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Abstract

B A neural model is described of how the brain may auton-
omously learn a body-centered representation of a three-di-
mensional (3-D) target position by combining information
about retinal target position, eye position, and head position
in real time. Such a body-centered spatial representation en-
ables accurate movement commands to the limbs to be gen-
erated despite changes in the spatial relationships between the
eyes, head, body, and limbs through time. The model learns a
vector representation—otherwise known as a parcellated dis-
tributed representation—of target vergence with respect to the
two eyes, and of the horizontal and vertical spherical angles of
the target with respect to a cyclopean egocenter. Such a ver-
gence-spherical representation has been reported in the caudal
midbrain and medulla of the frog, as well as in psychophysical
movement studies in humans. A head-centered vergence-spher-
ical representation of foveated target position can be generated
by two stages of opponent processing that combine corollary
discharges of outflow movement signals to the two eyes. Sums

SPATIAL REPRESENTATIONS FOR THE
NEURAL CONTROL OF FLEXIBLE
MOVEMENTS

This article describes neural network models of how the
brain learns spatial representations with which to control
sensory-guided and memory-guided eye and limb move-
ments. These spatial representations are expressed in
both head-centered coordinates and body-centered co-
ordinates because the eyes move within the head,
whereas the head, arms, and legs move with respect to
the body. A model for learning an invariant body-cen-
tered representation of a three-dimensional (3-D) target
position is developed. Models for learning an invariant
head-centered representation of 3-D target position are
described elsewhere (Grossberg, Guenther, Bullock, &
Greve, 1993).

One general design theme that underlies many of our
results explores the need for spatial representations—as
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and differences of opponent signals define angular and ver-
gence coordinates, respectively. The head-centered represen-
tation interacts with a binocular visual representation of
nonfoveated target position to learn a visuomotor representa-
tion of both foveated and nonfoveated target position that is
capable of commanding yoked eye movements. This head-
centered vector representation also interacts with representa-
tions of neck movement commands to learn a body-centered
estimate of target position that is capable of commanding co-
ordinated arm movements. Learning occurs during head move-
ments made while gaze remains fixed on a foveated target. An
initial estimate is stored and a VOR-mediated gating signal
prevents the stored estimate from being reset during 4 gaze-
maintaining head movement. As the head moves, new estimates
are compared with the stored estimate to compute difference
vectors which act as error signals that drive the learning pro-
cess, as well as control the on-line merging of multimodal
information.

distinct from perceptual, cognitive, or motor represen-
tations—in the control of goal-oriented behaviors. In this
regard, it is well-known that visual inputs activate a
“what” processing stream as well as a “where” processing
stream within the brain (Goodale & Milner, 1992; Mish-
kin, Ungerleider, & Macko, 1983; Ungerleider & Mishkin,
1982). The “what” processing stream leads to visual rec-
ognition of external objects. It includes brain regions
such as visual cortex and inferotemporal cortex. The
“where” processing stream leads to spatial localization
of objects, spatial attention shifts, and action. It includes
brain regions such as visual cortex, superior colliculus,
parietal cortex, and premotor cortex. “Where” processing
is illustrated by the following competence.

Imagine that your right hand is moved by an external
force to a new position in the dark, so that neither visual
cues nor self-controlled outflow movement commands
are available to encode the right hand’s new position.
Despite the absence of vision and self-controlled volition,
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it is easy to move your left hand to touch your right hand
in its new location. The motor coordinates that represent
the position of your right hand are different from the
motor coordinates thar your left arm realizes in order t0
touch it. Some representation needs to exist that me-
diates between the different motor coordinates of the
two arms. This mediating scheme is the spatial represen-
tation. This example illustrates that different motor plans,
whether for the control of one arm or two, are often
used to reach a prescribed position in space. The prob-
lem of how animals can reach a fixed target in multiple
ways is often called the “problem of motor equivalence”
(e.g., Bernstein, 1967; Hebb, 1949). A properly defined
spatial representation is a prerequisite to discovering a
biologically relevant solution of the motor equivalence
problem. The’ model introduced herein forms part of a
proposed solution to the motor equivalence problem
(Bullock, Grossberg, & Guenther, 1993).

The spatial representations described below are built
up from the same types of computations that are used
10 control motor commands. This observation leads 10 a
second general design theme of our work: we inquire
into the natural form of neural computations that are
appropriate for representation and control of a bilaterally
symmetric body. These include opponent interactions
between pairs of antagonistic neurons that measure one
or another type of spatial or motor offset with respect to
an axis of symmetry. An opponent model was developed
in Greve, Grossberg, Guenther, and Bullock (1993) that
computes a head-centered spatial representation of 3-D
targets that are foveated by both eyes. This representation
arises naturally from the geometry of the oculomotor
system and relates closely to the geometry of the vesti-
bular system (e.g., Blanks, Curthoys, Bennett, & Mark-
ham, 1985; Ezure & Graf, 1984; Graf, 1988). Grossberg,
Guenther, Bullock, and Greve (1993) further showed
how to combine binocular visual information with the
foveated target representation to generate an invariant
head-centered spatial representation for both foveated
and nonfoveated 3-D target positions. A head-centered
spatial representation of nonfoveated targets is needed
10 look at new targets with the eyes and to reach toward
these targets with the limbs.

The current article describes how this head-centered
spatial representation can be combined with motor in-
formation concerning neck muscle lengths to form a
body-centered spatial representation that is invariant un-
der head or eye movements. A body-centered represen-
tation of space is useful for performing goal-oriented
reaches with the arms, since the controlled variables for
reaches (e.g., muscle lengths or joint angles) determine
the position of the hand with respect to the body. Learn-
ing of this body-centered representation takes advantage
of the geometry of head movements, which are limited
by the biomechanics of the neck to preferred axes that
are closely related to the head-centered representation
described above (Vidal, de Waele, Graf, & Berthoz, 1988;
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Vidal, Graf, & Berthoz, 1986). The neural organization of
head movement control along such preferred axes has
been described by Masino and Knudsen (1990).

Learning of both the head-centered and body-centered
representations takes place in variants of a vector asso-
ciative map, or VAM, circuit (Gaudiano & Grossberg,
1991). Learning in a VAM occurs via the use of difference
vectors, which compute the error signals that drive the
learning process. The same difference vectors also con-
trol the on-line merging of multimodal information into
the final map representation. These dual roles of differ-
ence vectors characterize VAM dynamics. VAM properties
have elsewhere proven useful for learning spatial-to-mo-
tor mappings (Gaudiano & Grossberg, 1991; Grossberg
& Kuperstein, 1989, Chapter 4) and for explaining data
about human trajectory formation (Bullock & Grossberg,
1988; Bullock, Grossberg, & Guenther, 1993; Gaudiano
& Grossberg, 1991). The representation of differences or
directions by sensorimotor areas of the nervous system
is well documented (e.g., Alexander & Crutcher, 1990a,b;
Caminiti, Johnson, & Urbano, 1990, Crutcher & Alexan-,
der, 1990; Georgopoulos et al., 1982, 1984; Kalaska &
Crammond, 1992; Mays & Sparks, 1980).

The next section surveys key geometric and psycho-
physical considerations pertinent to the model. The third
section summarizes how two successive stages of oppo-
nent interactions can generate the type of head-centered
representation that is suggested by psychophysical and
neurobiological data. The final sections describe neural
networks for transforming this head-centered represen-
tation into an invariant body-centered representation’ of
target position. These networks rely only on information
arising within the action-perception cycle to resolve am-
biguities—caused by mobile eyes and head—regarding
the locations of objects relative to the body.

