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a b s t r a c t

Batch type production strategies need adoption of cellular manufacturing (CM) in order to improve oper-
ational effectiveness by reducing manufacturing lead time and costs related to inventory and material
handling. CM necessitates that parts are to be grouped into part families based on their similarities in
manufacturing and design attributes. Then, machines are allocated into machine cells to produce the
identified part families so that productivity and flexibility of the system can be improved. Zero-one
part-machine incidence matrix (PMIM) generated from route sheet information is commonly presented
as input for clustering of parts and machines. An entry of ‘1’ in PMIM indicates that the part is visiting the
machine and zero otherwise. The output is generated in the form of block diagonal structure where each
block represents a machine cell having more than one machines and a part family. The major limitations
of this approach lies in the fact that important production factors like operation time, sequence of oper-
ations, and lot size of the parts are not accounted for. In this paper, an attempt has been made to propose
a clustering methodology based on adaptive resonance theory (ART) for addressing these issues. Initially,
a methodology considering only the operation sequence of the parts has been proposed. Then, the meth-
odology is suitably modified to deal with combination of operation sequence and operation time of the
parts to address generalized cell formation (CF) problem. A new performance measure is proposed to
quantify the performance of the proposed methodology. The performance of the proposed algorithm is
tested with benchmark problems from open literature and the results are compared with the existing
methods. The results clearly indicate that the proposed methodology outperforms the existing methods
in most cases.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The primary concern in cellular manufacturing is to adopt group
technology (GT) for identification of machine cells and part fami-
lies so that performance measures related lead time, inventory
and material handling can be enhanced. For constructing better
manufacturing layout the cell formation problem is treated as an
important issue since it makes a distinction over the conventional
layouts (Vitanov, Tjahjono, & Marghalany, 2007). Usually, part-ma-
chine incidence matrix (PMIM) developed from route sheet infor-
mation (Fig. 1) is presented as input to any clustering algorithm.
In PMIM the ‘1’s represent the visit of a part to a particular machine
and the zeros represent non visits. From the output matrix, part
families and machine cells are identified from the diagonal blocks.
If ‘1’s appear in off-diagonal blocks, they represent inter-cell move-
ments of parts. Later researchers considered some real life produc-
tion data like operational time of the parts and operational
sequence of the parts to be processed in various machines instead
of considering ‘1’s in the input matrix as illustrated with an exam-
ll rights reserved.

: +91 661 2462999.
(R. Sudhakara Pandian),
ple in Table 1. Several methods viz., array manipulation, hierarchi-
cal clustering, non-hierarchical clustering, mathematical
programming, graph theory, heuristics and metaheuristics exist
in the literature to solve cell formation (CF) problem (Jeffrey Schal-
ler, 2005; Venugopal & Narendran, 1992). These methods are found
to produce good solutions for well structured matrices where part
families and machine cells exist naturally (Gupta, 1991). However,
they fail to produce so for ill structured matrices and end up with
many exceptional elements.

Adaptive resonance theory (ART1), a class of neural networks,
has been proposed by Carpenter and Grossberg (1987). Dagli and
Huggahalli (1995) have demonstrated the ability of a neural net-
work in solving cell formation problem. The iterative activation
and competition model proposed by Moon (1990) exhibited a sig-
nificant advantage over earlier algorithms when PMIM is presented
as input. The major demerit with these approaches is that they do
not take into account the other important real time production fac-
tors such as operational times, sequence of operations, and produc-
tion lot sizes that have significant bearing on smooth flow of
materials in group technology layout. When actual production fac-
tors are considered, the input matrix consists of non-binary and
real valued elements and finds difficulties in representation while
solving CF problem. However, two popular algorithms viz., the
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Fig. 1. Route sheet. (Courtesy: J.L. Burbidge (1989). Production flow analysis for planning group technology, Oxford University press, New York.)

