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Neural networks that match sensory inputs with learned expectations help
to explain how humans see, hear, learn and recognize information.

Myriad signals relentlessly bombard our senses. These signals may arrive in discon-
nected pieces, yet we can integrate them as unified moments of conscious experience. The
apparent singularity and coherence of an experience depends on how the brain processes
environmental events. That processing concentrates on context. If you look at a complex
picture, such as a photograph of a famous face (Figure 1A4), you probably recognize it at a
glance, but you might never recognize it by looking at it piece by piece (Figure 1B). Such
context-dependent processing emerges because the brain typically operates on sensory data
in parallel, or in batches.

Visual signals from a scene typically reach your eyes simultaneously, so parallel pro-
cessing begins at the retina. Sounds that make up a word, on the other hand, reach your
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Figure 1: When Einstein’s face (A) is seen through small apertures (B), its meaning as a
face is greatly degraded.

ears sequentially. To process a pattern of sounds as a whole, it must be “recoded”. Such a
recoding, or processing stage, is often called a working memory, which stores short-term-
memory traces. To identify familiar events, the brain compares short-term traces with
stored categories. These categories are accessed using long-term-memory traces, which
represent previous experiences that have been acquired through learning.

Somehow, we can rapidly learn new facts—placing them in long-term memory—without
being forced just as rapidly to forget others. How does brain processing keep old memories
stable and still maintain enough plasticity to learn new things? What I call the stability-
plasticity dilemma must be solved by every brain system that attempts to learn about the
flood of external signals.

I shall examine several challenging examples of visual and auditory data that suggest
how the brain might solve the stability-plasticity dilemma. FEach example can be ex-
plained by a computational approach called Adaptive Resonance Theory (ART), which I
introduced 20 years ago. Despite the diversity of tasks that the brain must complete, the
neural circuits that govern many processes seem to rely on a similar set of computational
principles. In part, the connection lies in a fundamental characteristic of human brain
function: Our perceptions are often matched against our expectations. In many examples
where this is so, a similar type of circuit seems to exist.
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Figure 2: (A) The Ehrenstein pattern generates a circular illusory contour that encloses
a circular disk of enhanced illusory brightness. (B) If the endpoints of the Ehrenstein
pattern remain fixed while their orientations are tilted, then both the illusory contour and
brightness vanish.

1 Sights and Sounds

What we perceive depends on how the nervous system processes a stimulus, such as a
photograph or a song. That processing may alter some of the information in a stimulus,
leading to a transformed perception of it. By comparing the characteristics of a stimulus
and its perception, we may discover some of the principles of brain computation.

An intriguing perception emerges from an image called an Ehrenstein figure (Figure 2),
which consists of black lines drawn in a radial pattern on white paper. The mind constructs
an illusory circle inside the radiating lines, which makes the figure resemble a child’s
drawing of the sun-a bright white circular disk with black lines emerging as rays. In fact,
the illusory disk appears brighter than the surrounding background. That perception is a
collective, emergent property of all the lines that only develops when they are positioned
suitably. Why do we see a bright disk that does not exist?

A higher level of visual processing relies on recognition categories, which control learned
expectations of what we might see, such as a face or a letter. A key part of recognizing
objects depends on how we learn categories that include different instances of a similar
object, such as the same letter printed in different sizes or similar shapes. Some tasks—such
as recognizing a particular face-require specific categories, and others—such as knowing
that every person has a face depend on comparatively general ones. How do we learn the
breadth of a category?

In other situations, we may readily recognize a stimulus despite the fact that many
similar stimuli exist simultaneously. You may experience this problem while talking to a
friend in a noisy room. You can usually keep track of your conversation above the hubbub,
even though sounds emitted by your friend probably overlap with other speakers’ sounds.
The challenge of separating a single voice from a jumbled mixture of sounds is called the
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Figure 3: (A) Auditory continuity illusion: When a steady tone occurs both before and
after a burst of noise, then under appropriate temporal and amplitude conditions, the tone
is perceived to continue through the noise. (B) This does not occur if the noise is not
followed by a tone. (C) Nor does it occur if two tones are separated by silence.
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cocktail-party problem. How do we separate the voices into distinet sources, or auditory
streams?

A simple version of generating streams appears in the auditory-continuity illusion.
Suppose that you hear a steady tone that shuts off just as broadband noise turns on, and
that the noise shuts off just as the tone turns on again-or tone, noise, tone. Under certain
conditions, you will “hear” the tone from start to finish, even during the noise (Figure 3A).
Nevertheless, if the tone does not turn on a second time, you will not hear it during the
noise (Figure 3B). In your perception, the tone then turns off when the noise starts. If
there is no noise between the two tones, then the tone does not bridge the silent interval
(Figure 3C). How does your brain know whether there will or will not be a second tone
later on, which determines whether it will continue the first tone through the noise? How
does it use the noise to construct a tonal perception?