GEOMETRY OF OBJECT LOCALIZATION

During eye—hand coordination, both eyes typically fixate
a target before or while a hand reaches toward it. Vision,
in particular the binocular disparity of an object’s image
on the retinas of both eyes, provides important cues to
the relative 3-D position of an object with respect to the
head. Such visual information is, however, often insuffi-
cient for accurate reaching toward a binocularly fixed
target. Binocular disparity, by itself, does not provide
unambiguous information about target direction or ab-
solute distance. For example, if each eye fixates a differ-
ent location in the interior of a homogeneous object,
then the two monocular images of the object’s interior
can be binocularly fused, but the binocular disparities of
the object’s boundaries will change with every change in
the fixation points of the two eyes. These binocular dis-
parity changes occur without a change in the object’s
distance from the observer. Thus binocular disparity is
not a reliable cue to absolute distance in any situation
of this type.
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Another limitation of binocular disparity cues can arise
even if both eyes fixate the same [ocation in space. Then
the binocular disparity of this location on the retinas
equals zero, no matter how near or far the object may
be from the observer. Thus, small fixated objects cannot
accurately be reached using information only about bin-
ocular disparity. Since our primary goal in the present
article is to analyze how reaching toward fixated objects
is controlled, we need to consider sources of information
other than retinal, or visual, information.

The bilaterally symmetric organization of the body
provides another, nonvisual source of information for
computing absolute distance of a fixated target from an
observer’s head and body. When the eyes binocularly
fixate a target, the angle between the lines of gaze at the
point of intersection can be used to compute the absolute
distance and direction of the fixation point with respect
to the head. Such extraretinal information may also be
used to complement visual processing to derive better
estimates of the absolute distance and direction of visu-
ally detected but nonfixated objects.

Figure 1 shows how the intersection point of the lines
of sight of the two eyes converges toward the nose as
the two eyes rotate to foveate increasingly close objects
that are straight ahead. The rotation centers of the two
eyes together with the fixated point on the object form
a triangle. The angles of the two eyes in their orbits thus
jointly specify the angle vy between the lines of sight that
intersect as the fixation point. This angle is called the
binocular parallax (Foley, 1980). The triangular struc-
ture also allows an internal measure of net ocular ver-
gence—ithe extent to which the eyes are rotated toward
the nose—to serve as one basis for estimating the dis-
tance from egocenter to a binocularly foveated object.
The angle vy will henceforth be used as a measure of
vergence. The head-centered representation of space de-
rived here approximates vergence as a distance measure,
with coordinates specifying horizontal and vertical target
direction completing the 3-D representation.
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Figure 1. The geometry of 3-D) target localization by the two eyes:
Symbols L and R are the centers of the left and right eyes. (a) How a
closer target generates a larger vergence angle. (b) How the ver-
gence angle is calculated from the angles of the eyes in their orbits.

Figure 2a shows the relationship between vergence
and the radial distance of a target from the head. This
figure illustrates that the dynamic range of a represen-
tation based on vergence is heavily weighted toward
targets near the observer. Targets within reach of the
observer can be represented with the high accuracy nec-
essary for successful reaching, but the accuracy of rep-
resentation for targets farther out of reach decreases due
1o smaller changes in vergence per unit change of dis-
tance. This property allows a physical system with limited
dynamic range to efficiently represent space, since po-
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Figure 2. (a) Vergence as a function of target radius for a target on
the line passing through the midpoint between the eyes (the cranial
egocenter) and projecting straight ahead. (b) Distance-response
curves for a class of visual fixation neurons in posterior parietal cor-
tex (area 7a, posterior part). Reprinted with permission from Sakata
et al. (1980). (¢) Visual acuity as a function of angular distance from
the fovea (adapted from Kandel, 1985). The similar shapes of the
curves in (a) and (c) suggest that the nervous system may use a
similar strategy 1o efficiently represent retinotopic and body-centered
space with limited neural circuitry.
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sitions of important targets (i.e., those near the observer)
are represented with high accuracy, and positions of
targets that are far away can still be roughly approxi-
mated. Figure 2b reprints data from Sakata, Shibuiani,
and Kawano (1980) on a class of visual fixation neurons
that they discovered in area 7a of the posterior parietal
cortex. These neurons were described as depth-selective
and this plot shows that their discharge rate fell off with
target distance in a manner strikingly similar to the ver-
gence-distance function of Figure 2a.

A similar property can be seen in the retinotopic co-
ding of visual space by visual cortex (e.g., Rojer &
Schwartz, 1990). Figure 2c (adapted from Kandel, 1985)
shows the function relating visual acuity to distance from
the fovea. This curve shows a use of dynamic range very
similar to that of Figure 2a, suggesting that the nervous
system may use different neural circuitry to achieve sim-
ilar efficiency of coding for body-centered and retino-
topic representations of visual space.

The two other coordinates in the head-centered rep-
resentation of 3-D space are also derived from estimates
of the position of both eyes in their orbits. Figure 3
describes the geometry of 3-D target localization in terms
of a spherical coordinate frame. The origin of this co-
ordinate system, called the cranial egocenter, lies at the
midpoint between the two eyes. Thus the representation
is “cyclopean.” The head-centered horizontal angle or
azimuth, Oy, and the vertical angle or elevation, &,;, mea-
sure deviations from straight-ahead gaze. The radial dis-
tance Ry in the spherical coordinate frame of Figure 3 is
replaced by vergence <y in the representation of 3-D
space described below. Figure 4 relates the geometry of
the cyclopean horizontal angle 84 to the angles 6, and
Or subtended by the left eye and right eye, respectively.

Experimental support for such a 3-D coordinate system

| —

Figure 3. Spherical coordinate frame for specifying a target position
with respect to the head. This coordinate frame is related to the
head-centered representation of space described in the section on

Opponent Sums.
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Figure 4. Geometry of cyclopean position: The angles 8, and 6 that
the left eye and right eye assume to foveate a target correspond 0 a
cyclopean, head-centered angle 0.4

can be found in data on the role of extraretinal infor-
mation in visual object localization (e.g., Blank, 1978;
Foley, 1980; Sakata et al., 1980) and on parcellated pop-
ulation codes of 3-1) target location (Grobstein, 1991;
Hollerbach, Moore, & Atkeson, 1986; Soechting & Flan-
ders, 1989). These and related data will be discussed
below. First, a head-centered 3-ID coordinate system con-
sistent with the evidence is described in the next section,
in order to suggest how such a representation can nat-
urally arise from simple neural computations.

