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Abstract—A neural network model, called an FBF network, is proposed for automatic parallel separation of
multiple image figures from each other and their backgrounds in noisy gray-scale or multicolored images. The
figures can then be processed in parallel by an array of self-organizing Adaptive Resonance Theory (ART) -
neural networks for automatic target recognition. An ¥FBF network can automatically separate the disconnected
but interleaved spirals that Minsky and Papert introduced in their book Perceptrons. The network’s design also
clarifies why humans cannot rapidly separate interleaved spirals, yet can rapidly detect conjunctions of disparity
and color, or of disparity and motion, that distinguish target figures from surrounding distractors. Figure-ground
separation is accomplished by iterating operations of a Feature Contour System (FCS) and a Boundary Contour
System (BCS) in the order FCS-BCS-FCS, hence the term FBF. The FCS operations include the use of nonlinear
shunting networks to compensate for variable illumination and nonlinear diffusion networks to control filling-
in. A key new feature of an FBF network is the use of filling-in for figure-ground separation. The BCS operations
include oriented filters joined to competitive and cooperative interactions designed to detect, regularize, and
complete boundaries in up to 50% noise, while suppressing the noise. A modified CORT-X filter is described,
which uses both on-cells and off-cells to generate a boundary segmentation from a noisy image.

Keywords— Vision, Sensor fusion, Figure-ground separation, Segmentation, Neural network, Pattern recog-

nition, Filling-in, Visual ‘cortex.

1. INTRODUCTION: AUTOMATIC FIGURE-
GROUND SEPARATION AND GENERAL-
PURPOSE VISION

An important stage in the perception and recognition
of objects is the process whereby a figure, or object,
in a scene is separated from other figures and back-
ground clutter. This is called the stage of figure-grourid
separation. Whereas knowledge about a figure may
facilitate its separation, such knowledge is cléarly not
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necessary for biological vision systems to carry out
figure-ground separation. Experiences abound of un-
familiar figures that “‘pop out” from their back-
grounds before they ever enter our corpus of learned
knowledge about the world. The fact that figure-
ground separation can occur even for unfamiliar fig-
ures contributes to the general-purpose nature of bi-
ological vision, which can process both unfamiliar
and familiar scenes, and does not require prior in-
struction about an environment in order to operate
effectively.

The present article describes a new type of system
that is capable of automatic figure-ground separa-
tion. This process separates scenic figures whose
emergent boundary segmentations (defined below)
surround a connected region. As a result of this prop-
erty, such a system can automatically distinguish be-
tween connected and disconnected spirals (Figure 1),
a benchmark that gained fame through its emphasis
in the book by Minsky and Papert (1969, 1988) on
perceptrons. Why the present biologically motivated
algorithm can distinguish these figures in a way that
humans cannot is discussed in Section 9.
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28, 3S, . .., MS of speeds, within some tolerance
AS;and an N X M matrix of intersection images can
be generated which extract the figure at each com-
bination of distance iD and speed j$ within this tol-
erance. Then N X M copies of the architecture il-
lustrated in Figure 2 can work simultaneously in
parallel to recognize these figures independent of
their position, orientation, and size, by preprocessing
each of the N x M laser radar images with CORT-
X and invariant filters before they activate a parallel
array of ART 2 architectures.

4. FIGURE-GROUND SEPARATION IN
FACADE THEORY

In biological vision, the retinal detectors do not, in
themselves, separate figure from ground. One task
of neural network research is to suggest how sub-
sequent network processes which are activated by
the retinal detectors may generate this competence.
Grossberg (1987; reprinted in Grossberg, 1988) has,
for example, introduced a neural theory of binocular
viSion in which figural components of an image are
separated from one another into distinct network
levels, or slabs. A macrocircuit of this theory is shown
in Figure 3, where the vertically hatched boxes form
part of the Boundary Contour System (BCS) and the
dotted boxes form part of the Feature Contour Sys-
tem (FCS).

The theory describes how parallel and hierarchical
interactions between the BCS and FCS generate a
multiplexed, multiple-scale representation, called a
FACADE representation, of the scene’s Form-And-
Color-And-DEpth. Within this representation, fi-
gural components which encode distinctive combi-
nations of features, such as prescribed combinations
of color, depth, and size, are segregated from one
another into different network levels. These levels,
in turn, activate subsequent stages of network pro-
cessing that are designed for visual object recognition
(Figure 4).

For present purposes, the main insight that may
be derived from FACADE theory is that a properly
designed sequence of FCS-BCS-FCS operations can
separate figure from ground. Henceforth all net-
works that use this strategy will be called FBF net-
works. To arrive at this insight, we consider two dif-
ferent competences of FACADE theory: discounting
variable illumination and multidimensional fusion.

5. DISCOUNTING VARIABLE
ILLUMINATION AND FILLING-IN

The theory provides an explanation of how variable
illumination conditions are automatically discounted
and used to trigger a filling-in process that completes
a surface representation over image regions which
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FIGURE 3. Macrocircuit of monocular and binocular inter-
actions within the Boundary Contour System (BCS) and the
Feature Contour System (FCS): Left and right monocular
preprocessing stages (MP, and MP;) send parallel monocular
inputs to the BCS (boxes with vertical lines) and the FCS
(boxes with three pairs of circles). The monocular BCS, and
BCS; interact via bottom-up pathways labelled 1 to generate
a coherent binocular boundary segmentation. This segmen-
tation generates output signals called filling-in generators
(FIGs) and filling-in barriers (FIBs). The FiGs input to the
monocular filling-in domains, or syncytia, of the FCS. The
FIBs input to the binocular filling-in domains, or syncytia, of
the FCS. Inputs from the MP stages interact with FIGs at the
monocular syncytia where they select those monocular FC
signals that are binocularly consistent. The selected FC sig-
nals are carried by the pathways labelled 2 to the binocular
syncytia, where they interact with FIB signals from the BCS
to generate a multiple-scale representation of Form-And-Color-
And-Depth within the binocular syncytia.

are suppressed by the discounting process. A mon-
ocular version of this process was modelled by Cohen
and Grossberg (1984) and Grossberg and Todorovié
(1988) to explain data about monocular brightness
perception. This monocular model is schematized in
Figure 5.

