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Abstract

This article develops a neural model of how sharp disparity tuning can arise through
experience-dependent development of cortical complex cells. This learning process clari�es
how complex cells can binocularly match left and right eye image features with the same
contrast polarity, yet also pool signals with opposite contrast polarities. Antagonistic re-
bounds between LGN ON and OFF cells and cortical simple cells sensitive to opposite
contrast polarities enable anticorrelated simple cells to learn to activate a shared set of
complex cells. Feedback from binocularly tuned cortical cells to monocular LGN cells is
proposed to carry out a matching process that dynamically stabilizes the learning process.
This feedback represents a type of matching process that is elaborated at higher visual
processing areas into a volitionally controllable type of attention. We show stable learning
when both of these properties hold. Learning adjusts the initially coarsely tuned disparity
preference to match the disparities present in the environment, and the tuning width de-
creases to yield high disparity selectivity, which enables the model to quickly detect image
disparities. Learning is impaired in the absence of either antagonistic rebounds or cortico-
geniculate feedback. The model also helps to explain psychophysical and neurobiological
data about adult 3-D vision.
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1 Introduction

The rapid processing of binocular disparity information requires highly tuned disparity-
selective neural responses, yet at birth infants show only a coarse level of stereopsis (Birch
et al., 1983; Blakemore et al., 1982; Blakemore & van Sluyters, 1974; Daw, 1994; Daw
& Wyatt, 1976; Freeman & Ohzawa, 1992; Held et al., 1980; Leventhal & Hirsch, 1980;
Movshon & D�ursteler, 1977; Shimojo et al., 1986). Here we present a neural model that
simulates how cortical complex cells can develop �ne disparity tuning starting from coarse
tuning. This binocular circuit forms part of a larger theory of binocular vision that has
previously been derived to explain data concerning both static (Grossberg, 1994, 1995;
Grossberg & McLoughlin, 1997; McLoughlin & Grossberg, 1997; Ohzawa et al., 1990) and
dynamic (Grossberg & Grunewald, 1995) properties of adult binocular vision. The present
model hereby suggests how binocular development helps to select the parameters that are
used to explain both behavioral and neural data about adult binocular vision.

Competition across cortical complex cells (Sillito, 1977, 1979) determines a local win-
ner, which can learn the pattern of simple cell activities that feed into the complex cell
(Singer, 1983). ON and OFF cells at the retina and LGN (Schiller, 1992) help to ensure
that whenever learning links simple cells that are sensitive to one contrast polarity with a
complex cell, subsequent learning also links simple cells sensitive to the opposite polarity
to the same complex cell. Antagonistic rebounds of activity between ON and OFF cells
play a key role in this process. The antagonistic rebound mechanism clari�es how anti-
correlated simple cells can become associated with the same complex cell. Complex cells
hereby develop to pool opposite polarities of image contrast. This de�ning characteristic of
complex cells (Gilbert, 1977; Hubel & Wiesel, 1962; Skottun et al., 1991) helps the visual
system to form object boundaries against textured backgrounds whose contrast relative to
that of the object may reverse along the length of the boundary (Grossberg & Mingolla,
1985a, 1985b).

On the other hand, it is known that observers have di�culty when they try to binoc-
ularly fuse features from the two eyes that have opposite contrast polarities (Anderson &
Nakayama, 1994; von Helmholtz, 1925). The model clari�es how the simple-to-complex cell
�lter learns to binocularly fuse only stimuli for which both eyes process the same contrast
polarity, even as it pools together fused signals from both contrast polarities.

Whenever a complex cell emerges as a winner, it sends a top-down matching, or con-
�rmation, signal to the LGN (Sillito et al., 1994; Varela & Singer, 1987). When the
con�rmation signal matches the LGN activity pattern, then the matched LGN activities
are selected. A mismatch between the con�rmation signal pattern and the LGN input
pattern leads to a reduction of LGN activity. This happens as follows: when there is ac-
tivity at the cortex, it sends back spatially distributed inhibition. If the excitatory cortical
feedback matches the excitatory activity pattern of the retinal input to the LGN, the two
activities summate, thus causing a higher level of excitation that does not get quenched by
the inhibitory feedback from cortex. If, on the other hand, the retinal feedforward and the
cortical excitatory feedback signals do not match, the broad inhibitory cortical feedback
quenches them both. This selective attenuation of mismatched LGN cells helps to stabilize
the learning process (Carpenter & Grossberg, 1991; Grossberg, 1976b) and to trigger selec-
tion of a new complex cell winner if the match is bad enough. Thus the model suggests a
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possible role for corticogeniculate pathways in self-organization of cortical disparity tuning
during the developmental critical period. In particular, the simulated adaptive tuning of
binocular feature detectors such as complex cells in V1 can be explained by synaptic plas-
ticity that is stabilized by the interaction between feedforward signals from LGN to V1,
and feedback signals from V1 to LGN, which in turn may a�ect the feedforward signals to
V1 in a reverberating cycle (Figure 1).

Most of the physiological data cited in this study originates from cat studies. We are
interested in modeling development of cortical disparity detectors in humans, which would
mean that a better source of neurophysiological data is the monkey, rather than the cat.
Indeed there are striking di�erences at the geniculate and cortical level between cats and
monkeys. The main di�erence is found in layer 4, where in the cat one �nds orientation
selectivity, while in the macaque, although layer 4c is populated by oriented cells, the
layer 4c� cells that receive LGN a�erents and feed layer 4c are less oriented (Blasdel and
Fitzpatrick, 1984; Hawken and Parker, 1984; Leventhal et al., 1995). The present study
develops a lumped model of cortical development that does not attempt to distinguish
these cortical sublaminae.

Complex

Simple

LGN

Retina

Image

Figure 1: Processing stages of the model. The thicker paths indicate adaptive pathways
that contribute to binocular disparity tuning.

