cat area 17 (the analog of monkey area V1) at different stages of

postnatal development yielded a similar conclusion (Galuske and

Singer, 1996). These authors also reported quantitative data

about the projection range of pyramidal cells (Fig. 3, top). Soon

after eye opening, the projection range doubled over a period

of 12 days (from P15 to P26). Presumably, the increase in

projection range is due to the greater correlations in activity over

large spatial distances that occurs in natural, structured images.

Figure 3 (bottom) shows the simulated projection range in the

model. Before eye opening, the short-range spatial correlations

of the unstructured inputs are ref lected in the relatively

short-range extent of horizontal projections. Soon after eye

opening, the long-range spatial correlations in the structured

visual inputs cause the projection range to double, just as in the

data of Galuske and Singer (Galuske and Singer, 1996). These

results exploit the developmental rules described above by

causing a larger projection range to grow when the statistics of

visual imagery provided more long-range correlations.

Increase of Orientational Selectivity

A similar pattern of exuberant growth followed by slow

refinement of projections has also been found in the ferret.

Because the ferret is born 3 weeks earlier in development than

the cat, it has more stable orientation-selective cortical cell

responses than the cat during the period in question (Durack

and Katz, 1996; Ruthazer and Stryker, 1996). Ruthazer and

Stryker reported quantitative data about the growing orienta-

tional selectivity of horizontal clustering over time, using a

statistic called the cluster index (CI) (Ruthazer and Stryker,

1996). The CI measures the log of the average nearest-neighbor

distance between horizontal projections within a measurement

window, divided by the average distance between a randomly

selected point in the window and the nearest horizontal

projection. Therefore, a uniform distribution of horizontal pro-

jections would lead to a CI of log(1) = 0. As clustering becomes

more refined, CI increases. Figure 4 (top) shows the CI obtained

by Ruthazer and Stryker from 21 days postnatal up to adult age

(Ruthazer and Stryker, 1996). Before eye opening, which is

about 31 days postnatal, there is a positive CI, indicating a

clustering bias, presumably favoring iso-orientation connections.

After eye opening, the CI rapidly increases to ref lect the strong,

adult bias in favor of iso-orientation connections.

The model does not represent individual horizontal projec-

tions, but rather the average strength of horizontal projections

from an orientation column to other orientation columns.

Therefore, the model’s format is unsuitable for computing a CI

index. An analogous measurement of orientation preference was

computed by dividing the strength of a column’s horizontal

connections to nearby columns with the same orientation

preference by the strength of all the column’s horizontal

connections. This statistic is shown in Figure 4 (bottom). Like

the CI index, it shows an initial moderate bias in favor of

iso-orientation connections that dramatically increases after eye

opening. In order to make the computer simulations tractable,

the model presently represents only two orientations (vertical

and horizontal) so Figure 4 shows the bias in favor of one

orientation over the perpendicular orientation. If the model

represented intermediate orientations as well, then the relative

iso-orientation bias would be smaller because the presence of

intermediate orientations would reduce the average orientation

distance between iso- and non-iso-orientation columns.

Figure 2. Example training image, consisting of Gaussian filtered random noise, used
to model unstructured vision prior to eye opening. Right: example training image,
consisting of seven randomly configured rectangles, with input values randomly
distributed between 0 and 2, used to model structured vision after eye opening.

Figure 3. Top: projection range of pyramidal cells in cat visual cortex as a function of
age. Projection range doubles after eye opening. [Adapted from Galuske and Singer
(1996).] Bottom: projection range of model pyramidal cells during development. Model
projection range also doubles after ‘eye opening’.
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After development, horizontal projections preferentially

connect columns with similar orientation preferences that are

aligned colinearly with their orientation preference (Fitzpatrick,

1996; Schmidt et al., 1997a). Figure 5 (left) shows a polar plot by

Fitzpatrick of the projection field from a site in layer 2/3 of tree

shrew striate cortex (Fitzpatrick, 1996). The distance of each

point from the center of the projection field represents the

number of labeled terminals at that angle (in 10° increments).

The orientation of the  projection field is aligned with the

orientation preference of its source neuron. Figure 5 (right)

shows the analogous projection field from a horizontally tuned

column in layer 2/3 of the model after development has

equilibrated. The size of each circle represents the strength of

the connection to each iso-orientation column. The anisotropy of

the  model’s  projection field  is  qualitatively consistent with

Fitzpatrick’s data. These results derive from the fact that visual

cues are, with high probability, locally linear across space, so

that the largest correlations would be generated by cells whose

orientations match those of the input and are colinearly aligned

across space. The developmental rules enable the network to

sense these correlations and to selectively amplify the growth of

those connections which best match them.

Neurophysiological Data and Simulations

Projection Field versus Receptive Field

This section shows that the model network that develops has

neurophysiological properties that have been recorded from

adult animals. One such property shows, remarkably, that the

extent of a cell’s total anatomical projection field is much greater

than that of its classically recorded receptive field (Fitzpatrick,

1996). Fitzpatrick found that the projection fields in tree shrew

extend  for >2 mm from  the  injection  site,  a distance that

corresponds to 15° eccentricity, whereas the dimensions of

classically defined receptive fields at that eccentricity are <5°.

The dwarfing of classical receptive fields by projection fields was

also shown in neurophysiological data recorded from cats by Das

and Gilbert (Das and Gilbert, 1995). These authors compared

cortical point spread (PS) distributions, measured with optical

recording, which ref lect both spiking and subthreshold activ-

ity, with spiking distributions measured with extracellular

electrodes. A  small oriented visual stimulus produced a PS

distribution 20 times larger than the spiking distribution.

Moreover, the close match of the PS distribution with columns

whose orientation preference agrees with the orientation of the

visual stimulus suggests that the distribution arises from iso-

oriented long-range horizontal projections.

A similar property holds in the model after development

equilibrates: Figure 5 (right) shows the size of a layer 2/3 cell

classical receptive field (dashed-line circle) with respect to its

projection field in the model. This discrepancy between

projection field and receptive field can be traced to the model’s

bipole property: the classical receptive field ref lects mainly

bottom-up properties of the cortical network in the model,

whereas the subthreshold activations ref lect the fact that the

bipole requirement for firing the cells via long-range horizontal

connections was not satisfied.

Figure 4. Top: mean cluster index (CI) in ferret area 17 as a function of age (from
Ruthazer and Stryker, 1996): ‘At P27 horizontal connections are significantly clustered,
but single-unit recordings reveal poor orientation  selectivity (25%  of  cells  have
orientation-selective responses), and optical imaging does not yet show an orientation
map. Between P32 and P36, a secondary refinement of horizontal connections occurs
along with the maturation of single-unit orientation selectivity and the emergence of the
earliest optical orientation maps.’ Eye opening takes place at about P31. [Adapted from
Ruthazer and Stryker (1996).] Bottom: clustering bias in model during development. The
strength of horizontal connections to iso-orientation columns divided by the net strength
of horizontal connections is plotted as a function of age. Like the data of Ruthazer and
Stryker, the clustering bias increases after eye opening.

Figure 5. Left: polar plot of the projection field from a site in layer 2/3 of tree shrew
striate cortex. The orientation of the projection field is in agreement with the orientation
preference of its source neuron. [Adapted from Fig. 11 of Fitzpatrick (1996)]. Right: the
projection field from a horizontally tuned column in layer 2/3 of the model after learning
has equilibrated. The size of each circle represents the strength of the connection to
each iso-orientation column. The dashed circle in the middle shows a layer 2/3 cell's
classical receptive field, which is the spatial extent within which a point input causes
the cell to ‘fire’ (i.e. go above its output threshold).
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Cortical Point Spread Functions

The measurement of cortical point spread functions (PSFs)

provides additional evidence about the strength of horizontal

connections. In this regard, optically recorded signals are

believed to arise from subthreshold dendritic activity in the

superficial layers (Grinvald et al., 1994). These dendrites may

belong to cells in both the superficial and deep layers. Grinvald

et al. measured an asymmetric PSF in macaque monkeys, with

twice as much spread along the axis parallel to the V1/V2 border

as along the perpendicular axis (Grinvald et al., 1994). The axis

parallel to the V1/V2 border is perpendicular to the direction of

OD columns in this cortical region. Therefore, the explanation

given by Grinvald et al. for this asymmetry is that a spread in

activity among the equivalent number of same-eye OD columns

would traverse twice as much cortical  surface in  the axis

perpendicular to the direction of OD columns. Accordingly, they

modeled the PSF with an asymmetric two-dimensional expon-

ential distribution, having a space constant of 3.0 mm in the axis

perpendicular to OD columns, and 1.5 mm in the axis parallel to

OD columns.

