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Abstract

A neural network system for boundary segmentation and surface representation, inspired by a new local-circuit model of visual processing
in the cerebral cortex, is used to enhance images of range data gathered by a synthetic aperture radar (SAR) sensor. Boundary segmentation is
accomplished by an improved Boundary Contour System (BCS) model which completes coherent boundaries that retain their sensitivity to
image contrasts and locations. A Feature Contour System (FCS) model compensates for local contrast variations and uses the compensated
signals to diffusively fill-in surface regions within the BCS boundaries. Image noise pixels that are not supported by BCS boundaries are
hereby eliminated. More generally, BCS/FCS processing normalizes input dynamic range, reduces noise, and enhances contrasts between
surface regions. BCS/FCS processing hereby makes structures such as motor vehicles, roads, and buildings more salient to human observers
than in original imagery. The new BCS model improves image enhancement with significant reductions in processing time and complexity
over previous BCS applications. The new system also outperforms several established techniques for image enhancement.q 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Synthetic aperture radar (SAR) sensors can produce range
imagery of high spatial resolution under difficult weather
conditions (Munsen et al., 1983; Munsen and Visentin,
1989) but the image data can be difficult to interpret by
human observers for several reasons. First, the sensors
respond over a dynamic range of five orders of magnitude,
thereby demanding some type of nonlinear compression
merely for an image to be represented for viewing on a
typical computer monitor (see Fig. 1(a)). Second, multipli-
cative noise or image speckle results from the coherent
processing of radar signals and degrades the appearance of
features in the image (see Fig. 1(b)).

To date, simple techniques for image display and
enhancement have been used to process SAR data. Loga-
rithmic scaling of sensor values has been used to compress
sensor data to allow display on 8-bit video monitors, as in
Fig. 1(b). This technique tends to reduce local image
contrasts in order to provide display capability over the
full range of possible sensor values.

Simple statistical models for signal and noise have also

been used to reduce speckle. These models typically sacri-
fice a portion of the signal in order to eliminate noise (Lee,
1983). Iterative smoothing techniques have also been used.
These techniques suffer from insensitivity to scenic struc-
ture and tend to blur the boundaries between surfaces, espe-
cially if they are iterated too often. The number of iterations
needed for the best results may depend upon the image
being processed. This limitation is illustrated for SAR
processing through adaptive averaging with a sigma filter
(Lee, 1983) and a geometric filter (Crimmins, 1985) by
Grossberg et al. (1995).

Our approach further develops the use of surface contrast
enhancement, normalization, and diffusive filling-in
between form-sensitive boundary signals as a technique
for SAR image enhancement, as described by Grossberg
et al. (1995). Our algorithm capitalizes on the structure-
sensitive operations of a neural model of early visual
processing in order to enhance the appearance of scenic
surfaces based on information distributed across large
regions of the image.

The boundary processing that we describe in this article is
improved from prior published versions by incorporation of
stages that more closely model recently discovered cortical
mechanisms for enhancing the salience of globally con-
sistent form information in the image, by strengthening,
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regularizing, and completing boundaries degraded by sensor
noise. Like the Grossberg et al. (1995) algorithm, the
present one can be run independently at multiple scales,
meaning that boundary signals are detected and completed,
and surface representations filled-in, at small, medium and
large scales, before a final composite is achieved by aver-
aging. Compared with the Grossberg et al. (1995) version,
the present multi-scale algorithm yields more efficient
boundary processing, speeding run-time by a factor of
approximately three. As shown in a subsequent section,
moreover, long-range boundary completion, the rate-limit-
ing factor for many possible implementation schemes, is
sped-up by a factor of five. Furthermore, the current
small-scale processing is so improved that it forms a useful
image processing procedure in its own right, at a speed-up

of fifteen times compared to the older, multi-scale algo-
rithm. The present algorithm is both closer in structure to
known local circuits in the visual cortex (Grossberg et al.,
1997; Ross et al., 1998) than the previous one, and simpler,
containing fewer free parameters. Intuitions about its
improved performance can best be appreciated by consider-
ing the model of visual cortical functioning upon which the
algorithm is based. The Grossberg et al. (1997) model
further develops the Boundary Contour System (BCS)
model of Grossberg and Mingolla (1985a, b) by suggesting
functional reasons for why the visual cortex is organized
into layers, how these layers interact via local networks to
form functional columns, and how these columns are
embedded into cortical maps, to compute context-sensitive
and coherent groupings of visual forms that preserve their
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Fig. 1. (a) Top left: Unprocessed SAR image of upstate New York scene consisting of highway with bridge overpass. (b) Top right: Logarithm-transformed
SAR image. (c) Bottom left: Stage 1 result averaged across spatial scales. (d) Bottom right: New BCS/FCS multi-scale enhancement.



contrast-sensitivity and spatial context-sensitivity. We inter-
changeably call this latter propertyanalog coherenceor
coherent energy. Thus the present model attempts to capture
coherent properties of visual cortical processing in an effi-
cient boundary segmenter.