In this model, variable illumination conditions are
discounted by a shunting on-center off-surround net-
work (Level 2), which constitutes the first FCS stage.
Image regions of high relative contrast are amplified
and regions of low relative contrast are attenuated
as a consequence of the discounting process. The
shunting network, in turn, topographically activates
a filling-in network (Level 6) which constitutes the
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FIGURE 4. A miacrocircuit of processing stages: Monocular
preprocessed signals (MP) are sent independently to both
the BCS and the FCS. The BCS preattentively generates co-
herent boundary structures from these MP signals. These
structures send outputs to both the FCS and the Object Rec-
ognition System (ORS). The ORS, in turn, rapidly sends top-
down learned template signals, or expectations, to the BCS.
These template signals can modify the preattentively com-
pleted boundary structures using learned, attentive infor-
mation. The BCS passes these modifications along to the
FCS. The signals from the BCS organize the FCS into per-
ceptual regions wherein filling-in of visible brightnesses and
colors can occur. This filling-in process is activated by sig-
nals from the MP stage. The completed FCS representation,
in turn, also interacts with the ORS.

second FCS state. This filling-in network uses a non-
linear diffusion process to complete a brightness rep-
resentation over both the amplified and attentuated
image regions. :

Filling-in is restricted to compartments whose
boundaries are defined by topographic signals from
the BCS (Levels 3-5). The BCS converts signals from
the first FCS stage (Level 2) into a boundary seg-
mentation one of whose functions is to trigger a BCS-
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FCS interaction that contains the filling-in process at.
the second FCS stage. The result of this FBF inter-
action is a surface representation of featural quality,
such as brightness or color, that is relatively uncon-
taminated by illumination conditions.

Figures 6 and 7 summarize computer simulations.
of Grossberg and Todorovi¢ (1988) that illustrate how
the illuminant is discounted in FCS Level 2, and how
the subsequent BCS-FCS interaction at Level 6 con-
trols the filling-in process that completes the bright-
ness representation. The image schematized in Fig-
ure 6a is called a McCann—-Mondrian (Land, 1977).
It is a patchwork of rectangular regions each with a
different luminance. The image is uniformly illumi-
nated. In Figure 6a, each circle’s radius is propor-
tional to the luminance registered by a network node
located at the center of the circle.

Figure 6b represents the activation pattern of the
shunting on-center off-surround network at Level 2,
Figure 6c represents the boundary representation at
Level 5, and Figure 6d represents the filled-in rep-
resentation at Level 6. The diffusion spatially aver-
ages the activation differences of Figure 6b within
the compartments defined in Figure 6c.

In Figure 7a, the same image depicted in Figure
6a is illuminated from the lower right corner. Be-
cause the shunting on-center off-surround network
at Level 2 effectively discounts the illuminant, the
Level 2 activation patterns in Figs. 7b and 6b are
essentially identical. Hence, the subsequent bound-
ary patterns (Figs. 7c and 6c) and filled-in patterns
(Figs. 7d and 6d) are also essentially identical.

Note in Figure 7d that the brightness, or activation
level, of the square region in the upper left corner
is larger than that of the square region in the lower
right corner. In contrast, in Figure 7a, the luminance,
or activation level, of the upper left corner’is smaller
than that of the square region in the lower right
corner. This luminance-to-brightness reversal com-
pensates for the larger intensities of illumination in
the lower right region.

6. MULTIDIMENSIONAL FUSION

An FBF interaction may also be used to represent
scenic form, notably scenic surface properties, and
to separate figure from ground. This type of Form-
and-Color fusion is achieved by suitably embedding
an FBF interaction into a binocular version of the
theory. In the binocular theory, depth is also en-
coded into the representation; hence the mnemonic
Form-And-Color-And-DEpth, or FACADE.

The binocular version of the theory suggests how
monocular image data from both eyes can be selec-
tively processed so that only the binocularly consis-
tent monocular data from each eye is allowed to
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FIGURE 5. Model of how the Feature Contour System discounts variable illuminants and regulates featural filling-in: The thick-
bordered rectangles numbered from 1 to 6 correspond to the levels of the system. The symbols inside the rectangles are
graphical mnemonics for the types of computational units residing at the corresponding model level. The arrows depict the
interconnections between the levels. The thin-bordered rectangles coded by letters A through E represent the type of processing
between pairs of levels. Inset F illustrates how the activity at Level 6 is modulated by outputs from Level 2 and Level 5. This
simplified model directly extracts boundaries from image contrasts, rather than generating emergent segmentations from
image contrasts. The model’s key elements concern how the Level 2 network of shunting on-center off-surround interactions
discounts variable illuminants while extracting Feature Contour signals, and how Level 5 fills-in these signals via a nonlinear
diffusion process within the compartments defined by Boundary Contour System output signals.

influence the FACADE representation. Figure 3
schematizes the network that is used. In it, pairs of
monocular BCS signals are derived from monocular
FCS patterns that discount the illuminant. These
monocular BCS signals interact to form the binocular
boundary segmentation along the pathways labelled
1. The boundary segmentation regularizes and com-
pletes all the boundary data, across multiple spatial
scales, that are capable of being binocularly fused.
This binocular boundary segmentation sends topo-
graphic signals, called filling-in barriers (FIBS), to
the monocular filling-in networks within the FCS that
are generated by the left eye (FCS;) and the right
eye (FCSg). This BCS-FCS interaction allows only
those monocular featural data from (FCS;) and (FCSy)
that are consistent with the binocular boundary seg-
mentation to fill-in and generate topographic output
signals, labelled 2, to the binocular FCS stage. This
BCS-FCS interaction carries out a type of figure-
ground separation, since only those FCS regions can
generate output signals that are surrounded by bi-
nocular FIGS from the BCS.