Learning in the model occurs in both feedforward and feedback pathways when activ-
ities converge within the circuit. Such an interaction between feedforward and feedback
signals has been shown to control stable learning under rather general circumstances in
Adaptive Resonance Theory or ART (Carpenter & Grossberg, 1991; Grossberg, 1976b,
1980). This analysis provides a rationale for the widespread occurrence of reciprocal tha-
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lamocortical and corticocortical connections throughout the brain (Felleman & Van Es-
sen, 1991; Macchi & Rinvik, 1976; Tsumoto et al., 1978; van Essen & Maunsell, 1983).
In ART, top-down feedback stabilizes adaptive synapses by regulating the gain of these
circuits: Bottom-up processing by itself can activate its target circuits, while top-down
processing by itself can subliminally prime these circuits. When both bottom-up signals
and top-down signals are simultaneously active, cell activities at which these signals con-
verge are preserved and possibly ampli�ed, whereas cell activities which receive only small
top-down signals are attenuated. Thus top-down processing can be thought of as a match-
ing, veri�cation, or hypothesis testing operation, since the combination of bottom-up and
top-down processing selects those bottom-up activations that are consistent with top-down
processing, while suppressing those that are not.

Grossberg (1976b) suggested that corticogeniculate feedback carries out such a match-
ing function in order to stabilize the development of cortical binocular tuning during the
visual cortical period by selectively matching monocular LGN cell activities that are con-
sistent with binocular cortical activities. Several experiments have supported the existence
of a matching process with these properties (Sillito et al., 1994; Varela & Singer, 1987).
In addition, Gove et al. (1995) have used a monocular version of the present model to
simulate how corticogeniculate feedback in
uences brightness percepts and the formation
of perceptual groupings, such as illusory contours. The neural network model herein simu-
lates how such feedback can stabilize the disparity tuning that occurs at cortical complex
cells during the critical period, and illustrates what can go wrong when it is absent.

The matching process that is proposed to occur in corticogeniculate pathways may
be interpreted as a type of automatic attentional focusing. Similar top-down circuits
have been incorporated into models of attentive recognition learning in inferotemporal
cortex, where it is suggested how attention may be volitionally controlled in a task-selective
way by auxiliary circuits (Carpenter & Grossberg, 1993; Grossberg, 1995; Grossberg &
Merrill, 1996). Neurophysiological data on feature-selective attentive matching has been
reported in area V4 (Motter, 1994a, 1994b). Reynolds et al. (1994, 1995) have reported
neurophysiological evidence that spatial attention in areas V2 and V4 may also use similar
attentive mechanisms. Thus the mechanism that is proposed to help stabilize disparity-
selective learning in area V1 seems to be used at multiple levels of visual cortex and
beyond.

While a lot of energy has been expended at understanding how orientation selectivity
arises, comparatively little e�ort has gone into understanding how disparity tuning can
arise as an infant grows up. In this article, we show how a general theory of neural self-
organization can be brought to bear on this question, and how the known physiology of the
visual system can be understood to contribute to the development of disparity-selective
detectors.

2 A Self-Organizing Model of Disparity Tuning

The model is summarized in Figure 2. It uses the same processing stages,
equations, and parameters as in Grossberg and Grunewald (1995), where dynamic prop-
erties of adult binocular vision were simulated. The only exception is the breadth of the
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disparity-sensitive kernels from simple cells to complex cells and from complex cells to the
LGN, which start out broad but become sharply tuned through learning.

Image

LGN

Simple

Complex

Retina

Left Right

0-d d

Adaptive
feedforward
weights

Adaptive
feedback
weights

Figure 2: Detailed model architecture. The dark lines indicate pathways that are adaptive
and that contribute to the development of binocular disparity tuning.

The model depends upon antagonistic rebound responses between ON and OFF cells
at the LGN and simple cell stages to enable anticorrelated cells to converge onto a common
complex cell. These responses are driven by antagonistic rebound responses at the retinal
stage. The rebounds arise from the organization of model retinal, LGN, and simple cells
into opponent pairs of ON and OFF cells in circuits called gated dipoles (Carpenter &
Grossberg, 1981; Gaudiano, 1994; Grossberg, 1972, 1976b). A key property of the gated
dipole circuit is that it generates a transient antagonistic rebound of activity at an OFF
cell after a sustained response in the corresponding ON cell terminates. Ringach et al.

(1996) have used reverse correlation techniques to detect rebounds in V1 cells that occur
after visual stimulation.

Given such opponent circuitry, when a complex cell is �rst activated, its adaptive
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weights change in the pathways to it from the simple cells that are active, say dark-light
simple cells. When a rebound response occurs, as it does in both retinas, simple cells
at the same positions as before, but of opposite polarity, say light-dark, are activated.
The circuitry that resets a complex cell after its activating simple cells shut o� permits it
to remain on for a while after the antagonistic rebound occurs. Thus the same complex
cell can adjust its weights to become tuned to the simple cells of opposite polarity that
are activated by the rebound. The complex cell hereby learns to be associated with both
polarities of simple cell each time it gets activated. As a consequence, the complex cell pools
activities from both polarities of simple cells at the same position. This model property
provides a new rationale for the experimental observation that oppositely polarized simple
cells compete before their half-wave recti�ed outputs are pooled at complex cells (Ferster,
1988; Liu et al., 1992; Ohzawa et al., 1990).