A similar phenomenon exists at a higher level of audition. It is called phonemic restora-
tion. Suppose that you hear a noise followed immediately by the words “eel is on the....
If that string of words is followed by the word “orange,” you hear “peel is on the orange.”
If the word “wagon” completes the sentence, you hear “wheel is on the wagon.” If the
final word is “shoe,” you hear “heel is on the shoe.” Richard Warren of the University
of Wisconsin, Milwaukee, and his colleagues developed that marvelous example 25 years
ago. It shows that a stimulus alone, such as “noise-eel,” may not determine what you
perceive. How do you hear the sound that you expect to hear, based on previous language
experience?

The auditory-continuity illusion and phonemic restoration suggest that the brain can
work “backward in time,” allowing a later auditory stimulus to determine a perception of
an earlier stimulus. I shall argue that these phenomena exist because, in each case, sensory
data activate an expectation that focuses attention, much as “peel” emerges from “noise-
eel.” The attentional focus emerges as part of a “resonance” that leads to a conscious
perception. If the resonance has not developed fully before future data arise, then those
data can influence the expectations that determine the conscious perception. These audi-
tory phenomena are related to the bright Ehrenstein disk and object recognition through
the action of such expectations.

2 Adaptive Resonance Theory

The processing in the brain that generates a perception or recognition event from a stimulus
can be investigated with a neural network, which is a computer-based model of neural
mechanisms. An ART neural network includes two primary types of memory processes:
short-term memory and long-term memory. Short-term memory captures stimuli; long-
term memory stores learned information.

In an ART neural network, information can flow from short-term to long-term memory
during learning or from long-term to short-term memory during recall (Figure 4A). Each
processing layer encodes information in short-term memory via patterns of activation across
a network of neurons. Long-term memory is encoded in adaptive weights within the
pathways that join neurons in different layers. These weights multiply the signals in the
pathways before they are added at their target neurons.
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Figure 4: (A) Auditory items activate STM traces in a working memory, which send
bottom-up signals towards a level at which list categories, or chunks, are activated in STM.
These bottom-up signals are multiplied by learned LTM traces which influence the selection
of the list categories that are stored in STM. The list categories, in turn, activate LTM-
modulated top-down expectation signals that are matched against the active STM pattern
in working memory. (B) This matching process confirms and amplifies STM activations
that are supported by contiguous LTM traces, and suppresses those that are not.
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Figure 5: One way to realize the ART matching rule using top-down activation of nonspe-
cific inhibitory interneurons.

In the case of phonemic restoration, feature detectors in short-term memory encode
a sound stream. Activating short-term memory generates output signals via bottom-up
pathways. The adaptive weights in these pathways help to select category neurons for
activation at the next processing level. The category neurons, in turn, generate top-down
outputs. The adaptive weights in the top-down pathways encode learned expectations,
or prototypes (Figure 4B). These prototypes initiate a matching process that compares
sensory inputs with learned expectations, and leads to selections such as “peel” from
“noise-eel.”

An ART neural network operates according to specific matching rules (Figure 5). So-
called top-down priming means that a top-down expectation, in the absence of any bottom-
up input, sensitizes cells that would ordinarily respond to a particular class of stimuli
and suppresses others. Conversely, if a cell receives a large enough bottom-up signal, in
the absence of any top-down input, then the cell can generate a output, which is called
automatic activation. During matching, a cell that receives convergent bottom-up and top-
down inputs becomes active. On the other hand, a cell gets suppressed when it receives
only a small, or zero, top-down expectation input, even if it receives a large bottom-up
input.

Top-down processing selectively amplifies some features of a stimulus and suppresses
others, which helps to focus attention on information that matches our expectations. That
focusing process helps to filter out some parts of the flood of sensory signals that would
otherwise overwhelm us and to prevent them from destabilizing our previously learned
memmories. Thus top-down expectations may solve the stability-plasticity dilemma by fo-
cusing attention and preventing spurious signals from accidentally eroding our previously
learned memories.

