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Abstract

This study develops a neuromorphic model of human lightness perception that is inspired by how the mammalian visual system is designed

for this function. It is known that biological visual representations can adapt to a billion-fold change in luminance. How such a system

determines absolute lightness under varying illumination conditions to generate a consistent interpretation of surface lightness remains an

unsolved problem. Such a process, called ‘anchoring’ of lightness, has properties including articulation, insulation, configuration, and area

effects. The model quantitatively simulates such psychophysical lightness data, as well as other data such as discounting the illuminant, and

lightness constancy and contrast effects. The model retina embodies gain control at retinal photoreceptors, and spatial contrast adaptation at

the negative feedback circuit between mechanisms that model the inner segment of photoreceptors and interacting horizontal cells. The

model can thereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A new anchoring mechanism,

called the Blurred-Highest-Luminance-As-White rule, helps simulate how surface lightness becomes sensitive to the spatial scale of objects

in a scene. The model is also able to process natural color images under variable lighting conditions, and is compared with the popular

RETINEX model.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Efficient visual object recognition is facilitated by

preprocessing that enables the correct perception of object

surface properties, including reflectance. Reflectance is the

percent of light reflected by a surface in each wavelength.

For example, white has about 90% reflectance with no

change of composition in wave lengths. A retina or other

photodetector receives a luminance signal, which is a

product of reflectance and illumination (Hurlbert, 1989).

From this luminance signal, a vision and recognition system

needs to discount the illuminant to discover the reflectance

itself (Helmholtz, 1866). The perceived reflectance as the

output of this recovery process is called lightness.

Retinal preprocessing of visual signals contributes greatly

to lightness. These processes include light adaptation

and contrast adaptation. Some retinal mechanisms contribut-

ing to these adaptations include: (1) Ca2þ ion-mediated

negative feedback occurring at the photoreceptors (Koutalos

& Yau, 1996) and bipolar cells (Nawy, 2000); (2) bleaching

of photopigments (Dowling, 1987; Fain, 2001); (3) surround

negative feedback by the horizontal cell (HC) network (Lee,

Dacey, Smith, & Pokorny, 1999; McMahon, Zhang,

Ponomareva, & Wagner, 2001; Sterling, 1998; Thibos &

Werblin, 1978; Werblin, 1974); and (4) a circuitry switch

from cones to rods (Mills & Massey, 1995; Ribelayga, Wang,

& Mangel, 2002). Such mechanisms enable cells to

dynamically change their operating range to adapt to varying

lighting situations.

Surface lightness percepts cannot, however, fully be

explained by such low-level mechanisms. For example,

visual percepts depend upon appropriate interactions

between both ON and OFF channel signals that seem to be

largely segregated up until cortical area V1 (Dolan &

Schiller, 1994; Schiller, 1992; Schiller, Sandell, & Maunsell,

1986). The output signals from these low-level processes

tend to estimate relative measurements of reflectance of

the surface in a given display, including relative contrast

measurements by center–surround contrast networks (Sec-

tion 2.2). Such mechanisms do not, however, exploit the full

dynamic range of neurons. There thus remains the problem of
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remapping the relatively measured signals to absolute

lightness percepts that exploit this full dynamic range. This

remapping process is called anchoring (Gilchrist et al.,

1999).

A number of lightness models have been proposed over

the years (see Gilchrist et al. (1999) and Grossberg and Hong

(submitted) for reviews). No models had previously,

however, explained lightness anchoring effects called

Articulation, Configuration, Insulation, and the Area Effect

(Gilchrist et al., 1999). The present model simplifies a more

biologically complete model of these phenomena (Grossberg

& Hong, submitted; Hong & Grossberg, 2003) to explain

these and other lightness data, and to extend this simplified

model to demonstrate an additional competence for proces-

sing natural color images under variable lighting conditions.

2. Description of the model

Fig. 1 shows the model. The first stage receives a gray-

scale version of a color input, and adapts to ambient

luminance and spatial contrasts. Using the adapted signal,

the next stage generates contrast signals using multiple-

scales of antagonistic center–surround processes (see the

following descriptions). The retinally-adapted signal also

goes via a parallel pathway to the next level unaltered as

the luminance signal. The luminance and contrast signals

are pooled at the next stage where the signals are rescaled

via an anchoring process to assign appropriate lightness

values. The anchored signals represent the perceived

achromatic lightness in the model. At the final stage, the

achromatic lightness is converted into a chromatic version

using a simple input-to-output ratio calculation. This gray-

to-color conversion gives the color output the same

luminance as the luminance of the corresponding achro-

matic lightness output.

2.1. Retinal adaptation

This stage of the model simulates light adaptation and

spatial contrast adaptation of the retina. Some intracellular

gating mechanism, such as calcium negative feedback

(Koutalos & Yau, 1996), at the outer-segment of the

photoreceptor (Fig. 2A) is assumed to be responsible for

light adaptation in vivo by shifting the operating range of the

photoreceptor, as shown in Fig. 2B (for a review, see Perlman

and Normann, 1998). Spatial contrast adaptation is assumed

to happen at the feedback circuit between the inner segment

of the photoreceptor and a syncytium of HCs. The inner

segment of the photoreceptor receives the light adapted

signal (GATED INPUT in Fig. 2A) from the outer segment. It

also receives negative feedback from the HC dendrites that

are hypothesized to modulate the influx of calcium ions to the

axon terminal of the photoreceptor, thus controlling the

amount of Glutamate release (GLUTAMATE RELEASE in

Fig. 2A) from the terminal (Fahrenfort, Habets, Spekreijse, &

Kamermans, 1999; Verweij, Kamermans, & Spekreijse,

1996). This modulation further adjusts the sensitivity curve

of photoreceptors using the spatial context of contrast.

Spatial contrast is computed by the HC network using gap

junction connections between HCs.

It is assumed that the permeability of the gap junctions

between HCs decreases as the difference of the inputs to the

HCs from the coupled photoreceptors increases. In Fig. 2A,

for example, the inputs to the network have a steep

difference (the thick and thin input arrows). The per-

meability between the left and right HCs then decreases.

When there is not much difference in inputs for connected

photoreceptors, the permeability between the HCs remains

large. Through this mechanism, the model retina can

properly rescale inputs that have too much contrast, such

as in Fig. 2C. Fig. 2F shows the steady-state HC activities in

response to the input in Fig. 2C. The HCs in the dark and the

light image regions hereby deliver different suppressive

feedback signals to the photoreceptors. Fig. 2D shows the

two sensitivity curves of the inner-segments of the

photoreceptors caused by the two different negative

feedback levels of the HC network for the image. Using

these two sensitivities, the model retina maps the widely

separated input signals (darker side and lighter side along

the abscissa) to sensitive and therefore discriminable

portions of the response (darker side and lighter side

Fig. 1. Illustration of the model. Each box indicates an array of cells doing a

similar task. Arrow-heads indicate excitatory signals and round-heads

indicate inhibitory signals. The narrow Mexican-hat shape curve between

the RETINAL ADAPTATION and CONTRAST modules illustrates the

one-dimensional shape of the shunting on-center off-surround antagonistic

filter for the contrast calculation. The bell-shaped curve between the

ANCHORING and BHLAW (Blurred-Highest-Luminance-As-White)

modules illustrates the one-dimensional shape of the blurring kernel for

anchoring. See the text for details.
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along the ordinate). Without this spatial contrast adaptation,

the input signals could have been mapped to be too low or

high in response, as shown in Fig. 2E, with a large loss of

contrast sensitivity. The rescaled steady-state output of the

photoreceptors in Fig. 2G shows visible dark and light

image regions. Fig. 2H shows the final output of the model

that computes visible features throughout the scene

(see Section 2.4 and Appendix A for details).

To simplify the visual processing, all color inputs are first

converted into a gray-scale version using a luminance

extraction method from red, greed and blue (RGB) color

values (for a review, see Pratt, 1991) before feeding to the

retinal adaptation. Reconversion from luminance into color

values is discussed in Section 2.4. See Appendix A for

mathematical details.