The equations and parameters of the model will now be given. A 1-D simulation of
the model was used. Each model neuron was modeled as a single voltage compartment in
which the membrane potential, V(t), was given by

Cm

dV (t)

dt
= �(V (t)�ELEAK)gLEAK � (V (t) �EEXCIT )gEXCIT (t)

�(V (t)�EINHIB)gINHIB(t); (1)

where the parameters E represent reversal potentials, gLEAK is a constant leakage con-
ductance, and the time-varying conductances gEXCIT (t) and gINHIB(t) represent the total
inputs to the cell (Grossberg, 1973; Hodgkin, 1964). Transient after hyperpolarization
terms (AHP) were not incorporated since the dynamics of interest operate on the slower
time scale of learning. The capacitance term Cm was set equal to 1 by rescaling time t.
The leakage reversal potential ELEAK was set equal to 0 by shifting the de�nition of V(t).
With this convention, the inhibitory reversal potential EINHIB is nonpositive. Then (1)
can be written in the form

dV

dt
= �DV + (U � V )gEXCIT � (V +L)gINHIB; (2)

where D = gINHIB is a constant decay rate, U = EEXCIT and L = jEINHIBj. Half-wave
recti�ed activities max(V,0) are typically passed on as output signals.

2.1 Kernels

Dendritic and cell body input weights are modeled using convolution kernels. Most kernels
used in this model are Gaussians (except when otherwise indicated); namely,

G(y) = k exp

 
�

y2

2�2

!
; (3)

where � speci�es the size of the kernel. All kernels are normalized so that
P

y G(y) = 1,
and k is chosen accordingly. The sizes of the kernels have been chosen so that the resulting
receptive �elds increase in size from the retina to the complex cells. However, we made
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no attempt to match receptive �eld sizes with physiological �ndings. In this study, we
consider the development of kernels, not of receptive �elds, because the receptive �elds are
the result of the entire cascade of processing stages and dynamics.

2.2 Image

There are two images, left and right. The activities of the left and right retinal images are
denoted by I li and I

r
i respectively. The superscripts are suppressed when both eyes use the

same processing.

2.3 Retinal stage

Two stages of retinal processing are modeled. At each stage, there are 4 �elds of neurons
at the retinal level corresponding to the two eyes and the two types of cell, ON cells and
OFF cells. The activities ri at the �rst level of processing obey:

dri

dt
= �Dri + (U � ri)F

+

i + (L+ ri)F
�

i ; (4)

where the on-center (F+
i ) and o�-surround (F�i ) feedforward inputs are de�ned by:

F+

i =
X
k

G+

I (k � i)Ik (5)

and
F�i =

X
k

G�I (k � i)Ik; (6)

with �+ = 0:3 and �� = 0:9. This process normalizes retinal responses and computes a
measure of image contrast that is Weber-law modulated (Grossberg, 1980, 1983). The out-
put that is passed on to the next level of retinal processing is de�ned by Pi =Mpmax(ri; 0).
The output of an ON cell is denoted by P+, and then G+

I is a narrow \center" Gaussian
kernel, and G�I is a wider \surround" Gaussian kernel. The kernels are 
ipped for the OFF
cells, whose outputs are denoted by P�. The parameters are D = U = L = 1.

The second processing stage de�nes the opponent interaction of a gated dipole. First,
a chemical transmitter multiplies, or gates, the output on its way to the next level (Abbott
et al., 1997; Francis et al., 1994). For each position, there is a transmitter gate gi that
obeys the equation

dgi

dt
= R(B � gi) �D(Pi + T )gi: (7)

In equation (7), R de�nes the rate of transmitter accumulation, B the maximal level of
accumulated transmitter, and D(Pi + T ) de�nes the rate at which the transmitter is inac-
tivated, or habituated, by an input signal Pi. Term Pigi says that such inactivation occurs
by mass action. Parameter T denotes a background level of activity. This background level
of activity may be generated at the previous stage. Its source can be envisioned as intrinsic
noise within a neuron. The parameters used are R = 0:2; B = 1;D = 2 and T = 0:3. The
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ON and OFF cells compete to generate the �nal outputs of the retinal stage:

R+
i = Mr max((P+

i + T )g+i � (P�i + T )g�i ; 0) (8)

R�i = Mr max((P�i + T )g�i � (P+

i + T )g+i ; 0) (9)

A second upper index indicates which retina a cell belongs to (left or right), thus there are
the following variables at this level: Rl+

i ; R
l�
i ; R

r+
i ; Rr�

i , where Rl+
i denotes (for example)

the output at location i of the ON cell channel in the left eye.

2.4 LGN

There are 4 �elds of neurons at the LGN level: 2 eyes � 2 polarities (ON or OFF). The
equations de�ning LGN activities are as follows:

dli

dt
= �Dli + (U � li)(Ri +B+

i ) + (L+ li)B
�

i ; (10)

where D = U = L = 1. The retinal input Ri has the same polarity and ocularity as
the LGN cell in question. The excitatory (B+

i ) and inhibitory (B�i ) feedback signals from
cortical complex cells are given by:

B+
i = M+

h

X
k;d

w(i; d; k)Ckd (11)

B�i = M�

h

X
k;d

Ckd: (12)

The signals Ckd are derived from the complex cell stage. Expression w(i; d; k) denotes the
adaptive weight between the complex cell at location k and of disparity d that projects to
an LGN cell at position i. There are four such weights for each i; d and k, one for each of
the four LGN �elds.

The output signal that is passed on to the simple cells is de�ned as follows:

L+i = max(l+i ; 0) (13)

L�i = max(l�i ; 0) (14)

A second upper index indicates which LGN a cell belongs to (left or right), thus there are
the following variables at this level: Ll+

i ; L
l�
i ; L

r+
i ; Lr�

i .