OPPONENT SUMS AND DIFFERENCES
REPRESENT FOVEATED 3-D TARGET
POSITIONS

A head-centered representation of a foveated target can
be formed by binocularly combining outflow movement
signals from the tonically active cells that control the
position of each eye. This can be done in two stages of
opponent processing, as shown in Figure S. First, op-
ponent interactions combine the outputs of the cells that
control the agonist and antagonist muscles of each eye.
These opponent interactions give rise to opponent pairs
of cells the sum of whose activity is approximately con-
stant, or normalized. Next, the normalized outputs from
both eyes are combined in two different ways to generate
a head-centered spatial representation of the binocular
fixation point. In particular, opponent cells from each
eye generate inputs of opposite sign (excitatory and in-
hibitory) to their target cells at the next processing stage.
As illustrated in Figure S, one combination gives rise to
a cell population whose activity b, approximates the an-
gular spherical coordinate 04. The other combination
gives rise to a cell population whose activity hs approx-
imates the binocular vergence <y, which in turn is a
measure of the radial distance Ry;. The two combinations
generate head-centered coordinates by computing a sum
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Figure 5. Opponent processing architecture for the calculation of
the internal representation of gaze angle (b2) and vergence (bs).
Signals Ly, 12, Ry, and R; are corollary discharges from the outflow
movement cclls that control eye position. The muscles are arranged
in-agonist-antagonist pairs. Stimulation by neuron Lz causes a con-
traction of the left medial muscle, which rotates the left eyeball to
the right. The activity of each pair of cells is normalized at cells /y, /,
ry, and r,.

and a difference of the normalized opponent inputs from
both eyes. Such a general strategy for combining signals
is well-known in other neural systems, such as color
vision. For example, a sum L + M of signals from two
color vision channels estimates Juminance, whereas a
difference L — M estimates color (DeValois & DeValois,
1975, Mollon & Sharpe, 1983). Thus the computations
that may be used to control reaching in 3-D space scem
to derive from a broadly used principle of neural com-
putation.

The neural mechanism for normalizing the total activ-
ity of opponent cells uses a shunting on-center off-sur-
round network (Grossberg, 1982), that is, an opponent
interaction wherein the target cells obcy a membrane
equation (Hodgkin, 1964; Katz, 1966). In particular, sup-
pose that the agonist and antagonist cells that control the

horizontal position of the left eye have activities 1, and
Ly, respectively. Let the normalized opponent cells in the
shunting network have activities /; and /,. Suppose that

d

Ell =—Ah+ (1 - hL)y — L, ¢
and

d

Elz =—AL+ (1~ 12)1-2 — bl (2)

By Eq. (1), activity L, excites /; whereas activity . inhibits
f;. The opposite is true in Eq. (2). Parameter A is the
decay rate. At equilibrium, (d/dt)l, = (didt)l; = 0, so (1)
and (2) imply that

N & S
/‘_A+L1+1.2 3)
and
_ L
12_A+L1+L2 )
Adding (3) and (4) shows that
L+ 1z
4 lL=—1"=2
hth A+ +1, ®)
Thus ifA < Ly + L,
L+L=1 (6)

Since L, and /. are opponent signals, one goes up when
the other goes down, so their sum L; + L, can easily be
kept larger than parameter A. Small deviations from com-
plete normalization do not affect the results.

The approximation (6) will be used below for all
normalized pairs of opponent cells. In particular, we
assume that the activities of opponent cell populations
that control agonist-antagonist muscle pairs are normal-
ized so that the total activity of each cellular pair is fixed
at unity. This ensures that increasing the activity of the
agonist control cell results in a corresponding decrease
in the activity of its antagonist control cell. Figure 5 shows
the two cellular pairs needed to control 8, and 8g. These
pairs are labeled by the variables /;, /> and r,, r,, which
measure corresponding cellular activities. Thus, the fol-
lowing equations define the internal representations of
the horizomal angle of each eye:

[1+12=1 and rnntr=1 (7)

6= -90°+180° X L, and 6x= —90° + 180° X r, (8)

where /; indicates the activity of left eye cell popula-
tion 7 and r; indicates the activity of right eye cell popu-
lation 7.

Internal representations for the vertical angles of left

and right eyes may be defined similarly. Thus
13 + 14 =1 and V3 + Vg = 1 (9)
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L= —90° + 180° X /s and dr= —90° + 180° X r4 (10)

To provide a head-centered representation of foveated
3-D target positions, the outflow signals 4, /5, 5, and /4
are binocularly combined. Let the cell populations b;, i =
1,2,...,6, form the basis for this head-centered spatial
representation. These populations are also arranged in
antagonistic pairs. First we define cell activities by, b2, b,
and b4 that linearly approximate the following estimates
of 8y and d)H:

b+ b, =1 and b5 + b4 =1 (11)

GH = —900 + 1800 X /Jz and ¢H = _900 + 1800 X /.74(12)

These head-centered binocular representations of 6y and
¢n emerge if a shunting on-center off-surround network
simply averages the corresponding monocular compo-
nents derived from corollary discharges of left and right
eve muscle commands. Figure 5 shows the connectivity
of this network for the cell activity b., which represents
Ou. In particular,

d

Eb2= =Bby + (1 = h2) (L2 + 12) — bo(lh + 1) (13)
where B is the decay rate. Solving this equation at equi-
librium (db./dt = 0) yields

_ 12+r2
B+11+r1+12+7'2

b (14)
Since Iy + [, = 1 and r; + . = 1, choosing a small
decay parameter B leads to the approximations:

5L+ +
E'T" and  p,=ltr

b (15)
so that (11) holds.

To evaluate the adequacy of this internal representa-
tion of 6y, a distortion measure was calculated in Greve
et al. (1993) by dividing the change in the internally
represented angle of two successively foveated points by
the actual change in angle of the successively foveated
points for small changes throughout the workspace. The
distortion measure was calculated for a workspace de-
fined by —45° < 8y < 45°, —45° < ¢y < 45°, and 3
in. <R < 30in. (7.6 cm < Ry < 76 cm). This workspace
was chosen to approximate the cone within which both
binocular foveation and rcaching to a target are possible
in humans. The distortion in this range is less than 15%,
with essentially 0% distortion for Ry > 5 in. Thus, the
opponent network defined above provides an accurate
mechanism for computing an internal representation of
On. Likewise, the distortion measure for ¢n showed that
the normalized binocular opponent network provides an
accurate internal representation of ¢y in all but the most
extreme portions of the workspace.

To see how opponent computation leads to a repre-
sentation of distance from the head, note that vergence,
which is systematically related to distance from the head,
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is proportional to the difference between 7, (the outflow
command to the medial rectus of the right eye) and /,
(the outflow command to the lateral rectus of the left
eye). As in Figure 5, define antagonistic cell populations
with activities bs and bs for internal representation of
vergence. The cell population with activity bs receives
excitatory inputs /; and r, from cells controlling the
medial recti of both eyes and inhibitory inputs /; and 7,
from cells controlling the lateral recti of both eyes. Then
activity bs obeys the equation

d
Ebs =—Chs + (1 = bs)(r, + L) ~ (16)
(bs + D) (h +12)
At equilibrium,
+ — —
bs_ 18] 12 Dl] Drz (17)

_C+r1+r2+11+12

Because ry + r> = land §;, + L, = 1, Eq. (17) can be
rewritten as

1-D 14D
bs—C+2+m(n—1]) (18)
If D =1and C = 0, then
bhs =r — I (19)

In this case, subjective vergence equaled physical ver-
gence. If, however, C > 0 and D < 1, corresponding to
the biologically realistic assumptions of nonzero decay
and a hyperpolarization magnitude less than the depo-
larization magnitude, then the slope (1 + D)(C + 2)7!
of bs versus ry — 1 is less than one, and the intercept
(1 = D)(C + 2)7! of the function is positive. Such values
match the Foley (1980) estimate from psychophysical

. data of the internal representation of binocular parallax.

Greve et al. (1993) discuss psychophysical data that are
consistent with this representation.