Boundaries form barriers to the diffusive filling-in of

surface lightness. The final displayed lightness of a surface
is determined in the model through processing at multiple
scales. Multi-scale processing enhances surfaces occurring
at a range of image sizes. The results is an image in which
multi-scale surface boundaries and features are sharpened
and accentuated and noise is reduced (Fig. 1(d)).

2. The approach

Grossberg (1984) and Cohen and Grossberg (1984) intro-
duced the Boundary Contour System (BCS) and Feature
Contour System (FCS) models of boundary and surface
processing. How the BCS and FCS fit into a comprehensive
theory of biological and machine vision called Form-And-
Color-And-Depth (FACADE) theory is discussed in Gross-
berg (1994). Grossberg and Mingolla (1985a, b, 1987)
developed the BCS model to simulate how the visual system
detects, completes, and sharpens boundary segmentations in
response to a variety of stimuli. Our present work adapts a
recent development of the BCS model which suggests how
the laminar, columnar, and map organization of the visual
cortex accomplishes boundary segmentation (Grossberg et
al., 1997). For the purposes of image processing we have
distilled this full biological model down to its functional
essentials. This BCS/FCS system is diagrammed in Fig. 2.
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Fig. 2. A block diagram of the BCS/FCS system described in this article. Parallel boundary and feature processing streams interact to yield a structured
smoothing that suppresses noise while enhancing surface contours. BCS processing occurs within a cooperative competitive feedback loop.

Fig. 3. Model retinal, lateral geniculate nucleus (LGN), and cortical V1
circuit (Reprinted with permission from Grossberg et al. (1997)).



The architecture in Fig. 2 incorporates three key design
principles from Grossberg et al. (1997).

The first property concerns how the cortex achieves long-
range cooperative completion or grouping by realizing a
‘‘bipole property’’. This property refers to the disposition
of certain cells in visual cortical areas V1 and V2 to fire in
the presence of approximately aligned, but spatially sepa-
rated, image gradients. According to the Grossberg et al.
(1997) model, cooperative bipole interactions are achieved
by excitatory long-range horizontal pathways among corti-
cal pyramidal cells. In this section, these interactions will be
considered only in the cortical area that is most directly
activated by visual inputs, V1. In order for cooperation to
build a boundary over gaps in an image, such as when
collinear edge segments are interrupted by noise, these
monosynaptic excitatory connections need to converge on
shared pyramidal cells with collinear or slightly co-curvi-
linear receptive fields (see Fig. 3(a)). The horizontal connec-
tions also activate smooth stellate cells, which inhibit
nearby pyramidal cells via disynaptic inhibiton (Hirsch
and Gilbert, 1991; McGuire et al., 1991). Horizontal
waves of activation resulting from spatially isolated indu-
cers are attenuated rapidly by subsequent disynaptic inhibi-
tion. Locally, it is a case of one-against-one. Bipole
completion occurs as a result of model interactions between
monosynaptic excitation and disynaptic inhibition when
layer 3 cells receive horizontally induced activations from
a surrounding neighborhood of oriented cells, as in the
middle of a contour. These activations from convergent
horizontal connections can overcome the effect of disynap-
tic inhibition because all the horizontal connections are
proposed to converge on a single population of saturating
inhibitory interneurons (Fig. 3(a)). Locally, it is a case of
two (or more) against one. The present model proposes an
efficient computational approximation of this two-against-
one principle that enables bipole cells to behave like statis-
tical AND gates that act to complete and regularize image
boundary representations.

The second design property suggests how inputs to V1
from the lateral geniculate nucleus or LGN (the way-station
from the retina to V1) preserve their sensitivity to image
contrasts (see Fig. 3(b)). As in the brain, LGN inputs to the
cortex arrive with a concentric spatial competition (on-
center, off-surround or off-center, on-surround) to activate
orientationally tuned simple cells. The computation of
oriented local image gradients for boundary detection is
thus driven by a feedforward on-center off-surround
network whose cells obey membrane equations, or shunting
laws. Such a network preserves cell sensitivity to analog
input values over a large dynamical range, while performing
local normalization of image contrasts (Grossberg, 1973).