Table 1
Machine Part incidence matrix (3 � 3) with sequence data

Machine/part M1 M2 M3

P1 1 2 0
P2 3 1 2
P3 2 0 1
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clustering algorithm (Nair & Narendran, 1999) and fuzzy ART algo-
rithm (Suresh, Slomp, & Kaparthi, 1999) found in the literature
have been proved to produce satisfactory results for the CF prob-
lem with non-binary data. In order to evaluate the goodness of
the cell formation, a good number of performance measures have
been proposed in the literature (Harhalakis, Nagi, & Proth, 1990;
Kumar & Chandrasekharan, 1990; Nair & Narendran, 1996; Zolfag-
hari & Liang, 2003).

In this work, an attempt has been made to use the operation se-
quence of the parts known as ordinal level data and the operation
time of the parts known as ratio level data or workload data which
are obtained through the route sheets to group the parts into part
families and machines into machine cells. The proposed algorithm
employs the principle of modified ART1 network found in the liter-
ature (Venkumar & Haq, 2005). Basically, the ART1 network classi-
fies a set of binary vectors into groups based on their similarity.
The ART1 recognizes patterns and clusters the binary vectors with
the recognized pattern based on the comparison mechanism (Kao
& Moon, 1991). The proposed algorithm first converts the given
non-binary data into a zero-one binary matrix known as part ma-
chine precedence matrix (PMPM) and feed the ART1 network with
PMPM as the input matrix.

2. The overview of ART1

The ART1 network is an unsupervised vector classifier that ac-
cepts input vectors that are classified according to the stored pat-
terns if they resemble most. It also provides a mechanism of
adaptive expansion of the output layer of neurons until an ade-
quate size is reached based on the number of classes inherent in
the observation. The ART1 network can adaptively create a new
class corresponding to an input pattern if it is determined to be
sufficiently different from existing clusters. This determination
called the vigilance test is incorporated into the network. Thus,
the ART1 architecture allows the user to control the degree of sim-
ilarity of patterns placed in the cluster. In this work, ART1 network
is adapted to group the binary matrix which is given in the form of
part-machine precedence matrix for the considered CF problem.
The ART1 network has two layers. One is the input layer (also
called as comparison layer) and the other one is the output layer
(also called as recognition layer). Every input (bottom) neuron is
connected to every output (top) layer neurons. There are bottom-
up weights (bij) associated from the input neurons to the output
neurons and top-down weights (tji) associated from the output
neurons to the input neurons. The bottom-up weights are used
for cluster competition and top-down weights are used for cluster
verification.

In this work, an ART1 based algorithm is proposed to handle the
cell formation problem with operation time and operation se-
quence of the parts. In Section 3, the algorithm based on ART1 is
proposed for solving cell formation problem with only operation
sequence information as input data. In Section 5, the ART1 based
cell formation algorithm with combined data operation sequence
and time is proposed.
3. The ART1 based algorithm for cell formation with operation
sequence

The input is considered from the route sheet of the parts. A
typical route sheet from Burbidge (1989) is given in Fig. 1. Table
1 illustrates the matrix with sequence data. There are three dis-
similar machines (M1, M2 and M3) and three parts (P1, P2 and
P3). Part 1 and Part 3 are having two operations whereas Part 2
has three operations. The sequence or the order of the operations
of each part varies. Thus P1 visits M1 for its first operation and
M2 for its second operation. P2 visits M2 for its first operations
and M3 for its second operations and M1 for its third operation.
P3 visits M3 for its first operation and M1 for its second opera-
tion. Since the final products are dissimilar each part has different
sequence of operations. If the requirement of machines are only
considered then all the non zero values become ones and the
zeros remain unchanged which is known as part machine inci-
dence matrix (PMIM). In this section the methodology uses
ART1 where the input to the algorithm contains only zero-one
binary elements. In Section 5, a modified ART 1 is proposed to
handle combination of both operational time and sequence of
the parts, expressed in non zero values measured in ratio scale
(known as ratio level data). Since it is not possible to make use
of ART1 as proposed by Carpenter and Grossberg (1987), ART1
is modified such that Euclidean distance measure is included to
handle the ratio level data. This is one of the main contributions
of the work presented in this paper.
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The input to the algorithm proposed in this section is the se-
quence based part-machine incidence matrix (PMIM) of size
‘N �M’ for N parts and M machines cell formation problem.