The binocular FCS stage is called the binocular

syncytium. In the binocular syncytium, the selected
monocular FCS signals from both eyes interact once

again with the binocular BCS signals. Here the FCS
signals again activate a filling-in process within the
compartments that are defined by the BCS signals.
These BCS signals are thus called filling-in barriers
(FIBS). The FACADE representation that is gen-
erated within the binocular syncytium groups dis-
tinctive combinations of features into figures within
separate network levels, or slabs. These slabs there-
upon send adaptively filtered signals to subsequent
processing levels for purposes of visual object rec-
ognition.

Within such a biological theory of vision, the pro-
cess of separating figures into different slabs exploits
the fact that the retina contains photodetectors with
different spectral sensivities; for example, three types
of retinal cones and one type of retinal rod. The
theory suggests how figures may be spatially parsed
into separate slabs based, in part, upon the distinc-
tive colors that are derived from these detectors.
In addition, there exist multiple spatial scales and
multiple binocular disparity computations within the
theory that further parse figural components into
separate slabs based upon different size—disparity
correlations (Grossberg, 1987; Grossberg & Mar-
shall, 1989). '
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Thus, although FACADE theory uses a FBF net-
work—actually an FBFBF network—to achieve fig-
ure-ground separation, this network exploits the ex-
istence of multiple detector types and multiple-scale
reactions to these detector types to carry -out the
separation. It remains to consider how well figural
components may be separated into separate slabs
even if only a single general-purpose detector is used
that, in itself, cannot separate figure from ground.
For example, how can individual figures be separated
from the cluttered ground of a picture taken with a
camera that uses monochromatic film? We now show
how a suitably designed FBF network can accomplish
this task for at least certain classes of images. Section
7 provides an intuitive description of network stages
and their effects. Section 8 describes network equa-
tions and parameters.

7. FIGURE-GROUND SEPARATION BY A
MONOCHROMATIC FBF NETWORK: THE
DYE-INJECTED FBF

Because multiple detectors are not available in the
monochromatic case, we assume that the filling-in
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process is activated by internally generated input
sources. In particular, the network “‘paints” each
connected figure of the image by using an internally
generated “dye” that triggers the filling-in of that
figure. This heuristic is realized by using the follow-
ing procedure, which was briefly reported in Gross-
berg and Wyse (1990):

Step 1 (Discount the illuminant). At the first
FCS stage, variable illumination conditions are dis-
counted both by a shunting on-center/off-surround
network (“ON-C”) and an off-center/on-surround
network (“‘OFF-C”), operating in parallel. The ON-
C network has a zero baseline activity (decays to zero
if there is no signal within its entire receptive field)
while the OFF-C network has a positive baseline
activity. Because the OFF-C filter has a positive
baseline activity and is inhibited by positive signal
values, the network performs an image inversion which
is normalized by the shunting interactions (Figure 8).

The ON-C and OFF-C networks operate in a com-
plementary. fashion. Along a straight boundary be-
tween a region of strong signal and one of no signal,
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FIGURE 6. The evenly illuminated Mondrian. (a) The stimulus distribution consists of 13 homogeneous polygons with 4
luminance levels. Note that the square in the upper left portion of the stimulus has the same luminance as the square in the
lower right portion. However, the average luminance of the regions surrounding the lower square is higher than the corre-
sponding average luminance for the upper square; (b) The on-cell distribution. The amount of on-cell activity within the upper
square is higher than within the lower square; (c) The Boundary Contour output; and (d) The filled-in syncytium. The upper
square is correctly predicted to logk brighter than the lower square.
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FIGURE 7. The unevenly illuminated Mondrian. (a) The stimulus distribution simulates the transformation of Figure 6a caused
by the presence of a light source whose intensity decreases linearly from the lower right corner toward the upper left corner
of the stimulus. The lower square is now more luminant than the upper square; (b) The on-cell distribution; (c) The Boundary
Contour output; and (d) The filled-in syncytium. Figures 6b, 6¢, and 6d are very similar to the corresponding figures for the
evenly illuminated Mondrian (Figure 6). This illustrates the model’s discounting of the illuminant. In addition, the upper square

is still predicted to appear brighter than the lower square.

both types of networks respond similarly by enhanc-
ing the contrast. At a concave corner of a high signal
region, the ON-C network responds more strongly
than the OFF-C network, while at a convex corner
the converse is true (Grossberg & Todorovi¢, 1988,
Figure 6). This ON-OFF Complementarity Property
also plays an important role in noise suppression when
it interacts with the CORT-X filter, as the next sec-
tion explains.

Step 2 (CORT-X Filter). The ON-C and OFF-C
shunted images are transformed by a CORT-X Fil-
ter into a boundary representation. The CORT-X
boundary filter as developed for binary monochro-
matic images has been described in detail elsewhere
(Carpenter, Grossberg & Mehanian, 1989). Some
modifications have been made herein so that ana-
logue monochromatic images can be processed (Sec-
tion 8). This modified filter is called CORT-X 2. The
rho-space model of Walters (1987) is an alternative
oriented filter that shares a number of properties

with the CORT-X filter. A brief description and mo-
tivation for the filter stages follows.

Each processing layer has the same number of
cells as pixels in the image. The architecture is com-
pletely feedforward. Cells at a given layer have input
fields (“IFs”) that integrate over an area in the pre-
vious layer local to its position in the field. Two sep-
arate scales (input field sizes) are used in parallel in
the early stages of processing and are subsequently
combined to take advantage of the best of their re-
spective processing capabilities. The term input field,
or in-field, is used instead of receptive field because
the latter term from neurophysiology typically refers
to the region at the first processing layer that influ-
ences the activity of a cell at any subsequent layer.
Our layer-by-layer analysis of scale sizes requires a
more microscopic analysis of network geometry.