In comparing the PSF obtained by our model with this

experimentally derived distribution, it is appropriate to use the

1.5 mm space constant because our model is monocular. The

only remaining step is to map the metric of cortical surface

distance into the metric of model hypercolumns. We found the

best-fitting match by assuming that a hypercolumn in our model

would have a diameter of 450 µm parallel to the direction of OD

columns, and therefore 900 µm perpendicular to the direction of

OD columns. Given this assumption, Figure 6 compares the

experimentally derived PSF with the PSF generated by our model

following stimulation in the center hypercolumn. These PSFs

closely resemble each other out to four hypercolumns away from

the central one.

The PSF produced by the model is based on the assumption

that the point spread consists solely of activity in layer 2/3 apical

dendrites. In the model, these dendrites are excited by the layer

2/3 horizontal projections. Therefore the PSF plotted in Figure 6

equals the spatial distribution of the strengths of horizontal

signals from the central orientation column to nearby iso-

orientation columns. The model PSF matches the exponential

distribution out to four hypercolumns because model parameters

were set, for computational tractability, to prevent its horizontal

projections from growing beyond this extent.

Psychophysical Data and Simulations

After model cortical development stabilizes, the cortical net-

work that is formed in this way, without further change, simu-

lates key psychophysical data about adult perceptual grouping.

Facilitation of cortical responses by oriented, colinearly arrayed

inducers has been found by a number of researchers (von der

Heydt et al., 1984; von der Heydt and Peterhans, 1989; Field et

al., 1993; Grosof et al., 1993; Polat and Sagi, 1993, 1994; Kapadia

et al., 1995). Many of these facilitory effects may be explained by

colinear groupings mediated by layer 2/3 connections in V1 and

V2, or by groupings that form perpendicular to line ends. That

is why the current self-organized model was restricted to

horizontal and vertical orientations, and was used to study how

grouping strength changed when the spatial separation of

inducers was varied.

Illusory Contour Formation

Figure 7 illustrates the model's grouping behavior. Figure 7a

shows an input image consisting of a 5 × 5 pixel square and a 5 ×

3 pixel rectangle, separated by a 5-pixel gap. Figure 7b,c shows

the network’s equilibrated suprathreshold layer 4 and layer 2/3

activities, respectively, in response to this image. In these

Figure 6. Comparison of cortical point spread function modeled by Grinvald et al.
(1994) based on optical recordings in macaque primary visual cortex, with analogous
point spread function produced by our developed model. A close match is obtained out
to four hypercolumns away from the source cell, which is the maximal extent of model
horizontal projections. The point spread function of Grinvald et  al. (1994) is an
exponential decay function with a space constant of 1.5 mm. (if ocular dominance
columns of only one eye are considered). This function was converted to the model’s
metric of cortical columns by assuming that iso-orientation columns are spaced
450 mm apart.

Figure 7. (a) Input image consisting of a 5 × 5 pixel square and a 5 × 3 pixel
rectangle, separated by a 5-pixel gap. (b) Equilibrated suprathreshold activities of model
layer 4 cells. (c) equilibrated suprathreshold activities of model layer 2/3 cells. See text
for details.
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line-segment displays, the orientation of each boundary segment

denotes the orientation preference of the cell at that location,

and the length of the segment denotes the cell’s activity.

The layer 4 excitatory cells (Fig. 7b) detect the location and

orientation of the object edges: case 1 in Figure 7a. These cells

respond more strongly near the object corners due to end-

stopping caused by layer 6-to-4 inhibition. Layer 4 cells input to

layer 2/3 excitatory cells, whose activations (Fig. 7c) code object

boundaries as well as boundary grouping between the objects.

The tops of the two objects are grouped together by the layer 2/3

horizontal interactions (case 2 in Fig. 7a) because they are

colinear with each other and because the gap separating them is

sufficiently small. The non-colinear lower edges of the object

(case 3 in Fig. 7a) do not group, even though they are both

horizontally oriented. Such a grouping ‘inwardly’ between two

or more like-oriented and colinear image contrasts, but not

‘outwardly’ in response to a single contrast, illustrates that the

bipole property is realized at the layer 2/3 model cells after

development of the horizontal and interlaminar interactions.

Contour Sensitivity to Spatial Context

The model’s context-sensitivity also includes the property of

spatial impenetrability (Grossberg and Mingolla, 1987), in which

boundary groupings in one orientation inhibit weaker potential

groupings in other orientations at the same position. Figure 8

illustrates this property. Figure 8 (top left) shows two aligned

vertical bar inputs, and Figure 8 (top right) shows how the

network’s equilibrated suprathreshold layer 2/3 pyramidal cell

activities vertically group the two bars together. Figure 8

(bottom left)  shows  a  modified input with same two  bars

augmented by several squares aligned horizontally in the gap

between them. These squares do not individually favor horiz-

ontal over vertical grouping. In fact, the vertical sides of two of

the squares are colinear with the vertical sides of the bars. Other

things being equal, they would facilitate vertical grouping. On

the other  hand, the set  of  all the  squares, taken together,

generates a strong horizontal grouping. The emergent horizontal

orientation of this grouping inhibits the vertical grouping, as

shown in the equilibrated suprathreshold layer 2/3 pyramidal

cell activities (bottom right). The network’s spatial impenet-

rability is due to the cross-orientational inhibition that develops

in layer 2/3 and layer 4. This simulation shows that the self-

organized balance between the layer 2/3 horizontal excitation

and disynaptic inhibition that achieves the bipole property is

also well-balanced against the interlaminar 6-to-4 connections

that help to select which groupings will survive.

Evidence for spatial impenetrability has been found in

psychophysical and physiological experiments. Kapadia et al.

Figure 8. Top: (Left) Two aligned vertical bars (8 pixels wide) separated by 6-pixel gap.
(Right) Equilibrated suprathreshold activities of model layer 2/3 cells, showing vertical
grouping of bars. Bottom: (Left) Same two vertical bars, with five 2-pixel-wide squares
aligned horizontally in the gap. (Right) Equilibrated suprathreshold activities of model
layer 2/3 cells, showing that horizontal grouping of the squares blocks the vertical
grouping of the bars.

Figure 9. Top: Shipley and Kellman (1993) obtained clarity ratings for illusory contours
as a function of their support ratio. The stimulus was a 4 cm illusory Kanizsa square,
induced by four Pacmen figures. As the support ratio increased (i.e. the size of the
Pacmen increases and the size of the gap decreases) the illusory contour clarity
increased roughly linearly. [Adapted from Fig. 5 of Shipley and Kellman (1993).] The
model results were obtained by measuring the strength of vertical grouping between
two aligned rectangles (3 pixels wide). The length of the rectangles plus gap was 8
pixels. As the size of the gap was decreased from 4 pixels to 1 pixel by increasing the
length of the rectangles, the average grouping strength in the gap increased. See text
for a description of how the grouping strength was mapped into a metric of perceived
illusory contour clarity. Bottom: Lesher and Mingolla (1993) also obtained clarity ratings
for illusory contours as a function of support ratio. However, they increased support ratio
by increasing the number, and hence the density, of perpendicular bar inducers within
concentric-ring Pacman stimuli that induce a percept of an illusory square. As the
number of bars, and hence the support ratio, increases, the illusory contour clarity
increases and then decreases. [Adapted from Figs 8a and 10c of Lesher and Mingolla
(1993).] The model's illusory contour strength was measured along a 4-pixel gap.
Inducers were 2-pixel-wide bars, with the spacing between bars varied to yield 1, 2, 3
and 4 bars on each side of the gap, with inter-bar spacing of 3, 2, 1 and 0 pixels,
respectively.
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found that the detection threshold reduction that was caused by

colinear facilitation between two aligned bars was inhibited by

an interpolated perpendicular bar (Kapadia et al., 1995). They

found that this configuration abolished the enhancement of V1

cell firing caused by the colinear facilitation. Von der Heydt et al.

found that the response of V2 cells in the gap between two

aligned bars, which is believed to signal the presence of illusory

contours in the gap, was abolished when thin, perpendicular

bars were placed between the inducing bars and the gap (von

der Heydt et al., 1984).