Nevertheless, if a top-down expectation influences a bottom-up stimulus, what keeps the
modified bottom-up signals from reactivating their top-down expectations in a continuing
cycle of bottom-up and top-down feedback? Nothing. Omnce that reciprocal feedback
equilibrates, the bottom-up and top-down signals lock the activity patterns in a resonant
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Figure 6: Light registered on the photosensitive retina of the eye is processed by the lateral
geniculate nucleus before activating the visual cortex. The visual system appears in this
representation of the human brain as viewed from below. Visual pathway from retinas to
cortex via the lateral geniculate body is shown in gray.

state. I claim that only resonant states of the brain can achieve consciousness, and that
the time needed to develop resonance helps to explain why an event’s perception takes so
long,

Adaptive resonance theory helps to explain why, as philosophers have asked for many
years, humans might be “intentional” beings—planning future behavior and expecting its
consequences. An ART neural network achieves its stablity by learning expectations about
the world that are continually matched against world data. Those intentions lead to
attention. That is, expectations start to focus attention on data worthy of learning.

During phonemic restoration, future evidence (such as the words orange or wagon) can
influence the percepts of past sounds (such as the noise) if they occur before the resonance
equilibrates. The future words can focus attention on the correct sound (“p” or “wh”) in
the noise by using top-down expectations that realize the ART matching rule. Only these
sounds enter consciousness as the final resonance emerges.

In summary, top-down signals represent the brain’s learned expectations of what bottom-
up signal patterns should be, based on past experience. A matching process reinforces and
amplifies features in a bottom-up pattern that are consistent with top-down expectations,
or hypotheses, and suppresses features that are inconsistent. That matching step initiates
the process whereby the brain selectively pays attention to experiences that it expects,
binds them into coherent internal representations through resonant states and incorpo-
rates them in its knowledge about the world.
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Figure 7: Retinal center-surround cells and their optimal stimuli (A). The ON cell, on
the left, responds best to a high luminance disk surrounded by a low luminance annulus.
The OFF cell, on the right, responds best to a low luminance disk surrounded by a high
luminance annulus (B). OFF cells respond to the inside of a black line. The OFF cell
centered at the line end responds more strongly than the OFF cell centered in the middle,
because the surround region of the former cell is closer to optimal. In (C) ON cells respond
to the white background just outside the black line. The amount of overlap of each ON
cell’s surround with the black line affects the strength of the cell’s response. As seen in
the ON cell’s optimal stimulus (C), the more of the surround that is stimulated by a black
region, the better the ON cell will respond. Thus, an ON cell centered just outside the
side of the line will respond better than a cell centered just outside the end of the line.
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3 Brightness Buttons

How does an ART network explain the enhanced brightness of an Ehrenstein disk? John
Kennedy of the University of Toronto attempted to explain that perception with “bright-
ness buttons,” or proposed bright areas at the ends of dark lines. My colleagues and I
proposed that these brightness buttons could, in turn, activate a process of surface filling
in whereby the brightness signals diffuse across the visual field until they hit a circular
illusory contour. A bright circular disk could thereby be generated.

In the mid-1980s, my colleagues Michael Cohen, Ennio Mingolla and Dejan Todorovié
and I began to explain many visual percepts with a neural model of how such visual
boundaries and surfaces form. In that model, boundaries separate a button-containing
region from other parts of a scene. Such a boundary may be generated by image edges,
textures or shading, and it may produce illusory contours, such as an Ehrenstein circle.
Although our model explained correctly and predicted many facts about illusory contours
and perceptions of brightness, it also predicted that the Ehrenstein disk should look darker
than its surround, which it does not. My colleagues Alan Gove and Mingolla and I then
realized that Ehrenstein disks would look bright if we added a feedback loop from the
visual cortex to the lateral geniculate nucleus, a waystation between the retina and the
visual cortex (Figure 6).

In 1976 I had predicted that such a feedback loop should exist for quite different
reasons. Cells in the visual cortex combine inputs from both eyes to carry out binocular
vision. These cells learn their binocular properties at an early stage of development. I
predicted that top-down ART matching stabilizes this learning process as it realizes a type
of “automatic” attentional processing in the lateral geniculate nucleus. Only recently did
my colleagues and I realize that it could also influence percepts of brightness.

The model begins with processing in the lateral geniculate nucleus, where a visual cell’s
receptive field consists of circular regions. Some of these cells, called ON cells, possess a
so-called on-center, off-surround receptive field, which is stimulated by light near the cell’s
location (the on-center) and inhibited by light in more distant locations (the off-surround).
A so-called OFF cell has an off-center, on-surround receptive field, which is inhibited by
light near the cell’s location and stimulated by more distant light (Figure 7TA).

These cells could produce contrast between a black line and a white background. An
OFF cell positioned with its receptive center inside a black line will be activated (Fig-
ure 7B). Furthermore, an OFF cell near a line’s end will be even more strongly activated,
because more of its surround lies in a white background. An ON cell, on the other hand,
gets stimulated when its center lies outside of a black line (Figure 7C). An ON cell po-
sitioned with its center just beyond the side of the line, but not at an end, will respond
most strongly. The ON cells, therefore, enhance brightness along the sides of a black line
and OFF cells enhance the darkness just inside the ends of a black line. In other words,
these cells alone do not produce brightness buttons. They could make Ehrenstein disks
look dark.