VECTOR REPRESENTATIONS OF 3-D
TARGET POSITION: DISTRIBUTED
PARCELLATED REPRESENTATIONS IN
THE FROG

Given the simplicity of this solution to the problem of
using binocular signals to construct a 3-D vector repre-
sentation of target locations, it might be supposed that
such a solution would be discovered at an early point in
evolution. In fact, such a 3-D vector representation of
target location seems to exist in frogs. Grobstein (1991)
reported data indicating egocentric coding of distance,
horizontal angle, and vertical angle in distinct cell pop-
ulations, each of whose activation levels codes the target's
coordinate value on one of these three dimensions.
Grobstein (1991) summarized a number of relevant
experiments, particularly those of Grobstein and Stara-
dub (1989) and of Masino and Grobstein (1989), that
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reported data concerning a head-centered or body-cen-
tered coordinate representation in the frog’s caudal mid-
brain and medulla. This representation differs from more
peripheral retinal and tectal representations. The cell
properties of the representation are strikingly similar to
those of the spherical vergence representation that was
described above. In particular, Grobstein (1991, p. 130)
noted that the angular head-centered variables are radial,
not Cartesian, as is also true of the angular variables 8y
and ¢y Moreover, “increasing levels of activity in the
distance pathways code for stimulus locations nearer to
the frog” (p. 132), as is also true of a vergence-like
measure of distance. Grobstein (1991) also asserted that
this representation is a parcellated, distributed represen-
tation. By this he means a vector representation, such as
(84, dn, v), whose individual components code a varia-
ble by its activity level, as opposed to a map represen-
tation that codes each variable by a distinct position in a
spatially organized array. Thus Grobstein (1991, p. 132)
noted that “the value of components of the parcellated
representation are coded in terms of the level of activity
across a population of neurons, rather than in terms of
which particular elements of a population of neurons
are active.” After reviewing a number of other organisms
where this type of representation seems to exist, he
concluded that “in general terms, it may make sense to
think of sensorimotor transforms in terms of a transfor-
mation from place coding to population activity coding,
rather than as a transformation from place coding to
frequency coding” (p. 139).

Such a parcellated, or vector, representation should
occur at processing stages subsequent to spatial mapping
stages at which visual, motor, and visuomotor informa-
tion are first represented and combined. For example,
in Grossberg et al. (1993), it was shown how visual and
motor information could be combined to autonomously
learn a head-centered vector representation of both fov-
cated and nonfoveated target position. Such a represen-
tation can be used to command yoked eye movements
to foveate the target. This article shows how a body-
centered vector representation can be learned, again
based upon information that is organized in spatial maps.

LEARNING A BODY-CENTERED
REPRESENTATION OF 3-D SPACE

The remainder of this article addresses the formation of
a body-centered representation of 3-D target positions
using the head-centered representation described in the
previous sections coupled with information concerning
the position of the head with respect to the torso. The
network uses signals generated automatically during
changes of visual fixation. In a typical episode:

1. The representation of a novel, initially nonfoveal
visual target wins an internal competition that determines

the next target to be foveated, and a saccade is made to
this target.

2. Information about position computed in head co-
ordinates is combined with information about neck mus-
cle states to yield an estimate of target location relative
to the body that is stored during a subsequent head
movement.

3. Next, neck muscles rotate the head (either ran-
domly or to point the nose towards the target) while the
eyes make a counter rotation, mediated by the vestibulo-
ocular reflex (VOR), to ensure continued foveation dur-
ing the head movement.

4. During the head movement and ocular counter-
rotation, both internal representations of the target’s lo-
cation in head coordinates and internal representations
of neck muscle lengths change while the stored repre-
sentation of target position in body coordinates remains
constant.

If head-centered and neck muscle length information
interact correctly to estimate target location in body co-
ordinates, then this estimate will remain invariant during
head rotation and ocular counter-rotation. If the mapping
is not well-tuned, then a mismatch will develop during
the head rotation between the network’s current estimate
and the estimate stored prior to the head rotation. This
mismatch serves as an error signal to a learning process
that improves the network’s mapping of neck muscle
length and head coordinate signals into target position
relative to the body. The stage that registers the mismatch
is called a difference vector (DV) stage, because errors
are registered on a component-by-component basis. This
DV error detection and learning process forms part of
the direct flow of information that combines retinal, eve
position, and neck position signals into a body-centered
representation. DV-based learning is a variant of the vec-
tor associative map (VAM) of Gaudiano and Grossberg
(1991). VAM learning is capable of operating in real time,
requires no external teacher, and combines mechanisms
known to be separately available in vivo.

A mechanism is needed to prevent the target estimate
that is stored before the head movement from being
corrupted by the changing estimates that are caused by
the head movement. In the model, a gate is open be-
tween head movements and allows an estimate of target
position to be stored. A head movement that maintains
gaze on the foveated target closes the gate to prevent the
stored estimate from changing while the head moves.
We assume that VOR-related circuity opens and closes
this gate as it causes counter-rotation by the eyes to
maintain gaze on the target (Bizzi, Kalil, & Tagliasco,
1971; Dichgans, Bizzi, Morasso, & Tagliasco, 1973; Mo-
rasso, Bizzi, & Dichgans, 1973; Tomlinson & Bahra,
1986). The gate allows a DV to estimate the error caused
by the head movement, and to use this error, in the VAM
learning circuit described below, to autonomously learn
a body-centered vector representation of target position.
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 The body-centered representation that is learned ap-
proximates a spherical coordinate frame that is similar
to the spherical coordinate frame approximated by the
head-centered representation. The relationship -between
the head-centered and body-centered spherical coordi-
nate frames is shown in Figure 6. The origin of the body-
centered system is the same as the origin of the head-
centered system when the head is pointed straight ahead.
The body-centered frame also uses the same three spher-
ical coordinates as the head-centered system, denoted by
(0, &g, Rp). When the head is pointed straight ahead,
the head-centered representation (6n, $u, Riy) is identical
to the body-centered representation (8s, ¢s, Rs). When
the head is moved from straight ahead, however, the
head-centered frame moves with the head while the
body-centered frame remains stationary. Denote by 6n
(N for neck angle) the horizontal angle and by ¢n the
vertical angle of the head with respect to the torso (see
Fig. 6).

The following simplifying approximations are made in
the simulations:

1. The radius Ry of the body-centered frame is as-
sumed to be approximately equal to the radius Ry of the
head-centered frame;

2. The horizontal and vertical angles (85, ¢p) of the
body-centered frame are approximated by the equations
6 = 04 + 8y and ¢B ='¢n + ¢N~

Due to the relatively small displacement of the head-
centered origin with respect to the body-centered origin

;9 TARGET 6,  TARGET O
(a) (b)

©
%(
%
% 9,
@) (e) ®

L

Figure 6. Top view (a, b, ¢) and side view (d, e, f) showing rela-
tionships between the head-centered coordinates (subscript H),
body-centered coordinates (subscript B), and head angles with re-
spect to the body (subscript N).
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when the head is displaced from straight ahead, these
approximations result in small error for all points except
those very close to the eyes. The section on Model Sim-
ulations describes a neural network that learns correc-
tions to the head-centered representation of distance
from the head to allow veridical representation of this
distance in a body-centered frame. This network uses a
slower nonlinear learning process that supplements the
fast linear learning process described in this section to
correct for residual error resulting from any nonlinear-
ities in the functions 8z = f(0y, Ox) and bs = f(dbu, du).

These coordinate frames are consistent with the or-
ganization of head—-neck systems in humans and other
vertebrates. Neck vertebrae biomechanics favor rotations
of the head around preferred axes (Vidal, de Waele, Graf,
& Berthoz, 1988). Movement along one axis corresponds
to change in Oy (side-to-side or horizontal movement),
whereas movement along the other axis corresponds to
changes in dn (vertical movement). Further evidence for
preferred axes comes from Masino and Knudsen (1990),
who showed that separate neural circuits are used to
control horizontal and vertical head movements in the
barn owl.