2.5 Simple cells

There are 4 �elds of neurons at the simple cell level: 2 eyes � 2 contrast polarities (light-
dark or dark-light). The responses of simple cells are convolutions of the LGN cell responses
with odd-symmetric kernels such that:

s+i =
X
k

Ks(i � k)L+k ; (15)
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and similarly for s� except that the sign of Ks is reversed. In this expression, Ks is an
odd-symmetric kernel de�ned as follows:

Ks(y) = k sin(y + 0:5) exp

 
�
(y + 0:5)2

2�2

!
; (16)

where � = 0:3 gives the width of the kernel, and k normalizes the kernel. In this kernel, y
is shifted by 0.5 so that the simple cell is positioned between a pair of LGN cells. Thereby
achieves good edge localization. Oppositely polarized simple cells compete before their net
activity is half-wave recti�ed to generate an output signal (Ferster, 1988, Gove et al., 1995,
Liu et al., 1992), as follows:

S+i = Msmax(s+i + s�i � �Abs(s+i � s�i ); 0) (17)

S�i = Msmax(s�i + s+i � �Abs(s+i � s�i ); 0) (18)

In this expression, the activities from the ON and OFF subregions are added (s+i + s�i ),
and a correction term is subtracted (�Abs(s+i � s�i )) that prevents isolated ON or OFF
signals from triggering a simple cell. In (17) and (18), the indices stand for dark-light (+)
and light-dark (�) contrast polarities,Ms = 2, and � = 1:3. Another upper index is added
to denote the eye of origin (l or r). Thus at this level there are the following activities:
Sl+
i ; Sl�

i ; Sr+
i ; Sr�

i .

2.6 Complex cells

At the complex cell stage, there are 3 �elds of complex cells: one each for zero, uncrossed
(far) and crossed (near) disparities. The disparities of the immature model were 0, -1,
1. A disparity of -1 means that the left image has been shifted by -1 (1 to the left),
and the right image by 1 (1 to the right). Associated with each complex cell is also an
inhibitory interneuron (Hirsch & Gilbert, 1991; McGuire et al., 1991). The equations for
the excitatory complex cells c+id and the inhibitory interneurons c�id are as follows:

dc+id
dt

= �Dc+id + (U � c+id)(F
+

id +B+

id) � (L+ c+id)(F
�

i +B�id + �c�id) (19)

1

�

dc�id
dt

= �Dc�id + (U � c�id)f(c
+

id)� (L+ c�id)F
�

i (20)

where D = U = L = 1. The parameter � = 20 denotes the interneuron strength. It
is chosen so that activation of the inhibitory interneuron in the absence of simple cell
activity leads to inhibition of complex cells. This prevents undue persistence of complex
cell activation, as a result of the positive feedback B+, after inputs shut o�. The parameter
� = 0:5 ensures that the inhibitory interneuron is slower than the complex cell.

The feedforward signals from the simple cells are given by:

F+

id = Mf
c Abs

 X
k

bl�(i; d; k)S
l�
k +

X
k

br�(i; d; k)S
r�
k
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�
X
k

bl+(i; d; k)S
l+
k �

X
k

br+(i; d; k)S
r+
k

!
(21)

F�i = Mf
c Abs

 X
k

G�sl�(k � i)Sl�
k +

X
k

G�sr�(k � i)Sr�
k

�
X
k

G�sl+(k � i)Sl+
k �

X
k

G�sr+(k � i)Sr+
k )

!
; (22)

where Abs denotes the absolute value andMf
c = 2 is the strength of feedforward activities.

For complex cells at zero disparity (d = 0), the feedforward weight is scaled by a factor of
1:05. This scaling factor models a bias toward zero disparities; in other words, if the input
is ambiguous, the model will choose a zero disparity complex cell.

The feedforward inhibitory kernels G� are de�ned by �� = 5. They are not disparity
tuned. The feedforward excitatory kernels b are disparity tuned by developmental learning.
Expression bl�(i; d; k) denotes the kernel between simple cells of type Sl� at location k and
a complex cell of disparity d at position i. Similarly for the other kernels br�; bl+ and
br+. The di�erence within the absolute value expression ensures that the argument of the
absolute value operation is maximal only when simple cells of the same polarity are active
in the two eyes (Grossberg & McLoughlin, 1997; Ohzawa et al., 1990). If the polarities
di�er, then the di�erence ensures a weak signal. The absolute value operation, on the
other hand, ensures that the feedforward signal does not depend on which polarities the
simple cells have. In other words, feedforward activities are designed so that only simple
cell activities of the same polarities can fuse, but at the same time the complex cell pools
signals from opposite contrast polarities.

The feedback activities in equation (19) are given by:

B+

id = M b
c

X
j;e

G+

c (j � i)f(c+je) (23)

B�id = M b
c

X
j;e

G�c (j � i)f(c+je); (24)

where M b
c = 300 is the strength of feedback interactions. Feedback activities are also not

disparity tuned.
It is important to note that we are only interested here in the development of the

disparity tuning of complex cells, and therefore it su�ces to study their input kernels. As
pointed out above, the kernel in the model is not the receptive �eld. The receptive �eld that
neurophysiologists measure is the aggregate of all processing stages and dynamics that lie
between the stimulus and the cell under study. With this in mind, it is easy to understand
that while the kernels we show have similar shapes, independent of position (i.e., disparity
preference), the resulting receptive �elds are not. A zero disparity cell, for example, will
respond for any stimulus of disparity 1, 0, and -1, while a far disparity cell of preference
-3 will respond for any stimulus of disparities -2 and smaller (and analogously for a near
disparity cell of preference +3). Thus the disparity tuning curves for zero disparity cells
are much narrower than for nonzero disparities, as has been found physiologically (Poggio
& Fischer, 1977). This is discussed further in related studies using this model of daVinci
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stereopsis (Grossberg & McLoughlin, 1997), dynamic disparity processing (Grossberg &
Grunewald, 1995), and binocular fusion (McLoughlin & Grossberg, 1997).