It should be noted that the simulations describing perceptual

grouping consider interactions within the interblob stream of

visual cortex, which has been predicted to support such

grouping dynamics (Grossberg and Mingolla, 1985). In fact,

there is neurophysiological evidence that locally aligned

contours can produce illusory contour-like responses in area V2

(Peterhans and von der Heydt, 1989). Grouping strength does

not, however, necessarily covary with visibility, as measured, say,

by a brightness or color difference. In fact, it has been predicted

that the perceptual groupings which are formed in the interblob

stream are amodal, i.e. they themselves do not represent a

visible brightness or color signal. Visible brightness or color

signals have been predicted to occur within the blob cortical

stream as part of the process whereby three-dimensional surface

representations are formed (Grossberg, 1994).

Contour Sensitivity to Support Ratio

Figure 9 shows how the illusory contours formed by the model,

either colinear to edges or perpendicular to line ends, vary in

strength as the inducing features are parametrically varied.

These simulations illustrate that the developed layer 2/3 con-

nections do not saturate; instead, they enable the network to

exhibit the type of spatial context-sensitivity found in human

psychophysical data. Figure 9 (top) plots data of Shipley and

Kellman (Shipley and Kellman, 1992) which show the effect of

increasing the length of the inducers while decreasing the gap

between them, keeping the total length of inducers-plus-gap

constant: illusory contour clarity increases roughly linearly. In

other words, contour clarity increases with ‘support ratio’.

Figure 9 (top) shows that the clarity of the model’s illusory

contours also increases linearly as the support ratio is increased.

The mapping from network activities to clarity ratings is

described below. This result is due to the fact that, as the gap

between two inducers is made smaller, the grouping signal be-

comes stronger, due to the monotonically increasing magnitude

of the layer 2/3 grouping kernel towards its center (see Figs 5

and 6).

The model matches the psychophysical data well, with the

caveat that the model cannot form illusory contours when the

support ratio falls below 0.5. This is due to simplifications in the

model — made for computational tractability — which limit the

extent of the groupings it can make. In particular, model

parameters were chosen so that its developed horizontal pro-

jections extend only four hypercolumns away from the center. In

addition, the model only simulates grouping in V1 and does not

take advantage of larger-scale processing in V2. Finally, the model

does not include the retina-to-cortex cortical magnification

factor (van Essen et al., 1984), whereby scale expansion takes

place as stimuli move into the periphery.

Figure 9 (bottom) summarizes psychophysical data obtained

by Lesher and Mingolla showing that, if support ratio is

increased in a different way, then an inverted-U in illusory

contour clarity strength is obtained (Lesher and Mingolla, 1993).

In this study, parallel bars with aligned ends were used to form

four Pacman figures with which to induce an illusory Kanizsa

square percept. The square formed perpendicular to the bars

through their aligned ends. Contour clarity of the illusory square

was measured as the numbers of bars, and hence the support

ratio, varied. The inducing Pacmen had a circular radius of 128

pixels, and the gap between Pacman pairs in which the Kanizsa

square percept formed was 128 pixels. The support ratio was

computed as the number of bar inducers (1, 2, 4, 8, 16 per

Pacman) times bar width, divided by the length of the side of the

square (384 pixels). As the width of the bar inducers is

increased, the number of possible inducers becomes limited,

which is why there are only results for up to 16 inducers in the

9-pixel-wide case, and up to 8 inducers in the 17-pixel-wide case.

Figure 9 (bottom) shows that the model simulates the inverted-U

in contour strength as a function of bar density. This inverted-U

result is due to an interaction between the long-range excitatory

horizontal connections in layer 2/3 and the medium-range

inhibitory connections from layer 6-to-4. The Shipley and

Kellman data (Shipley and Kellman, 1992), and our simulation

thereof, show that decreasing the distance between inducers, up

to a certain point, increases grouping strength as a result of layer

2/3 horizontal cooperation. As the inducers get even closer

together, however, layer 6-to-4 inhibition increasingly inhibits

the net excitation caused at layer 4 by each LGN input. Thus,

although more inputs activate the cooperating layer 2/3

pyramidal cells, the net effect of each input on layer 2/3 gets

smaller as the inducers get denser. This simulation shows that

the self-organized connections preserve a good balance between

layers 6, 4 and 2/3. As in the psychophysical data in Figure 9, the

model’s illusory contour strength is affected more strongly by

variations in support ratio than in bar density.

Due to the implementational limitations of the model de-

scribed above, the network simulated these data using bars that

are relatively wide with respect to the length of the gap

(2-pixel-wide bars, 4-pixel -ong gap). Figure 9 (bottom) shows

results obtained by the model with inter-bar gap size decreasing

from 3 to 0, with the total length spanned by the inducers and

gaps held roughly constant. The model’s inverted-U curve is

shifted to the right of the data curves, ref lecting the fact that the

model used inducers that were wider relative to the gap size.

Note that, in the data as well, the curves shift to the right as the

width of the inducers increases. Using short bars instead of line

ends to simulate this result, due to limitations of cell density in

the model, does not and should not alter the qualitative results

because the model predicts that they are due to an interaction

between how the bottom-up layer 6-to-4 off-surround attenuates

the activation of layer 4 cells in response to bottom-up inputs

before layer 4 cells can activate a horizontal grouping in layer

2/3, in response to any input pattern, as its inducers get closer

together.

Mapping Network Activity into Illusory Contour Clarity

The model’s layer 2/3 activities were mapped into the psycho-

physical illusory contour clarity metric (ICC) via the following

equation:

ICC = ρ(Cmax – Cmin)z + Cmin (1)

where ρ is a scaling parameter, Cmax and Cmin are the maximum

and minimum of the clarity scale, and z is the average amount of

suprathreshold activity in layer 2/3 excitatory cells along the

gap:
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(2)

Model fits to both data sets used ρ = 0.85.

Detection Threshold Context Sensitivity

Figure 10 (top) shows bandpass-limited inducers (Gabor

patches) similar to those used by Polat and Sagi in their

psychophysical experiments (Polat and Sagi, 1993). If the spatial

separation of the f lanking patches is sufficiently small that the

patches overlap, then the threshold for detecting the target

Garbor patch is greater than the baseline threshold for the target

patch alone. This threshold increase is due to mutual inhibition

between representations of the nearby stimuli and/or a

reduction in the signal to-noise ratio for the central stimulus. If

the separation is increased such that the patches do not overlap,

then  the  detection  threshold decreases below the  baseline

threshold. As the separation is further increased, the detection

threshold gradually returns to the baseline level. Figure 10 shows

an optimal separation that yielded a reduced threshold (middle)

in Polat and Sagi’s experiments, and a larger separation for

which this reduction was diminished (right).

We simulated the cases in which the Gabor patches do not

overlap to avoid the complications involved in measuring the

detection of a signal (the target Gabor patch) in the presence of

noise (the overlapping Gabor patches). With this proviso, the

model obtains similar results to those found by Polat and Sagi

(Polat and Sagi, 1993). Figure 10 (bottom) plots the detection

threshold as a function of the separation (between patch

centers) of nonoverlapping f lanking stimuli. The largest thres-

hold reduction is obtained with a 5-pixel separation (middle).

Increasing this separation reduces the effect until, at a 9-pixel

separation, the baseline threshold is obtained. The discrepancy

between the model's results and psychophysical data at large

separations is due to the model simplifications described above.