2.2. Multiple-scale contrast and luminance stage

The retinally-adapted signal is processed by the center–

surround contrast stage. For simplicity, the model uses only

Fig. 2. Retinal adaptation. (A) Circuit of retinal adaptation. Two stages of retinal adaptation are implemented. Light adaptation at the outer segment of the

photoreceptors and spatial contrast adaptation at the negative feedback circuit between the inner segments of photoreceptors and a syncytium of HCs.

Permeability of the gap junctions between HCs decreases as the difference of the inputs to the HCs from the coupled photoreceptors increases. For simplicity,

only the connections between nearest neighbors are shown. In simulations, long-range connections are also allowed. The gray bidirectional arrows show the

mutual influence between connected units. See the text and Appendix for further details. (B) Light adaptation. The model retina simulates the light adaptation

property by automatically shifting its operating range to adapt to the ambient luminance of the visual field. When the luminance is too low, it simulates the

physical limit of adaptation (the saturation of shifting on the left end of the graph). Four mean input intensities are shown besides the corresponding curves. The

visible three leftmost curves have mean luminances of 1024, 1023, and 1022 from the left-end, respectively. The rightmost curve has a mean luminance of 107.

(C) Stimulus. (D) Illustration of spatial contrast adaptation. (E) Illustration of retinal sensitivity curve with no contrast adaptation. (F) Steady-state activities of

HCs to image (C). The two segregated portions are responsible for the shift of sensitivity curves in (D). (G) Retinally adapted signals. (H) Model output. See the

text for further details. (Photo courtesy of Bob Wagner.)
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an on-center off-surround (ON) mechanism with no

rectification of negative values. The inclusion of negative

values to the contrast signal simplifies the off-center

on-surround (OFF) contribution to contrast calculation.

While this departure from biology—the omission of OFF

channel and inclusion of negative (hyperpolarized)

signals—may result in some decrement of contrast in the

output, it gives reasonable results in many cases. The

model on-center off-surround units are excited by signals

falling on the central part of their receptive fields, and

suppressed when light falls on the surround of their

receptive fields. This antagonistic center–surround mech-

anism is modeled by a one-pixel excitatory filter for

the center and a broad inhibitory Gaussian filter for the

surround (Jobson & Woodell, 1995).

Multiple scales are thus defined by the width of the

inhibitory Gaussian filters in the model. These scales

contribute with different weights to form a complete

representation of the stimulus. For simplicity, three scales

are used in the simulation: Small-scale and medium-scale

contrast signals and large-scale luminance signals. For

simplicity, the size of the sharp center kernel is fixed

throughout scales (Grossberg, Mingolla, & Williamson,

1995; Mingolla, Ross, & Grossberg, 1999; Rahman, Jobson,

& Woodell, 1996; Rahman, Woodell, & Jobson, 1997). Fig. 3

shows how the three different scales respond to luminance

inputs. As a given surface divides into smaller patches, such

as from the stimulus on the left to the stimulus on the right in

Fig. 3, medium- and large-scale center–surround processes

do not fully activate and fully suppress the homogeneous

area. This is due to the imbalance between the inputs to the

center and the surround sub-receptive fields. Fig. 3B shows

this situation in the medium scale with the center and

surround kernels placed on the stimuli. The output of

Fig. 3. Center–surround processes in multiple scales. (A) One-dimensional illustration of center–surround processes in different spatial scales. The figure

shows two stimuli and the corresponding processed signals in different spatial scales in the left and right columns. The center and surround kernels of different

spatial scales are shown in the middle column. For simplicity, the sizes of the narrow center kernels are fixed across the scales. (B) Scale-specific signal

representation. See the text for further details.
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the center–surround process on the left side of Fig. 3B shows

that the inside of the highest luminance area has been fully

suppressed. This is because the center and surround kernels

get approximately the same inputs from the highest

luminance area and cancel out each other. The figure on the

right-side of Fig. 3B shows an example where there is an

imbalance between the inputs to the center and surround

kernels (lower average input for the surround compared to

the center). The imbalance has caused a high amplitude in the

output curve at the highest luminance areas. The model uses

this contrast calculation mechanism as part of the Articula-

tion, Configuration, and Insulation effects of lightness

anchoring (see Sections 2.3 and 3.5 for further details).

Since the large-scale signal tends to represent the luminance

signal more veridically (see LARGE-SCALE RESPONSE in

Fig. 3), we call this the luminance signal. This approach

differs from the way luminance is computed using ON–OFF

channel interactions in the model of Pessoa, Mingolla, and

Neumann (1995). In the current model, the retinally adapted

signal, which has a large receptive field, serves as the large-

scale contrast signal.

One important function of the multiple-scale center–

surround design is that the output of this antagonistic

process discounts illumination. This is due to the fact that

the surround measures the mean luminance over an area

using the scale-specific size of the surround, and removes

the mean luminance (DC component) from the center

activity. This discounting of illumination in multiple scales

recovers relative measures of reflectances in a given

display.

Fig. 4. BHLAW rule and area effect in a two-field Ganzfeld configuration. (A) Model circuit of lightness anchoring. The activities of the ANCHORING units

are locally pooled by BHLAW units to form a blurred version of the ANCHORING signals. The filter used to generate the blurred signals is shown as a bell-

shaped figure between the ANCHORING and BHLAW modules. See the text for details. (B) BHLAW rule with a large area of highest luminance. The dashed

line indicates the value of WHITE which the blurred highest luminance attains. The thick line (ANCHORED LIGHTNESS) illustrates a 1D profile of the

anchored lightness. (C) BHLAW rule with a small area of highest luminance. (D-F), Two-dimensional simulation of two-field Ganzfeld configuration. D shows

the input configuration. F shows the area effect corresponding to the one in C. The curve on each figure represents the activities of the units along the horizontal

midline. This convention applies to all the following figures. The scale for the curve is denoted on the right side of each figure.
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2.3. Lightness anchoring and blurred highest luminance

as white rule

The pooled multiple-scale representation inherits the

properties of the retinal adaptation and contrast calculation

processes. This representation can, at best, compute relative

contrast. For example, a large whiteboard covering more

than half of the visual field (Fig. 5A) may look middle gray

as shown in Fig. 5B. This problem occurs because the

normalizing center– surround processes compute just

the relative luminance of the center with the surround as

the reference point. An anchoring process is needed to

remap these relatively defined surface signals into the

absolute lightnesses of our percepts.

The lightness anchoring stage rescales the pooled

multiple-scale input. At the same time, the activities of

the anchoring units are modulated by a feedback signal

originating from the anchoring module itself (Fig. 1).

To achieve the anchoring property, the model first makes a

blurred version of the anchoring signal, called the Blurred-

Highest-Luminance-As-White (BHLAW) signal (Fig. 4A).

The model uses this signal to anchor the highest value of

the blurred pattern to white. This rescaling is achieved by

using the BHLAW signal to modulate an automatic gain

control process, labeled C (Figs. 1 and 4A). Gain C

multiplicatively rescales the pooled multiple-scale surface

signals. The process H; which inhibits C; becomes activated

whenever any BHLAW signal exceeds a threshold that

determines the value of white (WHITE in Fig. 4B and C).

This negative feedback circuit achieves the BHLAW rule.

One thing to notice is that the inhibition by H on C lowers

but does not completely shut off the activity of C; leaving a

chance for the BHLAW signals to go beyond WHITE when

the bottom up signal is strong enough; for example, a bright

light source of some size. In such a case, the BHLAW rule

will be violated.

Fig. 4B shows this anchoring process with a simple

display called the two-field ganzfeld configuration. A

ganzfeld is a homogeneous background covering the entire

visual field with no other visual cues. In Fig. 4B, the

BHLAW signal and the highest luminance in the image are

both anchored at white. In Fig. 4C, the anchored lightness,

or unblurred pattern, looks self-luminous because the area

of highest activity is not broad enough to span the blurring

kernel, so the blurring kernel also averages lower activities

as well. As the area of the highest activity becomes smaller,

this mechanism predicts that the background will approach

WHITE because of the small difference between the highest

and background BHLAW signals. In such a case, the

anchored lightness will grow until the highest BHLAW

signal equals the anchoring value WHITE, which will also

bring the background up close to WHITE. Fig. 4D–F shows

a 2D simulation of a two-field Ganzfeld configuration. Note

that the highest activity of the BHLAW module in Fig. 4E is

anchored to white ð4Þ: This dependence of lightness on the

size of a region is called Area Effect (Gilchrist et al., 1999).