In a 2-dimensional implementation, spatial competition sharpens cell responses close
to the ends of lines before the resulting endstopped complex cells generate feedback to the
LGN (Gove et al., 1995; Murphy & Sillito, 1987; Sillito et al., 1994; Weber et al., 1989).
Since the present model is only a 1-dimensional implementation, this kind of competition
has no e�ect on simulated values. Here, endstopped complex cell responses are a replica of
complex cell responses. The feedback signals to the LGN in (10) and (11) are thus de�ned
by

Cid = f(c+id): (25)

2.7 Bottom-up learning

Four di�erent excitatory feedforward kernels b that are disparity selective are associated
with each complex cell in (19), one for each of the four simple cell types from which it
receives input (Sl+; Sr+; Sl� and Sr�). These kernels are bl+; br+; bl� and br�. Each of
these kernels is convolved with the corresponding simple cell type. By virtue of a disparity
di�erence coded within those kernels the input to the complex cell �eld is disparity tuned.

For each complex cell, each of these kernels has to develop from coarse initial condi-
tions to a sharper level of disparity-selectivity. This can be achieved if learning occurs.
Only whenever a complex cell has emerged as a winner, as in self-organizing feature maps
(Grossberg, 1976a; Kohonen, 1984; von der Malsburg, 1973). Then the adaptive weights
that make up the kernel are adjusted through a learning law to mimic the activities at the
simple cell stage. Instar learning (Grossberg, 1976a; Singer, 1983) is such a learning rule:

db(i; d; k)

dt
= �[Cid � �]+(Sk � b(i; d; k)): (26)

Here b(i; d; k) denotes the adaptive weight, Sk the signal from the simple cell to the complex
cell, and [Cid � �]+ = max(Cid � �; 0) is an activity-dependent complex cell signal that
gates learning on and o�. Parameter � acts as a learning threshold. Only when complex
cells exceed it does learning occur. Its value is 0.3. The factor � ensures that learning
occurs at a slower pace than the integration of the cell activations. Its value is 0.05.

As mentioned above, there are four populations of simple cells that converge upon each
complex cell, and for each population there is a separate set of weights b(i; d; k). Due to
the absolute value operation in equation (21), the complex cell is insensitive to the polarity
of simple cell responses. This means that the complex cell responses are symmetric with
respect to the polarity, and therefore the same learning rule in equation (26) can be used
for both polarities.

Instar learning is an appropriate rule in the present context because complex cells
combine signals from several di�erent populations of simple cells. Although a complex cell
might not know which simple cell activated it, since there are separate kernels for each
simple cell, instar learning enables each kernel to be selectively enhanced by activation of
the corresponding simple cell.
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2.8 Top-down learning

Each complex cell in (11) projects to four di�erent populations of LGN cells, the ON and
the OFF cells in the left and the right LGNs with output signals Ll+; Lr+; Ll� and Lr�.
A di�erent set of weights is associated with each LGN cell type and with each complex
cell. After learning, complex cells are supposed to selectively project to the LGN so as to
strengthen those LGN cells that led to its �ring. Hence a good learning rule is capable of
learning what LGN cells are active during learning. Such a learning rule is called outstar
learning (Grossberg, 1968, 1974). In the present instance,

dw(i; d; k)

dt
= �[Cid � �]+(Lk � w(i; d; k)); (27)

where w(i; d; k) is the top-down adaptive weight in (11). The parameters � and � are
described above.

As noted above, learning in response to a complex environment is stabilized if both top-
down and bottom-up learning occur in parallel. The simulations in the next section show
that stable learning occurs when both bottom-up and top-down kernels learn in parallel.
The subsequent section describes how learning can break down if there are no rebound
responses, and if corticogeniculate feedback is abolished.

3 Simulation Results

Adaptive resonance theory (ART) was initially developed to explain how stable learning
could take place in a changing environment. In the simplest ART circuit, there are two
levels, Level 1 and Level 2. Level 1 receives exogenous inputs, but also endogenous feedback
from Level 2. Level 1 sends its output to Level 2, where the best match is determined
through a winner-take-all operation that selects the best-matched category representation
of the Level 1 output pattern. The winning Level 2 category then sends a con�rmation
signal pattern to Level 1. At Level 1 a matching operation takes place, such that activity
at Level 1 only persists if feedback from Level 2 and the exogenous input match.

ART relies on the exclusive use of local processing (Grossberg, 1976b). One of the
key elements of local processing is that all neural operations be performed by individual
neurons, or neuron populations, which have access only to gated inputs from other neurons
which can excite or inhibit them via membrane equation dynamics. All sophisticated
model capabilities are emergent properties of the resulting neural network. It can be
shown that a relatively simple on-center o�-surround feedback neural network acts like a
winner-take-all circuit using only local operations (Grossberg, 1973). In that study, it was
also demonstrated how uniform activity at a stage could be quenched. When two input
patterns converging on the same network do not match, a uniform distribution of activity
is the result, which then is quenched. Based on those results, it appeared likely that a
more complex theory, such as ART, would be able to use these properties to achieve stable
learning.

As described above, ART has feedback between Levels 2 and 1 (to achieve the matching
operation), and there is feedback within Level 2 (to determine the winner). It is possible
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that feedback between di�erent processing levels might interfere with the ability to pick a
global winner, which is an important part of the stabilization of learning process. In many
previous studies, ART was simulated by assuming that some of the model equations could
be solved at equilibrium, thereby removing the problem of the interaction between multiple
types of feedback. Here we show that an entirely dynamically simulated system can stably
learn sharp disparity tuning. This shows that, in spite of multiple levels of feedback and
similar time courses at each processing stage, the network can currently perform both
the ART matching operation at Level 1, and the winner-take-all operation at Level 2, to
stabilize the disparity learning process. While we cannot yet provide a proof to establish
under which conditions stable learning occurs, it is clear from our simulations that these
properties are robust with respect to modest parameter changes.