The model’s first stage, called the simple cell layer,
is an oriented contrast detector that is sensitive to
the orientation, amount, direction, and spatial scale
of image contrast at a given image location. The
orientation sensitivity is the result of an elliptically
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FIGURE 8. (a) The original figure in 50% noise (half the pixels are random); (b) The result of the ON-C shunting filter; and (c)
The result of the OFF-C shunting filter. The Appendix explains the way in which image intensities were normalized.

shaped IF. Several fields of different orientations each
operate in parallel at each position. The sensitivity
to amount and direction of contrast is produced by
exciting the cell with signal present in one half of its
IF, inhibiting its output with some proportion of the
signal in the other half, and then thresholding the
result (Figure 9). The result is a half-wave rectifi-
cation of the signal.

The ON-C shunting network and the OFF-C
shunting network each input to separate networks of
simple cells at each receptive field size. Thus the ON-
C and OFF-C networks together activate four net-
works of simple cells.

The outputs of these parallel simple cell networks
are next combined at each position (Figure 9). This
second stage of the CORT-X filter, called the com-
plex cell layer, is sensitive to the orientation, amount,
and spatial scale of the contrast of the image at a
given point, but not to the direction-of-contrast. This
is achieved by summing the outputs of all like-ori-
ented simple cells at each position, including cells
that are sensitive to opposite direction-of-contrast
and that receive inputs from either the ON-C or OFF-
C shunting networks. Two networks of complex cells
sensitive to the two scale sizes are generated in this
way. Adding the half-wave rectified outputs from

Insensitive to
Direction of Contrast

/ \ Simple Cells
Sensitive to
Direction of Contrast

Complex Cells

FIGURE 9. The simple cell and complex cell layers that pro-
cess each of the two shunting network images in parallel. A
horizontally oriented set of cells is shown. In Figs. 10 and
11, only the outputs of horizontally oriented cells are dis-
played.
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FIGURE 10. (a) Small scale horizontal complex cell output from the ON-C image of Figure 8b; (b) Small scale horizontal complex
cell output from the OFF-C image of Figure 8c; (c) Large-scale horizontal complex cell output from the ON-C image of Figure
8b; and (d) Large-scale horizontal complex cell output from the OFF-C image of Figure 8c.

pairs of simple cells that are sensitive to opposite
direction-of-contrast has the same net effect as full-
wave rectification.

The complementarity property helps to suppress
noise when the ON-C and OFF-C outputs are pro-
cessed separately by their own parallel networks of
simple cells and complex cells. To a first approxi-
mation, the contrast detectors respond to the ratio
of signal between each half of an oriented receptive
field. As such, a small amount of noise signal against
a background of no signal would effect the contrast
detectors more than the same amount of “drop out”

noise against a background of strong signal. The in-
version of the image performed by the OFF-C filter
changes the direction of contrast between any noise
and its signal background. Thus, the noise will be
disruptive in only one of the two parallel networks
of simple cells and complex cells, while actual region
boundaries will be strongly detected in both (Figure
10).

The output from both networks of contrast de-
tectors are then summed, an operation which takes
advantage of the ON-OFF Complementarity Prop-
erty. First it roughly yields equal responses to both

FIGURE 11. (a) ON-OFF small-scale horizontal complex cell rersponse derived by adding Figs. 10a and 10b; and (b) ON-OFF
large-scale horizontal complex cell response derived by adding Figs. 10c and 10d.
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NOISE SUPPRESSION NEAR BOUNDARY

ORIENTED SPATIAL COMPETITION:
Complex cellsC, (x, k) output to an oriented spatial
competition which inputs to target cells D, (x, k). Target cells:

at a boundary are activated;

near a boundary are suppressed;
far from a boundary may be activated by noise.

® D (x,k)

FIGURE 12. Oriented spatial competition inhibits noise pixels near the boundary. Reprinted from Carpenter, Grossberg, &

Mehanian (1989) with permission.

concave and convex curvatures. Second, since noise
in a given region is suppressed in one or the other
contrast-filtered shunting outputs, while boundaries
one are strong in both, the summation strengthens
the boundary signals relative to the noise (Figure 11).

Figure 11 demonstrates that the two scales also
exhibit another type of complementary processing
capabilities (Carpenter, Grossberg, & Mehanian,
1989). The smaller scale filter does a better job of
boundary localization than the larger scale filter, es-
pecially at positions of high boundary curvature,
whereas the larger filter does a better job of noise
suppression and boundary completion. Canny (1986)
has suggested how a single spatial scale can trade off
between these virtues, but notes that ‘“‘we cannot
improve both simultaneously” (p. 684). The CORT-
X family of models suggests a strategy whereby two
or more scales can be combined to realize the best
features of each. In particular, the large-scale filter
achieves good noise suppression far from the image
boundaries, but not within the radius of large scale
IFs near these boundaries. The small scale filter is

relatively poor at noise suppression anywhere. The
next stage of filtering is designed to control this noise
near boundaries. Each complex cell excites the hy-
percomplex cell at its position and orientation in the
next level, called the first competitive stage, while
inhibiting hypercomplex cells at nearby positions that
are not colinear with its axis of symmetry (Figure
12).

The next level, the second competitive stage,
sharpens the activation pattern across orientations at
each position and scale. In particular, at each posi-
tion and scale, that cell is chosen whose orientation
receives the maximal input from the first competitive
stage (Figure 13).

The final operations include cooperative interac-
tions between both filter sizes that select their de-
sirable properties and eliminate their undesirable ones.
The small scale’s ability to localize boundaries and
the large scale’s ability to suppress noise and com-
plete gaps in the boundaries are maintained by these
cooperative interactions (Figure 14a).

Gaps in the boundary become more likely as the

B

FIGURE 13. Output from the second competitive stage due to competition between orientations at each location. (a) Small

scale; and (b) Large scale.
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FIGURE 14. (a) Unoriented cooperation between both scales; and (b) Oriented cooperation within the large scale.

noise level of the original image increases. To over-
come this problem, the cooperative level also in-
cludes oriented long-range interactions among the
selected maximal responses in Figure 13. Because of
these long-range interactions, an inactive cell can
become active if enough cells of a particular orien-
tation at the previous level are active on both sides
of the cell along the oriented axis of this cell (Figure
- 14b). '

The final output of the CORT-X filter is the sum
of the combined-scales image and the completed-gap
image (Figure 15).