3.1. Phase 1. Formulation of part-machine precedence matrix

Step 1: Using the given PMIM with sequence data, a machine–

machine precedence matrix (MMPM) of size M �M is con-
structed for every part. Each row of a MMPM represents a
machine and the ‘1’s in the row indicate the machines
which are required for the part j subsequently. The row
corresponding to the first machine to be visited by the
part, the ‘1’s are given to all the machines required by
the part, thus it holds the maximum number of ones in
the MMPM of the particular part. The number of ‘1’s is
decreased by ‘1’ to the subsequent machines required by
the part. For the rows corresponding to the machine which
are not required by the part, all the elements are assigned
with zero.

Step 2: Using the ‘N’ number of MMPMs, a single part-machine
precedence matrix (PMPM) of size ‘N � (M �M)’ is con-
structed. Each row of the PMPM corresponds to a part
and the element of the row is obtained by placing all the
rows of the MMPM in a linear sequence.
Table 2
Part machine incidence matrix (7 � 5) with sequence data

m1 m2 m3 m4 m5

p1 1 2 0 3 0
p2 0 1 2 0 3
p3 2 0 0 1 3
p4 0 1 2 0 3
p5 1 2 0 3 0
p6 3 0 1 0 2
p7 0 3 0 2 1
3.2. Phase 2. Grouping of parts into part families using ART1

The PMPM obtained from the phase1 is given as input to the
ART1 network.

Step 1. Before starting the network training process, the bottom-
up weights bij and top-down weights tjiare set to initial
values by using the Eqs. (1) and (2) respectively.

bij ¼
1

ð1þ NÞ for all i and j ð1Þ

tji ¼ 1 for all i and j ð2Þ

The vigilance threshold q is suitably selected such that 0 < q < 1.
Step 2. Apply new input vector Xi.
Step 3. Compute matching scores using Eq. (3).The output lj of

every output node j equals

lj ¼
X

i

bijðtÞxi for j ¼ 0;1; . . . ; ðM-1Þ ð3Þ

Step 4. Select best matching exemplar i.e. node (h) with maximum
output lh = max(lj). Outputs of other neurons are sup-
pressed. In case of tie choose the neuron with lower j.

Step 5. Vigilance test i.e. test of similarity with best matching
exemplars.Compute kXk ¼

P
ixi number of 1’s in the input

vector.Compute kT � Xk ¼
P

itih � xi number of perfectly
matching 1’s between input vector and best matching
exemplar.

Step 6. Similarity check. If their similarity kT�XkkXk > q then go to step 7.
Step 7. Disable the best exemplar temporarily output of the best

matching node selected in the step 4 is temporarily set
to zero; other outputs have already been suppressed.Then
go to step 3. In step 3, a new neuron in the output layer
gets selected to represent the new class.

Step 8. Update best matching exemplar using Eqs. (4) and (5).

tihðt þ 1Þ ¼ tihðtÞ � xi ð4Þ

bihðt þ 1Þ ¼ tihðtÞ � xi

0:5þ
P

itihðtÞxi
ð5Þ

Step 9. Repeat the step 2 after enabling any nodes disabled in step 6.
The output of this phase will be the optimal number of part
families and the list of parts within each part family.

3.3. Phase 3. Grouping of machines into machine cells

Step 1. Each machine is allocated to a cell corresponding to a par-
ticular part family where the total number of operations
required by all the parts in the family put together is
maximum.