The body-centered representation is invariant in the
sense that it compensates for movements of the eyes in
the head and of the head in the body relative to a target
whose location is fixed with respect to the body. Learning
to discount head movements in the body-centered rep-
resentation compensates for changes in head position by
negating the resulting changes in the head-centered rep-
resentation of a fixed target position. In other words,
(eB, d)B) = (eH, d)H) + (ecorreaion, d)correclion), W'here
(Bcorrection, Gcorrection) iS 4 learned correction based on
neck muscle information. After the transformation net-
work is adaptively calibrated, this correciion is nearly
linearly related, in fact nearly equal, to the head move-
ment (O, dn) defined according to the preferred axes.
The linear relation between head movements and the
required correction to the head-centered representation
allows very fast and accurate learning of the correction.
The relationship between head movements and other
possible head- and body-centered coordinate frames,
such as Cartesian, is much more complex, making the
transformation from a head-centered representation to a
body-centered representation more difficult to learn.

Although head position (8x, &n) can be derived from
neck muscle length information, without learning an an-
imal cannot use this neck muscle information to accu-
rately compensate for head movements when forming a
body-centered representation. This is because the rela-
tionship between any one neck muscle length and head
position is dependent upon details of the neck anatomy,
which vary from individual to individual and can change
with time (e.g., due to growth). Therefore, the organism
must adaptively find parameters that allow neck muscle
length information to compensate for changes in head
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position. The network rapidly learns these parameters
without the aid of an external teacher by capitalizing on
the fact that the positions of fixed objects with respect
to the body do not change while the head moves and
target foveation is maintained. This allows the network
to autonomously generate internal teaching signals that
are derived from the flow of sensory and motor signals.
The details of this process are described in the following
paragraphs.

NETWORK DESCRIPTION

Figure 7 illustrates the model network that was simu-
lated. Populations corresponding to representations of
Ry and Ry are omitted in this section due to the relative
nondependence upon neck movements of these varia-
bles. In the remaining network, there are five main
neural population types:

1. neck muscle length populations with activities r;
1=7=91=7i=2),

2. head—coordinate populations with activities b; (1 <
i = 4),

3. head-neck difference vector (DV) populations with
activities x; (1 = 7 = 4),

4. unnormalized body—coordinate populations with
activities b (1 = i = 4), and

5. normalized body—coordinate populations with ac-
tivities 6§ (1 < ¢ = 4).

Each head—coordinate population projects with a fixed
weight connection to the corresponding DV population.

(200 2y | HEAD. CENTERED SPATIAL
REPRESENTATION

Y-CENTERED
TION

NORMALIZED BOD
SPATIAL REPRESENTA’

Figure 7. Network for learning transformation from a head-centered
spherical coordinate representation 10 a body-centered spherical co-
ordinate representation of target position.

Each neck muscle length population projects to every
DV population through an adaptive weight connection.
As noted above, the model assumes that a VOR-mediated
gate modulates the interactions between the DV popu-
lations and the unnormalized body-centered represen-
tation populations. It is assumed that foveation is
maintained during head movements by the VOR system.
Breaking of gaze from one target to another is thus
referred to as breaking of VOR fixation, and gating that
occurs due to these breaks of gaze is referred to as VOR-
mediated gating. However, the only functional require-
ment for the current network is that it can detect when
a new target has been foveated, without regard to the
system or type of eye movements used to maintain (or
recover) foveation of the target during (or after) head
movements.

The first population type represents the lengths of the
neck muscles. These can arise from corollary discharge
copies of outflow commands to the neck muscles and/
or from proprioceptive signals originating at the muscle
spindles. These populations code neck muscle lengths
in agonist—antagonist coordinates. The gain of each ag-
onist-antagonist pair was varied from pair 10 pair in
order to demonstrate that such variability does not im-
pair the learning process. The simulations used nine
agonist-antagonist muscle pairs. Each neck muscle was
assumed to produce rotation around both of the pre-
ferred axes discussed above. That is, the lengths of the
jth neck muscle antagonist pair (n;, 7,2) are related to
the angles Oy and ¢n according to the following equa-
tions:

dn + 90°
180°

o Ot 90°
7 180°

Hy + v (20)

(/7] =Hj + V, - n,-, (21)
where H, and V; are gain factors that code the relative
influence of the jih muscle pair on the horizontal and
vertical head angles, respectively. For example, a large
value of H; and a small value of V; means that the jth pair
of muscles has a strong influence on horizontal angle of
the head but a small influence on vertical angle of the
head. The value for each gain in the simulations was
chosen randomly between 0.25 and 1.0. All neck muscle
length populations project to all head—~neck DV popula-
tions. For example, a neck muscle length population that
primarily codes horizontal angle (i.e., one with very small
V) initially projects to all head-neck DV populations,
including those that code vertical angle. For proper op-
eration, learning within the network must ensure a small
influence on the head-neck DV vertical angle popula-
tions and a larger influence on the head-neck DV hori-
zontal angle populations. This result is confirmed by the
simulations.

The second population type constitutes the head-cen-
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tered representation of target position, as described in
the section on Opponent Sums. Specifically,

900 — By _ 90° + 0y

b1 = 180° and bz = 180° (22)
_90° = &y . _90° + ¢y
b= g0 and  he="gm (2%

The activities of the third population type, the head-
neck DV populations, represent the difference between
the stored target position at the unnormalized body co-
ordinate activities and the current body-centered posi-
tion defined by the combination of head-centered and
neck muscle information. Pathways from the neck muscle
activities to the DV activities can be chosen either exci-
tatory or inhibitory. As described below, different learn-
ing laws are used for the neck-to-DV weights in the two
cases. An excitatory tonic input 7 to the DV populations
is also used in the circuit with inhibitory neck-to-DV
pathways to keep the b and b{% signals nonnegative
throughout the learning process. The input 7 is a mildly
constrained parameter; simulation results discussed be-
low verify proper operation for a wide range of 7 values.

As with all population activities in the model, the DV
activities x; equilibrate rapidly with respect to input
changes, and thus can be described using the following
equilibrium equations:

DV Activity (Excitatory Pathways)

xi=h; + E Mg — b?” (24)
alljik
DV Activity (Inhibitory Pathways)
xx=h+T— E PZjki — bgl) (25)

all j

Variables zw: in (24) and (25) represent the adaptive
weights, or long-term memory (LTM) traces, that are
changed through learning, Variables &{" represent the
stored body-centered target position. When a new esti-
mate of body-centered target position is instated at the
head-neck system, the head-centered signals and neck
muscle signals are combined at the DV and integrated at
the body-centered target position populations for storage
during the subsequent head movement. Because the
body-centered target populdtions project inhibitory path-
ways back to the DV populations, the b populations
reach equilibrium when the body-centered target rep-
resentation equais the target representation formed from
the head-centered signals added to the neck muscle sig-
nals. Integration occurs quickly, so that equilibrium is
rapidly reached while the excitatory pathways from the
DV are gated open. When the VOR is active during a
head movement, these pathways are gated shut (Fig. 7).
Thus the body-centered estimate that is stored before
the movement is not disrupted by the movement. Storage
of new body-centered estimates occurs whenever VOR-
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mediated target tracking is broken and a new target is
instated.