Step 3 (Filling-In). The output from the CORT-
X filter is topographically mapped into M filling-in
networks F,,, i = 1,2, ..., M. In the Grossberg
and Todorovi¢ (1988) article, the signals that trigger
filling-in are generated by the image (Section 5). In
the present application, they are generated by input
sources that lie within the network. Moreover, each
internally generated input is delivered to its filling-
in network at a different position.

Imagine, for definiteness, an n X n grid of M =
n? nodes laid out over the boundary image generated
by the CORT-X Filter. Each filling-in network F, is

FIGURE 15. Final CORT-X filter output.

associated with a different grid point where it will
receive a featural ““dye” injection into its copy of the
boundary image. The injection then spreads un-
impeded where there is no boundary signal, but does
not spread through points where a boundary signal
exists (Section 8). Thus, each injection fills-in the
connected figure that surrounds the injection point
(Figure 16). If the grid is dense enough, then all
connected figural components will receive an injec-
tion within its boundary in at least one filling-in net-
work F,. This process is easy to replicate in large
numbers because all the networks are identical ex-
cept for the different, but regular, locations of the
injected inputs, and all can operate independently
and asychronously in parallel.

Step 4 (Figure-Ground Separation). Each filling-
in network feeds its activation pattern in parallel to
another pair of shunting networks, one on-center/
off-surround (ON-C) and one off-center/on sur-
round (OFF-C). This completes the second “F” op-
eration in the FBF model. Because of their contrast
enhancing and ratio-processing properties, these fil-
ters amplify the filled-in activity near figural bound-
aries while tending to suppress the low-contrast re-
gions generated by the spreading of activation across
the interiors of figures and background regions.

Consider first the case where there are no holes
in a boundary at which the spreading activation could
leak through. If the filling-in process has been given
enough time to reach all of the enclosing boundary
signals, then the ON-C filter produces an output only
inside the enclosing boundaries, due to the injected
activity (Figure 17E). The OFF-C filter produces sig-
nal only outside the enclosing boundaries, due to the
spontaneous baseline activity which has not been
quenched by the input injection (Figure 17H). In this
hole-free case, the ON-C filtered images effectively
separate each connected region from all others in the
original image. However, because of the Gaussian
shapes of the kernels used in these filters, the edges
in the ON-C patterns also exhibit a Gaussian spatial
spread. Also, smooth gradients, such as those’ gen-
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CV{:I CORT-X Filter Output

Image feeds to a stack of multiple filling-in domains,
each with its own filling-in source locations

| [ |

=4 =
C C
N AV A

o

FIGURE 16. Copies of the CORT-X filter output are sent to M filling-in networks (three of which are pictured here). Activity is
injected into a different place in each (gray disks) and begins to spread.

K K L

FIGURE 17. Row 1: Filling-in of activity is initiated at three different places in parallel filling-in networks. Due to the quantization
of the gray scale, small filled-in activations do not print, even though they are detected by the shunting networks, as noted in
rows 2 through 4. Row 2: The ON-C filter output of the respective filled-in regions. Row 3: The OFF-C filter output of the
respective filled-in regions. Row 4: The final “separated figure” outputs to be passed along to a pattern recognizer such as
an ART network.
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erated by activation spreading across regions where
there are no boundary signals, may not be quenched
to zero if the center and surround kernels are of
unequal area. If the pattern recognition stage is based
on image boundary signals, then better boundaries
must be reconstructed. One way is to subject each
image to another pass through the CORT-X filter.
Such a step would be useful if the second CORT-X
filter used a longer range cooperative kernel to com-
plete boundaries across any remaining gaps. An al-
ternative approach is to multiplicatively gate each
ON-C pattern with the original CORT-X output. The
resulting M images are then ready to be passed along
and contain among them all the separated figural
boundaries of the original image (Figure 17J-L). This
method can be run in real-time until the output from
each copy generates a recognition event at its ART
network, or the input image is removed.

If the original image contains so much noise that
the CORT-X filter is unable to produce boundaries
without weak points or small gaps, then significant
activity could leak out of figural components during
the filling-in process (Figure 17A). On the other hand,
the ART recognition process, operating in real-time,
could recognize the figure before the equilibrium state
of equal activation on both sides of the boundary is
reached.

Leakage of diffusing activity causes no problem if
there are no other nearby object boundaries in the

S. Grossberg and L. Wyse

original scene. The spread of activation would pro-
duce a smooth gradient through the gap, and the
shunting operation would not detect any contrast at
the point of leakage or outside the object until well
after the recognition event occurred. If, however,
another object’s boundary were near a boundary gap,
then leaking activation followed by the ON-C shunt-
ing operation could detect the spurious boundary if
the injection site were closer to the spurious bound-
ary than to other boundaries of the figure.

In this case, the OFF-C filtered image is helpful.

.The ON-C signal at boundary regions exterior to the

desired object is not as strong as the OFF-C filter
signal at these points unless the boundary and the
injection site are both proximal to the boundary gap.
This property is due to the fact that very little injected
activity would have spread there to excite the ON-
C field, and the OFF-C field is tonically active, as
shown in eqn (16) below. Subtracting the OFF-C
image from the ON-C image before CORT-X gating
therefore helps to correct this pathological situation.
The OFF-C subtraction does not, moreover, distort
the desired object boundary when the ON-C signal
is stronger than the OFF-C signal. In Figure 18, for
example, a hole was made in the boundary of the
truck near the boundary of another figure before
filling-in occurs. The ON-C network clearly detects
the outer boundary of the moon (Figure 18A). The
OFF-C filtered signal is, however, stronger at these

FIGURE 18. (a) The ON-C filter output of the filled in region with a hole in the boundary proximal to another figure; (b) The
OFF-C filter of the filled in region; (c) The output as it would look without using the complementary OFF-C image; and (d) The
final image which uses the OFF-C filter to control the effects of the leakage leaving only the desired boundary signal.
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points (Figure 18B). Without taking the OFF-C net-
work information into account, the output could cause
difficulties for a pattern recognizer since the objects
would not be separated (Figure 18C). Combining the
two shunting network filters produces the desired
separation (Figure 18D). The output of such an op-
eration computes a double opponent receptive field
(Grossberg, 1987).