Contrast-sensitive Temporal Dynamics of Perceptual

Grouping

Using  the  input  stimuli  of  Figure 7a, the contrast-sensitive

temporal dynamics underlying grouping were analyzed by

examining the activities over time of horizontally oriented layer

4 and layer 2/3 cells whose receptive fields are placed: along an

object contour (case 1), in the middle of a gap between two

colinear contours (case 2), and the same distance from a single

colinear contour (case 3).
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Figure 10. Bandpass-limited inducers (Gabor patches). As the spatial separation of the
flanking patches was increased (middle and right), the detection threshold for the
central patch decreased and then slowly increased back to the baseline threshold
obtained for the central patch alone (left). [Adapted from Figure 2 of Polat and Sagi
(1993).] The model obtained the same qualitative results. The model's detection
threshold is plotted as a function of the separation (between patch centers) of the
flanking stimuli. The baseline detection threshold was calculated as the amplitude
coefficient for the central Gabor patch which caused the the average layer 2/3 activation
level (within a 5 × 5 pixel window centered on the Gabor patch) to reach 0.05. This
corresponds roughly to having a majority of layer 2/3 cells within the patch go above
their firing threshold.

Figure 11. Top: layer 4 cell activity as a function of time in case 1 of Figure 7 for three
different input levels. Bottom: layer 2/3 cell activity.
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Figure 11 (top) plots a layer 4 cell’s activation as a function of

time in case 1 for three different input levels Iij in equations (1)

and (2). The cell has an initial burst of activity which is largely

attenuated by subsequent inhibition from layer 4 interneurons,

which are activated from layer 6. As the input increases, the layer

4 activity peaks earlier, and equilibrates at a higher level. Figure

11 (bottom) plots the activation of the corresponding layer 2/3

cell. The layer 2/3 activity also peaks earlier, and equilibrates at a

higher level.

Next we look at what happens in the two types of gaps, a gap

that is surrounded by two colinear edges (case 2), and a gap that

is next to only one edge (case 3). In both of these cases, the layer

4 cell remains inactive because there is no bottom-up input at

the position of the gap measurement. We therefore plot only the

layer 2/3 cell’s activation, which is determined solely by

horizontal input from other layer 2/3 cells. In Figure 12 (top), the

layer 2/3 cell's activity stabilizes above the output threshold (Γ =

0.1) for all three contrast levels, so that an illusory contour is

formed between the two colinear gaps. The input contrast once

again determines both the rise time and the final level of the

cell's activity.

In Figure 12 (bottom), on the other hand, the layer 2/3 cell

activation stabilizes below the output threshold of 0.1 for all

three contrast levels. Here, the layer 2/3 cell receives horizontal

input only from layer 2/3 cells on one side. Thus, Figure 12

shows that the bipole grouping rule is realized for a wide range

of input contrast levels.

Destabilization of Perceptual Grouping by Unbalanced

Excitation and Inhibition

The bipole rule requires that layer 2/3 cells remain subthreshold,

as in Figure 12 (bottom), unless they are surrounded by colinear

inputs on both sides. This requirement is enforced by inhibition,

both within layer 4 (mediated by excitatory interlaminar input

from layer 6), and within layer 2/3 (mediated by excitatory

horizontal input at the disynaptic inhibitory interneurons). The

model predicts that the bipole rule fails if either source of

inhibition is lost. This prediction suggests that the selectivity of

colinear facilitation is not just a property of layer 2/3, but rather

a property of how intercellular interactions are balanced across

several cortical layers.

Figure 13 (top) shows how a model layer 2/3 cell in case 3 is

affected as the layer 6-to-4 inhibition is reduced. If this happens,

then layer 4 cells can be activated solely by input from layer 6

because layer 6-to-4 excitation becomes stronger than 6-to-4

inhibition. If the W+ inhibitory kernel (see equation 21) is

reduced by 50%, then the bipole rule is still maintained.

However, if it is reduced by 60%, then the layer 2/3 cell becomes

Figure 12. Top: layer 2/3 cell activity as a function of time in case 2 of Figure 7 for three
different input levels. Bottom: layer 2/3 cell activity in Case 3.

Figure 13. Top: layer 2/3 cell activity in case 3 of Figure 7 with normal W+ kernel, and
with W+ kernel reduced by 40 and 50%. Bottom: layer 2/3 cell activity in case 3 of
Figure 7 with normal T+ kernel, and with T+ kernel reduced by 30, 40 and 50%. See text
for details.
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suprathreshold and the bipole property is lost. This means that

layer 4 cells without bottom-up input can become activated by

excitatory feedback via layers 2/3-to-5-to-6-to-4. Destroying the

balance of excitation and inhibition between layers 6-to-4 enable

this feedback to act like a spurious bottom-up input, thereby

leading to a slow spread of activity away from all line ends and

corners. This simulation dramatizes the importance of balancing

the layer 6-to-4 on-center and off-surround so that its main effects

on layer 4 are either to modulate the excitability of layer 4 cells in

the on-center or to strongly inhibit the activation of layer 4 cells

in the surround. The simulation hereby provides a strong test of

the model’s ability to self-organize connections that maintain this

balance.

Figure 13 (bottom) shows a similar result if disynaptic

inhibition within layer 2/3 is reduced. If the T+ inhibitory kernel

(see equation 26) is reduced by 30%, the unsupported cell

remains subthreshold. If T+ is reduced by 50%, then the cell

becomes suprathreshold, but stabilizes at a low firing rate, and

so the bipole property is partially retained. If T+ is reduced by

60%, then the cell becomes more active, and the bipole property

is completely lost. This again leads to a slow spread of activity

away from line ends and corners. These results show the im-

portance of balancing excitation and inhibition within layer 2/3

to prevent the non-classical receptive fields from spreading

activity non-selectively across the entire network. The results

highlight that the model’s ability to self-organize such selective

connections is a real achievement, and that the model mech-

anisms are robust, since this balance can be maintained within a

broad parameter range.

Destabilization of Development by Unbalanced Excitatory

and Inhibitory Learning

Figure 13 shows that reducing the inhibitory kernels in layer 4 or

layer 2/3 to about half their present values can lead to a loss of

the bipole property. Once this happens, cortical development

and adult perceptual learning can spiral out of control, as more

excitatory learning (via equations 29 and 33) leads to greater

average cortical activity, which in turn leads to more excitatory

learning. Therefore, inhibitory learning that balances excitatory

learning is needed to stabilize cortical development and learning,

and, in so doing, cause the grouping properties with which we

are familiar in the adult. The key parameters that guarantee

network stability are C3 in equation (38) and τ in equation (35).

These parameters need to be set so that the W+ and T+ kernels

that regulate layer 4 and layer 2/3 inhibition, respectively, reach

sufficiently large values. The results depicted in Figure 13 show

why network development and learning is robust with regard to

changes in these parameters, since the bipole property that

maintains grouping, and thus learning, selectivity is maintained

for a wide range of values in both inhibitory kernels.

Discussion
This article develops a neural model of how horizontal and

interlaminar cortical connections in cortical areas V1 (and, by

extension, area V2) develop in a stable fashion. Stable develop-

ment is controlled by the growth of suitably balanced excitatory

and inhibitory connections within layer 2/3 and between layers

6 and 4. The model grows connections that simulate key

properties of developmental anatomical data and adult neuro-

physiological data. For example, as in other data (Calloway and

Katz, 1990; Durack and Katz, 1996; Galuske and Singer, 1996),

the model develops crude clustering of weak horizontal con-

nections prior to patterned visual input. Visually patterned input

strengthens horizontal connections while increasing their pro-

jection range and colinear orientational specificity. The growth

of new and/or the retraction of pre-existing horizontal con-

nections (Kandel and O’Dell, 1992; Antonini and Stryker, 1993b)

is determined by activity-based competition for finite resources.

The result is a network of horizontal connections in layer 2/3

between iso-orientation columns, which are biased along the

preferred orientation (Fitzpatrick, 1996, Schmidt et al., 1997)

and whose classical receptive fields are much smaller than the

extent of their horizontal connections (Das and Gilbert, 1995;

Fitzpatrick, 1996).

Model development leads to a network that is capable of

simulating adult psychophysical data about context-sensitive

perceptual grouping, notably data that depend upon non-

classical receptive field properties. Further simulations of adult

psychophysical data can be found elsewhere (Grossberg et al.,

1997; Grossberg and Raizada, 2000; Raizada and Grossberg,

2000). One of the model’s key lessons is that the same mechan-

isms which stabilize development also control properties of

perceptual grouping and learning in the adult. In particular,

connections  which grew to stably  ref lect robust statistical

properties of the visual world define the properties of adult

perceptual grouping as we know them. We claim that these

grouping properties help to dynamically maintain the match

between world statistics and the brain's ability to process them.