The third design property shows how the visual cortex
makes double use of this competitive network to coherently
select correct groupings, while suppressing incorrect ones,
without a loss of analog sensitivity (see Fig. 3(c)). Earlier
BCS/FCS algorithms exhibited a tendency for completed

boundary activations to saturate from the combination of
positive feedback and the computations required to achieve
the bipole property. In the present algorithm, the long-range
cooperation of bipole units accesses the shorter-range on-
center off-surround network that feeds simple cells. This
amplifies those cell activations that are favored by the coop-
erative grouping, while suppressing those that are not, with-
out compromising their sensitivity to image contrasts.

The BCS used herein consists of a series of boundary
detection, competition, and cooperation stages as shown in
the block diagram in Fig. 2. Stage 1 models the contrast
enhancement resulting from on-center, off-surround (ON
channel) and off-center, on-surround (OFF channel) inter-
actions at the retina and LGN. These ON and OFF cells
compensate for variable illumination by computing locally
normalized contrast ratios throughout the image.

At Stage 2, these ON and OFF cells generate half-wave
rectified outputs which together drive the activation of
oriented simple cells. Simple cells compute a measure of
the local image gradient magnitude and orientation, and this
stage of BCS processing is similar to a number of classical
procedures (Canny, 1986). Like-oriented simple cells sensi-
tive to opposite contrast polarities or directions-of-contrast
pool their activations at complex cells. Complex cells are
hereby rendered insensitive to direction-of-contrast (dark-to
light vs. light-to-dark), as are all subsequent BCS processing
stages.

Next, complex cell activations compete at Stage 3 proces-
sing. Competition occurs through on-center off-surround
processing across both image space (spatial competition)
and across orientation space (orientational competition).
Spatial and orientational competition captures the func-
tional implications of lateral inhibition across a cortical
map in which nearby cells tend to be sensitive both to
contrasts at neighboring (or overlapping) image locations
and similar boundary orientations. Functionally, competi-
tion sharpens boundary localization and orientational tuning
of individual complex cell filters. It also endows the
complex cells with a property ofendstoppingthat enables
them to respond more vigorously near the end of a line than
at its middle. This competition is also driven by feedback
from Stage 4 long-range boundary cooperation, thereby
suppressing weaker boundary activations while enhancing
the contrast and the completion of stronger and more glob-
ally consistent boundary activations.

Long-range boundary cooperation at Stage 4 accom-
plishes the grouping together of consistent boundaries and
the completion of comouflaged boundaries. This coopera-
tion is achieved by bipole cells which realize a type of
statistical AND gate, as they fire if both halves of their
receptive fields are sufficiently activated by appropriately
oriented input contrasts from the complex cells of Stage 3.

The cooperative–competitive (CC) feedback loop
between Stage 3 and Stage 4 acts to complete and enhance
spatially and orientationally consistent boundary groupings
while inhibiting inconsistent ones. This feedback process
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simultaneously achieves the addition of sharp completions
and the suppression of noise. Furthermore, excitatory and
inhibitory feedback are balanced such that boundary
strength sensitivity is preserved and boundary activations
are not driven to saturation. The robust preservation of
sensitivity to the analog strength of inputs that support
long-range completion of boundary signals over gaps in
the image—that is, regions of the image where local
image data would not signal a boundary—is an important
innovation of the present algorithm. Previous versions of the
BCS tended to sacrifice sensitivity to input strength as a cost
of the advantages of context-sensitive long-range grouping
in a feedback system. The present architecture combines the
nonlinear choice properties necessary to determine whether
and where to coherently link boundary segments with
sensitivity to input contrast magnitudes in the completed
boundary signals.

The improved BCS boundaries act as barriers to diffusion
of the ON and OFF contrast signals within the FCS. Fig. 4
shows how these processes act on a SAR image of a bridge
crossing a highway in a wooded area of upper New York
state. Dr. Allen Waxman of the Machine Intelligence Group
at MIT Lincoln Laboratory kindly made these SAR images
available to us.

Cohen and Grossberg (1984) and Grossberg and Todorovic´
(1988) developed the FCS model to simulate data about
human brightness perception. The combination of BCS
boundary completion and FCS surface diffusion mechanism
is an early exemplar of a class of image processing proce-
dures known as anisotropic or geometry-driven diffusion.
(See Fischl and Schwartz (1997) for a recent review.)
Unlike most such approaches, however, BCS/FCS algo-
rithms do not require that diffusion rates be limited by initial
image data, or by iterative updates of any transformations of
image data that are influenced by diffusion. Instead, the
boundary signals that limit diffusion are computed by a
self-equilibrating process that is both buffered from the
effects of the diffusion process and capable of generating
barriers to diffusion that are based on contextual image data
at some distance from a pixel location, rather than simply on
local measures of image gradients.