Step 2. The columns of the output are rearranged into block diag-
onal form such that the number of inter-cell movements
are kept minimum.
4. Numerical illustrations

Table 2 shows the sequence based PMIM of an example prob-
lem where seven parts are to be processed using five machines.
For every part, a MMPM is constructed. Table 3 shows the MMPM
for the parts P1and P2. Table 4 shows the PMPM constructed as per
step 2 of phase I of the algorithm. Table 5 shows the output of the
algorithm. There are two part families and machine cells. The parts
p2, p3, p4 and p6 are associated with the machines m1, m2 and m4
in one family and the parts p1, p5 and p7 are in another family
associated with the machines m3, m4 and m5. It is observed from
the output matrix that parts p2, p4, p6 and p7 have one excep-
tional element each (i.e. ones in off-diagonal blocks) and so each
of the respective parts have one inter-cell move The part p3 has
two exceptional elements but one inter-cell move because both
the exceptional elements belong to the same cell. Hence, there
are six exceptional elements and five inter-cell moves. The group
technology efficiency (GTE) is calculated using Eq. (10) and found
to be 64.3% (Nair & Narendran, 1998).

5. The ART based algorithm for cell formation with combined
operation sequence and time

The Sections 3 and 4 deal with the cell formation problem con-
sidering only the sequence data where the proposed ART1 takes
into account only the binary form of the matrix and produces the
results. In this section, the operational time of the parts is also ta-
ken into account and thereby a new matrix known as Matrix of
Combined data as described in the algorithm (steps 1–3) is con-
structed after combining both sequence of parts and operational
time of parts. So, the input to algorithm will be a matrix containing
ratio level data and hence the ART1 proposed in Section 3 phase 2
will be further modified to consider the operational time also as gi-
ven in steps (5–15).

The input to the algorithm is the matrices showing operational
time of the parts and operational sequence of the parts based part-
machine incidence matrix (PMIM) of size N �M.

Step 1. Using the given PMIM with the sequence data, for every
part, a machine–machine precedence matrix (MMPM) of
size M �M is constructed. Each row of a MMPM repre-



Table 3
Machine–machine precedence matrix for parts

For part-1 For part-2

m1 m2 m3 m4 m5 m1 m2 m3 m4 m5

m1 1 1 0 1 0 m1 0 0 0 0 0
m2 0 1 0 1 0 m2 0 1 1 0 1
m3 0 0 0 0 0 m3 0 0 1 0 1
m4 0 0 0 1 0 m4 0 0 0 0 0
m5 0 0 0 0 0 m5 0 0 0 0 1

Table 5
Output matrix of size (7 � 5)
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sents a machine and the ones in the row indicate the
machine ids subsequently required by the part under
consideration. Hence, the row corresponding to the first
machine to be visited by the part has ones in case of all
the machines subsequently required by the part and
thus, it holds the maximum number of ones in the
MMPM of the particular part. Similarly, the row corre-
sponding to the machine where last operation in the
operation sequence of the part is to be carried out con-
tains minimum number of ones (i.e. only one). The rows
corresponding to the machine which are not required by
the part, all the elements are assigned with zero.

Step 2. Using the n number of MMPMs a single part machine
precedence matrix of size N � (M �M) is constructed.
Each row of the PMPM corresponds to a part and the ele-
ment of the row is obtained by placing all the rows of the
MMPM in a linear sequence.

Step 3. Multiply all the ones present in the PMPM by the respec-
tive workload data from the work load matrix. The new
matrix is a combination of ordinal and ratio level data
which is named as matrix of combined data (MCD).

Step 4. The MCD will be the input to the modified ART1 which is
given in the steps (5–15).

Step 5. Set nodes in the input layer equal to N (number of parts)
and nodes in output layer equal to (M �M) where M is
the number of machines. Set vigilance threshold (q).

Step 6. Initialize top-down connection weights.Top-down
weights wtji (0) = 0 for i = 1, 2,. . .N and j = 1,2,. . .(M �M).

Step 7. Let q = 1. The first input vector X1 (first row of the work-
load matrix) is presented to the input layer and assigned
to the first cluster. Then, first node in the output layer is
activated.