The curve in each figure shows the signal profile along the

horizontal middle section of the 2D image. The labels on the

right side of each figure indicate the scale of the vertical axis

for the curve; in particular, 4 denotes white.

Fig. 5C shows a correct prediction by the model that uses

the BHLAW rule. In another example shown in Fig. 5F, the

model properly handles the light source and the background

at the same time. The white curve on Fig. 5F shows the

profile of the anchored lightnesses along the horizontal

section that crosses the light source. The model predicts that

the light source will be self-luminous (the peak goes above

white, 4). The corresponding input taken by a camera uses

Fig. 5. (A) Input. (B) Lightness without anchoring process. (C) Lightness after anchoring with BHLAW rule. (D) Input. (E) Lightness without anchoring

process. (F) Lightness after anchoring. The white curve in each figure shows the profile of the signal values along the horizontal section of the image that

crosses the light source. The value ‘4’ on the right side of (F) marks the lightness value ‘white’ along the vertical axis. See the text for further details.
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the Highest-Luminance-As-White (HLAW) rule (Horn,

1977; Land & McCann, 1971; Wallach, 1948, 1976), and

drove the background to be too dark to recognize.

2.4. Gray-scale to color conversion

As mentioned in Section 2.1, all color input (Red, Green,

Blue) values at each pixel point were converted to gray-

scale using a luminance extraction method (for a review,

see Pratt, 1991) before feeding to the initial retinal stage.

After anchoring takes place, the anchored achromatic

lightness is reconverted to a chromatic version using a

simple input-to-output ratio calculation, as in Fig. 6. The

process is as follows: First, the input-to-output ratio in the

achromatic domain is calculated at each pixel point using

the gray-scale input and the anchored lightness output. For

example, if the luminance values at the pixel point ðx; yÞ are

1 for the gray-scale input and 10 for the anchored lightness,

the input-to-output ratio for the point ðx; yÞ will be 10. This

means that the output at the point ðx; yÞ is 10 times more

luminous than the input. To generate a color output image

that has the same luminances as the gray output, the input-

to-output ratio at each gray pixel point is multiplied with the

corresponding color input pixel to generate the color output.

For example, if the input-to-output ratio is 10 for the pixel

point ðx; yÞ; the RGB color input values for that point will be

multiplied by 10 to generate the output RGB values. This

ratio multiplication process guarantees that the outputs of

the gray-scale and color images have the same luminance.

See Appendix A for mathematical details.

3. Results

3.1. Background light adaptation

Fig. 2B shows the simulated shift property of light

adaptation to changing ambient illumination. This property

simulates cell recording data of Normann and Perlman

(1979) and Werblin (1971). The leftmost curve of the shift

property at lower values of background luminance corre-

sponds to the physical limit of light adaptation observed in

retinal ganglion cells (Barlow & Levick, 1969; Enroth-

Cugell & Shapley, 1973). The model obeys the Weber law

over a wide range of background luminances (Grossberg,

1983). Ambient illumination is removed by divisive

intracellular negative feedback signals in the photo-

receptors. See Appendix B for the stimuli used for this

simulation.

3.2. Discounting the illuminant

The example in Fig. 7 shows that the model discounts the

illuminant to discover the reflectance. Fig. 7A shows two

light patches on a dark background seen in a gradient of

illumination. To generate the input, light patches with the

same reflectance and a background with a smaller constant

reflectance were multiplied by a gradient of illumination.

The curves on Fig. 7A and B show the input intensities

and anchored lightnesses along the horizontal midline,

respectively. Fig. 7B shows the property of illumination

discounting: The light patch on the left is almost as light as

the one on the right (luminance of the left patch/luminance

of the right patch ¼ 0.94), unlike the one in Fig. 7A

(luminance of the left patch/luminance of the right

patch ¼ 0.67). This property comes from the ratio-calculat-

ing property of the local contrast units. Fig. 7B also shows

that, when the gradient of illumination is big enough, the

model exhibits a lightness bias where the square patch with

higher illumination looks slightly lighter than the one with

lower illumination. This property of the model is due to the

influence of the large scale that adds a more veridical

representation of the stimuli to percepts. This prediction is

supported by the observation that, when subjects are asked

to decide the perceived reflectance of surfaces, they always

give a higher value to the highly illuminated one than

Fig. 7. Discounting the illuminant. Unevenly illuminated two light patches

with identical reflectance (A. STIMULUS) generate a percept that

discounts the illumination (B. ANCHORED LIGHTNESS). However, the

model also predicts a bit of bias introduced by the illumination gradient

(slope of the curve representing the background in figure A ¼ 0:1). The

light patch on the right looks a bit lighter than the left one. The model also

picks up the illumination gradient itself using the large scale (slope of the

curve representing the background in figure B < 0:07).

Fig. 6. Gray-scale to color conversion. Two parallel gray-scale and color

streams are shown. To calculate the color output, the input-to-output ratio

ðRI=OÞ in gray scale is first calculated at each pixel point. Then, the ratio at

each pixel point that represents the input-to-output conversion ratio of

luminance is multiplied with the corresponding color input pixel to generate

the color output that has the same luminance as the corresponding gray

output. Each rectangle represents a grid of pixel values. Each square

represents a grid of input-to-output ratios.

S. Hong, S. Grossberg / Neural Networks 17 (2004) 787–808 793



the same one with low illumination. (Gilchrist et al., 1999,

p. 826).

The anchored lightness in Fig. 7B shows ripples across

the background. The reason for this is that the small-scale

contrast channel picked up the alias introduced by the non-

perfect gradient of illumination in the input. The alias in the

display is due to the limited available display values along

gradient of illumination. It can be eliminated with a higher

resolution representation.

3.3. Simultaneous contrast

Fig. 8 shows a simulation of simultaneous contrast. The

two middle gray patches in Fig. 8A have identical

luminance. In this configuration, small and medium scales

calculate local ratio contrasts, and their contribution makes

the light square on the dark background look lighter than the

one on the bright background even though they have

identical luminance (Fig. 8B). Since lightness anchoring

just rescales the filled-in multiple-scale signals via BHLAW

gain control, the anchoring process does not distort the

relative lightnesses of the surfaces.

The curve in Fig. 8B shows that the anchored surface

lightnesses have shallow cusps at the borders of luminance

edges. This is due to the nature of the contrast calculation

that suppresses information from large homogeneous sur-

face parts (Fig. 3). However, the distortion of the image by

the cusps is not significant because of the contribution of the

large-scale process of the model. Thus, whenever there was

a need to measure the lightness of a surface with cusps, the

average of the lightness of the surface was computed.

3.4. Anchoring properties

The model explains the four major effects of lightness

anchoring (Articulation, Configuration, Insulation, Area

Effect) as follows:

Articulation effect. The articulation effect says that, as a

display contains more gray surfaces, the range of perceived

lightness widens, or simply, darker ones look darker. The 2-,

5- and 10-surface Mondrian (2D arrangement of juxtaposed

gray patches) insets in Fig. 9B show this experiment

situation (see Gilchrist et al. (1999) for a review). The

darkening effect of dark surfaces with increasing numbers of

distinct gray patches corresponds the steepening data curves

in Fig. 9A. For example, the black patch (about 21.5 log

target luminance, or about 3% of the highest luminance of

the display) in the two-Mondrian is perceived as light gray

(about 1.7 log perceived reflectance, or 50% of perceived

reflectance), while the same black patch in the 5-Mondrian

is perceived as middle gray (about 1.3 log perceived

reflectance, or 20% of perceived reflectance). A key fact

is that, in the experiment, the Mondrian test patches had

illumination 30 times that of the dark background resulting

in a luminance of 1.4 ft L (foot Lambert). This 30-to-1

foreground-to-background illumination setting is also used

in the following configuration and insulation effects.