A single figure is typically large enough to enclose
several injection sites across the set of filling-in net-
works F,,. Thus, even if the injection site is close to
a boundary gap and to a nearby spurious boundary
in one network F,,, the injection sites of other filling-
in networks will be further from the boundary gap.
In some of these networks, double oeponent pro-
cessing can compensate for the gap, and trigger a
correct recognition of the figure from the corre-
sponding ART network. If the spurious boundaries
are strong enough, the corresponding ART network
will remain silent, as in Figure 17]J, because the com-
bination of partial figure and background is not sim-
ilar enough to a previously learned recognition code.

In summary, successful parallel separation of mul-
tiple connected figures from other figures and back-
ground can be performed with this architecture un-
der noisy conditions by exploiting the possibility of
efficient parallel recognition by ART networks of
boundary segmentations that are generated by sam-
pling multiple filling-in pespectives.

On-Center/
Off-Surround

737

8. FBF NETWORK EQUATIONS

Input Images

In our computer simulations, the images are 256 *
256 arrays with signal values in the interval [0, 1]:
The simulations pictured herein represent maximum
signal strength by black and minimum signal strength
by white. Noise was generated by randomly choosing
a percentage of pixels and setting their values to a
random number, or gray level, in the interval [0, 1].
For the simulation pictured herein, 50% of the pixels
were randomized. The input pattern {I;;} is thus rep-
resented as gray levels on a set of square pixels {P,;}.
Pixel P attains the value /;; at the set of image points
{u,v)ii=u<i+1,j=sv<j+ 1}

Step 1 (Discount the Illuminant): ON-C Network

Each node v, is placed, for notational convenience,
at the center of the corresponding pixel P; where it
receives input ;. The activity x;; of the node v; at
lattice position (i, j) obeys the shunting on-center
off-surround equation:

d

ot -Ax; + (B — x))C; — (x, + D)E;, (1)
where C;; is the on-center interaction and Ej; is the
off-surround interaction. Each C;; and E;; is a discrete
convolution of the input pattern {/;} with a Gaussian

Off-Center/
On-Surround
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FIGURE 19. The kernels used in the CORT-X Filter. All oriented kernels have orientations at every =/8 radians.
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kernel (Figure 19a). Thus

G = E L,y Cogiis )
pq
and
E, = Z LB pgis (3)
pq
where

Coij = Cexp{—a?log2[(p — i) + (¢ — )1}, 4
and

Eyi = Eexp{—=f~2log2[(p — i) + (¢ = ' OO

In our simulations, A = 134, B=1,C=17,D =
S, E = 3333, a = 1.3, and = 1.875. For this
choice of parameters, the ON-C and OFF-C Gaus-
sians are of equal area. At equilibrium (dx;/dt =
0), (1) yields:

X = 2:(p.q)(BCMiI — Dquij)Ipq . (6)
! A+ 2(M)(C + qui/)Ipq

Paij
OFF-C Network

The activity ¥, of the node v; at lattice position (i,
J) obeys the shunting off-center on-surround equa-
tion:

d

E)_Cii': —ARF; - 8)

+ (E - x,']‘)—c—,’,‘ - (xg, + 5)Eij’ (7)

where the on-center kernel of X;; is the off-surround
kernel of x;, and the off-surround kernel of X; is the
on-center kernel of x;. In particular,

B =D, ®)

a‘i = Ej, )

D = B, (10)
and

E, = C, (11)
By egs (8)-(11), (7) may be written as
%@:—A@—S)

+ (D - x)E; — x; + B)C;. (12)
At equilibrium,

- _ AS + 3, )(DEy; — BCpy)ly

%, = : 13
' A+ 2(tw)(Cpqii + quii)lpq ( )
It follows by summing (6) and (13) that

x; + X; AS (14)

- A+ 2(p-qr)(cr'qii + quij)Ipq’

which shows that for images {1,,} with constant Gaus-
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sianly filtered total activity

E (Cpqii + quii)lpq" (15)
pq

the sum x; + X; is conserved and maintained at a
positive value that increases with the tonic activity
level S of X;; in the dark. In our simulations, § = .2.
The value for the parameter A (given the other pa-
rameter values) was chosen so that the activation of
cell x; takes on values between § and 0 under spa-
tially uniform illumination between 0 and 1 within
its receptive field. Under such spatially uniform il-
lumination conditions, I,, = I for all (p, g). Since
for our choice of parameters the two Gaussian ker-
nels are of equal area, let ® = 2, ) E i = 2,4
C,,ij- Then ® factors out so that the equilibrium eqn
(13) becomes

__AS+I(D — B)®
YOS T A v 20 (16)

We derive the value for A by

4B -—SD)tD’ . o

so that when I = 1, the numerator vanishes. When
I = 0,x; = S independent of A.

Step 2 (CORT-X Filter)

All simple cell input fields are elliptical. Two sizes
of input fields were used, indexed by the subscript
s. The smaller scale, s = 1, had a major axis of 12
pixels and a minor axis of 6 pixels. The larger scale,
s = 2, had a major axis of 20 pixels and a minor axis
of 10 pixels. Orientations were chosen around the
clock spaced by n/8 degrees. They are indexed below
by the subscript &.