The &{" populations need to track all possible dis-
placements of a target within the body-centered frame.
Since the input signals to this stage are rectified, and
thus of fixed sign, the network includes inhibitory pro-
jections from each DV population to the antagonist b"
population. For example, in addition to the excitatory
links 2, — 65" and x; — b, the network includes
inhibitory links x, — b5 and x, — b{*’. This push—pull
arrangement enables both decrements and increments
to be integrated. These opponent inhibitory links are
omitted from Figure 7 for simplicity. Such a gated op-
ponent integrator also appears in the VITE and VAM arm
movement trajectory generator models (Bullock &
Grossberg, 1988; Gaudiano & Grossberg, 1991). The fol-
lowing equation describes ¢ stage updating:

Gated Updating of Body-Centered Activity
4,0 _
dtbi Gx; (26)

where gate G is open (G = 1) except when the VOR is
active, during which times the gate is closed (G = 0).
The cells controlling the gating signal are thus pauser
cells that are inactive during a head movement. Both
excitatory and inhibitory x; values are integrated. Given
that output signals from DV cells to body-centered cells
are rectified, (26) can be realized by integrating signals
directly from ON cells when their activities x; are non-
negative, and from OFF cells whose activities —x; gen-
erate nonnegative signals when the ON cell activities x;
are nonpositive.

The equilibrium activities approached by the &{"’ while
G is positive are computed differently if excitatory or
inhibitory neck signals are used:

Body-Centered Activity (Excitatory Neck-to-DV
Pathways)

bf” =h+ 2 P2 fiey (27)

all j &
Body-Centered Activity (Inhibitory Neck-to-DV
Pathways)

bV =h+T— 3 nu
all j

(28)

Equation (26) implies that after G goes off, these values
are stored throughout the subsequent head movement,
during which the VOR assures foveal fixation of the sta-
tionary target whose coordinates the b{" specify.

The fifth set of populations normalize the unnormal-
ized variable 4" via shunting agonist-antagonist inter-
actions:
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Normalized Body-Centered Activity

2 b @_ b
2 = 50+ 50 and by = B + gD (29)
o b5 @_ _ b
b5 - bgl) + b41) and b4 - bgl) + bgl) (30)

These populations compute an agonist-antagonist body-
centered target position with fixed gain. If the network
is properly tuned, a linear relationship holds between
activities ¢ and actual target angles measured in the
hody-centered frame. To assess network representations
of 85 and ¢, we used a linear regression analysis to find
the slopes (4, C) and intercepts (B, D) of the best fitting
lines relating 65 1o 85 and 65" to . This yielded equa-
tions

0 = AP + B (31)

ds =P + D (32)

The adaptive weights zu: between the neck muscle

activities 7, and the DV activities x;, when excitatory
pathways are used, obeys the following learning law:

Learning Law (Excitatory Pathways)

dilzjki = —ex{(—Ezjer + M)
where € is a small learning rate parameter and E is a
decay rate parameter. Weight values were updated after
each trial. Learning adjusts weights in (24) so that the
otal excitatory input just balances the inhibitory input
from the 4{" stage. When the sum of these inputs is zero,
x; = 0, so learning self-terminates, by (33).

If inhibitory neck to DV pathways are used, the learn-
ing law is:

Learning Law (Inhibitory Pathways)

%z,k.» = ex{ —Ezu, + )
Learning laws of this general form have been observed
in vivo by many neurophysiologists (e.g., Levy & Des-
mond, 1985; Rauschecker & Singer, 1979, Singer, 1983).
This learning law is often called the instar learning law,
or the gated steepest descent learning law. It was intro-
duced into the neural network literature in Grossberg
(1969) and is the learning law used in the self-organizing
feature map model (Grossberg, 1976a, 1982; Kohonen,
1984) and adaptive resonance theory (Carpenter &
Grossberg, 1987, 1991; Grossherg, 1976b, 1982).

(33)

(34)

MODEL SIMULATIONS OF BODY-
CENTERED LEARNING

The following steps were used to train the network:

1. Initialize all weights to 0.0.
2. Choose a random initial head position (8n, dn).

3. Choose a random target position (81, dr).

4. Foveate new target by adjusting b, so that 8y = 01 —
On and &du = dr — . Store this target in the body
coordinate populations 4" and b{*. Storage of the target
is controlled by opening the gate G in (26). The gate
closes when the VOR is active.

5. Choose a new head position while remaining fov-
eated on current target. Change #;; and adjust b; accord-
ingly to keep Oy + On = 07 and du + dn = oy This
step corresponds to moving the head while using the
VOR to keep the target foveated. In the first five sets of
simulations that were carried out, the new head position
was chosen from a random distribution (either triangular
or uniform) centered at Oy = 0. In the sixth and seventh
sets of simulations, the new position was chosen such
that 84 = 0, corresponding to moving the head to center
the target in head coordinates. All these variations led to
correct learning of the body-centered spatial represen-
tation.

6. Adjust the adaptive weights from the neck muscle
length populations to the head-neck DV populations
according to the instar learning Eq. (33) or (34). In the
first six simulations, it was assumed that all learning
occurs during periods when the head position remains
fixed at the end of the movement. This approximation
may be justified by the assumption that learning is slow
enough that significant learning does not occur during
hecad movements, but instead requires the longer periods
of target foveation that occur with the head still. In the
seventh simulation, it was assumed that all learning oc-
curs during the head movement. The point of this sim-
ulation was to show that the self-organization process is
robust in that it does not require learning to occur only
with the head in a fixed position.

7. Repeat steps (3)«7) until the learning process con-
verges.

For all seven sets of simulations, a fourth order Runge-
Kutta method with Az = 0.01 was used with total time of
integration per trial of 1.0. The learning rate parameter
€ was 1.0, and the L'TM decay parameter £ in (33) or (34)
was 0.1. Error was measured by averaging the absolute
values of the difference between estimated body-cen-
tered target angles and the actual target angles through-
out the workspace (i.e.,, —45° < 0 < 45°, —45° < ¢ <
45° for target angles, neck angles, and head-centered
representation angles).

The first two simulations used excitatory pathways
from the neck muscle populations to the head-neck DV
populations and corresponding LTM learning law (33).
In the first simulation, a uniform distribution between
—45° and +45° was used for choosing head positions
during training. The results of this simulation are shown
in Figures 8, 9, and 10. Figure 8 shows average error
plotted as a function of trial number. This figure indicates
rapid convergence, with less than 0.1° average error after
200 targets were attempted. Figure 9 shows the internal
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Figure 8. Average error for
(a) 8 and (b) ¢ using excita-
tory pathways from the neck
muscles and a uniform distri-
bution for choosing new head
position.

Figure 9. Results after 20
learning trials. The left side
shows the internally repre-
sented body-centered target
position as the head is moved
through over 30° of both hori-
zontal and vertical angle. The
right side shows the actual tar-
get position. The change in
represented target position as
the head is moved indicates
that the network has not yet
learned to invariantly represent
body-centered target position.

Figure 10. Results after 200
learning trials. The left side
shows the internally repre-
sented bodv-centered target
position as the head is moved
through over 30° of both hori-
zontal and vertical angle. The
right side shows the actual tar-
get position. The internal rep-
resentation is now invariant
under head movements.