As noted above, in both the brain and the model, layer 2/3

boundary signals feed back via connections to layer 6 via layer

5 (Gilbert and Wiesel, 1979; Ferster and Lindström, 1985).

Layer 6, in turn, activates the on-center off-surround network

from layer 6-to-4. This feedback has been called folded feedback

(Grossberg, 1999) because the feedback signals from layer 2/3 to

layer 6 get transmitted in a feedforward fashion back to layer 4

and thereupon to layer 2/3. The feedback is hereby ‘folded’ back

into the feedforward f low of bottom-up information within the

laminar cortical circuits. Folded feedback links cells in layers 2/3,

6, 5 and 4 into functional columns (Mountcastle, 1957; Hubel

and Wiesel, 1962, 1977). In so doing, it enables the strongest

grouping signals in layer 2/3 to use the on-center off-surround

network from layer 6-to-4 to reinforce the strongest groupings

and to inhibit weaker groupings, during both early development

and adult grouping and learning.

The 6-to-4 folded feedback pathway is thus predicted to do

several things: (i) maintain contrast sensitivity to bottom-up

inputs from LGN; (ii) help to select the strongest groupings that

initially get formed in layer 2/3; (iii) receive top-down attentional

modulation from V2 and other cortical areas; and (iv) deliver

top-down attentional signals to LGN. The spatial scale of the

inhibition from layer 6-to-4, being smaller than the spatial extent

of the excitatory horizontal connections within layer 2/3, and

larger than the disynaptic inhibition within layer 2/3 that

maintains the bipole grouping property, is well-suited to these

tasks. In particular, the model uses this pathway to simulate how

attention can propagate along a curve (Grossberg and Raizada,

2000), as found in neurophysiological recordings from macaque

area V1 (Roelfsema et al., 1998), thereby illustrating how atten-

tion can selectively enhance an entire object. This layer 6-to-4

on-center off-surround attentional circuit in the model also

clarifies other important properties of attention, such as its

on-center off-surround characteristics (Bullier et al., 1996) and

the property that the V1 layer whose activation is most reduced

by cutting off V2 feedback is layer 6 (Sandell and Schiller, 1982).

An interface in layer 6 for top-down attention also clarifies how

attention can, in principle, propagate across multiple brain
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regions via layer 6-to-6 top-down connections, modulating each

target  cortical area without fully activating, or driving, its

grouping cells.

The model provides a mechanistic account of how adult

perceptual learning and the plasticity of cortical representations

after lesions may arise from developmental mechanisms when

the dynamic equilibrium between input statistics and cortical

circuitry is upset (Grossberg, 1980; Merzenich et al., 1988;

Carpenter and Grossberg, 1991; Karni and Sagi, 1991; Bailey et

al., 1992; Gilbert and Wiesel, 1992; Kandel and O’Dell, 1992;

Mayford et al., 1992; Poggio et al., 1992; Zohary et al., 1994). As

noted above, the model predicts that the stability of model

development and adult learning requires an approximate balance

between excitation and inhibition within layer 2/3 and between

layers 6 and 4.

In particular, the model predicts that the balanced layer 6-to-4

on-center off-surround circuit modulates layer 4 cells, but

cannot, by itself, fully activate them. This prediction is consistent

with neurophysiological data from ferret visual cortex showing

that the layer 6-to-4 circuit is functionally weak (Wittmer et al.,

1997). The model also predicts that the layer 6-to-4 modulatory

circuit is used by top-down signals from higher cortical areas to

attentionally prime layer 4 cells in area V1, without fully

activating them (Grossberg, 1999). Thus the same modulatory

property that is needed to ensure stable development is

predicted to control the ability of higher-order processes to

attentionally prime lower areas, without fully activating them.

The rules of stable development are thus predicted to define

what we mean by adult attention, as well as adult grouping and

learning. This hypothesis is consistent with neurophysiological

data of Hupé et al. who have shown that ‘feedback connections

from area V2 modulate but do not create center-surround inter-

actions in V1 neurons’ (Hupé et al., 1997). Such intercortical

feedback connections from V2 to V1 can modulate the circuits of

V1 with ‘higher-order’ boundary completion and figure-ground

perception properties of area V2 (Grossberg, 1994, 1997;

Lamme, 1995; Zipser et al., 1996), and/or other cortical areas

(Hupé et al., 1998; Watanabe et al., 1998). Taken together, these

properties open the way towards a unified mechanistic model of

infant cortical development and adult neurophysiology, percep-

tual grouping, attention and learning.

The model hereby provides a simple functional explanation of

why there are direct bottom-up inputs to layer 4, as well as

indirect bottom-up inputs to layer 4 via layer 6, in many cortical

areas (van Essen and Maunsell, 1983; Felleman and van Essen,

1991). The proposed explanation is that direct inputs to layer 4

are needed to supraliminally activate layer 4 cells because the

indirect layer 6-to-4 inputs cannot do so: they must be merely

modulatory in order to stabilize cortical development and

learning.

Comparison with Other Models

It is informative to compare the properties of our developed

model and its precursors (Grossberg and Mingolla, 1985, 1987;

Gove et al., 1995; Grossberg et al., 1997) with alternative models

of visual cortex and perceptual grouping. The present model’s

grouping properties have   several advantages over those

proposed by other computational models of visual cortex.

Models which do not address the formation of illusory contours

(Stemmler et al., 1995; Li, 1998; Somers et al., 1998; Yen and

Finkel, 1998) not only fail to account for neurophysiological data

(von der Heydt et al., 1984; Sheth et al., 1996) but also are unable

to exploit the computational advantages that follow from closing

incomplete boundaries: use of closure to guide surface recon-

struction, boundary completion over the blind-spot and retinal

veins, and more complete information for the recognition of

partially occluded objects (Grossberg, 1994). Layer 2/3 bipole

cells in the present model (Figure 1c) respond to both real and

illusory contour stimuli of similar orientations, consistent with

neurophysiological data (Sheth et al., 1996), and are connected

by horizontal axons which are coaxial with the receptive fields’

preferred orientation (Bosking et al., 1997; Schmidt et al.,

1997a), not orthogonal, as has also been proposed (Peterhans

and von der Heydt, 1991). Because groupings are explicitly

represented by connected regions of above-threshold layer 2/3

firing, the model shows how a high-contrast item can group with

its neighbors while still having its net neural response sup-

pressed by their presence, as found by Polat and co-workers

(Polat et al., 1998) [see Grossberg and Raizada for simulations of

such data (Grossberg and Raizada, 2000).] Models in which

grouping is represented only by lateral facilitation (Somers et al.,

1998; Stemmler et al., 1995) cannot account for this, and force

the paradoxical conclusion that high-contrast items would never

group with each other, which is demonstrably not the case

(Elder and Zucker, 1998). The present model’s representation of

grouping as distinct from visible stimulus contrast [as reviewed

by Grossberg (Grossberg, 1994)] also receives support from

recent psychophysical work (Hess et al., 1998).

The Li model, in particular, uses bipole-like grouping cells in a

single-layer recurrent network (Li, 1998). The surround inhib-

ition originating from layer 6 in our model produces important

functionality which is lacking in Li’s model. Due to surround

inhibition in both layer 4 and LGN, instigated by input from layer

6, our model performs spatial contrast enhancement on the

boundary representation. The surround inhibition enhances

boundaries at line ends and corners, setting the stage for the

formation of illusory contours perpendicular to discontinuities.

Li (Li, 1998) also considers synchronous oscillations during

grouping of a type that has earlier been simulated in precursors

of the present model (Grossberg and Somers, 1991), leading to

quantitative simulations of human psychophysical data that may

be linked to such oscillations (Grossberg and Grunewald, 1997).

Many predictions follow from our model and its extension to

V2 (Grossberg, 1999; Grossberg and Raizada, 2000). For

example: test if top-down V1 to LGN feedback helps to stabilize

the development of disparity tuning in V1 during the visual

critical period; test if a long-range horizontal grouping in layer

2/3 of V2 can inhibit vertically oriented simple cells at the

midpoint of this grouping in layer 4 of V1; and test if layer 4

simple cells cannot be supraliminally activated if only the

LGN-to-6-to-4 input pathway is active.