Step 8. The top-down connection weights for the present active
node are set equal to the input vector.

Step 9. Let q = q + 1. Apply new input vector Xq (input vectors are
the rows of the PMPM).

Step 10. Compute Euclidean distance between Xq and the exem-
plar stored in the top-down weights (wtji) for all the
active nodes i as given in the Eq. (6). This distance func-
tion is used to calculate similarity between the stored
pattern and the present input pattern. If the similarity
value is less than or equal to q (vigilance threshold),
the present input is categorized under the same cluster
as that of stored pattern.
Table 4
Part machine precedence matrix for the problem size 7 � 5

1 2 3 4 5 6 7 8 9 0 11 12 13

P1 1 1 0 1 0 0 1 0 1 0 0 0 0
P2 0 0 0 0 0 0 1 1 0 1 0 0 1
P3 1 0 0 0 1 0 0 0 0 0 0 0 0
P4 0 0 0 0 0 0 1 1 0 1 0 0 1
P5 1 1 0 1 0 0 1 0 1 0 0 0 0
P6 1 0 0 0 0 0 0 0 0 0 1 0 1
P7 0 0 0 0 0 0 1 0 0 0 0 0 0
ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

j¼1
ðxqj �wtjiÞ2

r
ð6Þ

Step 11. Perform vigilance test. find out minimum Euclidean
distance.

Step 12. If min ei leq q (threshold value), select output node for
which Euclidean distance is minimum. If tie occurs,
select the output node with lowest index number. Sup-
pose output node k is selected then allocate the vector
Xq to the node k (cell) and activate node k. Make incre-
ment to the number of parts in the active node k by
one. If eis for all active nodes are greater than q, then
go to step 13.

Step 13. Start a new cell by activating a new output node.
Step 14. Update top-down weights of active node k.The decision

for belongingness of an input vector to a node (cluster)
is determined using similarity between previously
stored exemplar with present input pattern. In other
words, top-down weights play the role of storing exem-
plars (for active nodes) for comparison purpose. There-
fore, top-down weights must contain relevant
information of all the input vectors already classified
under an active node (cluster) in aggregate nature. The
top-down weights are updated each time when a new
input vector is presented and clustered to an active
node. When a vector is selected (to be allocated to an
output node), its top-down weights are updated using
more information of the previously stored exemplar
and a relatively less information of the input vector
(pattern) as shown in Eq. (7).

wtjk ¼
n
m
�wtjk

� �
þ 1

m
� xqj

� �
ð7Þ

Step 15. Go to step 5 and repeat till all the rows are assigned in
the output nodes (cells).

Step 16. Check for single ton part family. If a single ton is found in
any part family, then perform the following operations to
merge the part family with one part into any other part
families.
� Determine average of processing time in each part

family.
� Calculate the Euclidean distance between the part

families.
14 15 16 17 18 19 20 21 22 23 24 25

0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 1 1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 1 0 1 1
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� Merge the part family containing single part with
another part family in such a way that Euclidean dis-
tance between them is minimum than other part
families.

Step 17. Allocate machines to the part families using following
procedure.
� The number of operations of a part in a particular

machine is computed. If the part has maximum num-
ber of operations in machine i then the machine i is
allocated to that part family where the part exists.

� In case tie occurs the machine is allocated with the
part family where minimum inter-cell moves are
possible.

� If again tie occurs the machine is allocated with the
small identification number of part family.
l

Table 6
Output sequence matrix for the problem of size 12 � 10
6. Measure of performance

There are some popular measures like grouping efficiency and
group efficacy (Kumar & Chandrasekharan, 1990) for measuring
the goodness of the block diagonal structure of the output matrix
in CF problems. However, all these measures treat all the opera-
tions equally and are suitable only for the binary matrix. These
measures cannot be adopted for generalized cell formation prob-
lem where operational sequence and time of the parts are
considered.