Feedback from the visual cortex is sensitive to a line’s orientation and is more active
near a line end, because of a process called endstopping (Figure 8B). Feedback could
enhance the contrast at the ends of a black line and reduce it along the sides, thereby
causing cells in the lateral geniculate nucleus to make brightness buttons (Figures 8C and



May 24, 1996 11

A
++ ]+
B 4+ +| +
c O O O O O
COBO o © o ogo
© o © © o ©
O ©C O O O O O O

Figure 8: Schematic diagram of brightness button formation in the model. In (A) the
distribution of model LGN cell activities prior to receiving any feedback, in response to
a black bar is illustrated. Open circles code ON cell activity; filled circles code OFF cell
activity. (B) shows the effect of feedback in bottom-up LGN activations. (C) shows the
LGN activity distribution after feedback. A brightness button is formed outside both ends
of the line.
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9B). The model’s boundary-completion network then “connects” neighboring line ends
within its “cortex,” thereby generating a circular illusory contour inside the lines (Figure
9C). Next, a diffusion process responds to the brightness buttons to fill in a uniform level
of enhanced brightness within the bounding illusory contour. The result is an Ehrenstein
disk with uniformly enhanced brightness relative to its surround (Figure 9D).

Direct experimental evidence demonstrates that cortical feedback can alter the proper-
ties of lateral-geniculate- nucleus cells as proposed. In 1987 Adam Sillito and his colleagues
at University College, London, showed that cortical feedback in a cat tunes cells in its lat-
eral geniculate nucleus to respond best to lines with a specific length. In 1986 Chris Redies
of MPI Entwicklungsbiologie, Germany, and his colleagues found that some visual cells in
a cat’s lateral geniculate nucleus and cortex respond best at line ends. In other word-
s, the cells respond more strongly to line ends than line sides, just like our model does.
In addition, a remarkable 1994 article in Nature by Sillito and his colleagues provides
neurophysiological data that suggest that feedback from the cortex to the lateral genicu-
late nucleus resembles the matching and resonance of an ART network. They found that
cortical feedback changes the output of specific lateral-geniculate-nucleus cells, thereby
increasing “the gain of the input for feature- linked events detected by the cortex ... the
cortico- thalamic input is only strong enough to exert an effect on those dLGN [dorsal
lateral geniculate nucleus| cells that are additionally polarized by their retinal input ... the
feedback circuit searches for correlations that support the ‘hypothesis’ represented by a
particular pattern of cortical activity.

4 Making Matches and Testing Hypotheses

Feedback in an ART network also focuses attention in models of visual object recognition.
Here attention can be controlled flexibly in a task-sensitive way (Figure 10). Such an ART
network consists, as before, of an attentional subsystem that learns to form categories and
expectations in response to sensory inputs. In addition, there is an orienting subsystem
that is activated by novel events and enables the attentional subsystem to learn about
them in a stable way (Figure 10). In other words, interacting attentional and orienting
subsystems permit an ART system to solve the stability-plasticity dilemma in response to
large amounts of sensory data.

Processing begins when a sensory input stimulates short-term memory, in the attention-
al subsystem, and the orienting subsystem. The short-term memory contains a network
of nodes, or cell populations, each of which is activated by a particular combination of
features in an input. An input pattern gets registered as a short-term-memory activation
pattern, which stimulates the long-term memory through bottom-up processing and in-
hibits the orienting subsystem (Figure 11A). As long as the short-term-memory pattern
resembles the sensory input, the orienting subsystem remains idle, because of a balance of
excitation from the input and inhibition from short-term memory. The long-term mem-
ory traces in the bottom-up pathways activate another network of nodes that represents
recognition codes, or categories. In other words, the short-term-memory pattern at the
first level uses its best match in long-term memory to activate a category at the second
level that represents the sensory input.
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Figure 9: (A) The Ehrenstein figure. (B) The LGN stage response. Both ON and OFF
cell activities are coded as rectified deflections from a neutral gray. Note the brightness
buttons at the line ends. (C) The equilibrium boundaries. (D) In the filled-in surface
brightness, the central disk contains larger activities than the background, corresponding
to the perception of increased brightness.
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Figure 10: An example of a model ART circuit in which attentional and orienting circuits
interact. Level F encodes a distributed representation of an event by a short term memory
(STM) activation pattern across a network of feature detectors. Level F; encodes the event
using a compressed STM representation of the F; pattern. Learning of these recognition
codes occurs at the long term memory (LTM) traces within the bottom-up and top-down
pathways between levels F; and F;. The top-down pathways read-out learned expecta-
tions whose prototypes are matched against bottom-up input patterns at F;. The size of
mismatches in response to novel events are evaluated relative to the vigilance parameter p
of the orienting subsystem 4. A large enough mismatch resets the recognition code that
is active in STM at F; and initiates a memory search for a more appropriate recognition
code. Output from subsystem A can also trigger an orienting response. (A) Block diagram
of circuit. (B) Individual pathways of circuit, including the input level Fy that generates
inputs to level /7. The gain control input g, to level F; helps to instantiate the matching
rule (see text). Gain control g, to level F; is needed to instate a category in STM.
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Activating such a category may be interpreted as “making a hypothesis” about an
input. The “winning” category elicits an output that excites the feature detectors through
top-down processing. The top-down signal thereby plays the role of a learned expectation,
and activating that expectation may be interpreted as “testing the hypothesis.”