Fig. 9B summarizes the model simulation of this effect.

As the number of surface patches having different

Fig. 8. Simultaneous contrast. Two identical square patches on different

backgrounds (A. STIMULUS) are perceived differently (B. ANCHORED

LIGHTNESS). The one on the dark background looks lighter. Local

contrast signals provide the source of this difference.

Fig. 9. Articulation effect. (A) Data of articulation effect. As more gray patches are added to a display, the range of perceived reflectance (lightness) widens. In

the graph, the widening of the perceived reflectance corresponds to the steeper overall curve as the number of gray level target surfaces increases from 1 to 10.

The widening effect makes the gray patches look darker. The diagonal line shows the perfect situation of lightness constancy. The horizontal line shows the

situation where there is just one surface on the Ganzfeld. (B) Simulation results. PERCEIVED REFLECTANCE in the model is ANCHORED LIGHTNESS of

the simulation. See the text for details. ((A) is reproduced with permission from Gilchrist et al., 1999.)
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luminances increases in a region, the image contains more

high spatial frequencies. In the model, this means that the

medium and large spatial scale kernels have less chance to

fully activate and suppress the homogeneous area of each

patch. Fig. 3 shows the situation. The divided square

luminances on the right cause higher contrast signals in the

medium and large-scales compared to the corresponding

contrast signals on the left column with a larger square

luminance stimulus. The loss of full suppression by each

spatial-scale results from the mismatch between the size of

the filters and of the patches in the scene. This mismatch at

one spatial channel means less suppression, thus more

veridical representation for that scale, in turn causing a more

veridical percept. The model explains the jagged part of the

10-Mondrian curve in Fig. 9 as a result of the spatial

arrangement of gray patches. Similar gray patches can be

perceived different depending on the spatial context of

surrounding neighbors. The BHLAW process assures that

the data remain anchored at white.

Configuration effect. The configuration effect says that,

when a display contains gray surfaces arranged in a

Mondrian, a wider range of lightnesses is perceived, or

dark ones look darker, than when the same gray surfaces are

arranged in a luminance staircase. The Mondrian and the

staircase insets in Fig. 10C and D show this experiment

situation (see Gilchrist et al. (1999) for a review). Fig. 10B

shows an example of the configuration effect where the

black patch (about 21.5 log target luminance) in the

10-staircase is perceived as middle gray (about 1.4 log

perceived reflectance, or 25% of perceived reflectance),

while the same black patch in the 10-Mondrian looks black

(about 0.9 log perceived reflectance, or 8% of perceived

reflectance).

Fig. 10C and D summarizes model simulations. The

model explains this effect much as it does the articulation

effect. In the Mondrian configuration, since the intermingled

luminance patches are arranged in a more radially compact

way, the round-shaped surround kernels in the contrast

module are influenced by more luminances of surrounding

surfaces than with the staircase arrangement. This gives the

surround kernels more chance to set the local means

(surround activities) to be different from the corresponding

center activities. Thus, the increased range of differences

between the center and the surround activities results in a

bigger range of perceived reflectances for the display.

Explained otherwise, if all the adaptation and contrast stage

surround activities were the same as their center activities,

surround inhibition would drive them all to zero. Also, the

radially compact arrangement decreases the distance

between different levels of gray patches, thereby inducing

stronger lateral inhibition. The dependence of the distance

between an inducer and test surfaces has been observed in

Fig. 10. Configuration effect. (A and B) Data of configuration effect. The lower inset of each figure shows the Mondrian arrangement; the upper inset, the

staircase arrangement. The Mondrian arrangement of gray target surfaces widens the range of lightness compared to the staircase arrangement. Comparison of

(A) and (B) shows that articulation makes the effect bigger. (C and D) Simulation results, corresponding (A) and (B), respectively. See the text for details.

((A) and (B) are reproduced with permission from Gilchrist et al., 1999.)
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lightness (Newson, 1958) and brightness experiments (Cole

& Diamond, 1971; Fry & Alpern, 1953; Leibowitz, Mote, &

Thurlow, 1953), where the darker test surface became

lighter with increasing distance from the inducer, an effect

interpreted to be due to surround inhibition. Again the

BHLAW process anchors the perception of white.

Insulation effect. Fig. 11 shows the insulation effect. As

with the previous effects, the range of perceived reflectance

increases, or dark ones look darker, when the staircase

display is insulated by a white surround. The insets in

Fig. 11A show the experimental displays and data (see

Gilchrist et al. (1999) for a review). The black patch in

the 5-staircase arrangement is perceived as middle gray

(about 1.4 log perceived reflectance), while the same black

patch surrounded by white insulation looks black (about

0.8 log perceived reflectance). Fig. 11B shows the

simulation.

According to the model, a spatial contrast explanation

also helps to explain this effect as well: Insulation of gray

surfaces with a white surround causes bigger surround

inhibition by the introduced bright insulation on the gray

surfaces, making them look darker. This results in an

expansion of the range of lightness due to the newly added

suppression on dark patches by the surround. Insulation by a

black surround, however, may not cause much difference in

lightness assessment. This is because the gray surfaces are

under illumination of 30 times that of the background. Since

the gray patches are already not getting much background

inhibition, the introduction of black insulation does not

significantly change the amount of surround inhibition, thus

hardly changing the percept. Once again, the BHLAW

process converts these relative lightness activities to an

absolute anchored lightness.

Area effect. The area effect in Fig. 12 shows that, in a

two-field Ganzfeld situation, as an area other than the area

of highest luminance becomes larger than half of the visual

field, its lightness approaches white, while the highest

luminance area is pushed above white. Fig. 12C shows the

simulation of this effect.

Comparison of data with the simulation shows that the

model closely fits the suggested effect. As explained in

Section 2.3, self-luminosity of a small highest luminance

area is explained by the BHLAW rule. When the highest

luminance area is smaller than the blurring kernel at the

anchoring stage, the blurred filled-in surface signals will

have shallower highest activities compared to the un-blurred

image (Fig. 4C). Since the BHLAW mechanism uses the

blurred signals to anchor lightness, the anchored lightness of

the highest luminance area will look lighter than white. The

case in Fig. 4C corresponds to the increasing portions of

curves in Fig. 12B and C. The case in Fig. 4B corresponds to

the flat regions of the curves in Fig. 12B and C.

3.5. Natural color image processing

Fig. 13 demonstrates the model’s ability to process

natural color images. Fig. 13A, D and G are inputs, and 13B,

13E and 13H are the corresponding outputs, respectively.

The last column shows HC activities for the corresponding

inputs. Fig. 13B shows the recovery of dark sides, while

preserving the already visible light parts of the scene.

The model light adaptation brightens the image; and the

model contrast adaptation compresses the range of contrast

by applying regionally differing negative feedback. Fig. 13B

also reveals the distorted signals hidden in the darkness in

the input image due to the limited range of sensitivity of the

photo-sensors of the camera. Fig. 13C shows the HC

activities that provide the negative feedback for spatial

contrast adaptation. The final lightness assignment, includ-

ing the luminosity of the candle lights, is achieved by the

BHLAW anchoring mechanism of the model. The second

and third rows also show some of the challenging examples

where the model performs robustly.

Fig. 14 shows three examples that compare the

performance of the BHLAW model with that of the Retinex

model of color image processing. Since there are many

versions of Retinex designed to be good at different aspects

of image processing (see Kimmel et al. (2003) for a review),

Fig. 11. Insulation effect. (A) Data of insulation effect. Insulation by a white surround widens the range of perceived reflectance. This effect does not seem to

happen when a black surround is used for insulation. (B) Simulation results. The model fits the data of configuration effect in the anchoring theory. See the text

for further explanation. ((A) is reproduced with permission from Gilchrist et al., 1999.)
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some of the best-known examples from the NASA Langley

Research Center web page (http://dragon.larc.nasa.gov/

viplab/retinex/) are presented herein. The first row shows

an example that reveals the competence of both of the

models. The second row shows an example of remote

sensing. While Retinex gives better color contrast across the

border, the BHLAW model gives a better scaling of absolute

lightness level. For example, the land portion among cloud

patches on the right bottom of the image in Fig. 14F is too

dark to recognize. In contrast, as shown in Fig. 14E, the

BHLAW model enhanced that part due to the contrast

adaptation mechanism of the model that assures a wider

signal range of contrast processing. The third row shows an

example where Retinex takes off the yellow ambient color

(Fig. 14I), giving a better estimation of color lightness than

the BHLAW model (Fig. 14H). However, Fig. 14I also

shows a known Retinex weakness; namely, over-enhance-

ment of color contrast (see Kimmel et al. (2003) for a

review): The bright part along the window looks bluish.