Therefore, group technology efficiency (GTE) given by Harhala-
kis et al. (1990) and modified grouping efficiency by Mahapatra
and Sudhakara Pandian (2007) can be conveniently used to mea-
sure the performance considering sequence of parts and opera-
tional times of the parts respectively. Group technology
efficiency is defined as the ratio of the difference between the max-
imum numbers of inter-cell travels possible and the numbers of in-
ter-cell travels actually required by the system to the maximum
numbers of inter-cell travels possible.

The maximum numbers of inter-cell travels possible in the sys-
tem is

Ip ¼
XN

j¼1

ðn� 1Þ ð8Þ

Ir ¼
XN

j¼1

Xn�1

w¼1

tnjw ð9Þ

tnjw ¼ 0 if the operations w; wþ 1 are performed in the same cel

¼ 1 otherwise:

GTE ¼ Ip � Ir

Ip
ð10Þ

In this work the modified grouping efficiency (Mahapatra &
Sudhakara Pandian, 2007) is redefined as grouping efficiency
for ratio level data as given in Eq. (11) which is given by the ra-
tio between the total processing time inside the cells to the
summation of exceptional elements, total processing time of
the cells and total value of the voids (given by the voids factor)
present in the cells. Voids factor for cell k is calculated by mul-
tiplying the number of voids in cell k to the average time of ma-
chine i in cell k. The void factor of cell k is multiplied by the
total processing time of cell k to give the value of voids present
in cell k.

GER ¼
Pc

k¼1Tptk

Ne þ
Pc

k¼1Tptk þ
Pc

k¼1ðNvi �
P

TikP
Np
Þ

ð11Þ
But in case of GER the operation sequence is not addressed to
make it a generalized one. GTE is used to measure the performance
of the output matrix with the information of sequence of parts.
There is no measure found in the literature to include both the
information combined. Hence, a new measure of grouping effi-
ciency termed as ratio–ordinal combined efficiency (ROCE) has
been proposed in this work to find out the goodness of the group-
ing in the cell formation problem that deals with both operation
sequence and time in the input matrix with due consideration of
equal weightages to both the data. Ratio–ordinal combined effi-
ciency is calculated using the Eq. (12).

Ratio–ordinal combined efficiency (ROCE) is defined as the
weighted average of grouping efficiency for ratio level data (GER)
and group technology efficiency (GTE).

ROCE ¼ qðGERÞ þ ð1� qÞðGTEÞ ð12Þ

Tptk total processing time inside cell k
Tik total time taken by ith machine in cell k
Np number of parts having operation in ith machine
Nvi number of voids in ith machine
Ne total number of exceptional elements
Ip maximum number of inter-cell travel possible in the sys-

tem
Ir number of inter-cell travel actually required by the system
n number of operations (w = 1,2,3, . . .,n)

The problem of size 12 � 10 from (George, Rajendran, & Ghosh,
2003) is considered for illustrating the proposed performance mea-
sure ROCE. Initially the input matrix (12 � 10) is fed into the algo-
rithm. The output generated is given in Tables 6 and 7. Table 6 is
the output matrix with operation sequence data. Table 7 repre-
sents the output matrix in terms of operation time. The total num-
ber of exceptional elements of the matrix (Ne = 4). The total
processing time inside each cell has been calculated and found to
be (Tptk)) (Tpt1 = 11.4), (Tpt2 = 10.05), (Tpt3 = 4.01). The number of
voids in each column is a count of zeros present in the respective
columns inside the cells (Nvi)) (Nv1 = 1, Nv4 = 1, Nv5 = 1, Nv8 = 2,
Nv9 = 1, Nv10 = 1). The average of the operational time of parts in
each column is calculated which is multiplied by the respective Nvi

values to get the void factor. The maximum number of inter-cell
travel possible in the system (Ip) is found to be 25 and the number
of inter-cell travel actually required (Ir) by the system is 4. The
maximum number of operations (n) is given as 5. The values of
GER, GTE and ROCE are calculated using by substituting these val-
ues in Eqs. (10)–(12). Hence the value of GER is 0.7645, GTE = 0.84
and ROCE = 0.8023.

