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Abstract

A self-organizing ARTEX model is developed to categorize and classify textured image
regions. ARTEX specializes the FACADE model of how the visual cortex sees, and the
ART model of how temporal and prefrontal cortices interact with the hippocampal system
to learn visual recognition categories and their names. FACADE processing generates a
vector of boundary and surface properties, notably texture and brightness properties, by
utilizing multi-scale filtering, competition, and diffusive filling-in. Its context-sensitive
local measures of textured scenes can be used to recognize scenic properties that grad-
ually change across space, as well as abrupt texture boundaries. ART incrementally
learns recognition categories that classify FACADE output vectors, class names of these
categories, and their probabilities. Top-down expectations within ART encode learned
prototypes that pay attention to expected visual features. When novel visual informa-
tion creates a poor match with the best existing category prototype, a memory search
selects a new category with which classify the novel data. ARTEX is compared with
psychophysical data, and is benchmarked on classification of natural textures and syn-
thetic aperture radar images. It outperforms state-of-the-art systems that use rule-based,
backpropagation, and K-nearest neighbor classifiers.



1 Introduction

1.1 Background and Benchmarks

The brain’s unparalleled ability to perceive and recognize a rapidly changing world has
inspired an increasing number of models aimed at exploiting these properties for purposes
of automatic target recognition. On the perceptual side, the brain can cope with variable
illumination levels and noisy scenic data that combine information about edges, textures,
shading, and depth that are overlaid in all parts of a scene. This type of general-purpose
processing enables the brain to deal with a wide range of imagery, both familiar and
unfamiliar. On the recognition side, the brain can autonomously discover and learn
recognition categories and predictive classifications that shape themselves to the statistics
of a changing environment in real time. The present article develops a new self-organizing
neural architecture that combines perceptual and recognition models that exhibit these
desirable properties.

These models have individually been derived to explain and predict data about how
the brain generates perceptual representations in the striate and prestriate visual cor-
tices (e.g., Arrington, 1994; Baloch & Grossberg, 1997; Francis & Grossberg, 1996; Gove,
Grossberg, & Mingolla, 1995; Grossberg, 1994, 1997; Grossberg, Mingolla, & Ross, 1997;
Pessoa, Mingolla, & Neumann, 1995) and uses these representations to learn attentive
recognition categories and predictions through interactions between inferotemporal, pre-
frontal, and hippocampal cortices (e.g., Bradski & Grossberg, 1995; Carpenter & Gross-
berg, 1993; Grossberg, 1995; Grossberg & Merrill, 1996). The perceptual theory in ques-
tion is called FACADE theory. It consists of subsystems called the Boundary Contour
System (BCS) and the Feature Contour System (FCS) that generate 3-D boundary and
surface representations that model the cortical interblob and blob processing streams,
respectively. The adaptive categorization and predictive theory is called Adaptive Reso-
nance Theory, or ART. ART models are capable of stably self-organizing their recognition
codes using either unsupervised or supervised incremental learning in any combination
through time (Carpenter & Grossberg, 1991; Carpenter et al., 1992).

The present work develops the ARTEX model to classify scenes that include complex
textures, both natural and artificial. The ARTEX architecture was built up from spe-
cialized versions of FACADE and ART models that have been designed to achieve high
competence in classifying textured scenes without also incorporating mechanisms that
are not essential for understanding this competence. Just as the properties of the FA-
CADE and ART models are “emergent” properties that are due to interactions of their
various parts, the properties of the ARTEX architecture are also emergent properties due
to interactions within and between its FACADE and ART modules. These new emergent
properties are not merely “the sum of the parts” of the modules of which they are derived,
and need to be analysed on their own terms.

In order to understand the emergent properties that are achieved by joining a FACADE



vision preprocessor to an ART adaptive classifier, ARTEX is benchmarked against state-
of-the-art alternative models of texture classification. Our most striking results are derived
through benchmark studies that classify natural textures from the Brodatz (1966) texture
album, which is often used as a standardized test of texture classification models. ARTEX
benchmarks emulated the conditions under which others benchmarked their algorithms
on Brodatz textures. A single trial of on-line incremental category learning by ARTEX
can outperform another leading model’s off-line batch learning using a complex rule-based
system (Greenspan, 1996; Greenspan et al., 1994). ARTEX also outperforms K-nearest
neighbor models in both accuracy and data compression, and multilayer perceptrons (back
propagation) in both accuracy and processing time.

The classification errors that ARTEX does produce are compared with human per-
ception of texture similarities (Rao & Lohse, 1993, 1996). A correlation exists between
the psychophysically measured similarity between two textures and the probability that
ARTEX will confuse them.

ARTEX is also used to classify regions in real-world scenes that have been processed
by synthetic aperture radar (SAR). SAR imagery has recently become popular in many
satellite image processing applications because the SAR sensor can penetrate variable
weather conditions (Novak et al., 1990; Waxman et al., 1995). The SAR images present
a challenge for texture classifiers because they contain pixel intensities that vary over
five orders of magnitude and are corrupted by high levels of multiplicative noise, yielding
incomplete and discontinuous boundary and surface representations. Results below on
natural texture and SAR images illustrate how pattern recognition models that are based
on biological principles and mechanisms can outperform models that have been derived
from more traditional engineering concepts.

1.2 Psychophysical Data and Model Properties

At least two different approaches exist to texture classification. In one approach, the focus
is on separating regions with different textures by finding the boundaries between them
(Bergen & Adelson, 1988; Fogel & Sagi, 1989; Gurnsey & Browse, 1989; Malik & Perona,
1990; Rubenstein & Sagi, 1990; Bergen & Landy, 1991). Another approach attempts to
classify the textures within small regions of a scene (Caelli, 1985, 1988; Bovik, Clark,
& Geisler, 1990; Jain & Farrokhnia, 1991; Greenspan et al., 1994). Such an approach
discovers texture boundaries by classifying the textures within each region differently. It
can also classify local regions whose textural properties vary gradually across space, and
thus are not separated by a distinct boundary.

Gurnsey and Laundry (1992) have provided psychophysical data in support of the
latter type of processing by showing that human texture recognition is only slightly im-
paired when the boundaries between different textures in a texture mozaic are blurred.
ARTEX does the latter type of classification. It derives a 17-dimensional feature vec-
tor from multiple-scale boundary features of the BCS and a surface brightness feature



of the FCS. This feature vector utilizes filters of four different scales, as suggested by
psychophysical experiments (Harvey & Gervais, 1978; Richards, 1979; Wilson & Bergen,
1979). The spatial filters are evaluated at four different orientations, thereby leading to a
16-dimensional (4 x 4) feature vector. The 17" dimension is a surface brightness feature.
The ARTEX model uses these feature vectors to generate a context-sensitive classification
of local texture properties. These BCS and FCS operations are designed to be as simple
and fast as possible without incurring a loss of accuracy in classifying texture data.

A large psychophysical literature supports the FACADE hypothesis that the human
brain forms distinct boundary and surface representations before they are bound together
by object recognition categories. Experimental results that support the role of boundary
representations include the following: (1) Object superiority effects occur using outline
stimuli with little surface detail (Davidoff & Donnelly, 1990; Homa, Haver, & Schwartz,
1976). (2) The number of errors in tachistoscopic recognition and the speed of identifica-
tion are often comparable using appropriately and inappropriately colored objects (Mial,
Smith, Doherty, & Smith, 1979; Ostergaard & Davidoff, 1985). (3) There is no difference
in recognition speed using black-and-white photographs or line drawings that are carefully
derived from them (Biederman & Ju, 1988).

Several types of data also implicate a separate surface brightness and color process.
These include the following: (4) Colored surfaces may be bound to an incorrect form dur-
ing illusory conjunctions (McLean, Broadbent, & Broadbent, 1983; Stefurak & Boynton,
1986; Treisman & Schmidt, 1982). (5) Color can facilitate object naming if the object-
s to be named are structurally similar or degraded (Christ, 1975; Price & Humphreys,
1989). (6) Colors are coded categorically prior to the processing stage at which they
are named (Davidoff, 1991; Rosch, 1975). Two of the most recent studies in support
of the boundary-surface distinction were carried out by Elder and Zucker (1998) and
Rogers-Ramachandran and Ramachandran (1998).

FACADE theory proposes that 3-D boundary and surface features that are formed
in the prestriate visual cortex are categorized in the inferotemporal cortex (Grossberg,
1994, 1997). Both boundary and surface properties are proposed to be combined during
the categorization process within bottom-up and top-down adaptive pathways that are
modeled by an ART system. Two consequences of this conception are that unambiguous
boundaries can generate category recognition by themselves, and that boundaries can
prime 3-D object representations even if they need to be supplemented by 3-D surface
information in order to achieve unambiguous recognition. Cavanagh (1997) has reported
data consistent with this latter prediction.