Simple Cells

A simple cell with index (i, j) is centered at the lower
left hand corner of pixel P;. By this convention, the
nodes v, of the shunting variables x,, do not lie on
the oriented axes that separate the excitatory and
inhibitory halves of vertically and horizontally ori-
ented receptive fields. The output of the pair of sim-
ple cells of scale s centered at index (i, j) with re-
ceptive field orientation £ is defined by

SsL(i7 j7 k)

= max[.Lx(i’ ja k) - a:Rs(i’ j’ k) - ﬁsa 0]’ (18)
and
S(i, J, k)

= max[Rs(i’ j’ k) - asLs(iv ja k) - .Bs’ 0]! (19)

where L,(i, j, k) and Ry(i, j, k) are the contributions
of the left-half [(i, j, k) and right-half r(i, j, k),
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respectively, of the oriented input field; that is,

LG, j, &) = Zipasius X (20)

E(P:ﬂ)eh(i»f,k) Wpq

and

RG,j, k) = gﬂﬁ'sﬁ‘_l_"MM’ 1)
(pa)der(ij)Wpq

where w,, is a weighting factor equal to the propor-
tion of the area of pixel P,, (taken to be one square
unit) covered by the receptive field. An activity x,,
was included in L, or R; if its pixel had a nonzero
intersection with the corresponding half of the re-
ceptive field. Parameters «; are threshold contrast
parameters and parameters f; are threshold noise
parameters. We chose a; = 1.4, o, = 2.0, and 8, =
B, = B = .012. Each simple cell in eqns (18) and
(19) is sensitive to the opposite direction-of-contrast
than its companion, as indicated by the indices L and
R in S;; and Sz, respectively.

The ON-C and OFF-C networks each input to a
different network of simple cells. The simple cells
that receive signals from the ON-C network are de-
noted by S;; and S;z. The simple cells that receive
signals from the OFF-C network are denoted by
S;2 and Si;.

The complex cells pool inputs from all simple cells
of like orientation and scale that are centered at the
same location, as described below.

Complex Cells
The complex cell output C,(i, j, k) is defined by
Cx(i’ j’ k) = F[S:;.(l’ j’ k) + S:R(l’ j’ k)

Such a cell is sensitive to spatial scale s and amount-
of-contrast centered at cell x with orientation k, but
it is insensitive to direction-of-contrast. In our sim-
ulations, F = .5.

Hypercomplex Cells (First Competitive Stage)

The hypercomplex cells D(i, j, k) at the first com-
petitive stage receive input from the spatial compe-
tition among the complex cells; that is,

Dy, j, k)

- max[ Ci Jy k) . O]

&t u2n 2y, C(p, 4, mMGp, g, i), k) 71

(23)

where ¢ = .1, u = 5, 7 = .01. The oriented com-
petition kernel G(y, x, k) is normalized so that

2 G(p,q i), k) = 1. 24)

P

As in Figure 19c, they are circular. Complex cells at
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the kernel periphery are weighted by the proportion
of their area (taken to be one square unit) that are
covered by the kernel. The grey areas in Figure 19¢
are inhibitory. Any cells whose defining pixel loca-
tion lies within the one-unit-wide band through the
middle of the kernel do not contribute to the inhi-
bition. In our simulations, the small scale kernel is
8 units in diameter, and the large scale is 16 units in
diameter.

Hypercomplex Cells (Second Competitive Stage)

The hypercomplex cells D,(i, j) at the second com-
petitive stage realize a competition among the ori-
ented activities D(i, j, k) at each position x. For
simplicity, the process is modelled as a winner-take-
all competition; namely,

D, j) = Dy(i, j, K) = max D, j, k), (25)

where index K denotes the orientation of the max-
imally activated cell.

Multiple-Scale Interaction: Boundary Localization
and Noise Suppression

The interaction between scales is defined by the
equation

Blz(i’ ]) = Dl(i’ ]) 2 DZ(p’ q)U(p’ q, i, ]) (26)

The unoriented excitatory kernel U(p, q, i, j) is cir-
cular (Figure 19d), and normalized so that

2 Up.q. i) =1, @7

and had a diameter of 8 units. All cells covered by
the kernel contribute to the excitation to the extent
that their area (taken to be one square unit) is cov-
ered by the kernel. The small-scale hypercomplex
cell D,(i, j) accurately localizes boundary segments
and suppresses noise near the boundary. The large-
scale hypercomplex cell D,(p, q) suppresses noise
far from the boundary. The product D,(i, j)D,(p, q)
would simultaneously realize both constraints except
that, due to the poor spatial localization of D,, this
term may be zero at boundary points of high cur-
vature, thereby cancelling the good localization
properties of D(i, j). The effect of D,(p, q) in the
equation is made more spatially diffuse by the kernel
U(, j, p, q). The size of U(i, j, p, q) is chosen to
scale with that of D,(p, q) in order to compensate
for the positional uncertanty of D,(p, q); a larger
choice of D,(p, q) would necessitate a larger choice
of U(i, j, p, q). Although term = D,(p, q)U(p, q,
i, j) in eqn (26) localizes the boundary even less
accurately than D,(p, ¢q) does, the product
of Dy(i, j) with 2, , D»(p, 9)U(p, g, i, j) in eqn (26)
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restores this loss of boundary localization. Moreover,
kernel U(p, q, i, j) causes no harm at locations p, g
that are far from the boundary, since D,(p, q) = 0
there (Carpenter, Grossberg & Mehanian, 1989).

Long-Range Cooperation: Boundary Completion

The function By,(i, j) represents the image boundary
well except where boundary pixels are missing due
to noise. More and larger boundary gaps are gen-
erated as the noise level increases.

The large detectors D,(i, j) can be used to partially
overcome this problem. Because of the spatial un-
certainty of the large detectors D,(i, j), they are ca-
pable of responding at locations where pixel signal
strength has been reduced by noise. Such boundary
signals may, however, be poorly localized. To over-
come this trade-off between boundary completion
and localization, cooperative interactions among the
large-scale cells are defined by

By(i, j) = Dy(i, )
X max[E Dz(Pa q9, K)O(p’ 9, ia j’ K) - 6’ O:I . (28)

The oriented kernel O(p, q, i, j, k) is defined by the
one-unit-wide white strips in Figure 19E. Any cells
with centers that lie within the one unit wide band
contributes to the cooperative process. The kernel
is normalized so that

> O(p.q.ij, k) =1 (29)

(p.q)inkernel

In our simulations, the length of the kernel was 12
units, and 6 = .001.