Parameter Value Description

D 1 passive decay constant of cell activity
U 1 upper limit of cell activity
L 1 lower limit of cell activity
R 0.2 rate of gate recovery
B 1 baseline gate activity
D 2 active gate decay
T 0.3 background activity

�+r ; �
�

r 0.3, 0.9 width of retinal kernels
�+l ; �

�

l 2.5, 2 width of corticogeniculate feedback kernels
�s 0.3 width of simple cell kernels

�f+c ; �f�c 2.5, 5 width of feedforward complex cell kernels
�b+c ; �b�c 0.3, 4 width of feedback complex cell kernels
Mp 10 multiplicative factor of gate activities
Mr 200 multiplicative factor of retinal activities
Ms 2 multiplicative factor of simple cell activities
Mf

c 2 multiplicative factor of feedforward complex cell activities
M b

c 300 multiplicative factor of feedback complex cell activities
M+

h ;M
�

h 10, 1 multiplicative factor of corticogeniculate feedback
� 1.3 simple cell threshold
� 20 weight of complex cell inhibitory interneuron
� 0.3 learning threshold
� 0.05 learning rate

Table 1: The parameters used in the binocular model before learning.

3.1 Normal development of complex cells

Learning in the present context solves two problems. The �rst problem is to obtain dis-
parity preference from initial conditions in which only a minor preference is present. This
includes development of the ability to fuse bigger disparities, starting from the ability to
fuse small disparities. The second problem is to sharpen the tuning of the kernels starting
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from very broadly tuned kernels. This leads to sharpening of disparity selectivity starting
from initial conditions with coarse selectivity. This latter property allows quicker fusion
to occur, since more of the selection process is taken over by the feedforward kernels, and
is not dependent upon the recurrent dynamics of the complex cell �eld.

The same integration procedure was used as in the model described previously (Gross-
berg & Grunewald, 1995; Grunewald, 1995). Each �eld of neurons has 100 cells. The units
were arranged in a ring, so that no problems occur due to edge e�ects. All di�erential
equations were integrated using the fourth order Runge{Kutta method, with a step size
of H = 0:01. Update of the network was performed so that only values from the previous
processing time step were used in calculations. Simulations were implemented as a C pro-
gram running on Sun and SGI workstations. Table 1 summarizes all the parameters that
were used in the simulations. The parameter � = 0:05 in equations (26) and (27) ensures
that learning proceeds at a slower rate than cell activation, which has rate 1.

There are 3�100 = 300 complex cells, and each kernel has 17 units. Each complex cell
has a separate kernel for each of 4 simple cell �elds, and each cell has a separate kernel for
each of 4 LGN cell �elds. Thus in total there are 2 � 4 � 17� 300 = 40800 weights that
are learned.

To speed up the learning process, a stimulus of size 20 was used. The stimulus was
presented to each location for 8.00 time units. Then the stimulus was shifted by 40 neurons
(modulo 100, which is the size of the network), and the next disparity was picked by the
complex cell stage. In that way the network cycled through 5 locations and 3 disparities.
After 5�3�8 = 120 time units each location had been visited twice, once for each polarity
(dark-light and light-dark). In the simulations discussed in this section, this procedure
was repeated 10 times thus taking 1200.00 time units which consumed about 4-5 hours of
computation time on a SGI indigo 2 workstation.

3.1.1 Initial conditions

The disparity preference of the bottom-up kernels b in (20) of the three complex cell �elds
was put to -1, 0, and 1 respectively at the beginning of the program by calculating shifted
kernels for each complex cell �eld. These disparities are signi�cantly smaller than the
ones used previously to simulate adult disparity processing data (Grossberg & Grunewald,
1995), where preferences of -3, 0, and 3 were used. The same is also the case for the
top-down kernels.

The tuning width of the bottom-up kernels was initially set to � = 2:5, which is sub-
stantially wider than the � = 0:3 that was used to simulate adult data. The tuning width
for the top-down kernels was set to � = 6. In other words, before learning the top-down
kernels are untuned and the bottom-up kernels are broadly tuned. We show here how the
process of learning of the bottom-up kernels proceeds in parallel with learning of the top-
down kernels without requiring that the two types of kernel have any a priori similarities.
These initial conditions were chosen so that the system was initially coarsely tuned, but
some residual capability was available for symmetry-breaking purposes. Without it, all
complex cells would respond equally. No di�erentiation between di�erent disparities can
occur if there are no initial biases present.
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Figure 3: The development of individual bottom-up kernels to a complex cells of far, or
uncrossed, disparity preference. The top panels show the kernels between DL simple cells
and the complex cell. On the left is shown the kernel between the left DL simple cells and
the complex cell, and on the right between the right DL simple cells and the complex cell.
The bottom panel shows the kernels between LD simple cells and the same complex cell.
Note that the DL and LD kernels are indistinguishable. Over time the kernels become
narrower, and their preference shifts away from the central, zero-disparity location.
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Figure 4: The development of individual top-down kernels from a complex cell of far, or
uncrossed, disparity preference. It is the same complex cell as in Figure 3. The top panels
show the kernels between the complex cell and on LGN cells. On the left is shown the
kernel between the left on LGN cells and the complex cell, and on the right the kernel
between the right LGN cells and the complex cell.
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3.1.2 Analysis of learning

The large number of adaptive weights restricts the way in which learning can be analyzed.
Three methods were used: analyzing the development of individual kernels over time, and
tracking the mean � =

P
x xg(x) and standard deviation �2 =

P
x x

2g(x)��2 of all kernels
across the network. Here, g(x) is the strength of a particular kernel value divided by the
sum of all kernel values for normalization purposes. The mean gives information about the
disparity preference, and the standard deviation provides information about the tuning
width.

Figure 3 shows the development of individual bottom-up kernels of a complex cell that
initially has a slight preference for far, or uncrossed, disparities. The kernels develop to
strengthen the initial disparity preference, and to match it to the numerical disparities
of the model's environment, in the present case a disparity of -3. This learning process
manifests itself in two ways. First, the peaks of the kernels move in opposite directions,
depending on whether a given kernel is convolved with left or with right simple cells.
Second, the width of the kernels decreases over time. Both polarities of kernels (DL and
LD) learn in parallel. The complex cell continues to pool signals from simple cells of
opposite polarity and thus, in this sense, remains insensitive to image contrast polarity.