The top-down signals also activate an attentional-gain-control channel that nonspecif-
ically inhibits all of the feature detectors (Figure 11B). Unless a feature detector receives
a large, excitatory, learned-expectation signal, it is shut off by this inhibitory signal. This
produces a modified short-term-memory pattern, which encodes only the input features
that the network deems relevant to the hypothesis based on its past experience. From
then on, the network “pays attention to” the modified short-term- memory pattern. If the
modified short-term-memory pattern closely resembles the original sensory input, the ori-
enting subsystem still produces no output. In addition, the modified short-term-memory
feature pattern reactivates the category via bottom-up signals, which reactivates the short-
term-memory pattern via top-down signals and so on. A resonance hereby develops that
binds spatially distributed features into either a stable equilibrium or a synchronous os-
cillation, much like Reinhard Eckhorn of the Phillips-University, Germany, Wolf Singer of
the Max Planck Institute for Brain Research in Frankfurt and their colleagues have shown
in experiments on the visual cortex.

How does the network react when there is a mismatch? In that case, the top-down
expectation, or prototype, does not match the short-term-memory feature pattern. Then
the attentional subsystem produces a modified short- term-memory feature pattern that
includes only the few, if any, parts that match the top-down expectation. The significantly
modified short-term-memory pattern weakens or removes the inhibition on the orienting
subsystem, allowing it to turn on (Figure 11C). Then, the orienting subsystem sends a
“reset” signal that clears activity in the category level and the subsequent levels that it
feeds. Finally, the network retrieves its original short-term-memory feature pattern and
initiates a memory search for a better category (Figure 11D). That cycle continues until a
match surfaces or a new category is selected to learn about a novel situation.

5 Novelty and Generalization

Whether or not resonance develops depends on the level of mismatch, or novelty, that
a network tolerates. Novelty is a measurement of how well a given short- term-memory
feature pattern matches the expectation read out by the category that it evokes. The
criterion of an acceptable match is defined by an internally controlled parameter that my
colleague, Gail Carpenter, and I call vigilance, which the orienting subsystem computes.
Vigilance weighs how similar a short-term- memory pattern must be to a prototype in
order to generate resonance.

Either a higher level of vigilance or a lower level of matching can prevent resonance. If
the orienting subsystem sends a reset signal, a new bout of hypothesis testing, or memory
search, begins. During a search, the orienting subsystem interacts with the attentional
subsystem to rapidly reset mismatched categories and to select a different representation
with which to categorize novel events, without risking unselective forgetting of previous
knowledge. A search may produce a familiar category that is similar enough to the input
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Figure 11: ART search for a recognition code: (A) The input pattern I is instated across
the feature detectors at level F; as a short term memory (STM) activity pattern X. Input
I also nonspecifically activates the orienting subsystem A. STM pattern X is represented
by the hatched pattern across F;. Pattern X both inhibits A4 and generates the output
pattern S. Pattern S is multiplied by long term memory (LTM) traces and added at
F> nodes to form the input pattern T, which activates the STM pattern Y across the
recognition categories coded at level F,. (B) Pattern Y generates the top-down output
pattern U which is multiplied by top-down LTM traces and added at F; nodes to form
the prototype pattern V that encodes the learned expectation of the active F; nodes. If
V mismatches I at F;, then a new STM activity pattern X* is generated at F. X* is
represented by the hatched pattern. It includes the features of I that are confirmed by
V. Inactivated nodes corresponding to unconfirmed features of X are unhatched. The
reduction in total STM activity which occurs when X is transformed into X* causes a
decrease in the total inhibition from JF; to A. (C) If inhibition decreases sufficiently, A
releases a nonspecific arousal wave to F,, which resets the STM pattern Y at F,. (D)
After Y is inhibited, its top-down prototype signal is eliminated, and X can be reinstated
at F1. Enduring traces of the prior reset lead X to activate a different STM pattern Y*
at JF,. If the top-down prototype due to Y* also mismatches I at F, then the search for
an appropriate J, code continues until a more appropriate F, representation is selected.
Then an attentive resonance develops and learning of the attended data is initiated.
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to satisfy the resonance criterion. The representation in short-term memory may then be
refined by attentional focusing and learned by the active prototype. If the input is too
different from any previously learned category, then an uncommitted category is selected
to learn about the new data.

