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Abstract

This article describes neural network models for adaptive control of arm movement trajectories during visually
guided reaching and� more generally� a framework for unsupervised realtime errorbased learning� The models
clarify how a child� or untrained robot� can learn to reach for objects that it sees� Piaget has provided basic
insights with his concept of a circular reaction� As an infant makes internally generated movements of its hand�
the eyes automatically follow this motion� A transformation is learned between the visual representation of
hand position and the motor representation of hand position� Learning of this transformation eventually enables
the child to accurately reach for visually detected targets� Grossberg and Kuperstein have shown how the eye
movement system can use visual error signals to correct movement parameters via cerebellar learning� Here
it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters�
These movements also activate the target position representations that are used to learn the visuomotor
transformation that controls visually guided reaching� The AVITE model presented here is an adaptive neural
circuit based on the Vector Integration to Endpoint �VITE� model for arm and speech trajectory generation
of Bullock and Grossberg� In the VITE model� a Target Position Command �TPC� represents the location of
the desired target� The Present Position Command �PPC� encodes the present handarm con�guration� The
Di�erence Vector �DV� population continuously computes the di�erence between the PPC and the TPC� A
speedcontrolling GO signal multiplies DV output� The PPC integrates the �DV���GO� product and generates
an out�ow command to the arm� Integration at the PPC continues at a rate dependent on GO signal size
until the DV reaches zero� at which time the PPC equals the TPC� The AVITE model explains how self
consistent TPC and PPC coordinates are autonomously generated and learned� Learning of AVITE parameters
is regulated by activation of a selfregulating Endogenous Random Generator �ERG� of training vectors� Each
vector is integrated at the PPC� giving rise to a movement command� The generation of each vector induces
a complementary postural phase during which ERG output stops and learning occurs� Then a new vector
is generated and the cycle is repeated� This cyclic� biphasic behavior is controlled by a specialized gated
dipole circuit� ERG output autonomously stops in such a way that� across trials� a broad sample of workspace
target positions is generated� When the ERG shuts o�� a modulator gate opens� copying the PPC into the
TPC� Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed
due to learning� This learning scheme is called a Vector Associative Map� or VAM� The VAM model is a
generalpurpose device for autonomous realtime errorbased learning and performance of associative maps�
The DV stage serves the dual function of reading out new TPCs during performance and reading in new
adaptive weights during learning� without a disruption of realtime operation� VAMs thus provide an online
unsupervised alternative to the o�line properties of supervised errorcorrection learning algorithms� VAMs and
VAM cascades for learning motortomotor and spatialtomotormaps are described� VAM models and Adaptive
Resonance Theory �ART� models exhibit complementary matching� learning� and performance properties that
together provide a foundation for designing a total sensorycognitive and cognitivemotor autonomous system�



� Self�Organization of Intermodal and
In�
tramodal Maps for Visually Guided

Reaching

This article describes selforganizing neural circuits for
the control of planned arm movements during visually
guided reaching that were �rst reported in Gaudiano
and Grossberg ��

�a� �

�b� and Grossberg ��

�a��
More generally� it introduces a modelling framework
for unsupervised� realtime� errorbased learning� The
problem that motivates our results concerns the issue
of how a child learns to reach for objects that it sees�
This problem requires an understanding of the interac
tions between two distinct modalities� vision �seeing an
object� and motor control �moving a limb�� In particu
lar� we need to characterize the selfregulating mecha
nisms whereby an individual can stably learn transfor
mations within and between the di�erent modalities
that provide accurate control of goaloriented move
ments�

The Swiss psychologist Jean Piaget ��
�	� has sug
gested that learning of this type can take place through
a circular reaction� As a child performs random� spon
taneously generated movements of his arm� its eyes
follow the arm�s motion� thereby enabling learning of
a transformation from a visual representation of arm
position to a motor representation of the same arm po
sition� As more and more arm positions are sampled
through time� the transformation eventually enables
the child to reach for objects that it sees�

A similar kind of circular reaction is found in the
�babbling phase� of speech acquisition in infants �Fry�
�
���� Here interactions take place between the speech
perception �hearing� and production �speaking� sys
tems� When the child babbles a sound� an auditory
feedback representation of the sound is activated and
coexists with the motor representation that gave rise
to the sound� As the child learns a transformation
from the auditory representation to the motor repre
sentation� it can begin to imitate heard sounds that
are produced by other speakers�

The above examples introduce the circular reaction
as an autonomously controlled behavioral cycle with
two components� production and perception� Learning
links the two modalities to enable sensoryguided ac
tion to occur� Such a circular reaction is intermodal�
that is� it consists of the coupling of two systems op
erating in di�erent modalities�

In order for the intermodal circular reaction to gen
erate stable learning of the parameters that couple the
two systems� the control parameters within each sys

tem must already be capable of accurate performance�
Otherwise� performance may not be consistent across
trials and a stable mapping could not be learned be
tween di�erent modalities� Thus it is necessary to self
organize the correct intramodal control parameters be
fore a stable intermodal mapping can be learned�

Grossberg and Kuperstein ��
��� �
�
� have mod
elled how such control parameters can be learned
within the eye movement system� During early de
velopment� eye movements are made reactively in re
sponse to visual inputs� When these eye movements
do not lead to foveation of the visual target� the non
foveated position of the target generates a visual error
signal� Their model suggests how such error signals
can be used by the cerebellum to learn eye movement
control parameters that lead to accurate foveations�

Here we show how the arm movement system can
endogenously generate movements during a �motor
babbling� phase� These movements create the data
needed to learn correct armmovement control parame
ters� These movements also activate the target position
representations that are used to learn the visuomotor
transformation that controls visually guided reaching�

Our results are developed within a model that we
call the AVITE model �Figure �� for variablespeed
adaptive control of multijoint limb trajectories�

	



Figure �� A schematic diagram of the Adaptive
VITE �AVITE� circuit� See Section � for details of
TPC�DV� PPC� and GO populations� The Now Print
�NP� gate copies the PPC into the TPCwhen the arm
is stationary� and the plastic synapses �semicircles in
the TPC�DV pathways� learn to transform target
commands into correctly calibrated out�ow signals
at the PPC�

� Trajectory Formation as an Emer�
gent Invariant

Many models for sensorymotor control of arm move
ment trajectories attempt to learn� or otherwise pre
plan� the entire trajectory for each possible move
ment� However� the number of trajectories that can
be followed even in the act of reaching for a single
target in space shows that such a strategy rapidly
leads to a combinatorial explosion� Furthermore� this
type of model cannot easily account for the ability to
rapidly adjust to target position changes or other mid
trajectory corrections� as well as many other known
properties of arm movements�

Bullock and Grossberg ��
��a� have suggested in
stead how motor synergies can be dynamically bound
and unbound in realtime� Once bound� the mul
tiple muscles within a synergy can move a limb at
variable speeds by synchronously contracting variable
amounts in equal time� In this view� trajectory forma
tion is an emergent invariant that arises through inter
actions among two broad types of control mechanisms�
planned control and automatic control� Planned con

trol variables include ��� target position� or where we
want to move� and ��� speed of movement� or how
fast we want to move to the desired position� and the
�will� to move at all� Automatic control variables com
pensate for �	� the present position of the arm� ���
unexpected inertial forces and external loads� and ���
changes in the physiognomy of the motor plant� due
for example to growth� injury� exercise� and aging�

The Vector Integration to Endpoint �VITE� model
of Bullock and Grossberg implements such a strategy of
trajectory control and has been used to explain a large
behavioral and neurobiological data base �see Bullock
and Grossberg� �
��a� �
��b� �
�
� �

��� A prime
example of an emergent invariant that is explained by
the VITE model is the synchrony with which multiple
joints can be moved at variable speeds�

� The VITE Model

Figure � summarizes the main components of the VITE
circuit� At the top of the �gure� inputs to the Target
Position Command �TPC� populations represent the
desired �nal position of the arm� At the bottom of the
�gure� the Present Position Command �PPC� popula
tions code an internal representation of where the arm
presently is� Out�ow movement commands to the arm
are generated by the PPC� These out�ow signals� sup
plemented by spinal circuitry and cerebellar learning
�Bullock and Grossberg� �
�
� �

�� move the hand to
the location coded by the PPC relative to the body�
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Figure �� The VITE model� adapted from Bul�
lock and Grossberg ���		a�� TPC 
 Target Position
Command� DV 
 Di�erence Vector� PPC 
 Present
Position Command� The GO signal acts as a nonspe�
ci�c multiplicative gate that can control the overall
speed of a movement� or the will to move at all� Use
of a single GO signal insures synchronous activation
of all muscles in the synergies involved in a coordi�
nated movement�

while compensating for dynamic e�ects and loading
conditions�

The Di�erence Vector �DV� populations continu
ously compute the discrepancy between present po
sition signals �PPC� and the desired target position
commands �TPC�� Output signals from the DV are in
tegrated by the PPC until the latter becomes equal to
the TPC� at which time the DV equals zero and PPC
integration stops� Hence the VITE circuit embodies an
automatic process that moves the PPC continuously
to the TPC� The Adaptive VITE �AVITE� model pre
sented herein explains how generation of correct TPC
representations is learned through �motor babbling��
Endogenouslygenerated random PPC movement com
mands move the arm through a full range of positions
and activate TPCs whose signals to the DV are adap
tively tuned using the DV itself as source of error sig
nals�

� Coding Movement Speed and Inten�
tionality� The GO Signal

If the PPC were always allowed to integrate the DV�
then a movement would begin as soon as the TPC be
comes active� Somehow it must be possible to �prime�
a target position without moving the arm until an
other signal indicates the intent to carry out the move
ment� A related issue concerns how the overall speed

of a movement can be varied without changing the de
sired TPC� �Priming� denotes the limiting case of zero
speed�

Trajectorypreserving speed control can be achieved
by multiplying the output of the DV with a nonspeci�c
gating signal� This is the GO signal depicted in Fig
ure �� Because of its location within the VITE model�
the GO signal a�ects the rate at which the PPC is
continuously moved toward the TPC� For example� as
long as the GO signal is zero� instatement of a TPC
generates a nonzero DV� but the PPC remains un
altered� This �primed� DV codes the di�erence be
tween the arm�s present position and desired position�
If the arm is passively moved through space by exter
nal forces while the GO signal is zero� the PPC is up
dated through sensory feedback from the muscles via
a Passive Update of Position� or PUP� circuit �Figure
	�� The DV also changes to re�ect the change in arm
position� so that onset of the GO signal during a subse
quent voluntary movement will still result in formation
of a correct trajectory�

Figure �� The Passive Update of Position �PUP�
circuit� adapted from Bullock and Grossberg ���		a��
DV and PPC are the same as in Figure  The adap�
tive pathway PPC�DVp calibrates PPC out�ow sig�
nals to match in�ow signals during intervals of pos�
ture� DV output is gated to zero during passive arm
movements� while the DVp updates the PPC until it
equals the new position� GO signal activation dis�
ables passive update to allow discrimination between
voluntary movements and movements caused by ex�
ternal forces�

When the GO signal is nonzero� any activation in the
DV is integrated by the PPC at a rate proportional to
the product �DV���GO�� Integration ceases when the
PPC equals the TPC and the DV equals zero� even if
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the GO signal remains positive� Other things being
equal� a larger GO signal causes the PPC to integrate
at a faster rate� so the same target is reached in a
shorter time�

Bullock and Grossberg ��
��a� �

�� and Grossberg
and Kuperstein ��
�
� have summarized experimen
tal evidence suggesting that the TPC is computed in
parietal cortex� the DV in motor cortex� and the GO
signal in globus pallidus� The VITE model then pre
dicts that the motor cortex and globus pallidus give
rise to output pathways that converge upon a process
ing stage where DV and GO signals are multiplied to
compute a measure of movement speed and direction�
This processing stage� in turn� is predicted to generate
excitatory inputs to a neural �leaky� integrator which
computes PPC out�ow command signals�

� Autonomous Learning of AVITE Co�
ordinates

In order for the AVITE model to generate correct arm
trajectories� the TPC and PPC must be able to ac
tivate dimensionally consistent signals TPC�DV and
PPC�DV for comparison at the DV� There is no rea
son to assume that the gains� or even the coordinates�
of these signals are initially correctly matched� Learn
ing of an adaptive coordinate transformation is needed
to achieve selfconsistent matching of TPC and PPC
generated signals at the DV�

In order to learn such a transformation� TPCs and
PPCs that represent the same target positions must
be simultaneously activated� This cannot be accom
plished by activating a TPC and then letting the
AVITE circuit integrate the corresponding PPC� Such
a scheme would beg the problem being posed� namely�
to discover how TPC�DV and PPC�DV signals are
calibrated so that a TPC can generate the correspond
ing PPC� An analysis of all the possibilities that are
consistent with VITE constraints suggests that PPCs
are generated by internal� or endogenous� activation
sources during a motor babbling phase� After such a
babbled PPC is generated and a corresponding action
taken� the PPC itself is used to activate a TPC rep
resentation which a fortiori represents the same target
position �Figure ��� Thus motor babbling samples the
work space and� in so doing� generates a representa
tive set of pairs �TPC� PPC� for learning the AVITE
coordinate transformation�

� Associative Learning from Parietal
Cortex to Motor Cortex During the
Motor Babbling Phase

Further analysis suggests that the only site where
an adaptive coordinate change can take place is at
the synaptic junctions that connect the TPC to the
DV� These junctions are represented as semicircular
synapses in Figure �� Moreover� DV activation can
be used as an internal measure of error� in the sense
that miscalibrated signals TPC�DV and PPC�DV
from TPCs and PPCs corresponding to the same tar
get position will generate a nonzero DV� Learning is
designed to change the synaptic weights in the path
ways TPC�DV in a way that drives the DV to zero�
After learning is complete� the DV can only equal zero
if the TPC and PPC represent the same target po
sition� If we accept the neural interpretation of the
TPC as being computed in the parietal cortex �An
derson� Essick� and Siegel� �
��� Grossberg and Ku
perstein� �
��� �
�
� and the PPC as being computed
in the precentral motor cortex �Bullock and Grossberg�
�
��a� Georgopoulos� et al�� �
��� �
��� �
���� then we
are led to predict that associative larning during the
motor babbling stage takes place on a pathway� possi
bly multisynaptic �as in Figure �b�� connecting parietal
cortex to motor cortex� Speci�cally� activation of the
di�erence vector cells in motor cortex is predicted to
be driven towards zero �or to a tonic resting level� by
learning during postural intervals�

� Vector Associative Map� On�Line
DV�Mediated Learning and Perfor�
mance

When such a learning law is embedded within a com
plete AVITE circuit� the DV can be used for online
regulation of both learning and performance� During a
performance phase� a new TPC is read into the AVITE
circuit from elsewhere in the network� such as when a
reaching movement is initiated by the visual represen
tation of a target� The new DV is used to integrate
a PPC that represents the same target position as the
TPC� Zeroing the DV here creates a new PPC while the
TPC is held constant� In contrast� during the learning
phase� the DV is used to drive a coordinate change in
the TPC�DV synapses� Zeroing the DV here creates
new adaptive weights while both the PPC and TPC
are held �xed�

Both the learning and the performance phases use
the same AVITE circuitry� notably the same DV� for
their respective functions� Thus learning and perfor
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mance can be carried out online in a realtime setting�
unlike most traditional o�line supervised error correc
tion schemes� The operation whereby an endogenously
generated PPC activates a corresponding TPC� as in
Figure �b� �back propagates� information for use in
learning� but does so using local operations without
the intervention of an external teacher or a break in
online processing�

We call the class of models that use this online
learning and performance scheme a Vector Associative
Map �VAM� because it uses a di�erence vector to both
learn and perform an associative mapping between in
ternal representations�

Autonomous control� or gating� of the learning and
performance phases is needed to achieve e�ective on
line dynamics� at least when learning is fast� For
example� the network needs to distinguish whether
DV��� because the TPC and PPC represent di�erent
target positions� or because the TPC�DV synapses
are improperly calibrated� In the former case� learn
ing should not occur� in the latter case� it should oc
cur� Thus some type of learning gate may be needed
to prevent spurious associations from forming between
TPCs and PPCs that represent di�erent target posi
tions� The design of the total AVITE network shows
how such distinctions are computed and used for real
time control of the learning and performance phases�
We now explain how this is accomplished� Section ��
gives an analysis of the required gating signals�

	 The Motor Babbling Cycle

During the motor babbling stage� an Endogenous Ran
dom Generator �ERG� of training vectors is activated�
These vectors are input to the PPC stage� which in
tegrates them� thereby giving rise to out�ow signals
that move the arm through the workspace �Figure �a��
After each interval of ERG activation and PPC inte
gration� the ERG automatically shuts o�� so that the
arm stops at a random target position in space�

O�set of the ERG opens a Now Print �NP� gate
that copies the PPC into the TPC through some �xed�
arbitrary transformation �Figure �b�� The topdown
adaptive �lter from TPC to DV learns the correct re
verse transformation by driving the DV toward zero
while the NP gate is open �Figure �cd�� Then the
cycle is automatically repeated� When the ERG be
comes active again� it shuts o� the NP gate and thus
inhibits learning� A new PPC command is integrated
and another arm movement is elicited�

Figure �� A diagrammatic illustration of a single
babbling cycle in the AVITE� �a� The Endogenous
Random Generator ON channel output �ERG ON� is
integrated at the PPC� giving rise to random out�ow
signals that move the arm� �b� When the arm stops
moving at ERG ON o�set� a complementary ERG
OFF signal opens the Now Print �NP� gate� copying
the current PPC into the TPC through an arbitrary
transformation� �c� The �ltered TPC activation is
compared to the PPC at the DV stage� DV activa�
tion would be zero in a properly calibrated AVITE�
�d� The learning law changes TPC�DV synapses to
eliminate any nonzero DV activation� thus learning
the reverse of the PPC�NP�TPC transformation�

The ERG is designed so that� across the set of all
movement trials� its output vectors generate a set of
PPCs that form an unbiased sample of the workspace�
This sample of PPCs generates the set of �TPC� PPC�
pairs that is used to learn the adaptive coordinate
change TPC�DV via the VAM�


 Opponent Interactions in the VITE
Model

Opponent processing permeates the neural functions
of all species� This design principle expresses itself
in sensorymotor control through the organization of
muscles into agonistantagonist pairs that work to
gether to control �exion and extension of joints� Sim
ilarly� agonistantagonist muscle pairs are controlled
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by neural networks that are themselves coupled in
an opponent fashion �e�g�� Ryall� �
��� Kandel and
Schwartz� �
��� Chapters ��� 	�� Bullock and Gross
berg� �
�
� �

���

Opponent processing is needed to realize many
AVITE model properties� The primary need for op
ponency arises from the fact that each PPC compo
nent integrates the net positive� or excitatory� output
of the corresponding DV component� Once the PPC
has grown to a positive value� it cannot decrease with
out receiving some form of inhibition� In the Bullock
and Grossberg ��
��a� VITE model� two controlling
channels for each agonistantagonist muscle pair are
coupled in a pushpull fashion at the appropriate pro
cessing stages�

Figure �� Schematic diagram of the AVITE circuit
showing the existence of opponent channels for con�
trol of agonist�antagonist muscle pairs� indicated by
��� and ��� superscripts� respectively� Push�pull in�
teractions at the TPC and PPC layers insure that
contraction in one channel will result in relaxation of
the opponent channel� and vice versa�

Figure � illustrates the AVITE circuit with agonist
and antagonist channels coupled in an opponent fash
ion� These pushpull interactions allow� for example�
reduction of the antagonist PPC as the agonist PPC
is increased� Throughout the remainder of the paper�
we will sometimes use diagrams such as the one shown
in Figure � for simplicity� even though each module is
intended to control a muscle pair�

Figure �� Schematic diagram of the Endogenous
Random Generator �ERG�� PG 
 Pauser Gate� J�


 phasic input to the ON channel� I 
 tonic input
to both channels� X��X� 
 input layer activation�
Y ��Y � 
 available chemical transmitter �chemical
gates represented by rectangular striped synapses��
O� 
 ERG ON output to the PPC� O� 
 ERG OFF
output controls PG activation� See text for descrip�
tion of ERG dynamics�

�� The Endogenous Random Genera�

tor of Workspace Sampling Bursts

The ERG design embodies another example of the need
for opponent interactions� The motor babbling cycle is
controlled by two complementary phases in the ERG
mechanism� an active and a quiet phase� The active
phase generates random vectors to the PPC� During
the quiet phase� input to the PPC from the ERG is
zero� thereby providing the opportunity to learn a sta
ble �TPC� PPC� relationship� In addition� there must
be a way for the ERG to signal onset of the quiet
phase� so that the NP gate can open and copy the
PPC into the TPC� The NP gate must not be open
at other times� If it were always open� any incoming
commands to the TPC could be distorted by contra
dictory inputs from the PPC� Therefore� o�set of the
active ERG phase must be accompanied by onset of
a complementary mechanism whose output energizes
opening of the NP gate�

The signal that opens the NP gate can also be used

�



to modulate learning in the adaptive �lter� In general�
no learning should occur except when the PPC and
TPC encode the same position� See Section �� for
details

Figure � provides a schematic diagram of the ERG
circuit� The design is a specialized gated dipole �Gross
berg� �
��a� �
��� �
���� A gated dipole is a neural
network model for the type of opponent processing dur
ing which a sudden input o�set within one channel can
trigger activation� or antagonistic rebound� within the
opponent channel� Habituating transmitter gates in
each opponent channel regulate the rebound property
by modulating the signal in their respective channel�
In applications to biological rhythms� each channel�s
o�set can trigger an antagonistic rebound in the other
channel� leading to a rhythmic temporal succession of
rebound events� An example of such an endogenously
active rhythm generator was developed by Carpenter
and Grossberg ��
�	� �
��� �
��� reprinted in Gross
berg� �
��a� to explain parametric data about control
of circadian rhythms by the suprachiasmatic nuclei of
the hypothalamus�

In the present application� note the complementary
time intervals during which the ON and OFF chan
nels of the ERG are active� The ON channel output
must be di�erent during each active phase so that inte
grated PPCs result in random movements that sample
the workspace� In contrast� OFF channel activation
must be fairly uniform across trials� thereby providing
intervals during which learning can stably occur�

Figure � illustrates the main characteristic of the
simplest type of feedforward gated dipole� When a
phasic input J� is applied to the ON channel� the cor
responding ON channel output O� exhibits a transient
overshoot that decays� or habituates� to a new� lower
resting level� O�set of the phasic input causes the ON
output to quickly drop to zero� while the OFF channel
output O� exhibits a transient antagonistic rebound
followed by a decay to zero� Hence the gated dipole
embodies a mechanism for generating a transient an
tagonistic rebound to o�set of a phasic cue�

The OFF rebound is due to opponent interactions
between two channels whose signals are multiplica
tively gated by chemical transmitters� The chemical
gates �rectangular synapses in Figures � and �� are
presumed to act on a time scale slower than the time
scale of neuronal activation� so that sudden shifts in
input are followed by slower changes in the amount of
available transmitter substance�

Figure �� Schematic representation of linear� feed�
forward gated dipole� Plots indicate response of each
dipole stage over time� A sudden increase in phasic
input �J�� bottom left of �gure� leads to a transient
overshoot in the ON channel �top left�� followed by
habituation to a positive plateau� Removal of the
di�erential input leads to a transient rebound in the
OFF channel �top right� due to the depleted chemical
transmitter in the ON channel gate�

The basic gated dipole circuit needs to be special
ized to design an e�ective ERG circuit� Such an ERG
circuit needs to convert a continuous stream of ran
dom inputs to the ON channel �J� in Figure �� into
cyclic output bursts from the ON channel� interspersed
with OFF intervals whose duration is relatively stable
across trials�

In order to convert a stream of random inputs into
a series of output bursts� activation of the ON channel
must initiate a process that spontaneously terminates
ON channel output even while the random inputs re
main on� This can be achieved if the net signal through
the transmitter gate is an invertedU function of input
size� Then the gated ON output can �crash� on the
time scale of transmitter habituation� The usual trans
mitter law of a gated dipole needs to be modi�ed to
achieve this property� because the net signal through
the transmitter gate in the simplest gated dipole is an
increasing function� not an invertedU function� of in
put size�

In order to achieve cyclic output bursts from the ON
channel� the ON chemical transmitter gate must be al
lowed to recover from habituation after crashing� To
this end� the random input stream to the ON chan
nel must be blocked after the ON gate crashes� Our
solution is to let OFF channel activation �which be
comes positive when the ON channel crashes� shut o�
the source of phasic input J�� which will cause a tran
sient increase of activity in the OFF channel while the
ON transmitter gate recovers from habituation� This
process is represented in Figure � as a feedback path
way from the OFF channel of the ERG to the input






source �J�� through a Pauser Gate �PG� whose output
is constant above its �ring threshold�

Figure � illustrates the dynamics of the ERG as it
goes through one complete cycle� The Appendix pro
vides a mathematical analysis of the ERG transmitter
gate dynamics�

Figure �� Response of various ERG levels to a con�
tinuous di�erential input J�� The inverted�U trans�
fer function through the chemical gates �rectangular
synapses� leads to a transient ON response �O��� fol�
lowed by activation of the OFF channel �O��� Suf�
�cient OFF channel activation energizes the Pauser
Gate �PG�� which shuts o� phasic input J� to the
ON channel� causing a larger� transient rebound in
the OFF channel� Removal of the phasic input al�
lows ON channel transmitter Y � to replenish� even�
tually shutting o� the PG and starting a new cycle�
The ON channel output is choppy due to noisiness of
phasic input J�� Dashed lines in upper right�hand
plot represent PG activation �not drawn to scale��

�� Some Results� Correct Parameter
Learning and Trajectory Formation

Through Motor Babbling

This section provides a qualitative overview of the ma
jor results obtained through simulation of the ERG
AVITE system during the babbling phase of adaptive
tuning� More detailed simulation results will be given
in later sections�

Figure 
 is a schematic diagram of the complete sys
tem used in the simulations described below to control
a twojointed arm� Each AVITE module consists of one
agonist channel and one antagonist channel� coupled in
a pushpull fashion� Each channel receives inputs from
its own ERG circuit� As shown in Figure 
� all ERG
OFF channels cooperate to activate a single PG� and
output from all DV channels is gated by a single GO
signal� to insure synchronous learning and performance
for all muscle pairs�

Figure 	� Diagram of the complete ERG�AVITE
system used for the two�joint simulations� Each
AVITE agonist�antagonist module is driven by two
ERG modules� AVITE out�ow commands control
movement of a simulated two�joint arm� The GO
signal� NP gate� and PG are the same for all mod�
ules to ensure synchronous movement and learning
for both synergies�

Figure �� shows the graphical output of the simu
lation program during babbling� Each grid shows a
di�erent con�guration of the twojoint arm� with each
joint regulated by one AVITE module� The �gure
illustrates some of the positions attained during the
quiet phases of motor babbling� A more quantitative
demonstration of the relatively uniform distribution of
endogenouslygenerated arm positions is given in Fig
ures ���� �Section ����

Figure �
 �Section ��� illustrates the convergence
of the learning process as motor babbling progresses�
The plot shows the DV at the onset of successive quiet
phases� when the PPC equals the TPC� Learning suc
cessfully drives the DV to zero at an approximately
exponential rate�

Figure �� �Section ��� shows the graphical display
during simulation of movement performance at vari
ous stages of AVITE training� Each grid shows the
terminal position reached by the twojoint arm after a
target joint con�guration has been instated �shown as
a black triangle on each grid� and the GO signal has
been turned on� Performance was tested at increas
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ing levels of AVITE training� resulting in increasingly
accurate reaching behavior�

We now turn to the mathematical description of the
AVITE and ERG models� Simulation results will be
more precisely described in Sections ���	� to which
the reader may directly turn on a �rst reading�

Figure �
� Pictorial representation of ERG�AVITE
simulations� Each grid represents the con�guration of
the simulated arm during a quiet phase �ERG OFF
is active�� Note the diversity of attained positions�

�� AVITE Equations

Figures � and �� respectively� show the AVITE and
ERG models with all system variables labelled at their
acting locus� In the AVITE equations� the subscript i
refers to the ith module in the simulation� Each mod
ule consists of an agonistantagonist pair of channels�
and a single module controls a single joint� Unless
otherwise indicated� each equation below describes the
behavior of variables for the agonist channel� labelled
by the ��� superscript in Figures � and �� The corre
sponding equations for the antagonist variables in the
same module�omitted for clarity�can be obtained by
exchanging every ��� superscript with a ��� super
script� and vice versa� With few exceptions� uppercase
roman letters are used to symbolize independent vari
ables� lower case roman letters symbolize functions or
indices� and greek letters symbolize parameters that
remain �xed over the course of a simulation�

Each AVITE module requires the input of two ERG
ON channels coupled in a pushpull fashion to insure
that contraction of the agonist muscle is accompanied
by relaxation of the antagonist� Because ON and OFF
channel variables for each ERG circuit are also distin
guished with ��� and ��� superscripts� we will use the
following notation� Variable O�

�i�� indicates the out
put of an ERG ON channel to the ith agonist PPC�

whose activity is denoted by P�
i � Variable O�

�i indi
cates the output of a di�erent ERG ON channel to the
ith antagonist PPC� whose activity is denoted by P�

i

�see bottom of Figure ���
Present Position Command
Let PPC variable P�

i obey the equation

dP�
i

dt
� �� � P�

i �
�
G
�
V �
i

�R
�O�

�i��

�
�

P�
i

�
G
�
V �
i

�R
� O�

�i

�
� ���

where �w�
R

� max�w� �� represents recti�cation� This
is the ratedetermining equation for the entire system�
We assume an integration rate of � and adjust the time
constant of all other equations relative to this one�

In equation ���� the PPC acts to integrate its inputs
via a shunting oncenter o�surround network� Adding
a small leaky integrator term ��P�

i to the right hand
side of ��� does not qualitatively change the results�

Terms G
�
V �
i

�R
and G

�
V �
i

�R
are agonist and antag

onist components� respectively� gated by the nonspe
ci�c GO signal G� Terms O�

�i�� and O�
�i are ERG

ON channel outputs� respectively� to the agonist and
antagonist PPC� Excitatory inputs coming from the
agonist DV and ERG channels �V �

i � O�
�i��� are coun

teracted by inputs from the antagonist DV and ERG
channels �V �

i � O�
�i�� This creates a pushpull mecha

nism that insures proper antisymmetrical activation in
the agonist and antagonist muscles�

The multiplicative factors ���P�
i � and P�

i in the ex
citatory and inhibitory terms of ��� are shunting terms
�Grossberg� �
�	� �
��� that interact with the oppo
nent inputs to normalize the PPC activations within
the range ��� ��� and to make P�

i compute the ratio
of opponent inputs� To see this� solve equation ��� at
equilibrium �dP

dt
� ��� Then

P�
i �

�
G
�
V �
i

�R
�O�

�i��

�
�
G
�
V �
i

�R
�O�

�i��

�
�
�
G
�
V �
i

�R
�O�

�i

� � ���

Activation in the antagonist channel appears in the de
nominator� thus reducing agonist activation� and vice
versa� Furthermore� activation in either channel is
bounded in the interval ��� ��� and total activation is
normalized to �� that is� P�

i � P�
i � ��

Di�erence Vector
The DV variable V �

i obeys the additive equation

dV �
i

dt
� �

�
�V �

i � T�
i Z

�
i � P�

i

�
�	�

The DV tracks the di�erence between a �ltered copy
of the TPC� namely T�

i Z
�
i � and the PPC variable P�

i

at rate ��

��



Adaptive Filter LTM Traces
The LTM trace� or adaptive weight� Z�

i from the
TPC component T�

i to the DV component V �
i obeys

the learning equation

dZ�
i

dt
� gnf�T

�
i ����Z�

i � �V �
i �� ���

where

f�Ti� �

�
� if Ti � �
� if Ti � ��

���

Equations ��� and ��� de�ne a gated vector learning
law whereby changes in adaptive weights are driven by
deviations of the DV from zero when the learning gate
gn is opened and the presynaptic node Ti is active�
Other types of f�Ti� would work as long as learning is
prevented when Ti � ��

As the correct scaling factors from PPC to TPC
channels are learned� the DV values converge to zero�
Term gn in ��� represents the Now Print Gate� As de
scribed in Section �� the Now Print gate enables the
PPC to activate a TPC that represents the same tar
get position of the arm� This gate can be coupled to
the Pauser Gate gp of equation ����� or to activation
of the GO signal� See Section �� for details�
Target Position Command
The TPC variable T�

i obeys the equation

dT�
i

dt
� �

�
��T�

i � ��� T�
i ��E�

i � F�
i � T�

i ��

T�
i �E�

i � F�
i � T�i �

�
� ���

Equation ��� is a shunting competitive equation that
normalizes TPC activities for dimensionally consistent
matching against PPC activities at the DV� see equa
tion ���� A small leaky integrator term ��T�

i was also
included to illustrate that either a leaky integrator or
a perfect integrator� as in ���� can be used� The input
terms to each TPC are of three types�
�i� Intermodal Target Commands� These are

feedforward external inputs
�E�

i � E
�
i � that instate new TPCs from other modal

ities� say from visual inspection of a moving target�
�ii� PPC�to�TPC Conversions� These are feed

back inputs �F�
i � F

�
i � from the PPC to the TPC� These

inputs instate the TPC corresponding to the PPC at
tained during an active phase of ERG input integra
tion� Terms F�

i and F�
i turn on when the Now Print

gate gn turns on� that is�

F�
i � l�P�

i � gn� ���

and
F�
i � l�P�

i � gn�� ���

where function l represents a �xed mapping �see Sec
tions �� and later��

�iii� Short�Term Memory Storage� These are
feedback signals �T�

i � T
�
i � from TPCs to themselves

such that each agonist excites itself and inhibits its
antagonist via a linear function of its activity� Such
oncenter o�surround linear shunting feedback signals
store the normalized TPCs in shortterm memory un
til they are updated by new intermodal inputs or PPC
feedback �Grossberg� �
�	� �
���� The ratio scale es
tablished by these shunting terms also allows PPC
feedback to occur after the PPC integrates the TPC�
without changing the TPC� In other words� if F�

i and
F�
i turn on with values F�

i � �T�
i and F�

i � �T�i �
for some scaling parameter � � �� then T�

i and T�i are
essentially unchanged� Similarly� instatement of an in
termodal target command �E�

i � �T�
i � E

�
i � �T�i �

will not change the TPC activation� Any changes that
do occur are due to the �nite integration rate and the
small passive decay term� but will typically be small
and transient in nature�

�� ERG Equations

Tonic Input to the ERG

Let the tonic inputs I�k and I�k to the kth ERG ON
channel and ERG OFF channel obey the equations

I�
k

� I�
k

� I �constant�� �
�

The tonic input I provides a constant baseline of acti
vation in both ERG channels �Figure ��� This provides
the energy for the transient rebound in the kth OFF
channel after the random input J�k to the kth ON chan
nel is gated o� by the Pauser Gate gp� Without tonic
input� OFF channel activation could never exceed zero�
Random Input to the ERG

Let input J�k to the kth ON channel of the ERG
obey the equation

J�k �

�
J � �	J �

�J
� � 	J � �J

� �R with prob� �
�J

	J with prob� �� �
�J

����
Random noise values J�k are chosen from an interval of
size 
J centered around the average level 	J � The term
�J represent the average time that elapses between ac
tivation �spikes�� Equation ���� represents one type
of internal noise� namely� randomly distributed activa
tion within a �xed interval� Other types of noise have
also been shown to work� See Section �� for details�
The OFF channels receive no random input �J�k � ���

��



ON and OFF Channel Input Layer Activa�
tions

The kth ERG ON channel input layer activity X�
k

obeys the equation

dX�
k

dt
� ��X�

k � � �X�
k ��I � J�k ��� gp��� ����

This equation describes leakyintegrator shunting dy
namics� The X�

k populations receive a tonic input I
and a random input J�k � The input J�k is gated shut by
term ��� gp� when the Pauser Gate gp turns on� since
gp switches from � to � at that time �Equation ������
The relative values of the leakage rate � and satura
tion limit  compared to the magnitude of the inputs
determine how sensitive the cell will be to �uctuations
in the input noise� Section �� provides details�
Habituating Transmitter Gates
Let the transmitter gate Y �

k in the kth ON channel
obey the equation

dY �
k

dt
� ��� � Y �

k � � h�X�
k �Y �

k � ����

In ����� transmitter Y �
k accumulates to a maximal level

� at the constant rate � and is inactivated� or habitu
ates� at the activitydependent rate h�X�

k �� where

h�X� � �X� � �X� ��	�

The net ON channel signal through the gate is

X�
k Y

�
k � ����

which is proportional to the rate of transmitter release�
When solved at equilibrium� the system ����� ��	� and
���� give rise to an invertedU function ofX�

k � namely�

X�
k Y

�
k �

��X�
k

�� ��X�
k �

�
� �X�

k

� ����

Opponent Output Signals
The net output O�

k of the kth ERG ON channel�
after opponent processing� obeys the equation

O�
k �

�
X�
k Y

�
k �X�

k Y
�
k

�R
� ����

The outputs O�
k are the inputs to the PPC populations

of the AVITE model� as in equation ���� The ERG
OFF outputs O�

k obey the analogous equation

O�
k

�
�
X�
k Y

�
k �X�

k Y
�
k

�R
� ����

These signals activate the Pauser Gate in the manner
described below�
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Pauser Gate
The Pauser Gate gp obeys the equation

gp �

�
� if

P
kO

�
k � �P

� otherwise
����

where �P is a �xed threshold� When multiple ERG
modules are simulated� all of the OFF channel outputs
O�
k are summed at the Pauser Gate via term

P
kO

�
k

in ����� This insures that all AVITE modules are in
their quiet phase at the same time� and that learning
is synchronous across all movementcontrolling joints�

�� ERG Simulations

In the system represented by equations �
������ it is
possible to modify the spatial� temporal� and statis
tical characteristics of the ERG ON outputs O�

k in a
number of ways� In our case� we wanted to design a
mechanism capable of generating a uniform distribu
tion of random vectors that could be integrated by the
PPC to generate a full sample of arm movements dur
ing AVITE training�

All simulation results reported in this article were
generated on Sun and Silicon Graphics workstations�
The code was written in C� using doubleprecision
�oating point accuracy� We used a fourthorder Runge
Kutta ODE solver for numerical integration� Step size
was �xed at h � ���� and was varied occasionally to
insure accuracy of the numerical integration� We also
ran a standard simulation with the LSODA integration
package of the Livermore Laboratories �Petzold� �
�	�
Hindmarsh� �
�	� to con�rm accuracy� The LSODA
package uses adaptive step size and can automatically
switch between sti� and nonsti� methods� The dis
continuous nature of the input actually made the sim
ple RungeKutta integrator signi�cantly faster�

In this section we show results based on simulations
of a twojoint AVITE model �Figure 
�� All simula
tions are based on the standard parameters given in
Figure ��� Only those parameters that di�er from
standard will be reported where needed�

Each simulation consisted of two phases� During the
�rst phase� the ERG was activated for ����� steps� the
time needed to generate ��� ERG ON bursts� Dur
ing this phase� data from all ERG state variables were
collected and plotted for a qualitative analysis of ERG
dynamics� During the second phase� the system was al
lowed to run for ������� steps� generating several hun
dred randomERG ON bursts� The resulting PPC acti
vations �P�

i � P
�
i � were mapped through a linear trans

formation into a set of joint angles� For each AVITE
agonistantagonist pair� the extreme activation

Figure ��� Simulation results under the standard
ERG parameters� I 
 ����� �J 
 ����� �J 
 ����
�J 
 �� � 
 ���� � 
 ���� � 
 ���� � 
 ���� � 
 ����
	 
 ���� and 
P 
 ���	� GO signal is o� during all
babbling runs �G 
 ����� �a� the time course be�
havior of four state variables in the ON �left� and
OFF �right� ERG channels during ���� steps of the
simulation� The range of each plot is indicated in
parentheses under the abscissa� From top to bot�
tom� ERG outputs �O��O��� available transmitter
�Y �� Y ��� input layer activation �X��X��� and total
input signal �I�J�� I�� Note that bottom three plots
for OFF channel �right� are always constant� This is
due to lack of phasic input to OFF channel� How�
ever� baseline activation is necessary to energize OFF
channel rebounds �top right plot�� �b� Distribution
of joint angles �between �� and � radians� attained
during about ��� babbled movements �������� steps
of the simulation�� Left� each dot in the scatterplot
represents the angle of the two joints �
�� 
�� during
each quiet phase� Center point represents resting po�
sition� Right� histograms of the distribution of joint
angles around resting position� Magnitude histogram
represents the number of dots falling within each of
�� evenly spaced concentric rings about the center�
the unimodal distribution toward the left side of the
histogram indicates a tendency for less extreme joint
angles� Phase histogram represents the number of
dots at each of sixteen evenly spaced quadrants about
the resting position� a �at phase histogram indicates
a uniform distribution

��



of joint angle combinations� �c� Representative sam�
ple of uninterrupted total input I � J� for ��� steps
with the standard parameters� The PG threshold 
P
was raised �
P 
 ����� to disable phasic input gating�
The tonic input I causes the �shift� above zero�

pairs ��� �� and ��� �� were respectively mapped to joint
angles of �� �maximal extension� and � �maximal�ex
ion� radians� with linear interpolation for intermedi
ate activation pairs� This transformation� though ar
bitrary and nonanthropomorphic �the �elbow� could
rotate through a full �� radians�� was useful in deter
mining the distribution of PPC movement commands
generated during the babbling phase�

Figure �� shows the cumulative results of a complete
simulationwith the standard parameters �see caption��
All �gures in this section �Figures ����� depict results
from simulations in which a single parameter or pair
of coupled parameters was varied� and should thus be
compared to Figure ��� All �gures in this section in
clude at least two parts� Part �a� shows the dynamics
of eight di�erent state variables from a single ERG
module during the �rst ����� steps of the simulation�
The relative position of each plot is meant to indicate
its counterpart in the ERG schematic of Figure �� The
left column represents ON variables� and vice versa�
Starting at the bottom� the �rst plot depicts the total
input �I � J�� the second represents input layer acti
vationX� the third represents available transmitter Y �
and the top represents ERG output O�

Part �b� shows the cumulative distribution of PPC
movement commands obtained by integrating ERG
ON outputs over ������� steps �about ��� babbled
movements�� The angle attained by the two joints dur
ing each quiet phase is represented as a dot on the
lefthand scatterplot� The boxes on the right are his
tograms of the density of dots around the center of the
scatterplot at each of sixteen phases and magnitudes�
Hence the �magnitude� plot represents how far from
rest �center of the scatterplot� the joints were bent� and
the �phase� plot shows if any particular combination
of joint angles is preferred�

In general� all scatterplots showed a �at phase dis
tribution� meaning that all quadrants of the workspace
were sampled equally� Peaks in the magnitude plots re
�ect tendencies toward more or less extreme joint an
gles� Parameter choices that lead to heavily clustered
dots around the scatterplot center represent small arm
movements �peak on the left side of magnitude plot��
and vice versa�
Random Phasic Input
In order for the ERG ON channel output to exhibit

the kind of variation seen here� we assumed that the
phasic input J�k is stochastic in nature� as would be

Figure ��� This �gure should be compared to Fig�
ure ��� The average noise level is raised to �J 
 �����
The resulting ERG dynamics and overall distribution
are virtually unchanged from those obtained with
standard parameters�

the case for typical cellular noise� The particular form
of noise represented by equation �
� is one possible rep
resentation of random cellular activity� The resulting
distribution is uniform within a closed interval of size

J with mean value 	J � The actual interval size was
sometimes less than 
J � because negative values were
truncated to zero� Thus if 	J � �J

� � the e�ective in
terval was ��� 	J � �J

�
� instead of �	J �

�J
�
� 	J � �J

�
��

The parameter �J determines the average time that
elapses between input �uctuations� At each simulation
step� a random integer is divided by �J � if the remain
der is zero� a random J�k is chosen in the appropriate
interval� otherwise J�k � 	J � Hence larger values of �J
will on average lead to longer intervals between signal
�uctuations� The standard choice of �J � � forces a
random number to be chosen at every simulation step�

Figure ��c shows a representative sample of the un
interrupted total input I�J�k to an ERG ON channel�
for a duration of ��� steps� The Pauser Gate �PG�
of Figure � is disabled to illustrate the quality of con
tinuous input� All other parameters are as given in
Figure ��� A similar plot is added to Figures ����
�labelled as �c�� to compare the qualitative aspect of

��



Figure ��� This �gure should be compared to Figure
��� The range of the phasic input J� was raised to
�J 
 ���� Again� overall dynamics and joint angle
distribution are virtually unchanged�

the total input as the various noise parameters are
changed�

Figures ���� illustrate the e�ect of changes in the
noise parameters 	J � 
J � �J � The most important fea
ture of these �gures is the fact that the overall distribu
tion of PPC movement commands is nearly unchanged
by changes in the temporal and stochastic quality of
the noise� This result shows that the distribution of
PPC movement commands does not rely heavily on
the distribution of the underlying noise� We now show
that manipulation of other ERG parameters can be
used to substantially alter the PPC distribution for a
�xed choice of noise parameters�
Tonic Arousal

The tonic arousal I provides a baseline of activation
that can energize spontaneous rebounds in the ERG
OFF channel� Furthermore� opponent ERG dynamics
depend on di�erences in input between the two chan
nels� so that an increase in tonic input I� all other
things equal� will diminish the e�ect of the di�erential
input J�

k
� This is shown in Figure ��� where an in

crease in I from ���� to ���� results in a large decrease
in ERG ON output �O�� amplitude and a correspond
ing decrease in the furthest extent of the workspace�

Figure ��� This �gure should be compared to Figure
��� Here the average period of the noise was raised
to �J 
 � �see text�� As a result� the phasic input J�

is much more sparse� and the overall ERG dynamics
are signi�cantly a�ected� In spite of this� the overall
distribution of joint angles is similar to that obtained
with the standard parameters�

Compare this to the e�ect in Figure �� of changing
the average noise level 	J from ���� to ����� where
large ERG ON outputs and a broad range of reaching
distances are generated� Finally� if either I is much
larger than J�k or I equals zero� the ERG will become
inactive� Hence the tonic arousal level can be used
as a onedimensional parameter to modulate ERG ON
output amplitude�
Input Layer Parameters
The invertedU transfer function ���� through the

chemical gate depends upon the activations X�
k � The

activations X�
k in ���� obey a shunting equation which

ensures that each cell�s output will be bounded be
tween � and � The passive decay term ��Xk allows
activation to decay to zero when no inputs are present�
Solution of equation ���� at steady state yields�

X�
k �

�I � J�k ��� gp��

� � I � J�k ��� gp�
� ��
�

Through modi�cation of the cell parameters � and �
inputs I and J�k are rescaled to vary the maximum size
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Figure ��� This �gure should be compared to Figure
��� The tonic arousal level was raised to I 
 �����
As a result� the dynamics of the input layer X are
dominated by the tonic input I� and the di�erential
input J� becomes less e�ective� The ERG ON out�
put bursts �O�� are much smaller� resulting in much
smaller joint angles during babbling� In contrast to
the profound e�ect of changes in the arousal level I�
a similar change in phasic input J� �Figure �� has
an insigni�cant e�ect on the overall joint angle dis�
tribution�

of X�
k � As shown in the Appendix� these parameters

provide a simple way to guarantee that the ON chan
nel crashes in response to a su�ciently large di�erential
activation in the ON channel�

Chemical Transmitter Gate

The chemical gate Yk is a key feature of ERG design�
since the transmitter habituation law ���� and release
law ���� together give rise to an invertedU synaptic
transfer function in equation ����� The quadratic term
in equation ��	� insures that a large enough phasic in
put will cause the gate to transiently rise above zero�
and then spontaneously crash� Cells with this type of
transfer function have been reported to exist in a num
ber of preparations �e�g�� Wachtel and Kandel� �
����
including preparations involving rhythmic pattern gen
erators �e�g�� Sigvardt and Mulloney� �
����

Figure ��� �a� and �b� should be compared to Fig�
ure ��� The input layer parameters � �decay rate� and
� �integration rate� are both increased �� 
 ��� � 

����� The steady�state activation level given by equa�
tion ���� is approximately unchanged� but the faster
response yields larger ON bursts �note that the ERG
output O� is plotted in the range ���� instead of the
usual ������ that more closely follow input �uctua�
tions� resulting in a slightly broader distribution of
joint angles�

The dynamic behavior of the population can also be
in�uenced without altering the steadystate solution�
For the simulations shown in Figure ��� parameters
� and  were chosen so as to yield a similar steady
state value of X�

k under the standard input condi
tions� However� a proportional increase in both � and
 causes the activation X�

k
to �uctuate more rapidly

in response to the noisy input J�
k
� giving rise to more

diverse ERG ON output bursts� As a result� the in
tegrated PPC movement commands exhibit a broader
distribution� If� on the other hand� both � and  were
decreased� the input layer activation X�

k would be less
sensitive to rapid phasic input �uctuations� and more
uniform ERG ON bursts would obtain�

As shown in Figure ��� changes in the maximum
amount of stored transmitter � in equation ���� a�ect
the amplitude of each ON burst� without signi�cantly
altering the size or duration of each burst� or the dura
tion of the quiescent �OFF� phase following each burst�
The e�ects of modulation of the remaining parameters
in equations ������	� are discussed in the Appendix�

Pauser Gate

The Pauser Gate gp in ���� determines when the
phasic input J�k ��� gp� in ���� will a�ect the input
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Figure ��� �a� and �b� should be compared to Fig�
ure ��� The maximum transmitter level was reduced
to � 
 ���� resulting in ERG ON bursts of smaller
amplitude� and a correspondingly narrower distribu�
tion of joint angles�

layer based on how much activity occurs in the OFF
channels� As in ����� the output of all OFF channels
is summed at the PG� If the threshold �P is exceeded�
the PG becomes active and shuts o� the phasic input�
causing a transient OFF rebound� A smaller �P tends
to cause longer quiescent phases between ON bursts�
without altering the general shape or duration of the
ON bursts themselves� as shown in Figure ��� This is
due to the fact that the declining phase of the ON burst
is quite rapid� and thus insensitive to small changes
in �P � whereas the last portion of the OFF phase is
driven by the slow accumulation of transmitter in the
ON channel� The PG threshold can thus be used to
control the temporal characteristics of the ERG out
put without noticeably a�ecting the output ON vector
distribution� Setting �P to zero or to a large enough
value will eliminate the cyclic behavior of the ERG�
thus providing an additional nonspeci�c parameter for
overall control of ERG activation� This dependency
is illustrated in Figure ��c� which shows the number
of ERG ON bursts generated during ������ simulation
steps for various values of �P �

�� AVITE Simulations� Linear PPC�
TPC Map

Sections ���� present results of AVITE simulations�
The standard AVITE parameters in all simulations�

Figure ��� �a� and �b� should be compared to Fig�
ure ��� The PG threshold 
P is lowered by one order
of magnitude �
P 
 ����	�� The resulting ERG ON
bursts are of the same amplitude and overall shape�
but the length of the quiet phases has increased� giv�
ing rise to only six ERG ON bursts instead of the
standard eight in ���� steps� �c� Plot of 
P vs� num�
ber of ERG ON bursts �babbled movements� during
������ steps� showing dependence of average ERG
periodicity on PG threshold 
P �

unless noted� are� � � ���� � � ������� � � �����
� � ���� � � ����� The AVITE training cycle consists of
generation of random PPC movement commands� fol
lowed by quiet phases during which the PPC is copied
to the TPC through the NP gate� During the quiet
phase� learning in TPC�DV synapses is driven by an
internal measure of mismatch� namely by nonzero ac
tivation in the DV population�

In this section we assume that a onetoone linear
mapping takes place when copying the PPC to the
TPC at the end of an ERG ON burst� so that the
TPC�DV synapses are simply learning a linear gain
factor� Then equations ��� and ��� become�

F�
i � �gnP

� ����

and
F�
i � �gnP

�� ����

��



Figure �	� Absolute value of the error in the agonist
and antagonist DV� and total error �jV �j � jV �j��
measured shortly after onset of quiet phases� Note
approximately exponential decay� Learning rate was
slowed down to � 
 ����� to illustrate smooth� slow
error decay over ������ steps �approximately �� bab�
bled movements��

where � represents a linear gain factor� The simu
lations in this section assume � � �� although other
choices� including a di�erent choice for each channel�
have been shown to work� This is a natural starting
point for tests of the learning laws� More complicated
mappings are considered in later sections�

We begin all training simulations with the LTM
weights Z�

i in ��� set to zero� although the results hold
for other initial choices of LTM values� At �rst� the DV
during each quiet phase is large and negative due to
the negligible positive input from the TPC� As motor
babbling proceeds� the DV gradually approaches zero�
Figure �
 shows the error in the agonist �V �� and an
tagonist �V �� channels of a single AVITE module� as
well as the total error �jV �j� jV �j��

A more graphical demonstration of correct adaptive
control by the AVITE model is given in Figure ���
Each small grid illustrates the graphical display of the
program� with the arm in a position determined by
two joint angles as indicated in Section ��� The tar
get joint con�guration appears as a triangle on each
grid� For each grid� the arm is started from its rest
ing con�guration �P�

� � P�
� � P�

� � P�
� � �����

the target command is selected �T�
� � ��	� T�� �

���� T�
� � ���� T�� � ����� and the GO signal is turned

on �G � ����� Figures ��ae show that terminal reach
ing behavior improves at increasing levels of AVITE
training� The learning rate and gating are the same as
in Figure ��� Figure ��f shows reaching behavior at

Figure �
� Each grid shows a visualization of two
PPC agonist�antagonist pairs based on the transfor�
mation outlined in Section ��� In each part� the arm
is started at rest �P� 
 P� 
 ����� two pairs of
agonist�antagonist TPC values are selected �mapped
as a black triangle on each grid�� the GO signal
is turned on �G 
 ����� and the PPC populations
are allowed to integrate until they have equilibrated�
Each part shows reaching performance after a cer�
tain number of babbling phases� �a� after about ��
babbled movements� �b� after about 	� movements�
�c� after about �� movements� �d� after about ���
movements� �e� after about �� movements� Part ���
shows reaching after about �� movements �same as
part �e��� but for a di�erent target� The learning
rate was set arti�cially slow �� 
 ������ to illustrate
gradual improvement in performance� and for direct
comparison with Figures �� and ��

the same training level as in Figure ��e� but for a dif
ferent target command �T�

� � ����� T�� � ����� T�
� �

����� T�� � ��	��� Note that the same terminal reach
ing behavior can be achieved with a much higher learn
ing rate� and requires only few hundred steps �a couple
of babbled movements�� Because of the onetoone� lin
ear mapping� the LTM traces Zi are simply learning a
linear gain factor� so that performance will be accu
rate throughout the workspace even if only one or two
positions have been sampled�

�� Motor�to�Spatial PPC�TPC Maps

In the previous section� the TPC is isomorphic to the
PPC� so that activation of a single TPC unit codes a
desired amount of contraction of a prescribed muscle
group� During visually guided reaching� a target loca
tion represented in spatial coordinates is transformed
from spatial to motor coordinates� This suggests that
either �a� the TPC itself must represent targets in

�




Figure ��� Diagram of the AVITE model with
spatially�organized TPC� Di�erent �P�� P�� pairs
are mapped to activation of a distinct TPC node
through a hard�wired DODOG transform �see text��
Active TPC node samples current �V �� V �� pair�
while learning to drive it to zero�

spatial coordinates� or �b� there exists a spatially coded
processing stage whose output is transformed into mo
tor coordinate targets prior to reaching the TPC pro
cessing stage� We now analyze the �rst possibility� and
defer the second to Section ���

If the TPC codes targets in spatial coordinates� then
the location and not the amplitude of TPC activa
tions determines target position� In the simplest re
alization of this case� the PPC�TPC pathway per
forms a hardwired transformation from motor to spa
tial coordinates� and the TPC�DV synapses learn the
reverse transformation to insure proper matching at
the DV �Figure ���� A similar adaptive problem was
solved with the HeadMuscle Interface model of Gross
berg and Kuperstein ��
����
�
� Chapter ��� We now
show how a Vector Associative Map� specialized as an
AVITE circuit� can learn the appropriate transforma
tion�

Let the TPC consist of a onedimensional layer of
spatiallyorganized units� i�e�� di�erent targets are en
coded by activation of di�erent units� Furthermore� let
the TPC consist of recurrently connected cells or cell
populations obeying a shunting law� as in ���� of the
form�

dTj
dt

� � ���Tj � ��� Tj� �Ej � Fj �m�Tj ���

Tj

�
	X

k ��i

m�Tk�



A
�
� � ����

where term m�Tj� represents selfexcitation� and termP
k ��jm�Tk� represents recurrent inhibition� Gross

berg ��
�	� has shown that total activation across
the �eld is approximately normalized� and that ap
propriate choices of feedback signal function m�Tj�
lead to contrast enhancement of the total input pat
tern fE�

j � F�
j g� including winnertakeall� or maxi

mal compression� of the input pattern� We will �rst
consider the simplest case of maximal compression be
fore analyzing distributed spatial TPC maps� In this
case� when the ERGOFF opens the Pauser Gate �PG��
the current �P�� P�� pair is transformed into a uni
modal spatial distribution of inputs fFjg from which
the recurrent shunting dynamics choose the maximally
activated node and inhibit all other nodes�

The selected Tj drives both V � and V � toward zero
according to the learning law ���� and the DV activa
tion law �	� is changed to re�ect the multiple signals
from the TPC�

dV �

dt
� �

�
	�V � �

X
j

T�
j Z

�
j � P�



A ��	�

In the winnertakeall case� at most one summand inP
j T

�
j Z

�
j is positive at any time�

After learning� each TPC unit can readout the
�P�� P�� pair that activated it� Grossberg and Ku
perstein ��
��� �
�
� chapter �� have described sev
eral neural circuits that can perform such a motorto
spatial transform� We introduce here a related model
that transforms PPC amplitude changes into a shifting
TPC activation peak of nearly constant amplitude�

�� The Di�erence�of�DOGs Spatial
Map

Consider a rest interval when gn � �� Suppose that
the activation pair �P�� P�� is �ltered through a pair
of Di�erenceOfGaussian �DOG� kernels D� and D��
respectively� Suppose that the kernels D� and D�

are spatially out of phase� For de�niteness� let D� be
centered at the leftmost TPC unit �j � �� and let D�

be centered at a position j � j� to the right of j � ��
Thus

D�
j � � exp


�

j�

���

�
� � exp


�

j�

���

�
����

and

D�
j � � exp


�
�j � j��

�

���

�
�� exp


�
�j � j��

�

���

�
� ����

��



Also suppose that the signal P�D�
j is inhibitory

whereas the signal P�D�
j is excitatory at the spa

tial TPC �eld� that is� a Di�erenceOfDi�erenceOf
Gaussians �DODOG� is registered�

Fj�P
�� P�� � P�D�

j � P�D�
j � ����

Function Fj�P
�� P�� is unimodal in shape� with a

maximal value that shifts in position as P� and P�

vary in a pushpull fashion �P� � P� � ��� Figure ��
illustrates results for two choices of DODOG parame
ters� one leading to a sigmoidal shift �solid lines�� and
the other leading to a more linear shift �dashed lines��
Part �a� plots Fj�P�� P�� as a family of functions of
j as P� increases from � to �� and P� correspond
ingly decreases from � to �� Part �b� plots the lo
cation receiving maximal activation as a function of
P�� while part �c� shows the corresponding value of
Fj at the location of maximal activation� The ap
proximately linear shift indicates that equal changes
in muscle contractions correspond to approximately
equal shifts in the location of peak activation over the
spatial map� The sigmoidal shift in location indicates
that more extreme �P�� P�� pairs� corresponding to
more extreme joint angles� will be sampled less densely
than activation pairs near the resting con�guration
�P� � P� � ����� In both cases� the maximal am
plitude varies only gradually with peak location �less
than one order of magnitude between minimum and
maximum�� and recurrent shunting dynamics at the
spatial TPC can easily sharpen and normalize these
distributions�

�	 AVITE Simulations� Winner�Take�
All Linear Spatial Map

Figure �	 illustrates learning using a winnertakeall�
or maximal compression� spatial PPC�TPC map� For
these simulations� the spatial map and ensuing TPC re
current competition were replaced by a spatially linear
algorithm for computational simplicity� Thus� when
the NP gate opens� the PPC activation �P�� P�� ac
tivates the TPC spatial position j �i�e�� Tj � ���� ac
cording to the equation

j � N � P�� ����

where N represents the total number of TPC nodes
�N � �� in the �gure�� Equation ���� maps ����� to the
leftmost node and ����� to the rightmost TPC node�
with a linear interpolation for intermediate �P�� P��
pairs�

Figure ��� Numerical simulations of the DODOG
transform� �a� Each curve represents the distribution
of activations Tj �in the range ���������� for a particu�
lar PPC activation pair �P�� P��� �b� The ordinate
shows the location j of maximal activation at the spa�
tial TPC as P� is increased from � to �� Location
here is plotted as a smooth curve in the range �������
but can be adjusted to �t any size population� �c�
Net activation level Tj at location of peak as P� is
increased from � to �� plotted in the range ����������
Parameters for the two DOGs are�  
 ��� � 
 ����
� 
 ���� � 
 ���� Quasi�linear shift �dashed lines�
Figure � is obtained with j� 
 �� sigmoidal shift
�solid lines� with j� 
 �� To extend DODOG shift to
�� cells� all parameters would be multiplied by ��

The plot shows the LTM values Z�
j �synapse from

Tj to V �� plotted as a solid line marked by ����� and
Z�
j �synapse from Tj to V �� plotted as a dashed line

marked by �x�� after ������� steps �about ��� move
ments�� Since T�

j � �� the input to �V �� V �� equals

�Z�
j � Z

�
j �� The plot con�rms that the LTM traces have

learned the correct linear transformation� The LTM
traces near the extremities of the TPC �eld are zero
because these positions have not been sampled during
babbling�

��



Figure ��� Synaptic strengths from each of �� TPC
nodes to the agonist �solid line� marked by ��� and
antagonist �dashed line� marked by �x�� DV� Equal
amplitude increments are transformed into equal spa�
tial shifts �linear shift�� The synapses have learned
the correct reverse �linear� transformation� Synapses
near the sides of the plot are zero �or near zero� be�
cause they correspond to unsampled extreme posi�
tions� Learning rate is � 
 ����� and LTM decay is
� 
 �������

�
 AVITE Simulations� Winner�Take�
All Nonlinear Spatial Map

Figure �� illustrates learning when the PPC activation
range is transformed through a nonlinear spatial map�
The TPC node that becomes active when the NP gate
is open is determined by�

S �

��
�N �P���

��������P��� for � � P� � ���

N ������

������������P��� for ��� � P� � �
����

Equation ���� describes a sigmoidal shift function sim
ilar to the one shown in Figure ��b �solid line�� This
nonlinear shift causes central TPCs to be more densely
sampled than extreme TPCs� Figure ��a shows the
transformation generated by equation ����� and Figure
��b shows that the VAM is able to learn the reverse
transformation�

�� AVITE Simulations� Distributed
Spatial Map

We now consider map learning when the shunting com
petition ���� at the TPC allows more than a single
TPC node to be active during learning� Equations ���
and ��� imply that the synapses from all active TPCs
grow at the same rate to cancel the �V �� V ��

Figure ��� �a� Plot of the sigmoidal transforma�
tion given by equation �	�� �b� Synaptic strengths
from each of �� TPC nodes to the agonist �solid
line� marked by ��� and antagonist �dashed line�
marked by �x��� Equal amplitude increments are
transformed into unequal spatial shifts� with a denser
sampling of more central TPC positions �sigmoidal
shift�� The synapses can be seen to have learned the
correct inverse sigmoid transformation� Learning rate
is � 
 ����� and LTM decay is � 
 �������

activation� For the present simulations� we allowed the
amplitude of TPC activation to determine the rate of
learning� namely� we replaced ��� by f�Tj � � Tj � so
that ��� becomes

dZ�
j

dt
� gnTj���Z

�
j � �V ��� ��
�

In this case� the synapses from all active TPC nodes
will be driven to the same pattern �P�� P��� but at dif
ferent rates� If for example the feedback signal function
m�Tj � in equation ���� is sigmoidal� the TPC recurrent
dynamics sharpen the input pattern �Grossberg� �
�	�
�
���� leading to faster learning rates by the most ac
tive node� with progressively slower learning by neigh
boring nodes� Using a distributed map allows nodes
to learn approximately correct synaptic gains even if
their exact spatial locations have never been sampled
through motor babbling� If a node has never been di
rectly sampled� but its neighbors on both sides have�
then that node learns a pattern that is an average of
its neighbor�s patterns� with a bias for the more fre
quently sampled pattern �Grossberg� �
��� �
��� �
���
Kohonen� �
�	� �
���� If sampling only happened for
neighbors to one side� that node will learn the same
pattern as its neighbor�

Figure �� shows the results using the same sigmoidal
mapping as in Figure ��a� When the NP gate opened�
we let several TPC nodes become active� with activity
decaying inversely with distance from the central peak�
The reverse transformation was learned correctly� and
the distributed spatial map led to faster learning� as
illustrated in Figure ��� Figure ��a shows the LTM
traces for the maximal compression sigmoidal map

��



Figure ��� Same as Figure �� but several TPC
nodes are simultaneously activated� We let f�Tj� 

Tj� Activation decays away from peak node Tj� ac�
cording to Tj 
 ������ jj� � jj � ����� where j� is
obtained from equation ���� This implies Tj� 
 ����
and Tj decays geometrically with distance on either
side of Tj� at a rate dependent on � � For this simula�
tion we let � 
 ���� and allowed activation to spread
to �ve nodes on either side of the peak� Asymptotic
learning is almost identical to winner�take�all TPC
simulation of Figure ��

after ������ simulation steps �about �� movements��
Many of the LTM traces are still near zero� Figure ��b
shows results when the spatial map activates two nodes
on each side of the central peak� and Figure ��c when
the activation includes �ve nodes on either side� For
each of these examples� we calculated the standard
deviation between the LTM traces for a single chan
nel and the calculated inverse sigmoid from equation
����� The standard deviation is greatest for the maxi
mal compression simulation �
 � ������� and decreases
as the activation spreads to two �
 � ���
	� and �ve
�
 � ����
� neighboring nodes to either side of the
peak� Similar results hold for other types of distributed
spatial maps�

�� Gating of AVITE Learning During
Endogenous Reactive and Planned
Movements

As noted in Section �� the AVITE must be able to dis
tinguish between learning and performance trials with
out losing its ability to remain online at all times�
The ability to copy a stationary PPC into the TPC
for learning could potentially lead to destabilizing ef
fects� If the NP gate were open at all times� the PPC
wouldbe continuously copied into the TPC� even when
it does not represent the same position in space as the

Figure ��� The e�ect of distributed TPC coding af�
ter ����� simulation steps� �a� winner�take�all TPC
dynamics only allow learning for nodes that have
been actively sampled� leaving a number of synapses
at or near zero� �b� Activation is allowed to spread to
two nodes on either side of the TPC peak �� 
 ���
see Figure ��� causing some learning at nearly all
TPC positions� �c� Activation is allowed to spread to
�ve nodes on either side of the TPC peak �� 
 �����
leading to a smoother approximation of the asymp�
totic reverse transformation �sigmoidal��

TPC� To prevent this� the NP gate and the ERG are
inhibited whenever a voluntary movement occurs�

In order to autonomously carry out these control
functions� there must exist internal states capable of
discriminating between endogenous babbling� learning�
and planned performance phases� The babbling and
learning phases are demarcated by speci�c events in
the ERG� The Pauser Gate� or PG� becomes active
at the onset of the quiet phase� and enables babbling
to resume by becoming inactive� Hence the NP gate
can be coupled to the PG� so that PPCs will only be
copied into the TPC stage during the quiet phase �Fig
ure 
�� In addition� a nonspeci�c arousal signal from
the PG can be used to modulate learning� so that the
TPC�DV synapses are only plastic while the NP gate
is open� as in equations ��� and ��
�� This type of non
speci�c modulatory signal has been demonstrated in a
number of biological preparations �e�g�� Singer� �
����

Gating of the learning signal is not required under
some circumstances� If the learning rate is slower than
the integration rate of PPC and TPC� then the amount
of learning that takes place during the quiet phases will

�	



Figure ��� Absolute value of the error in the ago�
nist and antagonist DV� and total error �jV �j�jV�j��
measured shortly after onset of quiet phases� Error
convergence rate is slightly faster than in the gated
simulations of Figure ��� even though the same learn�
ing rate and LTM decay are used�

be statistically signi�cant� whereas learning of incor
rect �PPC�TPC� pairings will be statistically insignif
icant� This is due primarily to the symmetry of the
learning law ���� Because the LTM traces can increase
and decrease at equal rates in response to negative or
positive DV �uctuations� and because the movements
during babbling tend to be random� errors due to learn
ing during active babbling tend to zero� Figure �� illus
trates the absolute value of the error summed for both
agonist and antagonist DV at the onset of each quiet
phase during training with ungated learning� The er
ror approaches zero more rapidly than in the gated
learning paradigm of Figure �
�

In addition to gating learning o� during endoge
nous movements� it is equally important to gate learn
ing during reactive or planned movements� The ERG
must also be shut o� when an external target command
�E�� E�� is instated at the TPC� as in equation ����
This can be accomplished in two ways�

TPC�Mediated Gate

The populations that input a target command to
the TPC can simultaneously send a nonspeci�c gating
signal to shut o� the NP and ERG gates� For example�
a nonspeci�c signal that drives the tonic input I to
zero in ���� will shut o� the ERG� and thus also shut o�
the NP gate� Alternatively� a nonspeci�c signal could
raise the PG threshold �P in ���� to a high enough level
to inactivate the PG and thereby shut o� the ERG�

GO�Mediated Gate
Here� the GO signal shuts o� the ERG and prevents

the current PPC from degrading the desired TPC� In
this scheme� if the TPC becomes active before the GO
signal turns on� as in motor priming �Section ��� then
the TPC can be altered by PPC feedback through the
NP gate if passive or endogenous movements occur be
fore activation of the GO signal� Notwithstanding this
di�culty� a GOactivated gate is conceptually attrac
tive� because the GO signal seems to be the counter
part� for reactive and planned movements� of the activ
ity source which energizes the ERG during endogenous
movements� Inhibition of the ERG by the GO signal
thus describes a competition between two complemen
tary sources of motor arousal� much as complementary
arousal sources for consummatory behavior and ori
enting behavior compete in models of reinforcement
learning �Grossberg� �
��� Grossberg and Schmajuk�
�
�
��

Simulations have shown that either alternative is
workable� The following section shows how a GO
mediated gate can be used without causing a problem
of spurious AVITE learning during motor priming�

�� A Cascade of Intermodal and In�
tramodal VAMs

We now analyze the second hypothesis suggested in
Section �� that the AVITE TPC encodes muscle coor
dinates� and that there exists a processing level prior
to the TPC that transforms spatiallyencoded targets
into muscle coordinates� In particular� we show that
an intermodal VAM can be used to learn this spatial
tomotor transformation �Figure ����

In order to unambiguously describe such a VAM cas
cade� in which spatialtomotor and motortomotor
transformations occur among TPCs� DVs and PPCs�
we introduce the following notation� Let TPCs denote
a TPC coded in spatial coordinates� and TPCm de
note a TPC coded in motor coordinates� Correspond
ingly� let DVsm denote a DV that transforms TPCs

into TPCm� For notational simplicity� let DVm �rather
than DVmm� denote a DV that transforms TPCm into
PPC within an AVITE module� Thus the subsequent
discussion considers the sequence of VAM transfor
mations TPCs �DVsm �TPCm �DVm �PPC� as
shown in Figure ���

We assume that movements of the arm during bab
bling are tracked by the visual system� For simplicity�
we �rst assume that a single population encodes the
arm�s position in spatial coordinates� as discussed in
Sections �� and �
�

��



Figure ��� The Intermodal VAM is able to learn
the transformation from a spatial TPC �TPCs� to
the motor TPC �TPCm�� Intramodal learning in the
AVITE still relies on internal feedback through the
NP gate� Intermodal VAM activation relies on visual
feedback of arm position� Learning takes place during
babbling as the visual system faithfully tracks the
moving hand�

During the quiet phase of each babbled movement�
the PPC is directly copied into TPCm �motor TPC�� so
that the latter accurately re�ects the current out�ow
movement command signals for tuning the intramodal
LTM traces of the TPCm �DVm pathways� The inter
modal VAM at the top of Figure �� transforms TPCs

�spatial TPC� into TPCm via the intermodal DVsm� If
the visual system accurately tracks the moving hand�
this DVsm approaches zero as the TPCs �DVsm LTM
traces learn the correct spatialtomotor transforma
tion� as in the intramodal examples of Sections ��
and ��� Figure �
 shows learning by the intermodal
LTM traces of the correct linear transformation from
spatial position to motor coordinates� In this example�
activation of the TPCs was distributed to �ve nodes on
either side of the activation peak� using a linear map
ping such as the one described in Section ��� Nonlin
ear transformations� such as those presented in earlier
sections� have also been shown to work� In all cases�
learning was driven by a DV equation such as equa
tion �	�� with activitydependent gating as in equation
��
��

Figure �	� The Intermodal VAM has learned
the correct linear relationship between arm position
�P�� P�� and its visual representation� The spatial
population contains N 
 �� nodes� and all learning
and LTM decay rates are the same as in Figure ��
Intramodal AVITE learns much faster because inter�
modal learning requires sampling of many di�erent
positions�

The intermodal VAM circuit performs the same
function as a standard AVITE module� meaning that
instatement of a spatial target at the TPCs with a
nonzero GO signal leads to integration of the cor
rect musclecoordinate target by the TPCm� which in
turn gives rise to a synchronous arm movement tra
jectory by the intramodal VAM� or AVITE� module�
Instatement of a TPCs command when the GO signal
is zero primes a DVsm without disrupting the previ
ously stored TPCm�

In addition to showing the versatility of the VAM�
this scheme segregates intermodal and intramodal
learning� and illustrates the principle of supercession
of control in sensorymotor systems� The intramodal
AVITE is the �rst to become trained� and it relies en
tirely on a measure of error based on internal feedback�
Learning enables target commands in muscle coordi
nates to generate correct feedforward arm trajectory
commands� At a higher level� the intermodal VAM re
quires feedback through the environment for learning�
but is eventually able to generate feedforward com
mands from TPCs to TPCm which are capable� in
turn� of controlling arm movements through the cal
ibrated AVITE�

This segregation of intermodal and intramodal con
trol simpli�es gating in the AVITE� Because primed
targets at the TPCs are unable to perturb the AVITE

��



TPCm unless the GO signal is active� the NP gate
can be left open whenever the GO signal is zero� The
TPCm can thus continuously be updated to re�ect the
PPC at all times� except when the GO signal is active�
at which time the NP gate closes to avoid con�icts
between intermodal target commands and intramodal
training signals� Similarly� because the fast integration
at the TPCm keeps it always similar to the PPC even
during movement� the intramodal learning rate can be
kept high and requires no gating� In fact� because
TPCm and PPC are almost always equal�instead of
only being equal during the quiet phase�error con
vergence in the DVm is signi�cantly faster than in the
examples of the previous sections even with the same
learning rate� Furthermore� segregation of intermodal
and intramodal target commands allows priming of
target commands in spatial coordinates even during
active AVITE babbling�

The idea that learning of intramodal calibration pa
rameters through motor babbling can take place prior
to any form of visuallyguided movements is supported
by developmental data �e�g�� Bushnell� �
���� In fact�
rhythmic endogenous movements have been monitored
in the human fetus from as early as midgestation
�Robertson� �
���� The ability to learn intramodal
parameters before birth may be important for move
ments that do not require visual feedback for their cal
ibration� and may be needed for infants of species that
must be able to perform motor tasks from birth�

The GOmediated gate also allows the AVITE cir
cuit to continue its calibration of TPCm �DVm LTM
traces during adulthood� long after the ERG is no
longer spontaneously active� Moreover� the learning
rate can be chosen large� because the probability of
spurious �TPCm� PPC� correlations is small�

This scheme still leaves open the question of how
best to gate intermodal learning� Bullock and Gross
berg ��
��a� suggested that intermodal learning be
tween TPCs should be gated shut except when the DV
of the intramodal VITE model is small� In the VAM
cascade of Figure ��� this suggestion gains a fuller real
ization� The DVm of the AVITE model is large if either
the PPC di�ers signi�cantly from the TPCm� or if the
pathways TPCm �DVm are incorrectly calibrated� In
the former case� the arm has not yet approached its
desired target� In the latter case� the target represen
tation is unreliable� If the DVm stage gates learning
at the next� intermodal DVsm stage� and the eyehead
system can accurately track the handarm system� then
signi�cant spurious learning can occur only if actively
primed movements are not released for long time inter
vals relative to the intermodal learning rate� A further
analysis of this possibility is a topic for future research�

�� Learning of an Invariant Multi�
modal VAM

The results of Sections ���� illustrate the ability of
the VAM to provide online learning and performance
for a variety of intra and intermodal control schemes�
We conclude the simulations for this article with an
example of a VAM Cascade learning an invariant� mul
timodal� spatialtomotor associative map� This exam
ple will serve as the basis for future research�

The act of reaching for visuallydetected targets in
space is known to involve a number of di�erent modal
ities� For instance� the position of the target on the
retina and the position of the eyes in the head are
needed to calibrate an eye movement� In addition� the
position of the head in the body� and the position of
the arm with respect to the body are needed for cor
rect execution of an arm movement� In particular� the
position of a target with respect to the body can be
represented by many combinations of eye positions in
the head and target positions on the retina� We now
show that a VAM is able to learn an invariant multi
modal mapping� that is� it can learn to generate a cor
rect movement command for all combinations of reti
nal and eye positions corresponding to a single target
position� We illustrate this competence with perhaps
the simplest class of examples� In one example� the
retinal position of the target and the initial position
of the eye in the head combine to generate a desired
position of the eye in the head� In the other example�
head and eye size are ignored� and a single �cyclopean�
eye rotates around the same axis as a onejoint arm
of �xed length� Due to these simpli�cations� a one
toone correspondence exists between a headcentered
representation of space� built up from combinations of
retinal and eye position signals� and the endpoint of
the arm� These examples merely illustrate VAM capa
bilities� VAMs have also been used to selforganize a
bodycentered representation of 	D space that is capa
ble of controlling a multijoint arm to perform sequen
tial planned actions at any realizable locations and size
scales within the workspace� with or without a tool of
variable length �Bullock� Greve� Grossberg� and Guen
ther� �

���

Both of the examples described herein can be han
dled by the same formal apparatus� For de�niteness�
we interpret the analysis in terms of arm movements�
In Figure 	�� the two top spatial maps represent the
horizontal position of the target on the retina� and the
horizontal position of the eyes within the head� For
simplicity� we consider onedimensional spatial maps�
and we assume a linear relationship between the change
in arm position and the total change in retinal position

��



Figure �
� The Multimodal VAM� Activation of the
upper left map represents eye position� and that of
the upper right map represents target position on the
retina� Activation from these two maps contribute at
the Multimodal VAM� A given shift in eye position
can be canceled by an equal and opposite shift in
retinal target position�

and eye position� That is�

iE � jR � H� �	��

where iE represents activation of the ith node of the
eye position map� jR represents activation of the jth

node in the retinal map� and H is linearly related to
arm position� In particular� if there are N nodes in the
eyeposition map and M nodes in the retinal map� we
let

H � �N �M �P�� �	��

By �	��� each �xed target position H can be repre
sented by many combinations of eye position and reti
nal position� In particular� equations �	�� and �	��
indicate that for a �xed AVITE out�ow command
�P�� P��� a rightward shift in eye position �iE in
creases� is cancelled by a leftward shift in retinal po
sition �jR decreases�� and vice versa� This setup is
similar to that used to learn the Invariant Target Po
sition Map of Grossberg and Kuperstein ��
��� �
�
�
Chapter ���� Our results herein show how to learn
such a map using a VAM cascade�

For the simulations� the arm position H during each
quiet phase of babbling is mapped into one or more
random �iE � jR� pairs that satisfy equations �	�� and

Figure ��� The LTM traces from each of the two
spatial maps �N 
 M 
 ��� to the Multimodal
VAM� During each quite phase� the value of H was
determined from equation ����� and a pair of cells
iE and jR that satis�ed equation ���� were allowed
to sample the intermodal DV activations� Because
of cooperation between the two maps� the correct
linear transformation is learned� but each synaptic
weight becomes half as large as the ones shown in
Figure �� even though all parameters are the same�
Note that because of the fast learning rate� the LTM
traces from each sampled �iE � jR� pair could reach
equilibrium within the �rst few simulation steps of
each quiet phase� Hence� to expedite the simulation�
we allowed a di�erent random �iE � jR� pair to be se�
lected at every time step during each quiet phase�
although the same results can be obtained by allow�
ing a smaller number of samples�in particular� one
sample�in each quiet phase�

�	��� These equations embody the assumption that in
tramodal learning has already taken place in the eye
movement system� so that the eyes can reliably track
the moving arm� Then the active node iE in the eye po
sition map and jR in the retinal position map can sam
ple the current arm position registered at the AVITE
TPCm� However� the VAM activation is a�ected by
activity in both populations� so that the �ltered signal
from each population only needs to be half as strong
as it would be if only one population were present �as
in Section ���� This is re�ected in Figure 	�� Here the
LTM traces have learned the correct linear map� but
their values are half those achieved with a single map
�Figure �
�� After training� instatement of a target
�iE � jR� when the GO signal is positive� moves the arm
to the correct location according to equations �	�� and
�	��� Changes in iE and jR such that iE � jR remains
unchanged do not change the position of the arm�

Similar results hold if the two intermodal popula
tions are not in the same coordinate system� For ex
ample� the horizontal eye position could be coded by a
pair of nodes that represent the muscle lengths for an
agonistantagonist pair of oculomotor muscles�
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�� Adaptive Gain Control and Error�
Based Learning by Multiple Brain
Regions

The AVITE model and its VAM generalization are part
of a long history of biologically motivated models for
errorbased learning by neural networks� In their sim
plest form� these models function as mechanisms for
feedforward adaptive gain control� The cerebellum has
been one brain region that has attracted a long history
of such models�

Grossberg ��
��� and Brindley ��
��� were among
the �rst to suggest that learning occurs at the synapses
between cerebellar parallel �bers and Purkinje cell den
dritic spines� using the climbing �bers as a teaching sig
nal� Grossberg ��
�
� further modelled this concept� as
did Marr ��
�
�� Albus ��
���� and many subsequent
authors� Marr ��
�
� suggested that these synapses
increase in strength due to learning� Albus ��
���
that they decrease in strength� Grossberg ��
�
� sug
gested that they may either increase or decrease in
strength� depending upon the learning context� These
models were followed by many subsequent cerebellar
modelling contributions �e�g�� Ito� �
��� �
��� Fujita�
�
��a� �
��b� Grossberg� �
��b��

The hypothesis in Grossberg ��
�
� that adaptive
gains may either increase or decrease due to learning
was further developed into a model of opponent learn�
ing in Grossberg and Kuperstein ��
��� �
�
�� These
authors developed the view that one role of the cere
bellum is to function as a universal feedforward adap
tive gain controller� whose internal architecture may
be used by many sensorymotor systems� They showed
how error signals� computed by one or another form of
mismatch� may be used to drive the opponent learning
process� It was shown� for example� how error signals
that compute ��� distance of a visual target from the
fovea� ��� out�owin�ow mismatches� and �	� whole
�eld visual drifts� among others� could be used for
control of the saccadic eye movement system� In Bul
lock and Grossberg ��

��� it was shown how out�ow
in�ow mismatches may be detected by muscle spindles
and used by the cerebellum as error signals to trigger
learned compensation for errors in arm reaching move
ments�

The present results describe errorbased learning of
associative maps that may encode more general prop
erties than adaptive gains� The AVITE model has�
however� been interpreted in terms of brain regions
other than the cerebellum� in particular� the parietal
cortex� motor cortex� and the basal ganglia� In its
full generality� the VAM model may be instantiated in
yet other brain regions� The Passive Update of Posi

tion circuit �Figure 	� Bullock and Grossberg� �
��a�
and the circuits for control of multijoint arms in 	
D bodycentered space with or without tools �Bullock�
Greve� Grossberg� and Guenther� �

�� provide two
other VAMbased systems where such brain interpre
tations must be sought�

In addition� guided by recent data suggesting that
the predicted errorbased signals in cerebellum may
drive a learning process� Houk� Singh� Fischer� and
Barto ��
�
� have described a cerebellar �model � � �
closely related to � � � �the� limb control �model of� Bul
lock and Grossberg ��
����� However� these authors
have interpreted the cerebellar data in terms of a model
for control of arm trajectory generation� not merely
adaptive gain control� Although Bullock and Gross
berg ��

�� have noted a number of formal problems
of the Houk et al� model in its present form� the gen
erality of the VAM concept suggests that VAMtype
circuits may be instantiated in a variety of brain re
gions�

�� Physiological Modulators of Central
Pattern Generators and Unsuper�
vised Error�Based Learning

The complete ERGAVITE model joins together two
types of neural circuits in order to accomplish au
tonomous sampling of the workspace and unsupervised
realtime errorbased learning of associative maps�

The ERG �Sections �� and �	� models a type of
tonically active central pattern generator� or CPG�
using a specialized gated dipole circuit �Grossberg�
�
��� �
��� �
���� All gated dipole circuits share a
small set of key design elements� A source of tonic
arousal� phasic inputs� habituating transmitter gates�
opponent interactions� and nonlinear �in particular�
recti�ed� signals� Within this general design frame
work� specialized gated dipole circuits have by now
been used to systematically model a wide variety of
challenging behavioral and neural data� In some of
these applications� gated dipoles do not persistently
oscillate� for example� in applications to vision �Car
penter and Grossberg� �
��� Grossberg� �
��� �
��a�
�
��b� �

�b� Grossberg and Mingolla� �
��� Gross
berg and Rudd� �

��� reinforcement learning �Gross
berg� �
��a� Grossberg and Schmajuk� �
��� �
�
��
cognitive information processing �Banquet and Gross
berg� �
��� Carpenter and Grossberg� �
��� Grossberg�
�
��� Grossberg and Gutowski� �
���� and the analysis
of behavioral disorders �Grossberg� �
��� �
��a�� An
oscillatory gated dipole� distinct from the one modelled
here� has also been used to quantitatively simulate a

��



large body of data about the circadian rhythms gen
erated by the suprachiasmatic nuclei of the hypotha
lamus �Carpenter and Grossberg� �
�	� �
��� �
���
reprinted in Grossberg� �
��a��

These various phasically reactive and persistently
oscillatory gated dipoles di�er from one another only
by modest changes of their anatomical connections or
physiological mechanisms� The family of these mod
els therefore illustrates how parametric changes in a
relatively simple neural circuit module can generate a
variety of qualitatively di�erent dynamical properties�
In all applications� the specialized models are tested
against data by noting how multiple model properties
covary as individual parameters are varied�

Selverston ��
��� has discussed CPGs in the light
of recent data demonstrating that parametric changes
can alter a CPG�s qualitative properties� He wrote
�p����� that� �The idea that neural networks in general
are rigid �hardwired� circuits needs to be replaced in
most cases with the notion of extremely �exible circuits
which can be �sculpted� out of anatomical networks by
the actions of modulators� Circuits can adapt not only
by changing synaptic strength but by altering virtually
every physiological parameter available to it��

Modulators play a key role in regulating the dynam
ics of the ERGAVITE model� including the action of
the habituating transmitter gate in ���� and ����� the
action of the pauser gate in ���� and ����� and the ac
tion of the now print gate in ���� ���� ���� and ��
��
Selverston ��
��� also takes neural modellers to task
because �usually only the � � � I�O properties�the re
lationship between membrane potential and spike �r
ing rate� generally a sigmoidal function � � � is actually
considered� �pp��������� In contrast to such over
simpli�cations� he lists seven basic cellular properties�
and �ve synaptic properties� as a subset of fortysix
neuron properties that have been reported in experi
ments� Selverston�s critique arises from his impression
that �a good deal of the impetus for new computa
tional schemes comes from classical physics where the
properties of the elements are quite simple� �p���
��

Actually� the main neural modelling ideas that
Selverston�s physicists are using represent only a sub
set of a greater neural modelling literature on which
many of today�s models are based� Essentially all the
properties described by Selverston have been used to
explain parametric sets of behavioral and neural data
within this greater neural modelling literature� In par
ticular� many qualitative features of Selverston�s own
data about the lobster stomatogastric ganglion �Miller
and Selverston� �
��a� �
��b� Selverston and Moulins�
�
��� are strikingly similar to those of the oscillator
that has been used to model circadian rhythms of

the suprachiasmatic nuclei �Carpenter and Grossberg�
�
�	� �
��� �
����

An important new role for modulators� or gates� in
regulating adaptive behavior is described in this arti
cle� Such gating actions enable the AVITE model� and
more generally VAM models� to carry out autonomous
learning in realtime using the same signal pathways
for DVbased map learning as for DVbased map per
formance� As noted in Section �� a VAM network
needs to distinguish whether DV�� � because the TPC
and PPC represent di�erent target positions� whence
learning should not occur� or because the TPC�DV
synapses are improperly calibrated� whence learning
should occur� Gates that modulate complementary dy
namical states also arise in other biologically derived
neural models� such as Adaptive Resonance Theory� or
ART �Carpenter and Grossberg� �
��a� �
��b� �
���
�

��� Here gates control switching between the com
plementary states of attention�learning and hypothesis
testing�memory search�

In the remaining sections we show that the ART and
VAMmodels themselves embody complementary prop
erties on a more macroscopic level of brain design� and
that together they may enable a complete autonomous
system to be developed�

�� Towards a System�Level Synthesis
of Complementary ART and VAM
Designs

In learning and performance by a VAM� the matching
event is inhibitory� For example� in an AVITE model�
matching a TPC with a PPC zeroes the DV� This is
the basis for saying that VAM learning is mismatch
learning� Learning occurs only when DV�� � and drives
the DV mismatch to zero� In contrast� a complemen
tary type of learning occurs in ART models� which
are also capable of autonomous realtime learning� In
ART� learning is approximate�match learning� that is�
learning occurs only if the match between the learned
topdown expectation �cf�� the AVITE TPC�DV sig
nals� and the bottomup input pattern �cf�� the AVITE
PPC�DV signals� are su�ciently close that the orient
ing� or novelty� subsystem is inhibited� and matching
by the ��	 Rule causes a fusion event� or attentional
focus� or resonant state to develop which drives the
learning process�

Corresponding to these complementary learning
rules are complementary rules for topdown prim
ing� In a VAM model such as AVITE� the topdown
TPC�DV signals prime a motor expectation� When
this expectation is matched by a PPC� the limb has

�




already moved to its target� No further movement is
needed� and the DV is zeroed� or inhibited� In ART�
by contrast� a topdown sensory expectation prepares
the network for an anticipated bottomup event that
may or may not occur� If the event does occur� then
matching causes resonant excitation� not inhibition�

Thus the two complementary learning rules coexist
with two complementary rules for topdown priming�
or intentionality�

Sensorycognitive circuits seem to be designed ac
cording to ARTstyle processing whereas cognitive
motor circuits seem to be designed according to VAM
style processing� In particular� Carpenter and Gross
berg ��
��� and Grossberg ��
��� have noted that
ARTstyle learning is stable in response to an arbitrary
sequence of sensory input patterns� for purposes of
recognition learning and reinforcement learning� These
authors contrasted the stability of ART learning with
instabilities of mismatch learning� notably learning by
perceptrons and back propagation� when they are used
for recognition learning and reinforcement learning�
Carpenter and Grossberg also analyzed why back prop
agation is not a realtime model� rather it needs to be
run o�line under carefully controlled conditions� in
cluding a slow learning rate�

VAM models� in contrast to back propagation� are
capable of realtime processing� They are designed
to carry out both learning and performance within
the same processing channel by using selfcontrolled
realtime gating of complementary learning and per
formance modes� Such gating also enables VAM
learning to be fast� Within an intramodal VAM�
such as AVITE� fast learning is always stable because
the �back propagation� from PPC to TPC automati
cally assures that correct �TPC�PPC� correlations are
learned� In this sense� although AVITE learning ismis�
match learning� it is based upon selfcontrolledmatches
of PPC and TPC� Within an intermodal VAM that
takes its data partly from prior stages of sensory pro
cessing� fast learning is stable because ART mecha
nisms assure the stability of the sensory representa
tions themselves�

Taken together� the ART and VAM models provide a
framework for designing stable realtime fastlearning
systems that exploit both approximatematch learning
and mismatch learning� ART networks can achieve
stable realtime fastlearning of recognition and rein
forcement codes� VAM networks� fed by outputs from
the stable ART networks� can be used to achieve stable
realtime fast learning of sensorymotor maps� Thus�
all the bene�ts of approximatematch learning and mis
match learning� and the corresponding bene�ts of both
excitatory matching and inhibitory matching� includ

ing their respective modes of topdown priming� or in
tentionality� can be achieved by incorporating them
both into an appropriately cascaded neural architec
ture wherein they may be understood as complemen
tary aspects of a larger system design�
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Appendix
The ERG presented here is a specialized gated dipole

�Grossberg� �
��� �
��� �
���� In its simplest form�
the gated dipole is a neural network that utilizes op
ponent processing between chemicallygated channels
in such a way that sudden o�set of an input signal to
one channel causes a transient antagonistic rebound in
the opponent channel �Figure ���

The simplest feedforward gated dipole obeys an
equation identical to equation ����� but the transmit
ter depletion law is a linear function of the incoming
signal X� that is�

dY �

dt
� ��� � Y ��� h�X��Y �� �A��

where h�X� � �X� The net signal through the gate
�X�Y �� at steady state is a monotone increasing func
tion of the input signal�

X�Y � � X� ��

�� �X�
� �A��

In the present application� we require a circuit whose
output oscillates between two opponent states� This
cyclic behavior should be autonomous� i�e�� it should
not require an external �supervisor� to turn the di�er
ential input on and o�� Hence the simple gated dipole
is modi�ed so that a constant di�erential input to the
ON channel leads to a transient ON response� followed
by an OFF response� This can be achieved if the net
signal �A�� through the gate is an invertedU function
of the input signal� Neurons with invertedU trans
fer functions have been found in a number of physio
logical preparations �e�g�� Wachtel and Kandel� �
����
including some involving rhythm generators �Sigvardt
and Mulloney� �
���� The mechanisms that give rise
to such a nonmonotonic response can be pre or post
synaptic�

In our application� we simulate an invertedU trans
fer function through a presynaptic nonlinearity that

		



a�ords a simple mathematical analysis� Let the trans
mitter gate obey equation �A��� but with

h�X� � �X� � �X� �A	�

Let � � � for simplicity� Then equation �A�� can be
rewritten as�

X�Y � � X� ��

�� ��X���
�A��

which is an invertedU function of X� � The ON chan
nel output of the ERG equals the halfwave recti�ed
di�erence of the signal through the two gates�

O� �
�
X�Y � �X�Y �

�R
� �A��

which is positive at steady state if and only if�

��X�

�� ��X���
�

��X�

�� ��X���
� �A��

Let X� � X� � !X� Then equation �A�� can be
factored and rewritten as�

O� �
��!X�� � �X�X��

��� �X����� � �X���
� �A��

This equation shows that the ON channel will be active
at equilibrium if X�X� � ���� and the OFF chan
nel will be active otherwise� Parameter selection such
that X�X� � ��� leads to a transient positive ON
response while the transmitter Y � is being depleted�
which habituates to a net response in the OFF channel�

The nonlinear law �A�� and �A	� does not a�ect
other important properties of the gated dipole� such as
the generation of a rebound in response to gated input
o�set� These results also hold for other fasterthan
linear transmitter laws� equation �A	� was used only
for its mathematical simplicity�
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