In the ARTEX implementation of this concept, the feature vectors that are formed
from the 17-dimensional boundary and surface features of the FACADE preprocessor are
input to an ART classifier, which categorizes the textures using a biologically-motivated
learning algorithm. Humans learn to discriminate textures by looking at them and be-
coming sensitive to their statistical properties in small regions. This is how our model is
trained. Intuitively speaking, model training is like having an observer look at a number



of locations and trying to learn to categorize them based on their local properties. The
ART classifier we used, called Gaussian ARTMAP, or GAM, incrementally constructs
internal categories that have Gaussian receptive fields in the input space, and that map
to output class predictions (Williamson, 1996, 1997). Cells with Gaussian receptive fields
are ubiquitous in the brain, and have been used to model data about how the inferotem-
poral cortex learns to categorize visual input patterns (Logothetis et al., 1994). Such
models are not, however, typically able to self-organize their own recognition categories
and to autonomously search for new ones with which to classify novel input patterns.
ART models overcome this weakness by showing how complementary attentional and ori-
enting systems are designed with which to balance between the processing of familiar and
expected events, on the one hand, and unfamiliar and unexpected events on the other
(Carpenter & Grossberg, 1991; Grossberg, 1980; Grossberg & Merrill, 1996). All learned
categorization goes on within the attentional system. The orienting subsystem is acti-
vated in response to events that are too novel for the attentional system to successfully
categorize them. Interactions between the attentional and orienting subsystems then lead
to a memory search which discovers a more appropriate population of cells with which
to categorize the novel information. These interactions are designed to explain how the
brain continues to learn quickly about huge amounts of new information throughout life,
without being forced to just as quickly forget useful information that it has previously
learned.

After each input is presented (i.e., each location is “observed”), GAM automatically
activates cells whose receptive fields adapt to represent the input by amounts proportional
to their level of match with the input. However, if the input is too novel for any existing
receptive field to match the input well enough, then a memory search is triggered which
leads to the selection of a previously uncommitted cell population with which a new cate-
gory can be learned. During unsupervised learning, the correct names of the regions that
are being classified are not supplied, and the level of match that is required for a category
to learn is constant. The parameter that determines this degree of match is called the
“vigilance” parameter because it computationally realizes the intuitive process of being
more or less vigilant in respose to information of variable importance (Carpenter & Gross-
berg, 1991). Low vigilance allows the network to learn general categories in which many
input exemplars may share the same category prototype. High vigilance enables the net-
work to learn more specific categories, even categories in which only a single exemplar may
be represented. Thus the choice of vigilance can trade between prototype and exemplar
learning, even within a single ART system. Experimental evidence consistent with vigi-
lance control has been reported in monkeys when they attempt to perform classifications
during easy vs. difficult discriminations (Spitzer, Desimone, & Moran, 1988).

Learning typically starts with a low vigilance value, which leads to the formation
of the most general categories that are consistent with the input data. Because ART
models are self-organizing, such learning can proceed on its own in an unsupervised mode.
Starting with a low vigilance value conserves memory resources, but it can also create the
tendency, also found in children, to overgeneralize until further learning leads to category



refinement (Chapman, et al., 1986; Clark, 1973; Smith et al., 1985; Smith & Kemler, 1978;
Ward, 1983). For example, it might happen that, after learning a category that classifies
variations on the letter “E”, the letter “F” will also activate that category, based on the
visual similarity between the two types of letters. The difference between the letters “E”
and “F” is determined by cultural factors, not by visual similarity. Supervised learning
is often essential to prevent errors based on input similarity which do not correspond to
cultural understandings, or other environmentally dependent factors. ART models can
operate in both unsupervised and supervised learning modes, and can switch between the
two seamlessly during the course of learning.

During supervised learning, the vigilance parameter, or required match level, is raised
if an incorrect prediction is made (e.g., if there is negative reinforcement) by just e-
nough to trigger a memory search for a new category. This type of vigilance control
sacrifices category generality only when more specific categories are needed to match the
statistical properties of a given environment. Categories of variable generality are hereby
automatically learned based upon the success or failure of previously learned categories
in predicting the correct classification. A block diagram of the ARTEX architecture is
shown in Figure 1.

2 Multiple-scale Oriented Filter

The ARTEX multiple-scale oriented filter further develops the BCS filter that was intro-
duced to explain texture data in Grossberg and Mingolla (1985). Variants of this BCS
filter have since become standard in many texture segmentation algorithms (Malik &
Perona, 1989; Sutter, Beck, & Graham, 1989; Bovik et al., 1990; Bergen, 1991; Bergen &
Landy, 1991; Jain & Farrokhnia, 1991; Graham, Beck, & Sutter, 1992; Greenspan et al.,
1994).

Figure 2 diagrams the ARTEX version of BCS processing (Stages 1-5) for a single
spatial scale. As in Richards (1979), we used 4 spatial frequency channels. Each chan-
nel computed 4 orientational contrast features. These filter equations and parameters
are described in Appendix I. A functional description is given here. Stage 1 of the BCS
filter uses an on-center off-surround network whose cells obey membrane equations, or
shunting laws (Grossberg, 1980, 1983) to discount the illuminant, compute contrast ra-
tios of the image, and normalize image intensities. Stage 2 accomplishes multiple-scale
oriented filtering using odd-symmetric Gabor filters at the 4 orientations and spatial s-
cales. Stage 3 computes a local measure of absolute orientational contrast by full-wave
rectifying the filter activities from Stage 2. These operations are neurally interpreted as
follows: Stage 1 operations occur in the retina and LGN, Stage 2 operations at corti-
cal simple cells, and Stage 3 operations at cortical complex cells (Grossberg & Mingolla,
1985). Stage 4 simplifies the BCS operations of boundary grouping by computing a s-
mooth, reliable measure of orientational contrast that spatially pools responses within the
same orientation. Stage 5 performs an optional orientational invariance operation which
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shifts orientational responses at each scale into a canonical ordering. This computation
shifts, with wrap around, the smoothed orientational responses from Stage 4 so that the
orientation with maximal amplitude is in the first orientation plane. The usefulness of
this operation is task-dependent, as shown by our simulations below.

Graham et al. (1992) also simplified Stage 4 of the BCS by pooling responses from
Stage 3. They then used a hand-crafted sigmoidal discrimination measure to convert
Stage 4 output into a probabilistic output function that could be compared with subjects’
ratings of texture discriminability. In the present benchmark studies, the BCS filter
outputs forms part of the input vector to a GAM classifier which autonomously learns
the probabilistic recognition categories with which texture discriminations are made. We
note in Section 3 how the Graham et al. (1992) study has been extended to explain a larger
data base about texture discrimination using additional FACADE theory mechanisms.

3 Filled-in Surface Brightness

The FACADE model suggests how the BCS and FCS interact to generate filled-in 3-D
surface representations within the FCS. These surface representations are derived from
scenic data after the illuminant has been discounted, as in Stage 1 of Figure 2. In general,
these surface representations combine information about brightness, color, depth, and
form. Our simulations below demonstrate the utility of using a filled-in surface brightness
feature to help learn recognition categories for texture discrimination.

The simplest surface feature is one that is based on first-order differences in illumi-
nation intensity. An improved surface feature discounts the illuminant to compute a
meagsure of local contrast. Such a feature, however, can still be corrupted by various sorts
of specular noise in an image. In the brain, such noise can be due to the blind spot, retinal
veins, and the retinal layers through which light must pass to activate photodetectors.
In artificial sensors, too, such noise can derive from sensor characteristics. Discounting
the illuminant is also insensitive to contextual groupings of image features. A filled-in
surface brightness feature overcomes these deficiencies by smoothing local contrast val-
ues when they belong to the same region, while maintaining contrast differences when
they belong to different regions. Filling-in hereby smoothes over image noise in a form-
sensitive way, and generates a representation that reflects properties of a region’s form by
being contained within the region boundaries. It also tends to maximize the separability,
in brightness space, of different region types by minimizing within-region variance while
maximizing between-region variance. This sort of preattentive and automatic separation
simplifies the task of an attentive pattern classifier such as GAM.

In Grossberg et al. (1995), a multiple-scale FACADE network was developed to pro-
cess noisy SAR images for use by human operators. There the goal was to generate
reconstructions of SAR images that were pleasing to the eyes of expert photointerpreter-
s. The BCS in this simulation used a grouping network with a feedback process that
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can complete and sharpen boundary representations. These boundary groupings created
sharply delineated image regions and filled-in surfaces. Although such a feedback group-
ing network has the remarkable property of converging within 1 to 3 feedback iterations,
it still has the disadvantage, at least in software simulations, of slowing down processing
time.

Here we replace the full BCS filter and grouping network by a multiple-scale BCS
filter and a single scale of one-pass feedforward boundary processing to control filling-in
of the brightness feature. Computer simulations summarized below demonstrate that this
simplification does not impair classification benchmarks on Brodatz textures and on SAR
textured scenes. The simplified boundary segmentation is, moreover, computationally 75
times faster than the feedback network. The slower feedback benchmarks are not reported
here. Accurate texture classification thus does not seem to depend upon photorealism of
the corresponding percept. Stages 6-9 of Figure 2 show how the BCS filter output is used
to derive the one-pass boundary segmentation. Appendix II contains the equations and
parameters of this simplified brightness filling-in process.