At the same time that feedforward learning occurs, feedback learning is also taking
place. This is shown in Figure 4. Once again the kernel develops a disparity preference for
the stimuli with which the model is presented, and the tuning narrows. Each edge in the
image causes spatially o�set, and temporally simultaneous, ON and OFF responses. The
rebound responses mean that each stimulus presentation causes ON and OFF responses
at the same location in close temporal succession. From this it follows that after each
presentation of an edge, both ON and OFF responses will have occurred at each of the two
locations adjacent to the edge. In other words, both sides of the edge need to be learned
by the top-down kernel. As a result, the kernel has no single peak, but a narrow plateau
in the middle. This is in fact the case, as is shown in Figure 4.

Figure 5 shows that, not only individual bottom-up kernels, but all kernels that were
stimulated in the present simulation developed a strong disparity preference. Initially, the
kernels were mildly tuned for far, zero, and near disparities with means of -1, 0, and 1.
Over the course of learning these preferences move towards -3, 0, and 3. Two observations
need to be made. First, the initial disparity preference (far, zero, near) is never altered.
Second, the emerging preferred disparities are precisely those disparities that are used in
the stimuli. In other words, the disparities of the neural network adapt to those that are
present in the environment. The same is also true for top-down disparities. Figure 6 shows
learning by the top-down kernels.

Figure 5 also shows how the width of the bottom-up kernels changes over time. Note
that from the very beginning of learning, the kernels become narrower. Note also that
the kernels corresponding to the zero-disparity case get narrower quicker than the other
kernels. This is mainly due to the fact that those kernels do not need to move before
narrowing takes place. Thus, as a result of self-organization, zero-disparity complex cells
in the model have more narrowly tuned kernels than far or near tuned complex cells. While
this is not the only factor a�ecting disparity tuning curves, the model suggests that zero-
disparity complex cells are more narrowly tuned throughout development. Figure 6 shows
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Figure 5: The development of bottom-up complex cell kernels over time. In this �gure
kernels from all di�erent positions have been superimposed. The top panels show the
kernel statistics of the kernels between left DL simple cells and complex cells. On the
left is shown the disparity preference, on the right the disparity tuning width (for precise
de�nitions see text). The bottom panels show the same statistics for kernels between left
LD simple cells and complex cells.
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how the width of the top-down kernels changes over time.
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Figure 6: The development of top-down complex cell kernels over time. The top panels
show the kernel statistics of the kernels between complex cells and left ON LGN cells. The
bottom panels show the same statistics for kernels between complex cells and left OFF
LGN cells. Note that all kernels are shifted by 0.5 in comparison to the bottom-up kernels.

3.2 Impaired development of complex cells

This section shows that two key design components of the model are needed to obtain
stable learning: the existence of rebound responses and corticogeniculate feedback.
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Figure 7: In the absence of rebound responses, complex cells learn to receive input from
simple cells of only one polarity (the �rst one to which they happen to respond), while the
input from simple cells of the other polarity decays away. As a consequence, complex cells
become highly sensitive to the polarity of contrast. The kernels shown in this �gure belong
to the same complex cell as the kernels shown in Figures 3 and 4. The kernels for one
polarity are decaying away, while the oppositely polarized kernels are learned as before.
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3.2.1 Learning with no rebound responses

Four bottom-up kernels b are associated with each complex cell: one for each eye, and
one for each contrast polarity. Binocular activation of a complex cell occurs only when
both eyes received the same type of edge. The learning law speci�ed above means that
learning takes place between the complex cell and the active simple cells, as occurs in LTP,
whereby postsynaptic activity gates an increase of synaptic strength (Fr�egnac et al., 1994;
Kirkwood & Bear, 1994a). However, learning occurs also between the complex cell and
the inactive simple cells. This property realizes a type of Long-Term Depression (LTD), in
which postsynaptic activity gates the decrease of synaptic strength when no presynaptic
signal is present (Artola & Singer, 1993; Fr�egnac et al., 1994; Grossberg, 1976a, 1980;
Kirkwood & Bear, 1994b; Singer, 1983). Without a rebound response, learning occurs
only for simple cells of one polarity, while selectivity for the opposite polarity is gradually
lost. The rebound response ensures that immediately after one polarity is learned, the
other polarity starts to also be learned. Thus, while one polarity is initially learned via
LTP, and the other forgotten via LTD, during the rebound response the latter is learned
and the former forgotten. Learning proceeds at a faster rate than forgetting, ensuring
that the net e�ect to a single stimulus presentation is a net increase in selectivity for both
polarities. Figure 7 shows that, in the absence of a rebound response, the complex cells
develop the kernel corresponding to only one subpopulation of simple cells, while the other
kernel decays away, thus rendering the complex cell sensitive to the polarity of contrast
in the image. This would disrupt processing at later stages of visual processing, where
pooling of opposite contrast polarities is needed to build long-range boundary groupings
of object boundaries on textured backgrounds.

3.2.2 Learning with no corticogeniculate feedback

Through corticogeniculate feedback, the cortex sends an expectation signal back to the
LGN stage, and it can thereby shut o� a pattern that was incorrectly classi�ed by the
complex cell stage. On the other hand, if the LGN pattern matches the feedback pattern,
then an enhancement of LGN activities can take place. In the absence of feedback, this
strengthening e�ect does not take place, and hence the second time a pattern is presented, a
di�erent winner could emerge, which might not be corrected in the absence of con�rmative
feedback. When this happens, a recoding of the kernels could occur. This is shown in
Figure 8.