In their No Strong Loops Hypothesis, Crick and Koch (Crick

and Koch, 1998) suggested that ‘a strong excitatory [feedback]

loop would throw the cortex into uncontrolled oscillations, as

in epilepsy’ (p. 248). They used this argument to suggest why

modulatory brain circuits exist. However, there are many

mathematical theorems which prove that neural networks with

strong excitatory feedback can readily converge to stable pat-

terns of activation that do not oscillate (Grossberg, 1969, 1973,

1978b, 1978c, 1980a; Ellias and Grossberg, 1975; Grossberg and

Levine, 1975; Cohen and Grossberg, 1983; Hopfield, 1984). We

propose that the reasons for modulatory circuits are more subtle

than the Crick–Koch hypothesis: such circuits help to stabilize

development in the infant and learning in the adult (Ito et al.,

1998).

We propose that variants of these laminar circuits may be used
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in other perceptual and cognitive systems to achieve self-

stabilizing learning and development. For example, long-range

horizontal connections are known to occur in the auditory and

language areas of human temporal cortex (Schmidt et al.,

1997b). Specializations of these connections may be used to

group information in several neocortical areas. The present

results may thus be viewed as a first step towards showing how

laminar neocortex develops and learns connections and weights

with which to optimally carry out many information-processing

tasks.
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Appendix: Model Equations
Because the model represents several different types of known cell types

and their connections, equations and parameters need to be defined for

each of these processes. Wherever possible, the model differential

equations were solved at equilibrium in response to a constant input in

order to speed up processing. These approximations do not affect the

reliability of the results.

Retina

At each retinal position (i,j), an ON cell activity uij
+ is defined by an

on-center off-surround network that possesses narrow on-center and

Gaussian off-surround kernels (see Fig. 14a). An OFF cell activity uij
– is

also defined by an off-center on-surround network with narrow off-center

and Gaussian on-surround kernels. The retinal cell activities caused by the

constant visual inputs I have the equilibrium values:

(3)

and

(4)

where Gpq(i,j,σ) denotes a two-dimensional Gaussian kernel:

(5)

Lateral Geniculate Nucleus

The LGN ON cell activity vij
+ and OFF cell activity vij

–, at each position

(i,j) obey membrane equations (Hodgkin, 1964) that interact via

on-center off-surround networks. As noted above, such a network realizes

a contrast gain-control process which retains cell sensitivity to image

contrasts while compensating for variable illumination and normalizing

network activity (Grossberg, 1982, 1983):

(6)

and

(7)

In (4) and (5), the half-wave rectified retinal output signals ([uij]
+ =

max(uij, 0)) are multiplicatively gain-controlled (Sillito et al., 1994; Gove

et al.,  1995; Przybyszewski et al., 1998) by a top-down on-center

off-surround network (see Fig. 1d). The excitatory on-center feedback

(8)

comes from all cell activities xijr within layer 6 of area V1 at the

corresponding position (i,j) that are tuned to any orientation r. The

inhibitory off-surround signals

(9)

come from activities xpqr at nearby positions (p,q) and all orientations r via

the Gaussian kernel shown in Figure 14a. This center-surround feedback

from layer 6 selects those LGN cells which have succeeded in activating

cortical cells. The feedback also strengthens LGN responses at line ends.

This in turn strengthens cortical responses at line ends via feedforward

signals from LGN to layers 4 and 6 of V1; see equations (20) and (22)

below. When these line end responses are aligned in space, they can

generate illusory contour groupings perpendicular to the line ends (see

Fig. 9). For further discussion and simulations about how these LGN

hypotheses explain anatomical, neurophysiological and psychophysical

data, see Gove et al. (Gove et al., 1995).

Cortical Simple Cells

Simple cell responses derive from arrays of ON cell and OFF cell outputs

from the LGN (see Fig. 1a). These ON cell and OFF cell outputs are

filtered by a pair of Gaussian receptive fields, with each Gaussian offset to

the right (R) or left (L) of the simple cell oriented axis. For simplicity, only
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vertical and horizontal orientations were simulated. The Gaussians were

defined by equation (5). The individual Gaussian inputs from LGN to layer

4 equal:

(10)

(11)

where θ = πk/2, for the vertical orientations (k = 1) and the horizontal

orientation (k = 2). Pairs of like-oriented, but spatially displaced, ON cell

(R+ or L+) and OFF cell (L– or R–) inputs summate at each simple cell to

form total LGN inputs of the form

(12)

(13)

Then these inputs mutually compete, as in the terms

(14)

and

(15)

Each pair of terms in (14) and (15) represents the responses of simple

cells that have the same position (i,j) and orientation k, but are sensitive

to opposite contrast polarities (see Fig. 14b).

In order to make the simulations manageable, some simplifications of

known biological interactions were made. Even so, each simulation of

model development (described below) took 11 days to run on a Silicon

Graphics workstation. The simplifications that were made should not

inf luence our results on cortical development or adult grouping. In

particular, in vivo layer 4 simple cells that are sensitive to opposite

contrast polarities pool their outputs at layer 2/3 complex cells (Alonso

and Martinez, 1998). In order to cut the number of simulated cells in half,

and with it the run time, we assumed that these simple cell outputs were

pooled in layer 4:

(16)

In addition, we kept cell density as sparse as possible in order to reduce

run time. This created well-known sparse sampling artifacts, such as a

spatially coarser response of the simple and complex cells. These were

corrected by subtracting a fraction of the overall difference between the

net ON and OFF responses from the terms Cijk. These extra terms can be

eliminated in future simulations when faster computers are available. The

total pooled term is thus:

(17)

where

(18)

and

(19)

The model assumes that layer 4 cell activities, yijk, are excited by the

pooled LGN signal Cijk. They also receive excitatory on-center input xijk

from layer 6, and Gaussianly filtered off-surround input

from layer 6 via layer 4 inhibitory interneurons (see Fig. 1b). In all:

(20)

In the simulations, the equilibrium form of equation (20) was used:

(21)

Layer 6 Cells

A layer 6 cell at position (i,j) and orientation k is assumed to receive

oriented input, Cijk, from LGN and feedback, zijk, from layer 2/3 complex

pyramidal cells (see Fig. 1b). It is assumed that the Cijk inputs are

registered at layer 6 cells due to a prior stage of development during

which LGN inputs learned an oriented connection to layer 6 cells due to

correlations induced by layer 2/3-to-6 and/or layer 4-to-6 feedback from

cells of both contrast polarities. Ringach et al. have reported that the

responses of layer 6 cells in V1 do, in fact, exhibit a polarity-independent

response component as well as a polarity-dependent component

(Ringach et al., 1999). In all, layer 6 cell activation, xijk, obeys:

(22)

The feedback signal function F( ) models the thresholded output signal of

the layer 2/3 pyramidal cell activities zijk:

(23)

Function F( ) represents a simplified sigmoid signal function with a

threshold at Γ. In the simulations, the equilibrium form of equation (22)

was used:

(24)

to speed up network convergence.
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Figure 14. Spatial kernels used by model. Circle area denotes the size of a weight.
Open circles denote excitatory weights and black circles denote inhibitory weights.
Kernels (a) and (b) are prespecified; the remaining kernels start with zero values, and
are learned. The kernels that govern interactions between vertically oriented cortical
cells are shown. Kernels governing interactions with horizontally oriented cells are not
shown. (c)–(f) depict the kernels following training in the unstructured vision phase (Fig.
2, left), and (g)–(j) depict the same kernels following training in the structured vision
phase (Fig. 2, right). (a) Gaussian off-surround in equations (3), (6) and (7). (b) Vertical
simple cell filter implemented in equation (14). (c,g) Layer 4 surround inhibitory weights,
W+, in equations (20) and (38). (d,h) Layer 2/3 axonal connection strengths, U, in
equations (27), (29) and (30). (e,i) Layer 2/3 synaptic weights, V, in equations (27) and
(33). (f,j) Layer 2/3 disynaptic inhibitory weights, T+, in equations (26) and (36).
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Layer 4 Inhibitory Interneurons

Layer 4 inhibitory interneuron activities, mijk, receive on-center input

from layer 6 activities xijk and off-surround inhibition mpqr from other

layer 4 inhibitory interneurons:

(25)

The recurrent inhibition between layer 4 inhibitory interneurons helps to

normalize their total output to the layer 4 simple cells. The on-center

excitation xijk
2 is a quadratic term which allows excitation at layer 4 to

dominate when layer 6 activity is low, and inhibition to dominate when

layer 6 activity is high. This term plays a role like the high thresholds and

steep activity functions of inhibitory neurons in the models of Stemmler

et al. and Somers et al. (Stemmler et al., 1995; Somers et al., 1998).

