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Abstract

Fuzzy ARTMAP is a supervised learning sys-
tem which includes nonlinear dynamics in the
learning process. We introduce a new testing

procedure which allows the system to estimate

the probability of an outcome. Simulations il-

lustrate the system performance in estimating
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risk in medical procedures. The results are com-
pared to the performance of the logistic regres-
sion model. It is shown that both models have

similar, significant explanatory power.

Introduction

The application of neural networks to large com-
plex biomedical data sets can improve predictive
performance compared to regression modeling.
Neural networks can model both linear and non-
linear relationships and update by incorporating

emerging patterns. Here we introduce a neural
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network similar to fuzzy ARTMAP (Carpenter et
al., 1992). Fuzzy ARTMAP is a self-organizing
pattern classification model for supervised learn-
ing and prediction. The performance of the net-
work is compared to that of the logistic regres-
sion model, using a cholecystectomy and diabetes
data set. The task for each model is to predict
the occurrence of an adverse event based on in-
formation about the patient provided by an input
vector. An adverse event is a complication follow-
ing a medical procedure. Fuzzy ARTMAP was
modified to provide probabilistic predictions, as
does the logistic regression model. Performance
of the two models was similar on these data. This
paper includes a short description of the network
architecture, the data organization, and the sim-

ulation results.

Fuzzy ARTMAP and proba-

bilistic predictions

Fuzzy ARTMAP (Figure 1) includes a pair of
Fuzzy ART modules (ART, and ART;) (Carpen-
ter, Grossberg and Rosen, 1991) linked together
via an inter-ART associative memory F*® that is
called a map field. During supervised learning,
ART, receives a stream {a(?)} of input patterns

and ART, receives a stream {b(®} of patterns,

where b(® is the correct prediction given a(®.
These modules are linked by an associative learn-
ing network and an internal controller that en-
sures autonomous system operation in real time.
The controller is designed to create the minimal
number of ART, recognition categories needed to

meet accuracy criteria.

Vigilance parameter p, calibrates the mini-
mum confidence that ART, must have in a recog-
nition category, or hypothesis, activated by an in-
put a(® in order to ART, to accept that category,
rather than search for a better one through an au-
tomatically controlled process of hypothesis test-
ing. Lower values of p, enable larger categories
to form. These lower p, values lead to a broader
generalization and a higher degree of code com-
pression. A predictive failure at ART, increases
pa by the minimum amount needed to trigger
hypothesis testing at ART,, using a mechanism
called match tracking. Match tracking sacrifices
the minimum amount of generalization necessary
to correct the predictive error. Hypothesis test-
ing leads to the selection of a new ART, cate-
gory, which focuses attention on a new cluster of
a(® input features that is better able to predict
b(®). Match tracking allows a single ARTMAP
system to learn a different prediction for a rare

event than for a cloud of similar frequent events
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map field F"’

Figure 1: Fuzzy ARTMAP Architecture

in which it is embedded.

The general ARTMAP network learns to clas-
sify both binary and analogue vectors. This is
accomplished by incorporating fuzzy set-theory
operations (Zadeh, 1965) into the dynamics of
ART modules which is possible due to close for-
mal similarity between the computations of fuzzy
subsethood and ART category choice, resonance,
and learning. A normalization procedure called
complement coding uses on cells and off cells to
represent the input pattern, and preserves the
individual feature amplitudes while normalizing
the total on cell/off cell vector. Learning is stable
because all adaptive weights can only decrease in
time. This feature combined with complement
coding and fuzzy logic, lead to increasing sizes of

category.

A new testing procedure is introduced which
allows the network to, instead of predicting one of
many possible outcomes, provide probabilities for
each outcome. During testing, instead of select-
ing just one winner in the ART, module, K se-
lected winners combine their predictions to yield
a probabilistic prediction score. The influence of
each category participating in the prediction is
weighted by the level of the category’s activation,
as well as by the total number of training pat-
terns which participated in the formation of the
category. Layer G* stores the number of training
inputs for each Fj category. Improved prediction
is achieved by training the system several times

using different orderings of the input set.