352

300 T @) 300 1 ®)
Avg. Avg.
error error
(deg.) (deg.)
0.0 : 0.0 !
0 500 0 0
Trial Trial %
Represented Target Actual Target
45 ~ 45 -
a
0+ + 0+ +
-‘S J-l 1 1 -‘s J-I; } 1
-45 0 45 -45 0 TS
Represented Target Actual Target
s T s T
L] L]
0o+ + o T +
-‘s ‘-l } ] -‘s --I; 4 1
~45 Q 435 -45 ] 45

Journal of Cognitive Neuroscience

Volume 6, Number 4




representation (left side) and actual target position (right
side) during a head movement after 20 learning trials
(i.e., after foveating 20 targets). As the head moves, the
internal representation of the target position also moves,
even though the actual target position with respect to
the body remains fixed. After 200 trials, however, the
network has learned to invariantly represent the body-
centered target position despite large head movements,
as shown in Figure 10.

In the second simulation, a triangular distribution cen-
tered at 0° was used for choosing the head position
during training. Again, convergence to less than 0.1° av-
erage error was rapid, with fewer than 400 targets re-
quired. The results for this simulation and the remainder
of the simulations were very similar to Figures 8, 9, and
10, and are thus not included here. These simulations
indicate that random neck movement after target fovea-
tion is sufficient to rapidly build a body-centered invar-
iant representation of external space.

The third, fourth, and fifth sets of simulations replicate
these findings using inhibitory pathways from the neck
muscle populations to the head-neck DV populations and
the LTM learning law (34). The third and fourth sets of
simulations used a tonic input parameter 7 = 6.5 with
uniform and triangular head position distributions, re-
spectively. Again, convergence was rapid, requiring less
than 200 targets in the uniform case and 400 targets in
the triangular case. With this tonic input value, the dy-
namic range (i.e., the change in activity level of the
internal representation corresponding to a given change
in the external angle) of the b populations was ap-
proximately the same as in simulations 1 and 2. To illus-
trate robustness. with respect to 7, simulation 5 was run
using 7 = 10. Convergence occurred in fewer than 200
trials for this simulation also. However, the dynamic
range of the b{* populations dropped, indicating that an
ideal level of tonic input exists. Levels increasingly dif-
ferent from this ideal level do not strongly affect the
convergence of the network but do increase susceptibil-
ity to noise and inaccuracies of the processing units.

In the sixth simulation, the probabilistic choice for
head position in the first two simulations was replaced
with neck movements that centered the new targets with
respect to the head. This corresponds to the natural
tendency to turn the head toward a newly attended target.
Training in this manner converges in fewer than 250
trials.

The seventh simulation set was designed to show that
it is not necessary to have learning occurring only at the
end of a head movement. The network was modified to
allow learning only during head movements, with no
learning occurring after movements have stopped. The
gate G must still be used in this case to ensure that
the stored body-centered representation 4" does not
change during movement. The learning process can then
be visualized as allowing each neck position encountered
during the movement to learn a small amount about the

body-centered position stored prior to movement onset.
Convergence occurred in fewer than 500 trials for this
simulation. This result, coupled with the previous sim-
ulations with learning at the end of movements, indicates
that convergence will occur without the need to shut off
learning at any time, provided that learning is slow rel-
ative to the process of b{" stage updating.

LEARNING AN INVARIANT BODY-
CENTERED DISTANCE

Though head movements can create large discrepancies
between the head-centered and body-centered angles of
a target, head movements do not cause discrepancies of
more than a few inches between head-centered and
body-centered distances of a target. Thus in the prior
section we did not propose a direct role for corollary
discharges of neck motor commands in body-centered
distance computations. Nevertheless head movements
arc pertinent to target distance estimates because, as
shown in Figure 11, egocentric distance estimates based
on vergence are not invariant under changes of 6y. Thus
an object moving on an arc at a fixed distance relative
10 a fixed head during binocular tracking would appear
to have a variable distance if vergence were the sole
basis of distance estimation. Although this in itself might
be problematic, at least with the head fixed, the mapping
between points in space and egocentric representations
is one-to-one. However, a stationary object fixated during
a head movement would be represented as having
changed its egocentric distance during the movement.
In this case, the mapping from points in space to ego-
centric representations is one-to-many. This would create
a difficulty for any animal that attempts to learn a map-
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Figure 11. Actual positions of foveated objects that give rise to con-
stant values of vergence (curved lines) for different head angles.
Without the networks described in this section, an internal estimate
of distance from the head for a fixed target based solely on vergence
would suffer from the variability due to head position seen here.
Human perception of distance is better than these isovergence-based
estimates, particularly for nearer distances (Blank, 1978).
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ping between egocentric representations of points in
space and arm configurations adequate to reach to such
points. Because the latter learned mapping would be
many-to-one, it would at the least take longer to learn.
This extra learning time would be doubled, for exam-
ple, if points needed to be reached by two different
forelimbs.

Psychophysical data reviewed by Blank (1978, p. 89)
indicate that whereas points on an isovergence curve
(Fig. 11) appear to be equidistant from the observer for
sufficiently distant objects, there is a departure from this
tendency for nearer objects, such that perceived distance
becomes more accurate than if vergence remained the
sole determinant of egocentric distance estimates. More-
over, Blank reported that the observed correction factor
applied for near-space objects could be computed from
knowledge of 8y. In addition to such information about
apparent distance, which indicates partial compensation,
it would be useful to have behavioral information. In
principle, verbal reports of apparent distance may un-
derestimate actual compensation for variations in 9y;.
These might be revealed in nonverbal tasks such as blind
reaching to targets seen eccentrically before closing the
eyes. In fact, blind reaching studies have documented
relatively accurate reaches, though accuracy for the radial
distance component of blind reaches has been reported
to be poorer than horizontal and vertical angles (Soecht-
ing & Flanders, 1989).

Though Blank (1978) reported that compensation of
the vergence signal can be computed from knowledge
of 8y, this fact does not indicate how the biological
system actually compensates. /7 vivo, there may be many
sources of compensation, e.g., accommodation cues.
However, in this section we restrict our treatment to
compensation that uses the cyclopean retinotopic angu-
lar variable 8y and the extraretinal eye position vergence
signal . The observation that compensation is poorer at
greater distances suggests that the compensation could
depend on both 6;; and 7y, because the sensitivity of the
latter variable becomes lower at larger distances (Fig.
2a). Thus we propose that an egocentric distance esti-
mate invariant under changes of the retinotopic angle 6y
is computed by combining extraretinal information
about vergence with information about 8y. Moreover,
head movements made during VOR fixation are used to
generate the many combinations of 6: and vy associated

with a target of fixed distance from the body. In short, -

we show that a network structurally analogous to the
Figure 7 nerwork, and similarly coordinated with the
VOR fixation system, can readily learn to transform an
8i-dependent estimate of target distance (namely ver-
gence) into an invariant body-centered estimate of true
target distance Rs. Because the network learns a nonlin-
ear mapping, it also illustrates how nature may use sup-
plementary networks to correct residual errors, resulting
from nonlinearities, in the representations of horizontal
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and vertical angles learned by the faster linear mapping
networks of the previous section.

Unlike Figure 7 where agonist—antagonist representa-
tions of neck muscle commands sample errors at the DV
stage, in Figure 12 a topographic map representing 0y
and vy samples errors at the DV stage. The following
paragraphs describe model components mathematically.

The antagonistic pair of activities bs and bs form a
head-centered representation of target distance from the
head. These activities are defined according to the equa-
tions:

bhs =ry — I

(19)

h6 = Ymax — bS (35)

where ymax is the largest value of bs encountered in the
workspace, and r; and /; are the normalized eye muscle
length activities described in the section on Opponent
Sums. Activity bs is thus directly related to vergence.