These FACADE preprocessing results can be placed into a larger framework to better
understand their relevance for understanding human texture discrimination. Three issues
need to be considered: (1) the use of a simplified Stage 4 spatial pooling operation instead
of long-range grouping by a feedback network; (2) the role of surface representations;
and (3) the need for 3-D boundary and surface representations. When are long-range
groupings, such as illusory contours, not needed to improve texture discriminability?
This is more true when the images contain dense enough textures to obviate the need for
grouping over long distances. Not all of the data considered even by Graham et al. (1992)
were of this type, however, since their displays contained regularly placed features that
could group together in orientations colinear, perpendicular, or oblique to their defining
edges. Cruthirds et al. (1993) showed that a multiple-scale BCS filter, supplemented by
the long-range groupings of a feedback network, could simulate the pairwise ordering of
human ratings of texture discriminability better than the Graham et al. (1992) variant
of the BCS filter on its own.

Grossberg and Pessoa (1997) have simulated a variant of FACADE theory in which
both 2-D and 3-D boundary and surface operations were needed to simulate psychophys-
ical data about the discrimination of textured regions composed of regular arrays of
equiluminant colored regions on backgrounds of variable luminance, as in the experi-
ments of Beck (1994) and Pessoa, Beck, & Mingolla (1996). This latter simulation study
was restricted, however, to textures composed of colored squares on achromatic back-
grounds, rather than the stochastic factors that arise in Brodatz and SAR textures. The
Grossberg and Pessoa (1997) study also does not analyze how recognition categories for
discriminating textures are learned. Taken together, however, these several studies pro-
vide converging evidence that FACADE mechanisms can explain challenging properties
of data concerning human texture segregation.

10



4 ART Heuristics

The 16-dimensional feature vector produced by Stages 1-5 (representing orientational
contrast at 4 orientations and 4 spatial scales) and the single filled-in brightness feature
produced by Stages 6-9 yield a 17-dimensional boundary-surface feature vector. GAM
must learn a mapping from the input space populated by these feature vectors to a discrete
output space of associated region class labels. As noted above, GAM shares a number of
key properties with other ARTMAP architectures (Carpenter, Grossberg, and Reynolds,
1991; Carpenter et al., 1992). GAM learns mappings incrementally, without any prior
knowledge of the problem domain, by self-organizing an efficient set of recognition cate-
gories that shape themselves to the statistics of the input environment, as well as a map
from recognition categories to class labels, which are supplied during supervised learning,.
Because GAM learns its mappings incrementally, a previously trained GAM network may
be retrained with new input/output contingencies, including new class labels, without
any need to retrain the network on the previous data. Finally, although GAM is trained
only with individual class labels, it also learns to accurately estimate the probabilities of
its class label predictions, as we show in our simulations below.

In a typical ART network (Carpenter & Grossberg, 1987, 1991), an input vector
activates feature selective cells within the attentional system that store the vector in
short-term memory. This short-term memory pattern then activates bottom-up pathways
whose signals are filtered by learned adaptive weights, or long-term memory traces. The
filtered signals are added up at target category nodes which compete via recurrent lateral
inhibition to determine which category activities will be stored in short-term memory and
thereby represent the input vector. The degree of activation of a category provides an
estimate of the likelihood that an input belongs to the category. Activating a category is
like “making a hypothesis”.

As they are being activated, the selected categories read-out learned top-down expecta-
tions, or prototypes, which are matched against the input vector at the feature detectors.
This matching process plays the role of “testing the hypothesis”. The vigilance parameter
defines the criterion for a good enough match. As noted above, low vigilance leads to the
learning of general categories, whereas high vigilance leads to the learning of specialized
categories, even a single exemplar, in the limit of very high vigilance. By varying vigilance,
an ART system can hereby learn both abstract prototypes and concrete exemplars.

If the chosen category’s match function exceeds the vigilance parameter, then the
bottom-up and top-down exchange of feedback signals locks the system into a resonant
state. The resonant state signifies that the hypothesis matches the data well enough to be
accepted by the system. ART proposes that these resonant states focus attention upon
relevant feature combinations, and that only resonant states enter conscious awareness
(Grossberg, 1980). Resonance triggers learning in both the bottom-up adaptive weights
that are used to activate the selected recognition category, and in the top-down weights
that represent its prototype. This learning incorporates the new information supplied by
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the input vector into the long-term memory of the attentional system.

If the category’s match function does not exceed vigilance, this designates that the
hypothesis is too novel to be incorporated into the prototype of the active category. A
bout of memory search, or hypothesis testing, is then triggered through activation of the
orienting system. Memory search either discovers a category that can better represent
the data or, if no such learned category already exists, automatically chooses uncommit-
ted cells with which to learn a new category. ART hereby incrementally discovers new
categories whose degree of generalization varies inversely with the size of the vigilance
parameter. Neurobiological data about recognition learning in inferotemporal cortex that
are consistent with these hypotheses are reviewed by Carpenter and Grossberg (1993) and
Grossberg and Merrill (1996).

All of the above properties proceed autonomously in ART networks as they undergo
unsupervised learning. ARTMAP extends these ART designs to include both supervised
and unsupervised learning (Carpenter, Grossberg, & Reynolds, 1991; Carpenter et al.,
1992). In ARTMAP, the chosen ART categories learn to make predictions which take the
form of mappings to the names of output classes. In such an ARTMAP system, many
different recognition categories can all learn to map into the same output name, much as
many different visual fonts of a given letter of the alphabet can be grouped into several
different visual recognition categories, based upon visual similarity, before these visual
categories are mapped into the same auditory category that is used to name that letter.

ARTMAP systems propose how to correct a prediction, as in the case where the letter
“E” is disconfirmed by environmental feedback that the correct letter is “F”, using only
local operations in environments that may be filled with unexpected events. ARTMAP
does this using a minimaez learning principle, which conjointly maximizes predictive gen-
eralization while it minimizes predictive error. ARTMAP does this by trying to form the
largest categories that are consistent with environmental feedback. A match tracking pro-
cess realizes this principle by increasing the vigilance value after each disconfirmation until
it exceeds the chosen category’s match function. This vigilance increase is the minimal
one that can trigger new hypothesis testing on that learning trial. Match tracking hereby
gives up the minimum amount of generalization that is required to correct the error. In
summary, an ARTMAP system organizes its categorization of experience based both on
the similarity of the input feature vectors and upon feedback from the environmental
response, whether culturally or otherwise determined, to the names or other behaviors
that its categories predict.

5 Gaussian ARTMAP

Gaussian ART (Williamson, 1996, 1997) provides a means for an ART system to learn
the statistics of an input environment. Each of its categories defines a Gaussian distribu-
tion in the input space, with a mean and variance in each input dimension, as well as an

12



overall ¢ prior: probability. The Gaussian ART bottom-up activation function evaluates
the probability that the input belongs to a category, given its Gaussian distribution and
a priori probability. The match function evaluates how well the input fits the category’s
distribution, which is normalized to a unit height. This match is a measure of the dis-
tance, in units of standard deviation, between the input vector and the category’s mean.
Vigilance specifies the maximum allowable size of this distance.

Gaussian ART also uses distributed learning, in which multiple categories can all
cooperate to classify an input event. Gaussian ART hereby avoids the problems incurred
by “grandmother cell” models of recognition. Each such category is assigned credit based
on its proportion of the net activation, which is determined by all categories whose match
functions satisfy the vigilance criterion. Each category then learns by an amount that
is determined by its credit. When Gaussian ART is extended to Gaussian ARTMAP
to enable it to benefit from both supervised and unsupervised learning, each category’s
credit is determined by its proportion of the net activation of its ensemble, which consists
of all categories that map to the same output prediction. The normalized strength of
each ensemble’s prediction is a probability estimate for that prediction. The equations
and parameters for Gaussian ARTMAP are found in Appendix III.

6 Some Alternative Texture Classifiers

6.1 Comparison of Feature Extraction Methods

In order to evaluate the promise of any vision system, particularly one that attempts to
explain such a complex competence as textured scene classification, one needs to evaluate
that it really “works”. This is particularly the case when the key behavioral properties
emerge due to interactions across the entire system. There is thus no substitute for running
such a system on benchmarks on which competing systems have also been evaluated.
Our benchmark comparisons, presented in Section 7, evaluate ARTEX under conditions
that are as similar as possible to those under which these competing systems have been
evaluated.

ARTEX performance is first compared to that of a system that was used to classify
natural textures in Greenspan et al. (1994) and Greenspan (1996). We call their model
the Hybrid System because it is a hybrid architecture that used a log-Gabor Gaussian
pyramid for feature extraction followed by one of three alternative classifiers. Although
the Hybrid System was not developed to explain biological data, it has the virtue of
having been developed to the point that it could be successfully tested on benchmark
data bases that use textures or textured scenes as their inputs. Most other biologically
derived models have not yet reached this level of development.