In contrast to this, the BHLAW model does not change the

composition of wave lengths, as in Fig. 14H.

4. Discussion

The BHLAW model that is described in this article

generates an anchored representation of surface lightness

and color using four signal processing stages. Retinal

adaptation first adjusts the sensitivity of retinal cells to the

prominent signal range in the input. Using the retinally

adapted signals, the multiple-scale center–surround process

discounts the illuminant to generate relatively measured

reflectances. The third stage anchors lightness to fully use

dynamic range. At the final stage, the gray scale lightness is

converted to a color version using a luminance-preserving

input-to-output transformation. The model simplifies a

biological BHLAW model of lightness that was reported

in Grossberg and Hong (submitted) and extends it to process

Fig. 12. Area effect in divided Ganzfeld situation. (A) Illustration of the experimental settings and the percepts of Area effect. See the text for details. (B)

Qualitative illustration of the area effect. As the non-highest luminance area becomes bigger than the half of the visual field, it approaches white, while the

smaller area of highest luminance becomes luminous. The divided discs along the abscissa with light and dark surfaces show the configurations of the stimuli.

(C) Simulation result of area effect. The model simulates the concept of the effect quantitatively. The squares along the abscissa with light and dark surfaces

show the configurations of the stimuli. See the text for details. ((B) is reproduced with permission from Gilchrist et al., 1999.)
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natural colored images. The following discussion considers

the assumptions and limitations of the model.

4.1. Contrast adaptation

The model assumes that the permeability of gap

junctions at connected HCs is governed by an intracellular

mechanism, which is in turn controlled by the output of the

presynaptic photoreceptors. For example, for two HCs

connected by a gap junction, the permeability of the

junction decreases as the difference increases between the

inputs that the HCs receive from the photoreceptors

(Fig. 2A). This decrement of permeability with increasing

spatial contrast is similar to the one implemented by Perona

and Malik (1990) in Fig. 15A. Their mechanism is

concerned with diffusive filling-in of images and does not

include a negative feedback function for automatic gain

control. Cohen and Grossberg (1984) and Grossberg and

Todorović (1988) implemented gating of signal spread

using a boundary signal whose size increases with image

contrast. One difference of the current mechanism from

these models is that the connections extend farther than just

nearest neighbors. These broader connections speeds up the

diffusive process. For example, using Eq. (A6) with just

nearest-neighborhood connectivity, it takes about 10,000

iterations for a stimulus in Fig. 15B (INPUT; 50 £ 50 in

dimension) to generate a filled-in output (FILLED-IN in

Fig. 15B) in case the diffusion is unimpeded (with maximal

permeability). The current model has broader connectivity

and its filling-in process takes about 100 iterations. Fig. 15B

shows the relationship between the speed of propagation

and the size of connected neighborhood. To compare the

current long-range diffusive mechanism with the Perona and

Malik one, which has no bottom-up input during the

iteration of diffusion, only the lateral diffusion component

of Eq. (A6) was used (see Appendix C for mathematical

details of the equations and the criteria of filled-in output).

The curve in Fig. 15B shows that as the connectivity

expands to farther neighborhoods, the number of iterations

needed to homogenize the area decreases rapidly.

Fig. 13. Color image processing. Three examples of color image processing are shown. The first column shows stimuli; the second, the outputs of the model;

and the third, the model HC activities for the given images. See the text for details. (Photos courtesy of Arash Fazl and Eric Anderson.)
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Fig. 14. Comparison with Retinex. Three examples of color image processing of the model are compared with the outputs by Retinex. The first column shows

stimuli; and the second, the outputs of the model; the third, the outputs of Retinex. See the text for details. (The images on the first and third columns are from

NASA Langley Research Center web page.)

Fig. 15. Dynamics of diffusion. (A) Permeability function. The permeability between connected HCs in the current model is a function of spatial contrast as in

the model of Perona and Malik (1990). In the model of Perona and Malik, the permeability (g in the graph) between connected units decreases as the differences

of signals of the units (s in the graph) increases. (B) Relationship between speed of filling-in and size of neighborhood. As the connectivity expands to a farther

neighborhood, the number of iterations needed to homogenize the area decreases rapidly. The insets show the stimulus (INPUT) with signals on the rightmost

part of the square (the white region) and the filled-in image (FILLED-IN). ((A) is reprinted with permission from Perona and Malik, 1990.)
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HC receptive field size change due to negative feedback

between the photoreceptor and the HC was proposed by

Kamermans, Haak, Habraken, and Spekreijse (1996).

Their model emphasized the contribution of negative feed-

back to determine the length constant of the HCs. Here, we

show how such negative feedback may clarify how retinal

gain control responds to the spatial context of input contrasts.

4.2. Simplification of contrast channel

The model simplified the contrast calculation process by

removing the OFF (off-center on-surround) contrast channel

and letting the negative values of the ON (on-center off-

surround) channel contribute to the contrast calculation. This

simplification, carried out by not imposing rectification on

the output of ON channel, exploits the fact that the profile of

the non-rectified output signals of the on-center off-surround

contrast calculation (Eq. (A16)) resembles the profile of the

rectified signals of on-center off-surround and off-center on-

surround channels when they are combined (Eq. (31) in

Mingolla et al., 1999). As the results of simulations

demonstrate, this simplification works. All the contrast-

related results predict the correct direction of percepts.

4.3. Area effect in natural images

The area effect tends to be limited to simple Ganzfeld

configurations. Gilchrist and his colleagues (1999, p. 802)

noted: “Strictly speaking, the rule applies to visual fields

composed of only two regions of nonzero luminance.

Application of the rule to more complex images remains to

be studied.” In the model, it is assumed that when the simple

Ganzfeld configuration was tested, the visual system of

the subject adapted its multiple scales to compensate for the

unusually sparse visual cues. In particular, Sections 2.2 and

4.2 noted that the model incorporates multiple spatial scales

which suppress signals that are uniform with respect to each

scale. Hence, given the sparse contrasts in the Ganzfeld

display, the model would be expected to suppress small

scales. Multiple scales were not used in the anchoring

module, for simplicity. Such a generalization will be

appropriate when the model is generalized to process 3D

scenes. Instead, two different parameter sets were used to

explain the area rule. For simple images having just two

regions of non-zero luminance (Fig. 12C), a bigger Gaussian

kernel was used. For all the other, more complex, images

with smaller regions, a smaller kernel was applied. See

Table 1 for parameters.