Vigilance can vary across learning trials. Thus recognition categories capable of encod-
ing widely differing degrees of generalization or abstraction can be learned by a single ART
network. Low vigilance leads to broad generalization, or abstract categories. High vigi-
lance leads to narrow generalization, or more specific categories. In other words, a single
ART network can employ abstract categories, such as knowing that everyone has a face,
and more specific categories, such as recognizing an individual face, by simply adjusting
its vigilance.

As sequences of inputs are practiced over learning trials, the search process eventual-
ly converges on stable categories. In 1987 Carpenter and I proved mathematically that
familiar inputs directly access the category that provides the globally best match, and
unfamiliar inputs engage the orienting subsystem to trigger memory searches for better
categories until one gets selected.

The attentional subsystem of an ART network has been used to model aspects of in-
ferotemporal cortex, a higher visual center, and the orienting subsystem can model part
of the hippocampal system, which contributes to memory functions. The interpretation
of ART dynamics in terms of inferotemporal cortex led Bob Desimone and his colleagues
at the National Institutes of Mental Health to successfully test the prediction that cells
in monkey inferotemporal cortex are reset after each trial in a working-memory task. To
illustrate the implications of an ART interpretation of inferotemporal-hippocampal inter-
actions, I shall review how disconnecting an ART models orienting subsystem creates a
memory disorder with symptoms much like the medial-temporal amnesia that is caused in
animals and humans after hippocampal- system lesions. Such lesions induce many symp-
toms, including unlimited anterograde amnesia (inability to remember events subsequent
to the lesion), limited retrograde amnesia (ability to remember remote but not recent
events) and abnormal reactions to novelty.

Disconnecting an ART network’s orienting subsystem generates similar problems. Un-
limited anterograde amnesia, for instance, develops because the network cannot carry out
a memory search to learn a new recognition category. Limited retrograde amnesia arises
because familiar events can directly access the correct recognition codes, but consolidating
a new memory requires the orienting subsystem, using its sensitivity to novel events.

Similar behavioral problems have been identified in animals that lack a functional
hippocampal system. David Gaffan of Oxford University noted that transecting a mon-
key’s fornix, which carries information leaving the hippocampal system, “impairs ability to
change an established habit ... in a different set of circumstances that is similar to the first
and therefore liable to be confused with it.” Likewise, a rat with a destroyed hippocampal
system has difficulty orienting to novel cues. An ART network with a defective orienting
subsystem responds similarly, because it cannot trigger a memory search to learn different
representations for similar events or entirely new categories for novel stimuli. During nor-
mal learning, an ART network’s orienting subsystem disengages automatically as events
become familiar during the memory-consolidation process, which is consistent with the
progressive reduction in novelty- related hippocampal potentials that normal rats develop
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during learning. These correlations between experimental results and an ART network
illustrate how—as Stuart Zola-Morgan and Larry Squire of the University of California at
San Diego have reported— memory consolidation and novelty detection may be mediated
by the same neural structures.

6 Streams of Sound

The same ART principles also help to explain many auditory phenomena, such as variable-
rate speech perception. Consider how people hear combinations of vowels and consonants
in vowel-consonant consonant-vowel sequences. Bruno Repp at Haskins Laboratories has
studied perception of the sequences [ib]-[ga] and [ib]-[ba] by varying the silent interval
between the initial vowel-consonant syllable and the terminal consonant-vowel syllable.
If the silence interval is short enough, [ib]-[ga] sounds like [iga] and [ib]-[ba] sounds like
[iba). Repp showed that the transition from perceiving [iba] to [ib]-[ba] requires from 100
to 150 milliseconds more silence than the transition from [iga] to [ib]-[ga], which is very
long compared with the time needed to activate neurons (Figure 12). Why is this shift so
large?