The Hybrid System’s log-Gabor pyramid uses three levels, or spatial scales, and four
orientations at each scale. Each level, after the first one, of the Gaussian pyramid is
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obtained by blurring the previous lower level (i.e., smaller spatial scale) with a Gaussian
kernel (with standard deviation ¢ = 1) and then decimating the image (i.e., removing
3 out of 4 pixels in each 2x2 pixel block). Due to decimation, the Gaussian at each
successive level effectively has twice the ¢ of the Gaussian used in the previous level. The
final outputs of all three pyramid levels of the Hybrid System have the same net amount
of blurring, produced by three successive blur/decimate steps. This amount of blurring
is equivalent to convolving with a single Gaussian kernel with o = /21 = /12 + 22 4 42,
which produces an 8x8 pixel resolution. That is, each patch of 8 x 8 pixels in the input
image yields a single pixel in an output image for each oriented contrast feature. In
Greenspan (1996), classification results at 16 x 16, 32 x 32, and 64 x 64 resolution were
also reported.

Without further preprocessing, ARTEX produces feature images at single pixel reso-
lution. To make a fair comparison with the results reported by Greenspan et al. (1994)
and Greenspan (1996), ARTEX feature images need to be reduced, via blurring and dec-
imation, to the same resolution used there. For example, to change the ARTEX features
to 8 x 8 resolution, the smaller-scale ARTEX features require additional blurring prior to
decimation so that their net amount of blurring is equivalent to convolving with a single
Gaussian kernel with o = /21.

The net amount of blurring is a crucial consideration for the two types of tasks on which
the systems are compared. The first task is classification of a library of texture images.
Because this task does not include transitions between different textures, performance
monotonically improves as blurring is increased, since blurring reduces variance and thus
improves the signal-to-noise ratio. The second task is classification of a texture mosaic.
Here, texture transitions need to be accurately resolved, so performance degrades with
over-blurring. We demonstrate both of these phenomena below.

6.2 Comparison of Classification Methods

In the Hybrid System’s first classification scheme, the extracted features are clustered
independently in each feature dimension using the K-means procedure. Mappings from
these clusters to class labels are then formed using a batch learning, rule-based algorithm
called ITRULE (Goodman, et al., 1992). The clusters in this scheme are formed to dis-
cretize the input, so that ITRULE can form explicit rules mapping them to the output
classes. ITRULE forms a large number of rules. The exact number is never stated in
Greenspan (1996). On the large problems, however, a maximum of 10,000 is allowed, and
as many as 430 rules per class are reported for discriminating only two textures. Anoth-
er drawback of this approach is that unsupervised discretization via K-means clustering
throws away potentially important information because the clusters may span discrimi-
nation boundaries in the input space. Finally, GAM enjoys a major practical advantage
in that it uses a simple incremental learning procedure as opposed to the complex and
computationally expensive batch learning procedure used by ITRULE.
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The two alternative classifiers used in Greenspan (1996) are standard incremental
learning schemes: the K-nearest neighbor (K-NN) classifier and the multilayer percep-
tron (MLP), backpropagation algorithm. These two approaches have complementary
advantages and flaws. K-NN learns quickly (one training epoch) but achieves no data
compression. MLP, on the other hand, achieves better data compression but learns very
slowly (500 slow-learning training epochs in Greenspan, 1996). An additional drawback
of MLP is that it uses a form of mismatch learning that may suffer from “catastrophic
forgetting” if trained on new data with different contingencies from previous data. As
demonstrated by our results below, GAM combines the good properties of the above three
clagsifiers: like ITRULE, GAM predicts the posterior probabilities of the output classes;
like K-NN, GAM learns local mappings quickly; like MLP, GAM achieves significant data
compression. Although GAM use a more local representation than MLP, and thus could,
in principle, require more memory, GAM compensates for this by constructively forming
a representation of appropriate size for whatever problem it is trained on.

7 Texture Classification Results

7.1 10-Texture Library

ARTEX was first compared to the Hybrid System on the library of ten textures shown in
Figure 3A, whose top row contains structured textures and whose bottom row contains
unstructured textures. Each texture image consists of 128 x 128 pixels. Three other
images of each texture are not shown. In Greenspan (1996), classification results of
the Hybrid System using ITRULE, K-NN, and MLP classifiers were published for this
database. The classifiers were trained on data at three different levels of spatial resolution,
with a different number of training samples per class at each resolution: 300 samples at 8
x 8 resolution, 125 samples at 16 x 16 resolution, and 40 samples at 32 x 32 resolution.
ARTEX was trained on the same data set under the same conditions. Like the Hybrid
System, ARTEX used an orientationally variant, or OV, representation on this problem
since generalization to novel orientations of the same texture during testing was not
required. ARTEX was evaluated with five random orderings of the data, and the results
were averaged.

Table 1 shows comparative results for the Hybrid System and ARTEX at the three
spatial resolutions. Table 1 lists the classification rate, number of epochs, and number
of categories (or hidden units, stored exemplars, etc.) for each system configuration.
The number of epochs indicates how many training trials were needed. The number of
categories indicate how well the model compresses the data. In the case of K-NN, there
is no compression, so each input or exemplar forms a different category. The number
of weights indicate the memory resources, or computational complexity, that is needed
to achieve this degree of compression. The goal is to minimize the number of epochs,
categories, and weights. 60 hidden units are listed for MLP because the average MLP
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Figure 3: (Next page). A) 10-texture database of textures corresponding to Figure 2 of Greenspan
et al. (1994). Top row consists of structured textures, and bottom row of unstructured textures.
Textures from Brodatz album are labeled with plate number. Top row (left to right): raffia (D84),
herringbone weave (D17), french canvas (D21), cotton canvas (D77), jeans. Bottom row (left to
right): grass (D9), pressed cork (D4), handmade paper (D57), pigskin (D92), and wool (D19). B)
42-texture database from Brodatz album. ROW 1: reptile skin (D3), cork (D4), wire (D6), grass
(D9), bark (D12), straw (D15). ROW 2: herringbone (D17), wool (D19), french canvas (D21), calf
(D24), sand (D29), water (D38). ROW 3: straw matting (D55), handmade paper (D57), wood
(D68), cotton canvas (D77), raffia looped (D84), pigskin (D92). ROW 4: fur (D93), crocodile
skin (D10), homespun wool (D11), raffia weave (D18), ceramic brick (D26), netting (D34). ROW
5: lizard skin (D36), straw screening (D49), raffia woven (D50), oriental cloth (D52), oriental
cloth (D53), oriental rattan (D65). ROW 6: plastic pellets (D66), oriental grass fiber (D76),
oriental cloth (D78), oriental cloth (D80), oriental cloth (D82), woven matting (D83). ROW T7:
straw matting (D85), sea fan (D87), brick (D95), burlap (D103), cheesecloth (D105), grassy fiber
(D110).
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10-Texture Problem

Configuration Class. Rate | # Samples/Class | # Epochs | # Categories | # Weights
8 x 8 Resolution:
Hybrid System, ITRULE 94.3% 300 Batch — —
Hybrid System, MLP 94.5% 300 500 60 1,500
Hybrid System, K-NN 87.0% 300 1 3,000 48,000
ARTEX, all features 95.8% 300 1 26.6 958
ARTEX, all features 96.3% 300 5 34.0 1,224
ARTEX, no large-scale features 97.1% 300 5 41.0 1,148
ARTEX, no brightness feature 95.6% 300 5 38.4 1,306
ARTEX, no large-scale or 95.7% 300 5 47.2 1,227
brightness features
16 x 16 Resolution:
Hybrid System, ITRULE 95.0% 125 Batch — —
Hybrid System, MLP 96.0% 125 500 60 1,500
Hybrid System, K-NN 93.0% 125 1 1,250 20,000
ARTEX, all features 97.2% 125 1 17.4 626
32 x 32 Resolution:
Hybrid System, ITRULE 97.8% 40 Batch — —
Hybrid System, MLP 100.0% 40 500 60 1,500
Hybrid System, K-NN 99.0% 40 1 400 6,400
ARTEX, all features 100.0% 40 1 10.6 382

Table 1: Recognition statistics on 10-texture library at three pixel resolutions: 8 x 8, 16 x 16,
and 32 x 32. The number of weights is determined by multiplying the number of categories times
the number of weights per category, or WPC. WPC' is calculated based on the dimension of the
input space, M, and the number of output classes, K. M =15 for the Hybrid System, M =17 for
ARTEX, and K =10 because there are 10 textures. For MLP, WPC = M+ K = 25. For K-NN,
WPC = M+1 = 16. For ARTEX with all features, WPC = 2M +2 = 36. For ARTEX with
no large-scale features (M =13), WPC = 28. For ARTEX with no brightness feature (M = 16)
, WPC = 34. For ARTEX with no large-scale or brightness features (M = 12), WPC = 26.
For example, the 48,000 weights for K-NN are computed as follows. The Hybrid System uses 15
features per input sample. With K-NN, these 15 features plus the correct class label must be
stored for each training sample. Therefore, the number of weights that must be stored is 16 X
(number of training samples). Since there are 300 samples/class and 10 classes, there are 3,000
training samples. In all 16 x 3,000 = 48,000 weights.
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results were reported for 30, 60, and 90 hidden units.