An ARTMAP voting strategy is based on the
observation that fast learning typically leads to
different adaptive weights and recognition cate-
gories for different orderings of a given training
set, even when the predictive accuracy of all sim-
ulations is similar. The different internal cate-
gory structures cause the set of test set items
where errors occur to vary from one simulation to
the next. The voting strategy uses an ARTMAP
system that is trained several times on one input
set with different orderings. The final prediction
for a given test set item is the one made by the

largest number of simulations.




Data Description

Two data sets were tested with the network. The
first database was a random sample of cholecys-
tectomy cases from 1985 and 1986, selected from
the Medicare files of seven states. Abstracted
data composed of the presence or absence of
about 250 key clinical findings (KCF’s) collected
using a modified MedisGroups protocol(Iezzoni
and Moskowitz, 1988), were provided for each
of 3182 patient. Sixteen types of severe adverse
events (including mortality within 30 days of ad-
mission), which are major complications occur-
ring after cholecystectomy, were defined. The oc-
currence of any severe adverse event was marked
as positive in the binary outcome vector. 16.4%
of cases had at least one adverse event. The di-
mensionality of the input vector was reduced to
16 out of 62 most important KCF’s by automatic
feature extraction preprocessing. KCF’s signifi-
cantly associated (p < .05) with each of the 16
types of adverse events were summed. These 16
sums and an age variable were used to construct
an input vector. The models task was to pre-
dict the probability of occurrence of a positive

outcome after presenting the input vector.

The other database contained data from dia-
betes patients. We predict an abnormally high

evening glucose level based on measurements of

patient’s blood glucose level and insulin doses
during previous 24 hour period. We employed
data about previous evening, morning and the af-
ternoon blood glucose level and regular and NPH
insulin doses taken at these times as input infor-
mation to models. Thus the temporal informa-
tion about changes in blood glucose level and in-
sulin doses are combined to construct a position-
ally organized analogue input vector. The out-
come, abnormally high or normal blood glucose
levelin the evening, is binary. Data from different
patients were not combined so that the network
was trained individually for each patient. The

network was tested on three different patients.

The two data sets described above offer differ-
ent approaches - in the first one we are predicting
the behavior of a new patient based on the ex-
perience with previously observed patients, while
in the diabetes data we make predictions based

on a patient’s previous history only.

Results

Both the neural network and the logistic regres-
sion model provide a probabilistic estimate of the
occurrence of an adverse event while the actual
outcome in both data sets is binary. To eval-

uate the performance of models the C-statistic




and R-squared index were used. The C-statistic
may be interpreted as the likelihood that the
model correctly assigns a higher problem rank
when comparing a randomly selected pair of
problem/non-problem cases. The C-statistic also
is the area under the Receiver Operating Char-
acteristic curve which shows a true-positive rate
against the false-positive rate for a given test. R-
squared is a measure of the fraction of variation in
outcome that is accounted for by a given model.
It is an estimate of the explanatory power of a

model.

For the cholecystectomy database both models
were trained on 4/5 of the data and tested on the
remaining 1/5 of the data. Cross validation was
performed by randomly dividing the data into 5
equal parts and successively training models to fit
each 4/5. The results of the neural network and
the logistic regression model were very similar in
terms of measures provided (Table 1). C-index
for the regression model is equal to 0.68, and r? =
0.065. The C-index for Fuzzy ARTMAP is equal
to 0.68, and r? = 0.062. This is a useful level of

explanatory power for this task.

The predictions for different patients in dia-
betes data set are very different (Table 2). This
may partially be explained by physiologic vari-

ability among patients. Both the logistic and

regression modeling | ARTMAP modeling
C-index R? C-index R?
0.68 0.065 0.68 0.062

Table 1: Results with the cholecystectomy

database
regression ARTMAP
modeling modeling
C-index | R? | C-index | R?
patient 1 0.88 0.30 0.91 0.27
patient 2 0.76 0.07 0.71 } 0.09
patient 3 | 0.65 |0.03| 0.73 |0.17

Table 2: Results for different patients with the

diabetes database

neural network models were able to successfully
predict the elevated blood glucose level based on
previously learned variations over the period of
month. The neural network shows superior per-
formance for patient 3, and similar to the logistic
regression model performance for patient 1 and

patient 2.

We conclude that modified fuzzy ARTMAP is
a good alternative for estimating of risk in med-

ical procedures.
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