These values are calculated for the output of the existing meth-
ods and presented in Table 8.

It is observed that the results of the proposed performance mea-
sure outperforms the existing methods such as ACCORD (Nair &



Table 7
Output matrix with operation time for the problem of size 12 � 10

Table 8
Comparison of the results of the proposed method over existing methods for the
problem of size 12 � 10

Factors considered ACCORD Analytical iterative
approach

Proposed
method

Exceptional elements 5 5 4
Grouping efficiency 0.881 0.881 0.897
Grouping efficacy 1.026 1.026 1.026
Grouping efficiency (GER) (%) 69.24 69.24 76.45
Group technology

efficiency(GTE) (%)
80.00 80.00 84.00

Ratio–ordinal combined
efficiency (ROCE) (%)

74.62 74.62 80.23

Table 10
Performance of the proposed algorithm on test data sets

S. No. Problem
size

Exceptional
elements

Inter-cell
moves

GTE GER ROCE

1 5 � 4 0 0 100.00 83.48 91.74
2 5 � 5 1 1 85.71 81.15 83.43
3 7 � 5 6 5 64.30 72.01 68.16
4 8 � 6 2 2 84.61 70.15 77.38
5 19 � 12 8 9 83.93 65.08 74.51
6 20 � 12 11 10 78.00 59.56 68.78
7 20 � 20 3 3 94.00 84.25 89.13
8 30 � 15 21 17 76.71 60.02 68.37
9 37 � 20 25 25 71.59 60.99 66.29

10 50 � 25 49 46 69.13 58.39 63.76
11 55 � 20 15 19 81.20 66.03 73.62
12 60 � 28 39 38 70.50 57.20 63.85
13 65 � 30 58 52 76.68 59.59 68.14
14 80 � 32 53 59 74.57 62.28 68.43
15 90 � 35 54 56 77.69 62.26 69.98

Table 11
CPU time for the proposed algorithm

S. No. Problem size CPU time (s)

1 5 � 4 0.060213
2 30 � 15 0.396320
3 90 � 35 1.854945
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Narendran, 1999) and analytical iterative approach (George et al.,
2003).

7. Results and discussions

In this study, an efficient algorithm is proposed based on ART1
for generalized cell formation problem. The algorithm is coded in
C++ and run on an IBM Pentium IV PC with 2.4 GHz Processor. Table
9 shows different size problems selected from open literature
(George et al., 2003 & Nair & Narendran, 1998) for testing the pro-
posed algorithm. For all trial data sets shown in Table 10, the input
matrix is generated with uniformly distributed random numbers in
the range of 0.5–5 for operational time and 1–9 for operational se-
quence. The problem sizes considered in this work range from
5 � 4 to 90 � 35.

The computational time required to obtain solution is reported
for few sample problems in Table 11. The results are compared
with the results produced by CASE algorithm (Nair & Narendran,
1998) as shown in Table 9. In addition a new weighted average
performance measure ROCE is proposed that measures the perfor-
mance of the algorithm proposed and tested with fifteen trial data
Table 9
Comparison of the proposed algorithm with CASE