Table 1

Simulation Parameters

Names Symbols Values

Upper bound of gain control at photoreceptor Bz 500

Small-time scale input contribution rate for gain control CI 200

Large-time scale input contribution rate for gain control C�I 600

Bh 0.05

Bs ðBz=CIÞ

aH 6

bH 0.1

Shift of permeability of HC gap junction bp 0.08

Steepness of permeability of HC gap junction lp 0.01

Size of connected neighbor for horizontal cell 1H 13

Surround spatial scales, small, medium a 3 (for small scale), 14 (for medium scale)

Activation decay A 0.5

Depolarization constant B 1

Hyperpolarization constant D 1

Small, medium, large scale weights ws;wm;wl 0.2, 0.2, 0.6

Tonic bias of small, medium scales bS; bM 0.001, 0.001

Decay rate for anchoring BA 1

Depolarization constant for anchoring CA 10

Time constant of modulatory unit of anchoring tC 0.01

Depolarization constant of modulatory unit of anchoring BC 1.3

Hyperpolarization constant for gain control w 8

Recharge rate of tonic activity TC 1

White 4 0.5

Spatial scale for anchoring zA 100 (for the area rule), 4 (for the others)

Size of connection range for the surround of center–surround unit 1E 6 (for small scale), 28 (for medium scale)

Size of connection range for the blurring kernel of anchoring 1A 100 (for the area rule), 4 (for the others)

Sizes of various standard kernels WE ;WA 0.6, 1

Asymptotic value of color portion in Aij=Sij ratio V 2
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4.4. Gray-scale to color conversion

The gray-scale to color conversion used in the model

makes an assumption that the visual system may use

luminance signals to help anchor color lightness as well as

achromatic lightness. This assumption is implemented by a

mechanism that modulates the color output to match its

luminance to that of the gray-level output of the model. One

may also want to ask a question if there is an anchoring rule

in color lightness. Recently, Agostini and Castellarin (2003)

investigated the question whether a highest luminance in a

color display would have a similar effect on color lightness

as does a highest luminance in an achromatic display

through anchoring. Their finding suggests that there is no

clear anchoring-like rule used in the color domain.

More investigation is needed to clarify this point. While

the current model explains achromatic lightness phenomena

quantitatively, it does not address lightness constancy in the

color domain; see, for example, the comparison with the

Retinex model in Fig. 14H and I. In particular, it does not

process chromatic inputs through opponent and double-

opponent mechanisms (Grossberg, 1994; Waxman et al.,

1997). Such refinements await additional research on

this topic.
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Appendix A. Model equations

The model implements 2D simulations on a 200 £ 200

grid that represents the whole visual field.

Retinal adaptation. The potential sij at position ði; jÞ of

the outer segment of the retinal photoreceptor is simulated

by the equation

sijðtÞ ¼ IijzijðtÞ; ðA1Þ

where Iij is the input at position ði; jÞ and zijðtÞ is an

automatic gain control term simulating negative feedback

mediated by Ca2þ ions, among others

dzij

dt
¼ ðBz 2 zijÞ2 zijðCIIij þ C�I

�IÞ; ðA2Þ

of Carpenter and Grossberg (1981). Parameter Bz in Eq.

(A2) is the asymptote which zijðtÞ approaches in the absence

of input. Term 2zijðCIIij þ CI
�IijÞ describes the inactivation

of zij by the present input Iij and a spatial average �I of all

inputs that approximates the effect of recent image scanning

by sequences of eye movements. The equilibrium potential

sij follows from Eqs. (A1) and (A2):

sij ¼
BzIij

1 þ CIIij þ C�I
�I
: ðA3Þ

The inner segment of the photoreceptor receives the

signal sij from the outer segment and also gets feedback Hij

from the HC at position ði; jÞ; as in Fig. 2A. HC modulation

of the potential sij of the inner segment of the photoreceptor

is modeled by the equation

Sij ¼
sij

Bh expðHijÞðBs 2 sijÞ þ 1
; ðA4Þ

where Bh is a small constant, and Bs is a constant close to the

value ðBz=CIÞ: When Bs ¼ ðBz=CIÞ; perfect shifts of the

logðIijÞ2 Sij curve occur with varying Hij (Fig. A1A). When

Bs deviates from ðBz=CIÞ; compression occurs when Bs .

ðBz=CIÞ: Expansion occurs when Bs , ðBz=CIÞ in addition to

the shift. Thus to prevent expansion, which would mean

excitation by the HC negative feedback, Bs needs to be

bigger or equal to ðBz=CIÞ: Fig. A2 shows the 10-Mondrian

Articulation situation (Fig. 10) with two values for Bs; one

equal to ðBz=CIÞ; and the other to 1:2ðBz=CIÞ: This simulation

demonstrates that the model is robust under this variation.

Compare Fig. A2 with the graph in Fig. 9B.

Eq. (A4) can be generalized as follows:

Sij ¼
sij

f ðHijÞðBs 2 sijÞ þ 1
: ðA40Þ

Many increasing functions f ðHijÞ will generate the

shift property of Sij as a function of logðIijÞ: Function

f ðHijÞ ¼ Bh expðHijÞ makes the sensitivity curve shift in an

accelerating manner with increasing Hij: Function Hij; in

turn, is the sigmoid output of the HC at ði; jÞ in response to

its potential hij

Hij ¼
aHh2

ij

b2
H þ h2

ij

; ðA5Þ

where aH and bH are constants. This bounded function

causes the amount of shift to decrease as hij becomes large.

The combination of the initial acceleration by the

exponential function in Eq. (A4) and the later saturation

by Eq. (A5) causes the Sij curve to accelerate initially and

later decelerate with increasing hij: Fig. (A1A) shows an

example of this shift property. The leftmost curve represents

the Sij curve with hij ¼ 0; the other curves have hij values of

0.1,0.2,…,0.5, respectively. All these curves have the same

average luminance �I ¼ 102: The shift property is generated

at any average luminance �I: Note that the leftmost curve in

Fig. (A1A) is the same as the curve with �I ¼ 102 in Fig. 2B.

Fig. (A1B) shows what happens when Hij ¼ hij is used

instead of Eq. (A5), with all other equations same; it shows

no deceleration. Here, hij values of 0–10 were used with

increments of 1. Fig. (A1C) shows a situation where the

term ðBs 2 sijÞ in Eq. (A4) has been replaced by 1; it shows
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a prominent compression. For this simulation, hij values of

0–0.5 with increments of 0.1 were used. Fig. (A1D) shows a

situation with f ðHijÞ ¼ Hij in Eq. (A40); it does not have the

smooth acceleration shown in Fig. (A1A). The same hij

values as for Fig. (A1C) were used for this simulation.

The potential of an HC connected to its neighbors

through gap junctions is defined by

dhij

dt
¼ 2hij þ

X
ðp;qÞ[NH

ij

Ppqijðhpq 2 hijÞ þ Sij; ðA6Þ

where Ppqij is the permeability between cells at ði; jÞ and

ðp; qÞ namely,

Ppqij ¼
21

1 þ exp½2ðlSij 2 Spql2 bpÞ=lp�
þ 1: ðA7Þ

Terms bp and lp in Eq. (A7) are constants, and NH
ij in

Eq. (A6) is the neighborhood of size 1H to which the model

Fig. A1. Shift property of spatial contrast adaptation. (A) The graph of Sij as a function of logðIijÞ shifts as a function of Hij; first accelerating and later

decelerating with growing Hij: These curves are generated using Eq. (A4) with average luminance �I ¼ 102: The same average luminance is used in (B)–(D).

The curves from the left to right have hij values in Eq. (A5) of 0–0.5 with increment 0.1. The same is true for (C) and (D). (B) Shift property with Hij ¼ hij in

place of Eq. (A5). The curves show no deceleration. The curves from the left to right have hij values of 0–10 with increment 1. (C) Shift property with no

ðBs 2 sijÞ term in Eq. (A4). The curves show a prominent compression. (D) Shift property with f ðHijÞ ¼ Hij in Eq. (A40). The curves do not have the smooth

acceleration shown in graph A.