ARTEX was tested with several configurations, with different subsets of its features
removed. With its full 17-dimensional feature set, ARTEX achieved 95.8% correct after
only one incremental training epoch, and 96.3% after five epochs. By comparison, the
Hybrid System with K-NN achieved only 87.0% correct after one training epoch, at the
cost of 3,000 stored exemplars compared to 23 internal categories for ARTEX. With
much longer training times (i.e., 500 training epochs using MLP, or the computationally
expensive batch-learning procedures using K-means and ITRULE), the Hybrid System
did not match the performance of ARTEX with only one incremental learning epoch, and
exhibited 49% more errors than ARTEX with 5 training epochs.

Three alternative ARTEX configurations were also tested to elucidate why ARTEX
achieved better results than the Hybrid System. ARTEX uses four spatial scales versus
only three for the Hybrid System. Therefore, perhaps its largest spatial scale conferred an
advantage to ARTEX. This possibility was tested by removing the largest scale, resulting
in a slight performance increment (97.1%). Another unique feature used by ARTEX is its
filled-in surface brightness feature, which seems to be more effective than the multi-scale
Gaussian blurring used by the Hybrid System. Removing the brightness feature resulted
in a performance decrement (95.6%). This difference quantifies how much surface as
opposed to boundary properties influence recognition accuracy on these data. Finally,
both the large-scale and the brightness features were removed. This resulted in a similar
performance decrement (95.7%).

The modest role played by the surface brightness feature in classifying these data is
consistent with cognitive evidence summarized above suggesting that boundary inputs
that go directly to the human cognitive recognition system are often sufficient to ac-
curately recognize many objects. Surface brightness and color properties become more
important insofar as the boundary information, by itself, is ambiguous. Given that bound-
aries are predicted to be perceptually invisible within the BCS itself (viz., the interblob
cortical processing stream), these results are consistent with the possibility of being able
to quickly begin to recognize certain objects using their invisible boundaries even before
these objects become visible through their surface properties.

The ARTEX advantage, even with five ARTEX features removed, is probably due to
some remaining differences between the systems: (1) the nature of band-pass filtering prior
to orientational filtering, (2) the bandwidth characteristics of the orientational filters, (3)
spatial pooling at the third spatial scale, and/or (4) the classification scheme. The first
difference is in the Stage 1 band-pass filtering operation prior to the orientational Gabor
filtering. The Hybrid System uses a Laplacian pyramid in which both the center and
surround Gaussians that make up the band-pass filter double in size with each scale. In
ARTEX, on the other hand, only the surround Gaussian grows with each successive spatial
scale. It preserves on-center resolution while varying the scale of image normalization
and noise suppression. Thus, the Hybrid System is much more restrictive in the range of
spatial frequencies that are passed through to its orientational filtering stage. The second
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difference is that the oriented filters used by the two models have different bandwidth
characteristics: the ARTEX Gabor filters are defined with higher-frequency sinewaves
(50% higher frequency; see Appendix I for parameters). The third difference is that
Stage 4 of ARTEX performs spatial pooling following orientational filtering at each spatial
scale. The Hybrid System does not do this in its largest spatial frequency channel at 8 x 8
resolution. Therefore, this discrepancy might help explain why ARTEX outperforms the
Hybrid System at 8 x 8 resolution, but not at lower resolutions. The fourth difference
is the classification stage. The advantages of the self-organizing Gaussian ARTMAP
clagsifier over those used by the Hybrid System are described above.

7.2 Larger Texture Libraries

In Greenspan (1996), recognition statistics of the Hybrid System on a 30-texture library
were presented. This library consists of 19 textures from the Brodatz album, and 11
additional textures of comparable complexity. We were unable to obtain this database,
and so we chose to evaluate ARTEX on a library of similar textures obtained solely from
the Brodatz album, which contains the 19 textures used in Greenspan (1996) as a subset.
Figure 3B shows this library of 42 Brodatz textures. The plate numbers from the Brodatz
album are listed in the caption. The 19 textures evaluated in Greenspan (1996) comprise
the first three rows of Figure 3, as well as the first texture of the fourth row.

ARTEX was trained on this database at the same three resolutions as above, as well
as at a 64 x 64 pixel resolution, which uses 12 samples per class. It is useful to compare
performance at different resolutions. However, the training set sizes used in Greenspan
(1996) are not consistent across resolutions. Using 12 samples per class at 64 x 64
resolution corresponds to using 768 samples per class at 8 x 8 resolution, rather than the
300 samples per class that were actually used, in terms of the image extent from which
the samples are actually derived. Therefore, in order to obtain a meaningful measure of
the performance increment resulting from 64 x 64 pixel resolution versus 8 x 8 resolution,
we also trained ARTEX using 768 samples per class, as well as 300 samples per class, at
8 x 8 resolution.

ARTEX was evaluated on different-sized subsets of the library shown in Figure 3.
ARTEX was evaluated on row 1 (6 textures), on rows 1 and 2 (12 textures), on rows
1-3 (18 textures), etc., up to all 42 textures. ARTEX was evaluated with five random
orderings of the data, and the results were averaged. For the 300 samples/class case,
the results are shown after 5 training epochs, and for the 768 samples/class case, the
results are shown after 2 training epochs. Thus, GAM was trained on about 1,500 net
samples/class in both cases.

Figure 4 plots the results at 8 x 8 resolution for all the texture set sizes, from 6
up to 42 textures. Figure 4 (top) plots the classification rates, and Figure 4 (bottom)
plots the average number of categories that were learned in the ensembles that predicted
each texture class. Note that the classification rate degrades gracefully as the number of
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30-Texture Problem

Configuration Class. Rate | # Samples/Class | # Epochs | # Categories | # Weights
8 x 8 Resolution:

Hybrid System, ITRULE 80.0% 300 Batch — —
Hybrid System, MLP 89.6% 300 500 60 2,700
Hybrid System, K-NN 82.0% 300 1 9,000 144,000
ARTEX 92.5% 300 5 208.0 7,488
ARTEX 94.3% 768 2 357.6 12,874
16 x 16 Resolution:

Hybrid System, ITRULE 84.0% 125 Batch — —
Hybrid System, MLP 93.4% 125 500 60 2,700
Hybrid System, K-NN 88.0% 125 1 3,750 60,000
ARTEX 95.5% 125 1 68.0 2,448
32 x 32 Resolution:

Hybrid System, ITRULE 94.4% 40 Batch — —
Hybrid System, MLP 98.2% 40 500 60 2,700
Hybrid System, K-NN 96.6% 40 1 1,200 19,200
ARTEX 98.9% 40 1 38.4 1,382
64 x 64 Resolution:

Hybrid System, ITRULE 97.5% 12 Batch — —
Hybrid System, MLP 97.3% 12 500 60 2,700
Hybrid System, K-NN 95.0% 12 1 360 5,760
ARTEX 100.0% 12 1 33.0 1,188

Table 2: Recognition statistics on 30-texture library, at four pixel resolutions: 8 x 8, 16 x 16, 32
X 32, and 64 x 64. Here, K =30 because there are 30 textures. For MLP, WPC = 45. For K-NN,
WPC = 16. For ARTEX, WPC = 36.

classes is increased, while the average number of categories per class gradually increases.
Thus, ARTEX scales well as the number of textures increases. ARTEX achieves higher
classification rates, and creates more categories, for the 768 samples/class case than it
does for the 300 samples/class case. Table 2 lists the results of the Hybrid System on the
30-texture library reported in Greenspan (1996), along with the results of ARTEX on the
30 textures in the first five rows of Figure 3, at four spatial resolutions. As Table 2 shows,
ARTEX obtains higher classification rates than all three variations of the Hybrid System
at all the resolutions. At lower resolutions, as the classification problem becomes easier,
ARTEX creates smaller representations. These representations range from about 13,000
weights at 8 x 8 resolution down to about 1,000 weights at 64 x 64 resolution.
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Figure 4: ARTEX performance on various subsets of the texture library in Figure 3B.
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7.3 Texture Mosaic

ARTEX was also trained and tested on a texture mosaic problem reported in Greenspan
et al. (1994) in order to evaluate classification accuracy at texture boundaries. Such
an analysis indicates the extent to which a system that classifies textured scenes based
on local texture properties, as suggested by the human psychophysical data summarized
above, can also identify texture boundaries. The test mosaic is a 256x256 pixel image
(Figure 5, TOP) which consists of five textures (grass, raffia, wood, herringbone, and
wool). As in Greenspan et al. (1994), ARTEX was trained on these textures as well as on
an additional sixth texture (sand). ARTEX was trained at four spatial resolutions, and
its resulting class predictions for the texture mosaic are shown in Figure 5. From black to
white, the class predictions correspond (in order) to sand, grass, raffia, wood, herringbone,
and wool. Unlike the texture library problems above, performance here degrades (from
95.7% correct down to 79.5% correct) at lower resolutions because of a loss of accuracy
at texture boundaries. The texture predictions of the Hybrid System on this problem (at
8 x 8 resolution), shown visually in Figure 5 of Greenspan et al., (1994), appear to be
less accurate than those obtained by ARTEX.