In the (By, 7y) topographic map, each cell codes a small
range of (84, 7y) values, as represented by the antagonistic
pairs (b1, b2) and (bs, bg). That is, a cell in the map fires
with activity ¢; at its maximal level (ie., ; = 1) if the
values of both 0;; and -y are within small ranges specific
to that cell. The cell fires with less activity for nearby
values of 6, and v, and the cell does not fire at all if 6y
and v are well outside this small range. Examples of
networks capable of forming topographic maps from
agonist-antagonist pairs such as (b1, bz) and (bs, bs) are
described in Kohonen (1984, Chapter 5) and Grossberg
and Kuperstein (1986, 1989, Chapter 6). The (84, 'y) map
used in the simulations contained 750 cells, correspond-
ing to 50 regions of 6,; and 15 regions of . Five map
cells were active for each input (one maximally and the
others to lesser degrees), and the total activity of the
active map cells was 2.0.

The remainder of the activity equations were essen-
tially the same as those given previously. For complete-
ness, these equations are included below, with index 7 =
5 or 6.

DV Activity
N
xi=h+ 2 bz — b (36)
/=1

where N is the number of cells in the (v, 84) map.

Body-Centered Activity

N
bV = b+ 3tz 37
j=1
Gated Updating of Bod)"-Centered Activity
RN RS —
dtb' Gx, (38)
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Figure 12. Network for learn-
ing to use spatial map of 64
and v values to improve a
body-centered estimate of a
foveated target’s radial distance
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The simulations used the
Learning Law
75 = e[~ Fg + xl] (40)
where f€ {S,6}andj = 1,2, .., N

The training procedure used in this section is essen-
tially as described in the section on Vector Representa-
tions:

1. Initialize all weights to 0.0.

2. Choose a random initial head position (Ox, ¢n).

3. Choose a random target position (61, ¢1, Rr).

4. Foveate new target by adjusting b; so that Oy = 6 —
On and du = ¢ — dn. Upon fixation of the new target,
transiently activate signal G and update the body coor-
dinate populations 6" and &, i = 1,2, ..., 6.

5. Choose a new head position while remaining fov-

eated on current target by changing 7, and adjust b,
accordingly to keep 6u + On = 07 and du + dn = b1
This step corresponds to moving the head while using
the VOR to keep the target foveated. The new head
position is chosen from a uniform random distribution
centered at Oy = 0.

6. Adjust weights from the (84, y) map populations to
the head-neck DV populations according to Eq. (42).
Learning occurs when the head position remains fixed
at the end of the movement. (Learning could also occur
during the movement, as in the section on Model Sim-
ulations.)

7. Repeat steps (3)—(7) until the learning process con-
verges.

Again, a fourth-order Runge-Kutta method of integra-
tion was used, with Az = 0.01 and a total integration time
of 0.1 per trial. Learning parameters F = 0.01 and €; =
2.0 were chosen.

Figure 13 shows the average error in inches of the
internal representation of Ry throughout the workspace
(—40° < 0,; < 40° 10 in. < R < 30 in.). Error was found
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Figure 13. Average error of

internal estimaie of Rg during
learning by the network of Fig-
ure 12.
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by sweeping over a range of 8y values for a fixed b®

value, searching for the distance Rg that corresponded
to this 6® value at each 6y value, computing the differ-
ence berween this distance and the distance found for
0. = 0, and averaging the absolute values of such differ-
ences over many values of 6% and 6y,. The average error
for the body-centered representation of R falls below 0.2
in. after 10,000 trials. Figure 14 shows the egocentric
distances Rp that result in constant b5 and b’ values
for targets at head-centered horizontal angle 6, between
—40° and +40° after 20,000 learning trials. Values are
plotted for b corresponding to Ry = 10, 15, 20, 25, and
30 in. Unlike Figure 11, which shows different values of
Ry corresponding to the same vergence and therefore to
the same head-centered representation of distance, Fig-
ure 14 shows that the same target distance corresponds
to a fixed body-centered representation of distance in-
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Figure 14. Acwal positions of foveated objects giving rise to internal
R estimates of 10, 15, 25, and 30 in. after learning by the network of
Figure 12. The network has lcarned 10 represent distance from the
head invariantly across horizontal changes in head angle.
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dependent of head angle. By simply looking at many
fixed targets while moving the head, the network has
learned to invariantly represent distance from the body
despite changes in head position.

CONCLUDING REMARKS

An invariant body-centered representation of target po-
sitions in 3-D space can be used to plan limb and coor-
dinated eye—head movements to a spatial target without
regard for the position of the eyes in the head or the
head on the torso while visually perceiving the target. A
head-centered cyclopean representation of foveated tar-
get position that incorporates vergence and spherical
coordinate angles arises naturally from sums and differ-
ences of oculomotor signals and also correlates well with
the geometry of the vestibular system. Greve, Grossherg,
Guenther, and Bullock (1993) discussed psychophysical
data supporting the existence of such a vergence-spher-
ical coordinate frame, particularly data concerning the
role of an extraretinal vergence signal (Blank, 1978;
Foley, 1980). Consistent neurophysiological data include
the head-centered vector representation in the caudal
midbrain and medulla of the frog (Grobstein, 1991). By
using a distance signal based on vergence, the represen-
tation devotes the majority of its dynamic range to nearby
targets. This efficiently uses limited neural circuitry by
accurately representing target positions within an ob-
server’s reach while more roughly approximating posi-
tions that are farther away. Grossberg, Guenther, Bullock,
and Greve (1992) showed how this spatial representation
could include nonfloveated targets by learning to com-
bine retinal and extraretinal motor information invar-
iantly under movements of the eyes. The present article
has addressed the problem of transforming this head-
centered representation into a body-centered represen-
tation that is invariant under movements of the head.
The anatomy of the spinal column, which favors head
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movements around preferred axes, also suggests the use-
fulness of an egocentric coordinate frame based on cy-
clopean spherical coordinate angles. Head movements
along these preferred axes are almost linearly related to
the internal compensations needed to transform head-
centered representations into invariant body-centered
representations. Fast learning of such a transformation
was demonstrated herein using a self-organizing neural
network. By simply foveating and changing head position
for approximately 200 targets, the network learns an
invariant representation of horizontal and vertical angles
of the target with respect to a body-centered spherical
coordinate frame. Although target distance from the head
is approximately equal in the head-centered and body-
centered spherical coordinate frames, a residual nonlin-
ear error exists in this transformation for a representa-
tion of target distance based on vergence. An augmented
network was described, operating according to the same
prociples, that is capable of autonomously learning a
nonlinear correction for this error. This network oper-
ates on a slower time frame, requiring approximately
10,000 targets to build the invariant representation. A
similar nonlinear learning mechanism could be used to
compensate for any residual errors due to nonlinearities
not handled by the faster linear mapping network in
transforming from head-centered to body-centered hor-
izontal and vertical angles.

Because the spherical coordinate frames described
here correspond closely to spatial representation by the
vestibular system, they should be well-suited to relating
head-centered or body-centered coordinates to a world-
based coordinate frame. Recent models of hippocampal
function for navigation (McNaughton, Chen, & Marcus,
1991, O’Keefe, 1990) utilize a polar egocentric reference
frame whose coordinates correspond to the coordinates
05 and Ry in the representation described herein. Fur-
thermore, data from Taube, Muller, and Ranck (1990a,b)
identify head-direction cells in rat postsubiculum that
code world-centered head direction, which provides the
type of information needed to transform egocentric angle
0,; into a world-based framework.
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