Problem
size

No. of cells CASE

Exceptional
elements

Inter-cell
moves

Group technol
efficiency

7 � 7 2 2 4 69.25
3 3 6 53.85

20 � 8 3 10 17 58.54

20 � 20 4 NA NA NA
5 15 19 67.80

40 � 25 5 NA NA NA
8 35 31 66.67

NA, not available.
sets. The results are found to be consistent for all the data sets
tested which are shown in Table 10. Table 12 shows the block diag-
onal matrix produced by the proposed algorithm for the 40 � 25
example problem found in the literature (Nair & Narendran,
1998). The result of the example problem of size (12 � 10) ob-
tained by the proposed algorithm outperforms other two methods
as shown in Table 8. The weights for the exceptional elements
(ones outside the cells) are given as one. Since in reality, the voids
are not influencing the system as much as that of the exceptional
elements, the weights for the voids (zeros inside the cells) are pro-
portionally taken to the average values of the respective columns
where the voids exist. As for as sequence matrix is concerned the
inter-cell moves are calculated using the Eqs. (8) and (9). If the
operation of a part is allotted in the same cell where the pervious
operation of the part is taken place, then the inter-cell move is con-
sidered as zero. The total possible inter-cell moves are calculated
just by taking summation of the difference between one and max-
imum operation of each part. It is the decision maker’s choice to fix
the value of the weighting factor q while calculating the proposed
performance measure ROCE. In this work the value of q is consid-
ered as 0.5 for illustrating the performance measure by giving
equal weightage to both GER and GTE. The proposed algorithm
provides solution in a single iteration only. The advantage of the
Proposed algorithm

ogy Exceptional
elements

Inter-cell
moves

Group technology
efficiency

2 4 69.25
3 6 53.85

10 17 58.54

12 15 74.58
16 18 69.49

26 22 72.04
35 31 66.67



Table 12
Output matrix by the proposed ART1 based algorithm for example problem of size (40 � 25)
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Fig. 2. Effect of vigilance threshold.
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proposed algorithm lies in its ability to generate quality solution
for large size problems.

In modified ART1, the vigilance threshold (q) value greatly
influences the number of cells obtained. The vigilance thresh-
old value for each problem is varied from 1 to 9. It is found
that the number of cells equals to the total number of ma-
chines if the vigilance threshold value is set at zero. As the
vigilance threshold value increases, the number of cells is re-
duced as shown in Fig. 2. If the vigilance threshold value is
further relaxed, the algorithm produces only one cell. There-
fore, vigilance threshold value plays a vital role for obtaining
quality solution. For each sample problem, it is incremented
in the step of 0.5 starting from zero till desired solution is
obtained.

The algorithm also takes care of avoiding cells with singleton
part family that is encountered at times. The algorithm is flexi-
ble in such a way that the maximum number of parts to be
accommodated in a family can be limited. From the Table 8, it
is observed that the grouping efficiency and grouping efficacy
measures found in the literature produce the values almost same
in case of all the three methods compared. Hence the proposed
grouping efficiency is evidently suitable to measure the perfor-
mance of cell formation algorithm taking into account workloads
on machines, weighting factor for voids, inter-cell moves and
exceptional elements.
8. Conclusions

� In this work, ART1 based algorithm has been developed to solve
the cell formation problem taking into account the production
sequence data and operation time of the parts. In the proposed
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algorithm, a novel method of converting non-binary data into
binary data is proposed for the convenience of dealing with
ratio-level and ordinal level data in cell formation.

� The ART based algorithms have been proposed to address the
issue of consideration of some important real life production
factors and tested with problems of different sizes from open lit-
erature. The resulting solutions are compared with the solutions
obtained by other existing methods. It is observed that the solu-
tions obtained by proposed algorithm either outperform exist-
ing methods or remain the same.

� Since the algorithm uses simple network architecture, it helps to
reduce computational burden compared to other algorithms.
However the limitation of ART 1 lies in the order of presentation
of the input to the network.

� As performance measures for resulting cells in cell formation
problem considering both ratio-level and ordinal level data
hardly exist in the literature, a new performance measure
known as ROCE has been proposed for this purpose.

� The methodology of converting the non binary data into a suit-
able binary data and subsequently by feeding to the ART1 net-
works to solve the CF problem can be suitably modified or
extended to solve the CF problem with other production data
like batch sizes, machine capacity etc. for different objective
criteria.

� The work can be further extended in future incorporating pro-
duction data like machine capacity, production volume, layout
considerations and material handling systems enhancing it to
a more generalized manufacturing environment.
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