Layer 2/3 Complex Cells and Long-range Horizontal

Connections

In the adult model, layer 2/3 pyramidal cells receive excitatory input

[yijk]
+ from layer 4 at the same position, excitatory input Σpqr Hpqrijk

F(zpqr,Γ) via the long-range horizontal kernels Hpqrijk from other layer 2/3

pyramidal cell signals F(zpqr,Γ) at different positions, and inhibitory input

from the layer 2/3 disynaptic interneuronal activities sijr at the

same position (i,j) and all orientations r (see Fig. 1c). Layer 2/3 pyramidal

cells thus obey the equation:

(26)

The long-range horizontal excitatory connections Hpqrijk and short-range

inhibitory connections T +
rk in (26) both develop from zero initial values

in the model. This developmental process has the property that

unsupported cells which receive excitatory horizontal signals from only

one direction are not activated enough to exceed threshold Γ, and thus

are not able to propagate the grouping signal any further. Cells that

receive sufficiently strong horizontal excitation from two sides, however,

may exceed threshold and thereby contribute their own output to the

grouping signal. These cells help to keep themselves and their neighbors

above threshold in spite of the time-lagged rise in disynaptic inhibition.

Nonlinear properties in layer 2/3 similar to those accomplished by signal

F( ) in (23) have been reported elsewhere (Hirsch and Gilbert, 1991,

Figure 3).

The horizontal connection strength, Hpqrijk, is the product of the

axonal strength, Upqrijk, from cell (p,q,r) to cell (i,j,k) and the synaptic

weight, Vpqrijk, that abuts cell (i,j,k) after the axon from (p,q,r) contacts

it. Thus:

Hpqrijk = Upqrijk Vpqrijk (27)

Layer 2/3 Disynaptic Inhibitory Interneurons

In the adult network, layer 2/3 inhibitory interneurons are excited by

horizontal connections Σpqr Hpqrijk F(zpqr,Γ) from layer 2/3 pyramidal cells,

and are inhibited by layer 2/3 disynaptic interneuronal activities sijr that

represent all orientations r at the same position (i,j). This recurrent

inhibitory network tends to normalize the total output signal from each

inhibitory interneuronal population:

(28)

Both the long-range horizontal  connections H and the short-range

inhibitory connections T– in (28) develop from zero initial values in the

model.

Parameters for Equations (3)–(28)

Cell activation parameters in all simulations, except those that were

varied to demonstrate model robustness, are: σ1 = 1.0, γ = 10.0, ω = 6.0,

Γ = 0.1, C1 = 1.5, C2 = 0.075, σ2 = 0.5, δC = 0.25, α = 0.5, φ = 2.0, η = 2.0,

λ = 1.25.

Development of Layer 2/3 Excitatory Horizontal Axons

At the beginning of model development, layer 2/3 pyramidal cells have

no horizontal axons. An intracellular process calibrates an amount of

potential axonal growth, Utotal. The variables Upqrijk represent the strength

of axonal connections from a layer 2/3 source cell at position (p,q)

with orientational tuning r to a target cell at position (i,j) with orienta-

tional tuning k. At each position, there are four two-dimensional U

kernels corresponding to the four orientational combinations of r and k

(vertical-to-vertical, vertical-to-horizontal, etc.). These variables are initial-

ized at zero, and updated via the equation

(29)

in which zpqr is the activity of the source cell; F(zpqr,Γ) is the output signal

from this cell, as defined in equation (23); zijk is the activity of the target

cell; and zIJK is the activity of other, competing, target cells. In equation

(29), all axons from a given source cell compete for axonal resources,

Utotal, via the term ΣIJK UpqrIJK. This competition inf luences a source cell

only when it is active enough to make its growth signal F(zpqr,Γ) positive.

There is thus an asymmetry, in that the source cell activity is thresholded,

but  the target cell activities are not. Similar asymmetries occur in

equation (33) for learning excitatory synaptic weights and equation (35)

for learning inhibitory synaptic weights. The reason for this asymmetry is

that a cell’s activity must be above threshold in order to inf luence other

cells. In particular, a source cell’s activity should be above threshold in

order to alter its axonal connections or synaptic weights to target cells. Its

pattern of axonal connections and synaptic weights should ref lect the

distribution of target cell activities when the source cell is capable of

inf luencing them. On the other hand, a cell does not need to be above

threshold in order to be inf luenced by other cells, and therefore there is

no threshold requirement on target cells, governing the growth of

connections to those cells.

When the source cell is above threshold, its axonal growth to a target

cell is driven by activity-dependent morphogenetic gradients zijkA(Epqrijk)

in (29). Quantity Epqrijk represents the distance between the axonal

growth cone of source cell (p,q) and target cell (i,j). It is defined by the

difference  between the length κUpqrijk of the  growth  cone  and  the

distance Dpqij between the source cell and the target cell:

Epqrijk = [Dpqij – κUpqrijk]+ (30)

The morphogenetic gradient A(Epqrijk) that inf luences growth to cell

(i,j,k) increases as the growth cone κUpqrijk approaches (i,j,k), i.e. as

Epqrijk decreases. This property is captured by the equation:

(31)

As A(Epqrijk) increases, so too does the rate of axonal growth to cell (i,j,k),

but only if its activity zijk is positive, as in (29).

Development of the connections Upqrijk is restricted to a local, circular

window, such that:

Dpqij < Hrange/2 (32)

Parameter Hrange determines the spatial extent in which the growth of

horizontal connections is possible. The actual extent of growth may be

less than Hrange. In our simulations, the horizontal connections grew to a

length of nine iso-orientation columns (see Fig. 5). Figure 14d,h shows

how the vertical-to-vertical U kernel has developed just before eye

opening and after visual development self-equilibrates, respectively.

Equations (29)–(31) determine how, over time, activity correlations

among layer   2/3   cells produce a spatial distribution of axonal

connections. The four key parameters that inf luence this process are as

follows. (i) Parameter Utotal in (29) determines the total amount of axonal

growth out of each layer 2/3 cell. (ii) Parameter ψ in (29) determines the
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level of intracellular competition for axonal resources between different

axons. Reducing ψ causes the distributions of axonal connections to

become more isotropic. (iii) Parameter κ in equation (30) maps units of

axon growth into units of spatial distance, in order to calculate the

distance of an axon from its target. Increasing κ increases the length to

which axons are capable of growing. (iv) Parameter β in (31) affects the

shape of the chemical gradient that attracts an axon to its target. Raising

β f lattens this gradient and thus reduces the effect of distance on com-

petition in equation (29). Raising β thus causes the axonal distribution to

become more isotropic with respect to distance.

Learning of Layer 2/3 Excitatory Horizontal Synaptic

Weights

Once a horizontal axon reaches its target cell, then the strength of its

synaptic connection can be modified by activity-dependent correlations.

We use an instar learning law, which has become the standard law for

learning self-organizing maps (Grossberg, 1976a, 1980b; Kohonen, 1989).

During instar learning, the activity in the postsynaptic target cell turns on

learning, and the adaptive weight learns the expected value of the

presynaptic source cell's signals during intervals when the target cell is

active. Disynaptic inhibition can prevent a postsynaptic cell from firing

and thus, by instar learning, prevent the learning of irrelevant horizontal

connections (Hess and Donahue, 1994). The synaptic weights Vpqrijk

carried by the excitatory horizontal axons equal zero at the beginning of

training, and are updated using the instar learning equation:

(33)

in which the synaptic weight Vpqrijk tracks the presynaptic signal

B(Epqrijk)F(zpqr,Γ)Upqrijk at a rate proportional to its postsynaptic activity

zijk. The binary function B(Epqrijk) enables synaptic learning to begin

when the axon begins to connect to the target cell:

(34)

Then Vpqrijk tracks the strength of the signal F(zpqr,Γ)Upqrijk from the

source cell. At each position, there are four two-dimensional Vpqrijk

kernels corresponding to the four orientational combinations of r and k.