4 Discussion

This study models how disparity selectivity can arise in a neural networkmodel of binocular
development. The model shows how complex cells can develop that binocularly fuse edges
of the same contrast polarity, that pool fused signals from opposite contrast polarities,
and that are highly disparity-selective. The disparity preference that emerges matches
the disparities present in the model's environment. The ability of complex cells to pool
signals from opposite contrast polarities has proven to be important in models of long-
range boundary grouping and texture segregation (Grossberg, 1994; Grossberg & Mingolla,
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Figure 8: In the absence of corticogeniculate feedback, no matching between feedback
and feedforward signals takes place, which opens the possibility for unstable recoding of
the disparities learned by the kernels. In this �gure, the kernels learn the leftwards shift,
but due to recoding, they also learn the (incorrect) rightwards shift. In other words, this
complex cell loses its disparity selectivity.
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1985a, 1985b; Grossberg & Pessoa, 1997). This property clari�es how the brain builds
boundaries around objects whose relative contrast with respect to their backgrounds can
reverse along their perimeters. Since the output signals of the oppositely polarized simple
cells that converge on complex cells are half-wave recti�ed (e.g., equations (16) and (17)),
complex cells, in e�ect, perform an oriented full-wave recti�cation of the input image. This
property has become commonplace in recent models of texture segregation (e.g., Chubb &
Sperling, 1989; Grossberg & Mingolla, 1985b; Sutter et al., 1989). Thus the present study
clari�es how this key texture segregation property is learned along with the equally crucial
property for depth perception of fusing only like-polarity contrasts.

In order for development to take place, the model needs to have some innate but coarse
disparity tuning. This works as a symmetry-breaking mechanism, since it ensures that
the entire network does not respond equally to any given stimulus. During the course of
development these biases are enhanced dramatically by intracortical recurrent excitation
and inhibition in the model to yield high disparity selectivity.

Complex cells in the model can learn to pool opposite contrast polarities using the an-
tagonistic rebound that occurs at the o�set of a visual stimulus. Ringach et al. (1996) have
reported rebound phenomena using reverse correlation techniques to analyze orientational
tuning in neurons of area V1. Rebound responses have heretofore been used to explain
data about visual aftere�ects (Francis & Grossberg, 1996; Grossberg, 1976b; Grunewald &
Lankheet, 1996), persistence (Francis et al., 1994) and binocular rivalry (Grossberg, 1987).
The adaptive role for rebounds that is envisaged here specializes the general concept from
Adaptive Resonance Theory that rebounds between ON and OFF cells help to stabilize
the learning process (Grossberg, 1976b, 1980).

A second important feature of the model, which also specializes ART concepts, is that
a top-down attentive matching process stabilizes learning. In the present example, this
general concept is realized as a corticogeniculate matching process that stabilizes complex
cell disparity learning. Similar top-down attentive matching properties are found in data
on spatial attention in areas V2 and V4 (Reynolds et al., 1994, 1995) and on feature-
selective attention in areas V4 and IT (Carpenter & Grossberg, 1993; Desimone, 1992;
Grossberg, 1995; Motter, 1994a, 1994b).

The present model helps to explain how human infants can rapidly develop disparity
selectivity from an initial stage where they have only limited stereoscopic capabilities (Birch
et al., 1983; Held et al., 1980; Shimojo et al., 1986). Learning within the model also occurs
rapidly, with 10 stimulus presentations within the model being enough to achieve learning.

The model builds on the assumption that opponent pairs of simple cells exist that are
tuned to similar orientations but opposite contrast polarities, as has been found in several
neurophysiological experiments (Ferster, 1988; Liu et al., 1992; Ohzawa et al., 1990).
Olson and Grossberg (1996) have modeled how pairs of simple cell receptive �elds can
develop with similar orientational tuning but opposite contrast polarity preference. This
developmental process goes on while the model develops cortical maps of orientation and
ocular dominance that exhibit the characteristic singularities, linear zones, and fractures
that are observed in vivo (Blasdel, 1992a, 1992b). This model uses mechanisms like those
used in the present work. Taken together, these studies suggest how the stream of LGN-
to-simple-to-complex cell receptive �elds develop in a coordinated fashion to achieve sharp
disparity tuning in adults.
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This total set of connections has earlier been used to explain psychophysical data about
adult 3-D vision and �gure-ground separation (Grossberg, 1994, 1997), as well as recent
data of McKee and her colleagues (McKee et al., 1994, 1995; Smallman & McKee, 1995)
about contrast-sensitive binocular matching, Panum's limiting case, and dichoptic mask-
ing (McLoughlin & Grossberg, 1997). Related modeling work (Grossberg & Grunewald,
1995) has shown how key dynamic properties of human binocular vision may be explained
by these interactions. In particular, the inability of humans to fuse simultaneous anticor-
related stereograms together with their ability to fuse delayed anticorrelated stereograms
(Cogan et al., 1993; Julesz, 1960) illustrates several model properties; namely, complex
cells fuse only like-contrast polarities, pool fused signals from opposite contrast polar-
ities, and are activated by opponent simple cells which can experience an antagonistic
rebound at stimulus o�set that activates the opposite contrast polarity cells. Simultane-
ous anticorrelated stereograms cannot be fused because only like-contrasts fuse. Delayed
anticorrelated stereograms can be fused because the antagonistic rebound reverses con-
trast polarity, so the delayed response can be fused with the later response. Similarly, a
simulation of the Pulfrich e�ect (Julesz & White, 1969; Pulfrich, 1922) depends upon the
model's sharp disparity tuning, while a simulation of binocular summation (Andersen &
Movshon, 1989; Cogan et al., 1990; Westendorf et al., 1972) illustrates the importance
of using self-normalizing kernels with balanced excitation and inhibition. Taken together,
these studies show how adult psychophysical and neurobiological data can be explained as
consequences of the developmental mechanisms that are modeled herein.
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