7.4 Comparison to Psychophysical Results

ARTEX is able to classify a large number of textures, and to localize the transitions
between textures, with high accuracy. But is the performance of ARTEX consistent with
what we know about human texture perception? To investigate this question we compared
the errors that ARTEX produces with measures of the perceived similarities between
pairs of textures (Rao & Lohse, 1993, 1996). Rao and Lohse derived these measures
from subjects’ hierarchical clustering of 56 Brodatz textures based on their similarity,
via multidimensional scaling (MDS). 3-D coordinates for the 56 textures were obtained,
which preserved 88% of the variance contained in the clustering statistics. These MDS
measurements were also independently validated by comparison with subjects’ ratings of
the textures on 12 dimensions such as “high contrast”, “repetitive”, and “granular”.

Our data set (which was used in the previous benchmarks) contains 21 of the 56
textures used by Rao and Lohse. We trained ARTEX on these 21 textures using the
same procedures as described above. ARTEX obtained 93.9% correct on the test set after
training with 768 samples/class for 2 learning epochs, and 87.9% correct after training
with 300 samples/class for 5 learning epochs. For each pair of the 21 textures (210 pairs),
we tallied the number of times ARTEX mistook one of the two textures for the other.
Despite the difference in absolute number of errors, both training regimes yielded the
same negative correlation (correlation coefficient = —0.3) between the number of pairwise
confusions and the MDS distance between the textures. Therefore, the more similar two
textures appear to people, the more likely ARTEX is to confuse them. This correlation
may not be higher because of the difference between the sets of textures that are used
in the simulations and the experiments, and the fact that texture similarity and texture
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Figure 5: Top: Texture mosaic consisting of grass (D9), raffia (D84), wood (D68), herringbone
(D17), and wool (D19, inset). Rows 2 and 3:) Classification results, at four levels of blurring,
following training on the five textures in the mosaic, as well as on a sixth texture (sand, D29).
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Figure 6: The percentage of all errors due to confusion between pairs of textures is plotted as a
function of the distance in MDS coordinates between the textures (see Rao & Lohse, 1993, 1996).
The data set consists of the following 21 textures: D3, D9, D10, D11, D15, D18, D26, D29, D34,
D50, D52, D55, D57, D73, D78, D80, D82, D83, D86, D87, D93, D110 (see Figure 3).

confusability are not identical measures of performance. Figure 6 plots the confusion
errors between each pair of textures as a function of their distance in MDS coordinates
after training ARTEX with 768 samples/class for 2 epochs.

8 Classifying SAR Image Regions

ARTEX was also evaluated on classification of textured regions in real-world synthetic
aperture radar (SAR) images at single-pixel resolution. We are grateful to Allen Waxman
of MIT Lincoln Laboratory for making these SAR images available. SAR textures can vary
gradually and stochastically across space, and exhibit a great deal of speckle and drop-
out of image pixels. This is the type of problem that our brains need to solve when they
are confronted by the noisy images created by retinal photoreceptors. Our simulations
illustrate how the types of processes that have evolved to cope with biologically occurring
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noise and pixel drop-out work just as well with man-made sensors. Indeed, we propose that
human observers who become expert in interpreting SAR images use similar biological
mechanisms to the ones that we report herein.

The SAR images were obtained using a 35-GHz synthetic aperture radar with 1 foot
by 1 foot resolution and a slant range of 7 km (Novak et al., 1990). We have not found
any classification benchmarks on SAR imagery of sufficiently high resolution to provide
meaningful comparisons to our results. The images were taken of upstate New York
scenery, and contain four region types—grass, trees, roads, and radar shadows—that
we trained the system to classify. We selected nine 512x512 SAR images that contain
large amounts of these four regions, and hand-labeled them with the help of optical
photographs of the scenes. The labels, from dark gray to white, correspond to radar
shadows, roads, grass, and trees, respectively. For computational tractability, the images
were reduced via grey-level consolidation from their original size of 512x512 pixels to
200x200 pixels. Following the feature extraction steps, the outer 10 pixels from each
image were disregarded in order to avoid border effects. Therefore, only the interior
180x180 pixel area of the images will be shown.

Figure 7 (top left) shows the output of Stage 1 of ARTEX (see Figure 2) at the third
spatial scale, for one of these images. It converts five orders of magnitude of power in
the radar return into a normalized image that preserves the (Weber-law modulated) ratio
contrast of the original. Substantial multiplicative noise remains, however. Figure 7 (top
middle) shows the Stage 8 BCS boundaries. They are far less precise than those achievable
using a CC Loop (see Grossberg, Mingolla, & Williamson, 1995). Figure 7 (top right)
shows the Stage 9 filled-in brightness feature that is organized by these boundaries. Note
that the surface brightness representation smooths out the noise in a form-sensitive way.
Figure 7 (middle left) shows the hand-labeled class labels of the four region types for this
image.

This SAR classification problem requires accurate classification of the region interiors
as well as many region transitions. Unlike the texture mosaic problem described above,
this problem involves training on the same types of images that are used for testing. Like
texture mosaics, SAR images contain many region transitions. In addition, the hand-
labeled region classes are rather crude, and, at single-pixel resolution, there is no spatial
averaging to reduce the variance of features within regions. Therefore, this problem

requires learning an extremely noisy mapping from the set of input features to the region
labels.

Before evaluating ARTEX, we first analyze the discriminability of the image regions
based on the surface brightness feature (Stage 9 in Figure 2) in order to clarify the u-
tility of using surface brightness as compared with using the outcome of center-surround
processing (Stage 1 in Figure 2). Figure 8 (top) shows the brightness distributions of the
four region types following only Stage 1 center-surround processing. As these histograms
show, a great deal of overlap exists between the region types. Figure 8 (bottom) shows
the distributions of the Stage 9 filled-in brightness outputs. This figure quantifies how
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Figure 7: Results are shown on a 180x180 pixel SAR image, which is one of nine images in data
set. Top row: Stage 1 output (left); Stage 8 BCS boundaries (middle); Stage 9 FCS filled-in
output (right). Middle row: Hand-labeled classes for SAR regions. From dark to lightest, regions
are radar shadows, roads, grass, and trees (left). Classification using the Stage 1 center-surround
feature and a Gaussian classifier yields 57.8% correct (middle). Classification using the Stage 9
surface brightness feature and a Gaussian classifier yields 71.4% correct (right). Bottom Row:
GAM classification using all 17 features. 81.7% correct using OV representation (left). 82.9%
correct using OI representation (middle). 85.9% correct using OI representation, with filled-in
probability estimates.
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SAR Classification

Configuration Total | Shadow | Road | Grass Tree
Stage 1 Feature 57.8 58.7 0.0 87.5 21.7
Stage 9 Feature 71.4 71.6 21.0 93.6 50.5
ARTEX OV (no voting) | 80.8 76.6 62.5 88.0 79.5
ARTEX OV (voting) 81.7 78.0 62.4 88.9 80.3
ARTEX OI (no voting) 81.9 76.5 68.9 88.6 78.7
ARTEX OI (voting) 82.9 78.4 69.6 89.4 79.4
ARTEX FP (no voting) | 85.0 79.5 72.6 91.3 82.8
ARTEX FP (voting) 85.9 80.1 72.2 91.6 82.6

Table 3: Classification results on SAR images for different configurations. Left column shows
net classification rate, with remaining columns showing breakdown in the four individual region
types. The first two rows show results (using a Gaussian classifier) based on a single brightness
feature, the Stage 1 center-surround feature (1st row) and the Stage 9 filled-in feature (2nd row).
The remaining rows show the classification results of different ARTEX configurations, with and
without voting. ARTEX OV is ARTEX with an orientation variant representation, ARTEX OI is
ARTEX with an orientation invariant representation, and ARTEX FP uses the ARTEX OI region
probability estimates by filling them in within the BCS boundaries.

brightness helps to separate input features in a natural scene. This result is made intu-
itively clear by comparing the Stage 1 image in Figure 7 (top left) with the Stage 9 image
in Figure 7 (top right). The latter image is much clearer looking and more pleasing to
the eye, even though the boundaries that organize it are rather coarse.

The usefulness of the surface brightness processing is further elucidated by comparing
classification rates based on only the Stage 1 and Stage 9 features. These unimodally dis-
tributed data were classified using a Gaussian classifier, in which the distribution for each
region type was represented by a single Gaussian distribution. The result for Stage 1
is shown in the middle image of Figure 7 and in the middle, right image of Figure 7.
Quantitative performance measures are listed in Table 3. These results quantify the use-
fulness of FACADE preprocessing, particularly in overcoming frequent misclassifications
due to multiplicative noise, and also provide a baseline for evaluating the effectiveness of
the complete image classification system, which also uses a multiscale oriented filter, and
GAM rather than a Gaussian classifier.