My colleagues Ian Boardman and Michael Cohen and I simulated these data with
our ARTPHONE model. That model reveals how a resonant wave develops as a result of
bottom-up and top-down signal exchanges between a short-term memory, which represents
lists of individual speech items stored in a working memory, and a list categorization
network that groups them together into learned language units, or chunks. The model
suggests that a short silence between [ib] and [ga] produces a mismatch between [g] and [b],
which rapidly resets the working memory, thereby preventing the [b] sound from reaching
resonance and consciousness (Figure 13B). The syllables [ib]-[ba] generate a resonance from
the first [b] that fuses with the subsequent resonance from the second [b]. This sounds
like a single [b] and thereby greatly extends the perceived duration of [iba] across a silence
interval (Figure 144).

Nevertheless, if [ib] can fuse across time with [ba], how do we ever hear distinct [ib]-[ba]
sounds when the silence gets long enough? After a resonance develops fully, it eventually
collapses spontaneously because of habituation that goes on in the pathways that maintain
the resonance via bottom-up and top-down signals. Thus, if the silence is long enough for
resonant collapse of [ib], then a distinguishable [ba] resonance can develop subsequently
and be heard (Figure 14B).

A similar type of resonant processing, at an earlier level of auditory processing, helps
to explain cocktail-party separation of distinet voices into auditory streams. My colleagues
Krishna Govindarajan, Lonce Wyse and Michael Cohen and I developed the ARTSTREAM
model, which suggests how distinguishable auditory streams can be formed and separated
(Figure 15). Here I shall concentrate on separating sounds of different frequencies (Figure
16), but more complex models use similar mechanisms to further separate different sounds
based on additional characteristics, such as their location.

The ARTSTREAM model consists of two main processing levels: a spectral-stream
level and a pitch-stream level. The incoming auditory signal gets preprocessed by the
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Figure 12: The lefi-hand curves represent the probability, under several experimental
conditions, that the subject will hear [ib]-[ga] rather than [iga]. The right-hand curves
do the same for [ib]-[ba] rather than the fused percept [iba]. Note that the perception of
[iba] can occur at a silence interval between [ib] and [ba] that is up to 150 milliseconds
longer than the one that leads to the percept [iga] instead of [ib]-[ga]. (Data are reprinted
with permission from B.H. Repp (1980), Haskins Laboratories Status Report on Speech
Research, SR-61, 151-165.)
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Figure 13: (A) Response to a single stop, such as [b] or [g], with and without resonance.
Suprathreshold, resonant, activation is shaded. (B) Reset due to phonologic mismatch be-
tween [ib] and [ga]. (Reprinted from Grossberg, S., Boardman, L., and Cohen, M.A. (1995).
Neural dynamics of variable-rate speech categorization. Technical Report CAS/CNS-TR-
94-038, Boston, MA: Boston University. Journal of Experimental Psychology: Human
Perception and Performance, in press.)
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Figure 14: (A) Fusion in response to proximal similar phones. (B) Perceptual silence allows
a 2-stop percept. (Reprinted from Grossberg, S., Boardman, I., and Cohen, M.A. (1995).
Neural dynamics of variable-rate speech categorization. Technical Report CAS/CNS-TR-
94-038. Boston, MA: Boston University. Journal of Experimental Psychology: Human
Perception and Performance, in press.)
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nonspecific top-down inhibitory signals from the pitch level to the spectral level that realize
ART matching within the network. (Reprinted from Govindarajan, K.K., Grossberg, S.,

Wyse, L.L., and Cohen, M.A. (1994). A neural network model of auditory scene analysis
and source segregation. Technical Report: CAS/CNS-TR-94-039. Boston, MA: Boston

University.)
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Figure 16: Illustrative stimuli and the listeners’ percepts that ARTSTREAM model sim-
ulations emulate. The hashed boxes represent broadband noise. The stimuli consist of:
(A) two inharmonic tones, (B) tone-silence-tone, (C) tone-noise-tone, (D) a ramp or glide-
noise-glide, (E) crossing glides, (F) crossing glides where the intersection point has been
replaced by silence, (G) crossing glides where the intersection point has been replaced by
noise, (H) Steiger diamond stimulus, and (I) Steiger diamond stimulus where bifurcation
points have been replaced by noise. (Reprinted from Govindarajan, K.K., Grossberg, S.,
Wyse, L.L., and Cohen, M.A. (1994). A neural network model of auditory scene analysis
and source segregation. Technical Report: CAS/CNS-TR-94-039. Boston, MA: Boston

University. )
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ear’s mechanical and neurophysiological filters, which divide sounds into groups of similar
frequencies. The spectral, or frequency, components of a sound serve as input for multiple
spectral-stream layers. The spectral- stream cells convert the incoming signal to a spatial
map of frequencies. You might imagine that high frequencies stimulate cells at one end of
a spectral-stream layer, low frequencies stimulate cells at the other end and intermediate
frequencies stimulate cells in the middle of the layer. So a specific sound activates a specific
pattern of cells.