CORT-X Output

The final output of the CORT-X filter is the rectified
sum of the multiple scale interaction and the coop-
erative interaction:

B(la ]) = 1[312(1’ ]) + B2(l’ .’)]1 (30)
where
wi= el o

is the Heaviside function.
Step 3: Filling-In

In each filling-in network F,,, an input is injected
into a different area, with the shape of either a nar-
row Gaussian or a single node. For example, let I =
I(m) and J = J(m) define the injection indices
(I, J) of F,,. Then the injected input pattern to F,,
was chosen to be

X = Xexp{-y~2log 2[(I — i + (J - jyI.  (32)

This input pattern triggers filling in within F,, via the
nonlinear diffusion equation (Grossberg & Todo-
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rovi¢, 1988):

d
a—ts,(.;") = -—MS,(-;")

+ X (S =SBy + X (33)
P"IENij
where S is the activity of the (i, j) node of F,,, and
the index set N;; of the summation contains the near-
est neighbors of (i, j)) The permeability coefficient
P,,; is defined by ]
P é

"1+ e(B(p, @) + BG, )
where B(p, q) and B(i, j) are the outputs (30) from
the CORT-X filter at the positions (p, q) and (i, j)
respectively. Thus, activity spreads poorly, if at all,
between cells where boundary signals are large, and
easily where boundary signals do not exist. In the

simulations, the parameters M = .0001, X = 50,
y = .5, ¢ = 100000, 6 = 10.

Step 4: Figure-Ground Separation

(34

Each filling-in network F,, inputs its filled-in image
to shunting ON-C and OFF-C networks using the
same eqs (1) and (12) as above, with parameters A =
1,B;=1,C=18,D; = .5,E = 3.333, a = 2.96,
B =7,and S = .2. Here the on-activations x{™ and
off-activations X\ are parameterized by the filling-
in network F,, from which they are derived. The
boundary representation at position (i, j) of a figure
derived from network F,, is defined by

R = 1 = x”)B(, ), (35)

where 1[w] is the Heaviside function. In other words,
the figural boundary that is separated by network F,
is computed from the double opponent filter (x{" —
x\™) of filled-in F,, activation, gated by the CORT-
X boundary segmentation B(i, j).

9. CONCLUDING REMARKS:
RECOGNITION OF CONJUNCTIVE
FEATURES

The FBF network separates figure-from-ground by
using regular arrays of feedforward networks to dis-
count the illuminant and to generate boundary seg-
mentations, nearest-neighbor feedback signals for
filling-in, and a proliferation of these circuits in par-
allel copies that input to parallel arrays of ART pat-
tern recognition networks. The FBF networks thus
seem to be appropriate designs for implementation
in parallel hardware capable of operating at high
rates in real time.

It remains to discuss why the biologically moti-
vated FBF network can automatically distinguish be-
tween the pair of connected and disconnected Min-
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sky—Papert figures in Figure 1 that humans cannot
distinguish. The main reason is that FBF networks
use internally generated “‘dye injections.” These in-
puts are topographically distributed across the entire
perceptual space such that each dye injection is de-
livered to a different filling-in domain, or slab. In
human perception, by contrast, the same Feature
Contour signals that initiate Boundary Contour for-
mation also act as input sources that trigger featural
filling-in (Grossberg, 1987; Grossberg & Mingolla,
1985a; Grossberg & Todorovi¢, 1988). The regions
used by Minsky and Papert (1969) were all of the
same color, of similar overall shape, and occupied
essentially the same region of their respective im-
ages. They would therefore tend to fill-in the same
slab, or set of slabs, when they are being perceived
by humans. Hence, they could not be distinguished
by filling-in different slabs as a function of their con-
nectivity. ' :

This observation clarifies a recent controversy about
human perception; namely whether target figures that
differ from distractor figures by more than one type
of feature can be separated from them by rapid par-
allel processing that does not require serial search.
Treisman and her colleagues (Treisman & Gelade,
1980; Treisman & Souther, 1985) have suggested that
such parallel processing can occur only if the target
is distinguished from distractors along a single stim-
ulus dimension, whereas if a target is defined by the
conjunction of two or more stimulus dimensions, then
it can only be separated from the distractors by a
serial search process

An exception to this rule was discovered by Na-
kayama and Silverman (1986), who showed that tar-
gets which differ from distractors by a combination
of disparity and color, or of disparity and motion,
can be rapidly separated without serial search. This
result is explained by the theory of 3-D vision, called
FACADE Theory (see Section 4), which motivated
the design of FBF networks. In Grossberg (1987),
FACADE representations of different disparity-and-
color combinations activate different combinations
of filling-in domains. They are structurally separated
in the representation, and hence can be rapidly de-
tected.

In summary, the difficulty of distinguishing the
connected and disconnected Minsky—Papert displays
can now be explained by the same mechanisms that
explain rapid search of Nakayama-Silverman dis-
plays, and that provide the heuristics for designing
an FBF network for automatic figure-ground sepa-
ration.
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APPENDIX
Image Rendering

Each image has been scaled so that the maximum signals strength
is mapped to black, and the minimum signal strength is mapped
to white. Intermediate values map linearly onto a grey scale. The
maximum signal strengths for the images are: Figure 8: (a) 1.0,
(b) .125, (c) .197. Figure 10: (a) .041, (b) .067, (c) .018, (d) .058.
Figure 11: (a) .054, (b) .035. Figure 13: (a) .261, (b) .219. Figure
14: (a) .013, (b) .038. Figure 15: (a) 1.0. Figure 17: Row (col. 1)
143.2, (col. 2) 753.3, (col. 3) 195.3; Row 2 (col 1) .324, (col. 2)
.330, (col. 3) .325; Row 3 (col. 1) .287, (col. 2) .396, (col. 3) .333;
Row 4 (col. 1) 1.0, (col. 2) 1.0, (col. 3) 1.0. Figure 18: (a) .325
(b) .332 (c) 1.0 (d) 1.0.