GAM was trained and tested on the nine images using a leave-one-out method at the
level of images (i.e., test each of the 9 images after training on the other 8 images) to
ensure independence between testing and training image data. All image pixels were used
for training and testing in one study. This result was compared to results obtained by
training with as little as 0.01% of the training set. A total of about 260,000 training
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Figure 8: Brightness distributions of four region types: shadows, roads, grass, and trees. Top:
Stage 1 center-surround output. Bottom: Stage 9 filled-in output. BCS/FCS processing effectively
separates regions.
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samples were used on a single training epoch. Five GAM networks were trained on
independent orderings of the data. The classification rates attained on these five runs
were averaged. In addition, voting was done among these five systems. Voting involves
averaging the probability estimates among GAM networks trained on different random
orderings of the training data, and choosing the class prediction with the highest average
probability estimate.

Orientationally Variant (OV) Representation. First, results obtained without orien-
tational invariance of the BCS filter are reported. GAM self-organized on average 285.3
categories. The classification result (with voting) is displayed in Figure 7 (bottom left).
The non-voting and voting results are quantified in Table 3. With voting, the net clas-
sification rate is slightly improved, from 80.8% to 81.7% correct. The improvement in
classification rate with voting must be weighed against the cost of using n voters. Here
n=>5, which entails 5 times more categories and training epochs. The main problem with
the orientationally variant representation can be seen in how the roads are classified. For
example, the thin vertical road is misclassified in the central image, presumably because
the system was not trained on any thin vertical roads.

Orientationally Invariant (OI) Representation. With the orientational invariance step
of the BCS filter included, GAM self-organized 260.0 categories. This represents 65 cate-
gories per output class, and a compression of 1000:1 from training samples to categories.
The classification result (with voting) is displayed in Figure 7 (bottom middle). The non-
voting and voting results are also listed in Table 3. With voting, the net classification rate
is slightly improved, from 81.9% to 82.9% correct. Note that the classification errors on
the thin vertical road are corrected since any orientation during training can generalize
to any other orientation during testing.

Speed of Training. Good results are also obtained after training with much fewer sam-
ples. This is demonstrated in Figure 9A, which plots performance, with and without
voting, after training with randomly selected subsets of the training set. From left to
right, the plotted points correspond to training with 0.01%, 0.1%, 1%, 10%, and 100%
of the training set. For each of these points, the number of self-organized categories (ab-
scissa) and the classification rate (ordinate) are shown. Note that with 0.1%-10% of the
training set, GAM obtains good performance (75-82% correct) using very few (13-88)
categories.

Diffusing Probability Estimates. The probability estimates obtained with the OI repre-
sentation and voting make good confidence measures because they predict reasonably well
the probability that a prediction is correct. This suggests that each probability estimate
should be weighted equally in any further operations that combine the estimates across
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Figure 9: A) The number of self-organized categories (abscissa) and the classification rate (or-
dinate) are plotted for GAM, with and without voting, trained on different sized subsets of the
training data. From left to right, the points correspond to training with 0.01%, 0.1%, 1%, 10%,
and 100% of the training set. B) The accuracy of confidence measures is shown by plotting
classification accuracy as a function of filled-in probability estimates in SAR images. The sys-
tem’s confidence measures are reasonably close to the ideal confidence measures represented by
the dashed diagonal line. 31



space. One such operation is spatial averaging, which has the disadvantage of mixing
probability estimates between different regions.

A better way to combine estimates is to take advantage of the information contained
in the BCS boundaries (Figure 7, top middle), in order to maximize spatial averaging
within regions while minimizing it between regions. This can be done by diffusing the
probabilities within the BCS boundaries, in the same way that brightness estimates are
diffused in Stage 9, in order to obtain diffused probabilities. See Appendix IV for details.
Figure 7 (bottom right) shows the decision regions following diffusion of probability esti-
mates. With probability diffusion, classification performance on all nine SAR images was
improved from 82.9% to 85.2% correct. These results are also listed in Table 3. Figure 9B
shows the accuracy of the filled-in probability estimates as confidence measures, plotting
classification accuracy as a function of the probability estimate of the chosen region. This
plot approximates that of an ideal confidence measure (diagonal line).

Further improvement in accuracy could be achieved by using cognitive comparisons
between contiguous region types; for example, the fact that shadows do not occur below
roads or grass could be used to improve classification of these regions. Such excursions
into cognitive mechanisms go beyond the scope of the present study.

9 Concluding Remarks

The ARTEX system demonstrates the utility of combining neural models for visual per-
ception that are based on FACADE theory with neural models for adaptive categorization
and prediction that are based on Adaptive Resonance Theory. ARTEX extracts multiple-
scale oriented contrast features and a filled-in surface feature that provide an informative
context-sensitive representation of the textural and brightness properties of an image.
ARTEX then incrementally learns an internal categorization of these features along with
a mapping from multiple categories to the labels of the output classes. The model also
learns class probabilities, which may be filled-in to yield surface probability maps that
improve classification accuracy. ARTEX outperforms other leading texture-based clas-
sifiers on a variety of texture classification benchmarks, and provides good classification
at single-pixel resolution on noisy SAR images whose intensities vary over 5 orders of
magnitude.

Given the success of ARTEX in the domain of spatially localized scene recognition, it is
interesting to compare it with approaches in the more large-scale and challenging domain
of shape and object recognition. Two popular competing approaches are recognition by
components (RBC) (Biederman, 1987; Hummel & Biederman, 1992), and memory-based
recognition (Edelman & Poggio, 1992; Edelman, 1996). RBC posits the formation of an
intermediate representation prior to shape or object recognition. This intermediate repre-
sentation consists of a structural description of an object, made up of volumetric primitives
called geons, and their spatial relations. The primary (and in our view, correct) criticism
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of RBC has been that recovering useful volumetric primitives is often impossible given
the complexity of real-world objects and the noisiness of real-world images. In addition,
some of the key psychophysical data that motivated the Geon concept concerned how
humans better recognize line drawings with deleted segments when the drawings contain
recoverable features that the brain can restore using amodal illusory contours, than when
they do not (Biederman, 1987). Grossberg (1987, Section 20) provided a FACADE theo-
ry explanation of these data by suggesting how and why amodal illusory contours would
form in the recoverable case, before this completed boundary representation inputs to an
ART classifier for correct recognition. Geons played no role in this explanation.

The alternative memory-based approach posits a direct mapping from “low-level” fea-
tures to “high-level” internal categories. Invariance to 3-D rotation is obtained by inter-
polating between multiple categories that represent different aspects, or 2-D projections,
of 3-D objects. ARTEX is consistent with a memory-based approach. Therefore, it is
useful to compare ARTEX to a specific memory-based model, such as that outlined by
Edelman (1996). This model consists of a stage of image filtering followed by a mapping,
via radial basis functions (RBFs), into a distributed representation of internal categories
that represent stored views of objects. The RBF model uses analog-valued training signals
and learns via a matrix inversion or gradient descent algorithm. It has no specified mech-
anism for learning how many basis functions to use. ART models, in contrast, construct
and learn internal categories in a generally unsupervised manner, receiving only a limited,
biologically plausible, type of supervised feedback; namely, if a supervised ART system
makes an incorrect prediction, then its active representation is reset, and its vigilance is
raised.

Three self-organizing view-based ART models have already been developed and bench-
marked, the Aspect Network model of Seibert and Waxman (1992), the VIEWNET mod-
el of Bradski and Grossberg (1995), and the ART-EMAP model of Carpenter and Ross
(1995). The present work on ARTEX shows how to develop a texture-sensitive front end
for such models, and how to use a GAM classifier, which is also based on RBFs, to learn a
distributed representation of individual 2-D views, before these representations are joined
together, using a working memory for temporal evidence accumulation, into 3-D object
recognition categories.
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Appendix I

BCS Filter
The BCS filter computes 16 oriented contrast features from 4 scales and 4 orientations.

Stage 1. A shunting on-center off-surround network compensates for variable illumina-
tion and computes ratio contrasts in the image (Grossberg, 1983). The output at pixel
(,7) and scale ¢ is

Iij — (Gg * I)” — Oéﬁ

S 1

where I;; is the input to pixel (¢,7), and G? * I denotes the convolution of input matrix
I ={I;;} and the Gaussian kernel G¢. Kernel G¢ is defined by

B 1
- 27r0g2

Gl(p,q)

exp[—((i —p)* +(j — 0)*)/203], (2)

with o, =29, for the spatial scales ¢ ={0,1,2,3}. Parameter 5 =0.5. The value of « is
determined by the distribution of pixel intensities in the input image. We used « = 255
for natural texture images, which have an amplitude range of pixel amplitudes of 0-255,
and a=2,000 for SAR images, which have a range of about 100-110,000.

Stage 2. The output a; of equation (1) is convolved with an odd-symmetric Gabor filter
DY defined at four equally spaced orientations k,

bl = (Df * a?)ij, (3)
where the horizontal Gabor filter (£k=0) is defined by

Dijo(p,q) = GIj(p,q) - sinf0.757(j — ¢)/o,]. (4)

Stage 3. A local measure of orientational contrast is obtained by full-wave rectifying the
orientational filter output from (3):

c?jk = |b?jk|' (5)

Stage 4. Orientational contrast responses may exhibit high spatial variability. A smooth,
reliable measure of orientational contrast spatially pools responses within each orientation:

dl = (G7 x %) (6)

Stage 5. This optional orientational invariance stage shifts orientational responses at
each scale into a canonical ordering. This shift maps the same texture pattern, which may
be viewed from different angles, into a canonical pattern of orientational contrast signals.
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With wraparound, the d;;; responses are shifted so that the orientation with maximal
amplitude is in the first orientation plane:

el = di;. where e = [k + arg max (d;;)] mod 4. (7)
The usefulness of the orientational invariance step in equation (7) is task-dependent, as
shown by our simulations.