Figure 14e,i shows how the vertical-to-vertical Vpqrijk kernel has developed

just before eye opening and after visual development self-equilibrates.

Development of Layer 2/3 Disynaptic Inhibitory Connections

Layer 2/3 disynaptic inhibition (Fig. 1c) is mediated by two weights.

Weight calibrates the mutual inhibition between layer 2/3 in-

hibitory interneurons in equation (28), and weight calibrates the

inhibition of layer 2/3 pyramidal cells by layer 2/3 disynaptic inhibitory

interneurons in equation (26). These weights have only two spatial

indices because they are short-range interactions whose spatial extent is

limited to a single hypercolumn, indexed by (i,j). The indices r and k

denote the orientations of the source cell and target cell, respectively. The

weights start with zero values and develop using an outstar learning law

(Grossberg, 1968, 1980b).

Outstar learning of inhibitory connections is used to maintain the

balance between inhibition and excitation. Outstar learning accom-

plishes this by causing the inhibitory synaptic weights to track the

expected activation of the excitatory cells. If instar learning had been

used, then the inhibitory weights would have tracked the expected value

of the inhibitory cells. If an excitatory cell got more and more active, this

would not necessarily cause a balanced increase in inhibition. Instar

learning of excitatory connections was used in (33) to offset imbalances

in cell activation  patterns  while maintaining  the  selectivity  of cell

connections. Had outstar learning been used for that purpose, then

problems could have ensued. For example, suppose that two cells, A and

B, are learning excitatory connections to each other. Let cell A be active

90% of the time, and cell B be active 10% of the time. For simplicity,

assume the activities are independent and always equal to one. If outstar

learning were used, then the synaptic weight to cell A would approach

0.9, and the synaptic weight to cell B would approach 0.1. Therefore, the

discrepancy between the cells would increase. Outstar learning at the

horizontal layer 2/3 connections could hereby cause some cells to get

stronger and stronger, and could end up using all the axonal resources to

support connections to them, at the expense of other cells. However,

with instar learning, the weight to cell A would approach 0.1, and the

weight to cell B would approach 0.9, thereby reducing the discrepancy

between their mutual activations, without a loss of selectivity. It is for

these reasons that  instar and outstar learning were used to control

excitatory and inhibitory connections, respectively, in the model.

The outstar learning laws that are used to connect the inhibitory

kernels T+ and T– in equations (35) and (36) are:

(35)

(36)

Here, both types of inhibitory weights track their postsynaptic activities

at a rate proportional to their presynaptic inhibitory interneuron signal,

sijr. In equation (35), the postsynaptic activity is τ ΣpqR HpqRijkF(zpqR,Γ) and

in equation (36) the postsynaptic activity is sijk. Kernel T+ hereby tracks

the activity τ ΣpqR HpqRijkF(zpqR,Γ) of the target pyramidal cell's apical

dendrites, which is derived from layer 2/3 horizontal excitatory

connections. Kernel T– tracks the activity sijk of the target inhibitory

interneuron. Figure 14f,j shows how the vertical-to-vertical T + weight has

developed just before eye opening and after visual development

self-equilibrates, respectively. The vertical-to-vertical T – weight develops

similar values because the activity that it tracks, sijk, depends on

ΣpqR HpqRijkF(zpqR,Γ) in equation (28). The anisotropy that develops in

these kernels helps to simulate psychophysical data about perceptual

grouping (Grossberg and Raizada, 2000).

Development of Layer 4 Inhibitory Connections

The layer 4 surround inhibition (Fig. 1b) is mediated by weights

that carry mutual inhibition between layer 4 inhibitory interneurons in

equation (25), and weights that carry inhibition of layer 4

excitatory cells by layer 4 inhibitory interneurons in equation (20). These

inhibitory weights start from zero values and develop using an outstar

learning rule, in which learning is activated when the source cell turns

on. During these sampling intervals, weight strength approaches the

expected value of the target cell’s activity at a rate that covaries with the

source cell's activity. Such a learning law incorporates both Hebbian and

anti-Hebbian properties (Singer, 1983), since weight strength can either

increase or decrease to track and thereby balance its postsynaptic target

activity. Inhibitory learning rules of this type have also been used to

model dynamic receptive field changes produced by scotomas (Kalarickal

and Marshall, 1999). The learning laws for the W – and W + weights are:

(37)

(38)

in which the inhibitory weights track their postsynaptic activities at a

rate proportional to their presynaptic sampling signal, mpqr. The post-

synaptic activity is mijk in equation (37) and yijk (scaled by C3) in equation

(38). At each position, there are four two-dimensional W– kernels and four

two-dimensional W + kernels, corresponding to each combination of

vertical and horizontal connectivity, i.e. subscripts r and k in (37) and

(38). Learning of is restricted to a local, circular window of

sampled cells (i,j) around a source cell (p,q) such that:

(39)

All weights were initialized to zero at the beginning of training.

To reduce the computational load, the kernels were averaged across

spatial position after each integration step:
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(40)

where δ[a,b] = 1 if a = b; δ[a,b] = 0 otherwise, and N2 is the number of

cells in each layer. During training, N = 30. A similar approximation

procedure was also used to compute spatial averages of the kernels U, V,

T + and T –. Figure 14c,g shows how the vertical-to-vertical kernel W + has

developed just before eye opening and after visual development

self-equilibrates, respectively. Kernel W – develops in a similar way.

Parameters for the Developmental Equations (36) and (37)

Axon growth and synaptic weight update parameters are: δW = 1.0,

C3 = 6.0, Wrange = 7, δA = 0.25, Utotal = 44.0, ψ = 0.01, κ = 6.0, β = 8.0,

Hrange = 11, δV = 0.5, ε = 0.01, τ = 1.5.

Training Procedure

Model development occurred during two successive stages, as also occurs

in vivo. The initial coarse specification of horizontal connections prior to

eye opening is followed by a strengthening and increase in the selectivity

of these connections after structured vision begins. The unstructured

vision phase was modeled using uniformly distributed random noise

inputs which are Gaussianly filtered to induce local correlations (Fig. 2,

left). This Gaussian filtering uses the same standard deviation (σ = 0.5)

that was used to define each lobe of the simple cell receptive field in

equations (10) and (11). Following eye opening, inputs contain spatial

structure that is determined by objects in the world. We modeled these

structured visual inputs with randomly sized and positioned rectangles

(Fig, 2, right), in keeping with the idea that essentially all visual objects

have linear contours on a sufficiently small spatial scale. Rectangles were

appropriate in the present simulation study because the model only

represented horizontal and vertical orientations. Later work will use more

orientations and will train the model using real-world images. In the

present study, each input image contained seven rectangles, each with a

contrast that was randomly distributed between 0 and 2. The length and

width of each rectangle was determined by an iterative random process

in which each dimension started at zero pixels, grew (independently) by

one pixel at each iteration, and stopped growing with probability 0.1 at

each iteration. The images were processed with wrap-around in both the

x and y dimensions in order to avoid spurious boundary effects.

The training procedure consisted of presenting each randomly

generated image (see Fig. 2) and integrating cell activation equations

(3)–(28), using the fourth-order Runge–Kutta method, until equilibrium,

while keeping all the weights fixed. Equilibrium was considered achieved

when the average absolute activity change of layer 2/3 pyramidal cells,

defined in equation (26), fell below a threshold of 0.002. This typically

occurred after ∼ 20 iterations through equations (3)–(28). Then, a single

integration step of the developmental equations (36) and (37) was run

using the fourth-order Runge–Kutta method. This scheme captured the

main idea that development occurs slowly relative to the time-scale of cell

activation. Using this procedure, the network was trained with 20 000

unstructured images (Fig. 2, left) followed by 30 000 structured images

(Fig. 2, right). After presentation of ∼ 10 000 unstructured images, the

learning equations stabilized, and little change took  place until the

structured images were presented. A burst of new learning then took

place due to the different statistics of the structured images, and did not

stabilize until presentation of ∼ 15 000 structured images.
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