Each spectral-stream layer passes a bottom-up signal to its pitch-stream layer. Between
layers, the bottom-up pathways act like a type of harmonic sieve that filters the spectrum so
that only allow certain harmonically related frequencies can pass. The filtered bottom-up
signals activate multiple representations of a sounds pitch at the pitch-stream level. These
pitch representations compete to select a single winning node, which becomes active. That
node inhibits the redundant representations in other pitch streams, and sends top-down
matching signals back to its spectral-stream level to excite spectral nodes whose frequencies
are consistent with the selected pitch.

Now, a bottom-up signal alone fails to activate spectral nodes in the absence of an
excitatory top-down signal because the active pitch node also stimulates a pitch-summation
layer, which inhibits all nodes in its spectral-stream layer. Only a spectral-stream node that
receives simultaneous bottom-up and top-down signals becomes fully activated. All other
nodes in that spectral stream are inhibited, including spectral nodes that were previously
activated by bottom-up signals but received no subsequent top-down pitch support. In
other words, the frequency components that are consistent with the winning pitch node
are amplified, and all others are suppressed, thereby leading to a spectral-pitch resonance
within the stream of the winning pitch node.

In this way, the pitch layer binds together the frequency components that correspond
to a prescribed auditory source. All the frequency components that are suppressed in this
stream are freed to activate and resonate with a different pitch in a different stream. The
net result is multiple resonances, each selectively grouping together the frequencies that
correspond to a distinet auditory source.

Using the ARTSTREAM model, we have simulated many of the basic streaming percep-
tions, including the auditory-continuity illusion. It exists, I contend, because the spectral-
stream resonance takes a length of time to develop that is commensurate to the duration
of the subsequent noise. Once the tone resonance develops, the second tone can act quickly
to support and maintain it throughout the duration of the noise, much as [ba] fuses with
[ib] during perception of [iba].

7 Are ART Processes Universal?

In all of the examples discussed above—early vision, visual object recognition, auditory
streaming and speech recognition—-ART matching and resonance play a central role in
models that help explain how the brain stabilizes its learned adaptations in response to
changing environmental conditions. That type of matching can be achieved using a top-
down, nonspecific inhibitory gain control that inhibits all target cells except those that
also receive specific, excitatory top-down signals. Other brain processes also seem to
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utilize these mechanisms.

My colleagues Mario Aguilar, Dan Bullock and Karen Roberts and I have developed a
model that uses ART principles to explain how the superior colliculus uses visual, auditory
and planned-movement signals to control the fast eye movements, called saccades, whereby
we rapidly look at new objects. That model explains behavioral and neural data about
multimodal eye- movement control in terms of how the brain learns a map wherein visual,
auditory and planned-movement commands can be represented consistently and compete
for attention until a prescribed target location is selected.

Recent experiments from Marcus Raichle’s lab at Washington University, using positron
emission tomography (PET), support the idea that ART top-down priming also operates
in human somatosensory cortex. In their experiments, attending to an impending stimulus
to the fingers caused inhibition of nearby cortical cells that code for the face, but not of
cells that code for the fingers. Likewise, priming of the toes produced inhibition of nearby
cells that code for the fingers and face, but not of cells that code for the toes. Again, it
appears that a combination of top-down, specific-excitatory and nonspecific-inhibitory sig-
naling is at work. Thus early vision, visual object recognition, auditory streaming, speech
recognition, eye-movement control and somatosensory representation may all incorporate
variants of ART networks. These results suggest that a type of “automatic” attention
operates even at early levels of brain processing, such as the lateral geniculate nucleus, but
that some higher levels benefit from an orienting subsystem that can be used to flexibly
reset attention and to facilitate voluntary control of top-down expectations.

Given this type of circuit, how could top-down priming be released from inhibition
to enable us to voluntarily experience internal thinking and fantasies? That could be
achieved through an “act of will” that activates cells that turn off top-down inhibition
(Figure 5), such as that generated by the pitch-summation layer, thereby allowing cells to
turn on when they receive top-down signals. These cells would then be free to generate
self-initiated resonances.

Thus we arrive at an emerging picture of how the adaptive brain works, wherein issues of
stability and plasticity are joined with properties of attention, intention, thinking, fantasy
and consciousness. The mediating events are adaptive resonances that affect a dynamic
balance between the complementary demands of stability and plasticity, and of expectation
and novelty, whose maintenance throughout life in a changing world is one of the core
challenges that we face in trying to live our lives fully and well.
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