Fig. A2. The curves show 10-Mondrian Articulation situation with two

values for Bs; one ðBz=CIÞ; the other 1:2ðBz=CIÞ: While the deviation of 20%

from the optimal value shows a bit of compression, the overall quality of

articulation effect remains robust. This demonstrates that the model

tolerates a fair amount of fluctuation in the value of the parameter.
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HC at ði; jÞ is connected

NH
ij ¼ {ðp; qÞ :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði 2 pÞ2 þ ðj 2 qÞ2

q
# 1H;

and ðp; qÞ – ði; jÞ}: ðA8Þ

Center–surround stage. The retinally adapted signal Sij

is then processed by small- and medium-scale on-center

off–surround networks. In the following, scale subscripts

(e.g. Xs and Xm for small- and medium-scales, respectively)

are omitted for simplicity. An on-center off-surround

network of cell activities Xij that obey membrane equations

(Grossberg, 1973, 1980) is defined as follows

dXij

dt
¼ 2AXij þ ðB 2 XijÞCij 2 ðXij þ DÞEij; ðA9Þ

where A;B and D are constants. The on-center input obeys

Cij ¼ WESij; ðA10Þ

and the off-surround input obeys:

Eij ¼
X

ðp;qÞ[NE
ij

SpqEpqij

0
B@

1
CA WEX

ðp;qÞ[NE
ij

Epqij

ðA11Þ

with the inhibitory Gaussian off-surround kernel:

Epqij ¼ E exp 2
ðp 2 iÞ2 þ ðq 2 jÞ2

a2

( )
: ðA12Þ

Coefficient E in Eq. (A12), which normalizes and makes

the sum of the surround kernel equal the weight WE; is

defined by

E ¼
WEX

ðp;qÞ[NE

exp 2
p2 þ q2

a2

( ) : ðA13Þ

Terms a and WE are constants. NE
ij in Eq. (A11) is the off-

surround neighborhood to which the cell at ði; jÞ is connected

NE
ij ¼ ðp; qÞ :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði 2 pÞ2 þ ðj 2 qÞ2

q
# 1E; and 0 # p

�

# 199; and 0 # q # 199



; ðA14Þ

where 1E is a constant defining the size of the neighbor. NE

in Eq. (A13) is the neighbor for the standard center kernel

defined as follows

NE ¼ ðp; qÞ :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði 2 pÞ2 þ ðj 2 qÞ2

q
# 1E

� 

: ðA15Þ

The only difference between NE
ij and NE is that NE

ij is

constrained by the boundary of the image (200 £ 200),

which may cut kernels along the borders, while NE; which

defines the whole kernel, is not.

For each position, the normalizing factor WE=SEpqij in

Eq. (A11) is a constant, mostly just 1, except for

the positions along the border of the image. Normalization

eliminates unwanted boundary effects created by filters with

a fixed kernel size. In case of a center–surround filter, for

example, without normalization, halos along the border of

the image can occur because of the disinhibition caused by

cut kernels there.

The equilibrium activities of Eq. (A9) are

Xij ¼
BCij 2 DEij

A þ Cij þ Eij

: ðA16Þ

Luminance signals Lij; which constitute the large-scale of

the center–surround process, are defined by:

Lij ¼ Sij: ðA17Þ

Through these processes, the initial stage of the model

achieves automatic gain control in all its small, medium and

large scales. Output from the individual scales are pooled to

form a multiple-scale output signal as follows

Mij ¼ ½wsðX
s
ij þ bSÞ þ wmðX

m
ij þ bMÞ þ wlLij�

þ
; ðA18Þ

where ws;wm;wl; are weighting constants, and bS; bM are

tonic bias terms (Table 1).

Lightness anchoring. At the anchoring stage, the pooled

multiple-scale input Mij becomes anchored into the activity

Aij using the membrane equation:

dAij

dt
¼ 2BAAij þCðCA 2 AijÞMij; ðA19Þ

where BA and CA are constants. The tonic gain control

signal C; which modulates all the anchoring activities Aij;

uses the membrane equation:

dC

dt
¼ tC{ 2Cþ ðBC 2CÞTC 2CH}: ðA20Þ

Term tC is a time constant that determines the speed of

integration of Eq. (A20). The term 2C is a leakage

component. A tonic excitatory component TC drives the

gain control signal C toward its maximum BC until the

inhibitory gain control CH kicks in by the activation of

the suppressive signal H: The suppressive signal H becomes

activated when any output of the BHLAW module bij

reaches a threshold to begin the anchoring of a blurred

‘highest luminance’ to white as follows

H ¼
w; if any bij $ 4;

0; otherwise

(
ðA21Þ

where 4 and w are constants. Function bij in Eq. (A21) is

a blurred version of the anchoring signal Aij

bij ¼
X

ðp;qÞ[NA
ij

GA
pqijApq; ðA22Þ
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where the blurring Gaussian anchoring kernel is defined by:

GA
pqij ¼ GA exp 2

ðp 2 iÞ2 þ ðq 2 jÞ2

62
A

( )
WAX

ðp;qÞ[NA
ij

GA
pqij

:

ðA23Þ

In Eq. (A23),

GA ¼
WAX

ðp;qÞ[NA

exp 2
p2 þ q2

z2
A

( ) ; ðA24Þ

and WA and zA are constants. The size of the blurring

neighborhood NA
ij in Eq. (A22) is defined as follows

NA
ij ¼ {ðp; qÞ :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði 2 pÞ2 þ ðj 2 qÞ2

q
# 1A;

and 0 # p # 199; and 0 # q # 199}; ðA25Þ

where 1A is a constant defining the size of the neighbor. NA

in Eq. (A24) is the neighborhood for the standard blurring

kernel:

NA ¼ ðp; qÞ :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði 2 pÞ2 þ ðj 2 qÞ2

q
# 1A

� 

: ðA26Þ

The final value Aij can be approximated without

numerically integrating Eqs. (A19)–(A26). It is usually

the case that the point where the blurred-highest-luminance

maxð
P

pqij GA
pqijMijÞ happens gets anchored to white. Thus

we can estimate from Eq. (A19) the approximation C0 of the

final value of C; by assuming the following

4 ¼

CAC
0 max

X
pq

GA
pqijMij

0
@

1
A

BA þC0 max
X
pq

GA
pqijMij

0
@

1
A
: ðA27Þ

This equation modifies the steady-state-solution of

Eq. (A19)

Aij ¼
CACMij

BA þCMij

ðA28Þ

to directly implement the BHLAW rule. The left part

of the equation is set to white 4; and the pooled multiple-

scale Mij is replaced by ‘blurred highest luminance’

maxð
P

pqij GA
pqijMijÞ: By rearranging Eq. (A27), we get the

following result:

C0 ¼
BA4

max
X
pq

GA
pqijMij

0
@

1
AðCA 24Þ

: ðA29Þ

Although C0 always closely predicts the real value C;

some adjustments can be made to be more accurate. For

this, the steady-state value of the predicted anchoring

value A0
ij given C0 needs to be calculated from Eq. (A28):

A0
ij ¼

CAC
0Mij

BA þC0Mij

: ðA30Þ

The final values of the anchored signals Aij are

calculated by normalizing the predicted value A0
ij as

follows:

Aij ¼ A0
ij

4

max
X
pq

GA
pqijA

0
pq

0
BB@

1
CCA: ðA31Þ

The normalizing factor in the parenthesis in Eq. (A31)

assures that the final blurred-highest anchoring value

maxð
P

pqij GA
pqijAijÞ equals white 4: This shortcut version

of anchoring runs at least 100 times faster than the one

in Eq. (A19) by cutting hundreds of numerical integration

steps.

Gray-scale to color mapping. To simplify the visual

processing, normalized red ðRI
ijÞ; green ðGI

ijÞ and blue ðBI
ijÞ

color values at each pixel point ði; jÞhaving a range from 0 to 1

are first converted to a luminance input value Iij (Pratt, 1991):

Iij ¼ 0:3RI
ij þ 0:59GI

ij þ 0:11BI
ij: ðA32Þ

In 8-bit color expression having a range from 0 to 255, for

example, each color value needs to be divided by 255 for

normalization. After calculating the retinal preprocessing

stage in Eq. (A4), the ratio Sij=Iij at each pixel point is

calculated as follows:

rSI
ij ¼

Sij

Iij

: ðA33Þ

Using this ratio rSI
ij ; the corresponding color (RS

ij;G
S
ij;B

S
ij)

values for Sij are calculated as follows:

RS
ij

GS
ij

BS
ij

0
BBB@

1
CCCA ¼ rSI

ij

RI
ij

GI
ij

BI
ij

0
BBB@

1
CCCA: ðA34Þ

Eqs. (A33) and (A34) convert the first neural signal in the

visual pathway into the corresponding color values. These

luminance signal and the color signals are used to recover the

anchored color lightness in the following.