Appendix 11

Boundary and Surface Processing

The third spatial scale (¢ = 3) of the BCS filter is input to additional processing stages
which form a boundary segmentation that is used to fill-in a surface representation, as
diagrammed in Figure 2. Because the superscript ¢ is constant in the following equations,
it is left out.

Stage 6. At each orientation, boundaries are contrast-enhanced using shunting compe-
tition: p
Cijk — Quijk
fip = — 25— 8
T i + dij (8)
where (=0.1.

Stages 7 and 8. The rectified f;;; are summed across orientation to yield the boundary

signals:
4

gii = > Lfisel™ (9)

k=1
where [ ]* is the half-wave rectification operator.
Stage 9. The boundary signals g;; block diffusive filling-in of the discounted signals a;;

from (1), and thereby yield a filled-in surface brightness feature h;;. FCS filling-in obeys
the diffusion equation,

d
—hij = =Mhij+ Y (hpg — hij) Pogij + aij, (10)

dt 2,9€EN;

where diffusion is among the four nearest neighbors, N;; = {(i,7— 1), (i—1,j5), (¢ +
1,7), (i,7+1)}, and the boundary-gated permeabilities obey

6
1+ E(gpq + gij)

(11)

quij =
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(Cohen & Grossberg, 1984; Grossberg & Todorovié¢, 1988). At equilibrium, equation (10)

yields

aij + Zp,qENU hqupqij‘ (12)
A+ Zp,qENU quij

In our implementation, the equilibrium equation (12) is iterated 1000 times. Parameters
are A\=0.05, 6=10.0, e=100.0.

hij =

Appendix III

Gaussian ARTMAP

GAM consists of an input layer, F;, and an internal category layer, F5, which receives
input from Fj via adaptive weights. Activations at F; and F, are denoted, respectively,
by @ = (z1,...,2m) and y = (y1,...,yn), where M is the dimension of the input space,
and N is the number of committed Fy category nodes. In ARTEX, « is the output vector
of the FACADE filter. Each F; category models a local density of the input space with
a separable Gaussian receptive field, and maps to an output class prediction. The j*
category’s receptive field is parametrized by two M-dimensional vectors: its mean, p;,
and standard deviation, o;. A scalar, n;, represents the amount of training data for
which the node has received credit.

Category Match and Activation. The input to category j is determined by the match

value ,
¢, = exp (_; 5" (ﬂ) ) | (13)

=1 Tji
Function G; measures how close the input vector « is to the category’s mean p;, relative
to its standard deviation o;. The net input signal to category j is
_ Ny
[T, o)

where ([TM, ¢;;)~" normalizes the Gaussian and n; is proportional to its a priori proba-
bility.

9 ij (14)

A category succeeds in temporarily storing activity in short-term memory only if its
match value G, is large enough to exceed the vigilance parameter p. The category is
thus stored only if G; > p. Otherwise, it is rapidly reset. In addition, the category’s
stored activity, y;, is normalized by a shunting competition that occurs across all active
categories. That is,

g; e - .
Yy = ———— if je€T(p); 1y, =0 otherwise, (15)
T Yierpn 0 (0) !
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where T'(p) is the set of all categories, j, such that G; > p. Parameter £ =0.00001. The
activity y; represents the posterior probability P(j|a) for the category given the input
vector.

Output Prediction. Equations (13)—(15) describe activation of category nodes in an
unsupervised learning Gaussian ART module. The following equations describe GAM’s
supervised learning mechanism, which incorporates feedback from class predictions made
by the F, category nodes. When a category, j, is first chosen, it learns a permanent
mapping to the output class, C', associated with the current training sample. All categories
that map to the same class prediction C' belong to the same ensemble, E(C). Each time
an input is presented, the categories in each ensemble sum their activities to generate a
probability estimate, z¢, of the class prediction C' that they share:

o=,y (16)
JEE(C)
The system prediction, C..,, is obtained from the maximum probability estimate by a
winner-take-all competition across classes:

Chax = arg mcax(zg), (17)

which also determines the chosen ensemble. Once the class prediction C,., is chosen,
feedback from chosen class C.., to the categories selects those categories that map to the
class and suppresses those that do not (Carpenter & Grossberg, 1987). As a result, the
category activities y; are renormalized to values

Y= 9i if j€T(p)NE(Crw); y; =0 otherwise. (18)
2IET (p)NE(Cumar) Il

Just as y; represents P(j|x), y represents P(j|a, Cp.x).

Match Tracking. If C.,, is the correct prediction, then the network resonates and
learns the current input. If C,,, is incorrect, then match tracking is invoked. As originally
conceived, match tracking involved raising p continuously from a baseline value p, thereby
causing categories j with G; < p to be reset until the correct prediction was selected
(Carpenter, et al., 1991). Because GAM uses a distributed representation at F, each
z¢ may be determined by multiple categories, according to (16). Therefore, it is difficult
to determine numerically how much p needs to be raised in order to select a different
prediction. It is inefficient (on a conventional computer) to determine the exact amount
to raise p by repeatedly resetting the active category with the lowest match value G;,
each time re-evaluating equations (15), (16), and (17), until a new prediction is finally
selected.

Instead, a one-shot match tracking algorithm is used. This algorithm involves raising p
to the average match value of the chosen ensemble:

p = exp (—;g}yfé (W)Q) : (19)

0
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In addition, all categories in the chosen ensemble are reset: ¢g; = 0 for all j € E(C..,)-
Equations (14)-(17) are then re-evaluated. Based on the remaining non-reset categories,
a new prediction C,,, in (17), and its corresponding ensemble, are chosen. This search
cycle automatically continues until the correct prediction is made, or until all committed
categories are reset; namely, G; < pfor all j € {1,..., N}, and an uncommitted category is
chosen. Match tracking assures that the correct prediction comes from an ensemble with
a better match to the training sample than all the reset ensembles. Upon presentation of
the next training sample, p returns to the baseline value: p = p.

Learning. GAM learns when it makes a correct output prediction, or a prediction that is
not disconfirmed. The F, parameters g; and o; are then updated to represent the sample
statistics of the input using local learning rules. When category j learns, n; is updated
to represent the amount of training data for which the j** node has been assigned credit:

The learning rate for p; and o; is modulated by n;, so that the parameters represent the
sample statistics of the input:

i = (L—yin; i +ying ' a, (21)

I R e IR R (22)
GAM is initialized with N =0. When an uncommitted category is chosen, N is increment-
ed, and the new category, indexed by j =N, is initialized with y*=1 and n; =0, and with
a permanent mapping to the correct output class. Learning then proceeds via (20)-(22),
with one modification: a constant, 72, is added to the right hand side of equation (22),
yielding o;; = ~. Initializing categories with this nonzero standard deviation makes (13)
and (14) well-defined. Varying ~ has a marked effect on learning: as ~ is raised, learning
becomes slower, but fewer categories are created. Generally, + is much larger than the
final standard deviation to which a category converges. Intuitively, a large v represents
a low level of certainty for, and commitment to, the location in the input space coded by
a new category. As ~ is raised, the network settles into its input space representation in
a slower and more graceful way. All datasets are preprocessed to have a unit standard
deviation in each feature dimension, so that v has the same meaning in all the dimensions.
On the texture classification problems in Section 7, we used v=1. On the noisier SAR
classification problems in Section 8, we used v=4.
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Appendix IV

Filling-in Output Probabilities
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At each image position (i, j), the following diffusion equation is iterated.

ZC(Zvj) + Zp,qENi] quCquij

(23)
A+ Zp,qENU quij

gijc =
Here z¢(7,5) is GAM’s probability estimate for output class C', N;; consists of the 4
nearest neighbors to (7, j), and the boundary-gated permeabilities obey

6
B, .. = ,
r 1+ E(gpq + gij)

(24)

where ¢;; is the strength of the boundary computed in (9). Equation (23) is iterated 250
times. Otherwise, the same diffusion parameters are used as in Appendix II. Finally, the
diffused values ¢;;. are normalized to produce the diffused probability estimates,

. Gyo 9

Qijo >_d Gijd (25)
The size of the probability estimate, z¢(i, ), is determined by both the absolute input
magnitude to its ensemble, and the input magnitude to its ensemble relative to the input
magnitude to other ensembles. The shunting decay parameter £ in equation (15), which
produces partial normalization of activity in the GAM categories, causes the absolute
input magnitude to affect the probability estimate. A positive ¢ is useful because it pre-
vents the network from producing a large probability estimate when the input magnitude
to all the ensembles is very low.
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