After calculating the anchored lightness Aij in Eq. (A19),

the normalized lightness is calculated

Ap
ij ¼

Aij

4
; ðA35Þ

where the white 4 is the same constant as in Eq. (A21) and

Figs. 4 and 5. Then the ratio between Ap
ij and Sij is calculated

rAS
ij ¼

Ap
ij

Sij

: ðA36Þ

To express bright red, green and blue values, the ratio rAS
ij

was divided into a color portion rAC
ij and a luminance portion
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rAL
ij : For example, a bright blue with luminance 0.3 may

have a near-saturating value for blue (luminance 0.11) as the

color portion, and some red and green of an equal value as

the luminance part (luminance 0.19). The color part of the

ratio is calculated as follows:

rAC
ij ¼ V

2

1 þ exp½2ð2rAS
ij =VÞ�

2 1

( )
; ðA37Þ

where V is a constant that sets the asymptote (Fig. A3). The

difference between and rAC
ij is taken as a luminance

component:

rAL
ij ¼ rAS

ij 2 rAC
ij : ðA38Þ

Fig. A3A shows how the model assigns the color and

luminance parts for a color representation of the output. The

curve corresponds to the color part rAC
ij in Eq. (A37).

The broken line represents the ideal situation where the

achromatic luminance and chromatic luminance are always

the same ðrAC
ij ¼ rAS

ij Þ: The difference between the broken

line and the curve is the luminance part rAL
ij : Eq. (A37)

assigns a larger fraction to luminance as the ratio rAS
ij

increases. Since rAS
ij . 1 means that the anchored lightness

Ap
ij is larger than the retinally processed signals Sij in Eqs.

(A4) and (A37) prevents colors from saturating by

increasing the contribution of luminance when the anchored

lightness becomes larger than the retinal signal. The two

color and luminance channels are combined to define the

perceived color:

RA
ij

GA
ij

BA
ij

0
BBB@

1
CCCA ¼ rAC

ij

RS
ij

GS
ij

BS
ij

0
BBB@

1
CCCAþ rAL

ij

Sij

Sij

Sij

0
BB@

1
CCA: ðA39Þ

Fig. A3C shows an example of model output where the

saturation of red has been corrected. Instead of increasing

the reddish color value linearly to match the achromatic

luminance value, as in Fig. A3D, the model properly mixes

the corrected color part by Eq. (A37) with the complemen-

tary luminance part to prevent saturation of red, thereby

generating a natural looking output.

Eqs. (A38) and (A39) assure that the color luminance,

defined as

AL
ij ¼ 0:3RA

ij þ 0:59GA
ij þ 0:11BA

ij ðA40Þ

Fig. A3. (A) The achromatic luminance is divided into color part (the curve) and luminance part (the difference between the broken line and the curve). The

broken line corresponds to rAC
ij ¼ rAS

ij V is the asymptote of the curve. (B) Stimulus. (C) Output of the model. (D) An output without color correction. The output

used rAC
ij ¼ rAS

ij in place of Eq. (A37). ((B) is reproduced with permission from Kimmel et al., 2003.)
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has the same luminance as the corresponding normalized

achromatic luminance Ap
ij: This fact can be proved as

follows. First, using the definition RA
ij ;G

A
ij and BA

ij in

Eq. (A39), Eq. (A40) can be rewritten as follows:

AL
ij ¼ 0:3ðrAC

ij RS
ij þ rAL

ij SijÞ þ 0:59ðrAC
ij GS

ij þ rAL
ij SijÞ

þ 0:11ðrAC
ij BS

ij þ rAL
ij SijÞ: ðA41Þ

By rearranging, it becomes

AL
ij ¼ {0:3rAC

ij RS
ij þ 0:59rAC

ij GS
ij þ 0:11rAC

ij BS
ij} þ rAL

ij Sij:

ðA42Þ

The color luminance in Eq. (A42) includes the

contributions by the color part (the terms in the bracket)

and the luminance part (the last term). For the normalized

achromatic luminance Ap
ij; an identical form as Eq. (A42)

can be derived. First, by combining Eqs. (A32)–(A34) we

can show the following relationship

Sij ¼ 0:3RS
ij þ 0:59GS

ij þ 0:11BS
ij: ðA43Þ

A combination and rearrangement of Eqs. (A36) and

(A43) leads to the following:

Ap
ij ¼ 0:3rAS

ij RS
ij þ 0:59rAS

ij GS
ij þ 0:11rAS

ij BS
ij: ðA44Þ

Eq. (A44) can be rewritten as follows

Ap
ij ¼ 0:3ðrAC

ij þ rAS
ij 2 rAC

ij ÞRS
ij þ 0:59ðrAC

ij þ rAS
ij 2 rAC

ij ÞGS
ij

þ 0:11ðrAC
ij þ rAS

ij 2 rAC
ij ÞBS

ij: ðA45Þ

A rearrangement of Eq. (A45) leads to:

Ap
ij ¼ {0:3rAC

ij RS
ij þ 0:59rAC

ij GS
ij þ 0:11rAC

ij BS
ij}

þ ðrAS
ij 2 rAC

ij Þ{0:3RS
ij þ 0:59GS

ij þ 0:11BS
ij}: ðA46Þ

Using the relationships in Eqs. (A38) and (A43), Eq. (A46)

can be rewritten as follows:

Ap
ij ¼ {0:3rAC

ij RS
ij þ 0:59rAC

ij GS
ij þ 0:11rAC

ij BS
ij} þ rAL

ij Sij:

ðA47Þ

Notice that AL
ij in Eq. (A42) is the same as Ap

ij in Eq. (A47),

proving that the color luminance and the corresponding

achromatic luminance are the same.

When there is a value bigger than 1 in any of RA
ij ;G

A
ij and

BA
ij ; the value is truncated to 1, and no more correction is

performed.

Appendix B

The stimuli used to generate the shift property of

the retinal sensitivity in Fig. 2B were generated by

the following formula

Iij ¼ rijEij; ðB1Þ

where Iij is the luminance at position ði; jÞ; rij is the

reflectance at point ði; jÞ; and Eij is the illumination of ði; jÞ

(Hurlbert, 1989). For a given stimulus, Eij was chosen to be

uniform across the image. To examine the full dynamic

profile of the shift property, the range of rij was chosen to be

24 to 5 in log-scale for a fixed illumination level. See

Fig. 2B for the values of illumination Eij used for the

simulations.

For all other stimuli used in the paper except for the

stimulus in Fig. 7, Eq. (B1) with Eij ¼ 1 was used. For the

stimulus in Fig. 7, the following equations are used

rij ¼ 0:3; if ð40 , i , 70; and 85 , j , 115Þ;

or if ð130 , i , 160; and 85 , j , 115Þ

rij ¼ 0:1; otherwise;

8>><
>>:

ðB2Þ

and

Eij ¼ 1 þ
1

125
i: ðB3Þ

Appendix C

The relationship between the size of the connected

neighborhood in Eq. (A8) and the speed of diffusion in Eq.

(A6) is measured using a 50 £ 50 two-dimensional ði; jÞ grid

where the diffusive process is unimpeded.

Before the diffusive process (at t ¼ 0), a test

stimulus (INPUT in Fig. 15B) that has signals only at the

rightmost part of the square is loaded to the diffusive layer

as follows:

hijð0Þ ¼
0:5; if 36 # i # 50;

0; otherwise:

(
ðC1Þ

The white region of INPUT in Fig. 15B indicates the

active portion. The units in Eq. (A6) then go through an

unimpeded diffusion (the permeabilities Ppqij ¼ 1)

dhij

dt
¼

X
ðp;qÞ[NH

ij

ðhpq 2 hijÞ; ðC2Þ

where neighborhood NH
ij is defined in Eq. (A8). When

the grid is ‘filled-in’, the process (C2) is terminated. The

criterion of filled-in is when the leftmost column of the

square grid becomes as active as 95% of the rightmost

column of the grid. This criterion is chosen to make a

convincingly homogeneous spread of signals. The size of

the connected neighborhood 1H in Eq. (A9), which

corresponds to ‘SIZE OF NEIGHBORHOOD’ in Fig. 15B,

varied from 1 to 15. The number of iterations of numerical

integration needed to fill-in the grid was measured for

each 1H:
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