3. Image enhancement methods and results

The SAR images were obtained using a 35-GHz radar
with 1 ft × 1 ft resolution and slant range of 7 km (Novak
et al., 1990). Fig. 1(a) shows a SAR image, Fig. 1(b) the
image logarithmically transformed for viewing, Fig. 1(c) the
summed ON2 OFF contrast signals of our multi-scale
system, and Fig. 1(d) the multi-scale BCS/FCS enhanced
image.

BCS/FCS processing can be performed at multiple spatial
scales to enhance object and surface features of various
sizes. Figs. 5 and 6 show the FCS output for the bridge
image of Fig. 4 processed at multiple scales. Image
enhancement is significant in the small scale result shown
in Fig. 6. However, certain features such as the bridge and
the highway are more evident at the largest scale. These
scales might prove useful in other image contexts or for
recognition of large objects or surfaces. The multiscale
combination in Fig. 5(f) shows both the high resolution of
the small spatial scale and the smoothing of the larger
spatial scales.

Fig. 6 illustrates the performance of both the BCS and the
FCS at different scales. Comparison of the top row of
Stage 2 complex cell activations with the middle row of
Stage 3 boundary activations indicates how boundary
salience is influenced by bipole grouping. Fig. 7 shows
the new and old BCS systems, respectively, on a portion
of the image including a stretch of the bridge overpass.
The impact of this boundary processing for image
enhancement is evident in Fig. 8 which shows a
filled-in image bounded by small-scale Stage 2 complex
cell responses next to a filled-in image bounded by
small-scale Stage 3 boundaries.

3.1. Comparison to prior systems

The earlier BCS/FCS system that is illustrated in Fig. 7
(left) already offered improved image enhancement over
iterative smoothing techniques, including the median filter
(Scollar et al., 1984), adaptive averaging using the
sigma filter (Lee, 1983), and geometric filtering (Crimmins,
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Fig. 4. (a) Stage 1: Normalized contrast enhancement. (b) Stage 3: BCS boundaries. (c) Stage 5: Diffused FCS surface representation.



1985) This BCS/FCS system offered improved image
enhancement over the results of these systems iterated for
an optimal number of times. The BCS/FCS enhancement
offers the further advantage that it converges upon a stable
image appearance which is not degraded by continued

iteration, as occurs using the standard iterative techniques.
Fig. 9 demonstrates that our new system also outperforms
these standard statistical image enhancement techniques. To
allow comparison, the statistical techniques were run on a
nonlinear compression of the bridge overpass image
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Fig. 5. Multiple scale surface processing: (a) Top left: Original image. (b) Top right: Log-compressed image. (c) Middle left: New BCS/FCS small-scale result.
(d) Middle right: Medium-scale result. (e) Bottom left: Large-scale result. (f) Bottom right: Multi-scale result.
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Fig. 6. Multiple scale boundary and surface processing: Top Row: Complex cell processing. Middle Row: Completed boundary activities. Bottom Row:
Surface filling-in within the completed boundaries.

Fig. 7. The small scale boundary output of the BCS of Grossberg et al. (1995) is on the left. The improved algorithm’s small-scale boundary output is on the right.



given by:

F�I � � I
A 1 I

; �1�

whereA � the mean pixel intensity of 870 for the original
bridge image data. The effect of this transformation is to
produce input of roughly the same grayscale distribution as
the BCS/FCS Stage 1 output. Parameters for each of these
methods were set to smooth speckle noise as closely as

possible to the degree achieved by BCS/FCS processing,
as determined by informal observation. The previous and
present BCS/FCS systems are more complex than these
statistical algorithms. This complexity translates to an
increased amount of processing time and memory required
and entails a more complex process of finding optimal
parameters. BCS/FCS VLSI chips are currently being
developed to offset these complexities (Waskiewicz et al.,
1997).
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Fig. 8. Comparison of filling-in within (a) Stage 2 complex cell boundaries and (b) Stage 3 bipole-completed boundaries.

Fig. 9. (a) Input image with pixel values log-compressed for viewing; (b) Multi-scale new BCS/FCS result; (c) Output of three iterations of a 3× 3 median
filter; (d) Output of a 5× 5 sigma filter (Lee, 1983); (e) Output of three iterations of a geometric filter (Crimmins, 1985); (f) Output of four iterations of a
geometric filter.



4. Model equations

Throughout this system, image arrays of neural units, or
nodes, with activitiesuij, wherei and j denote the position
relative to the image array, combine excitatoryEij and inhi-
bitor Iij inputs within an on-center (excitatory) off-surround
(inhibitory) shunting equation (Grossberg, 1973):

duij

dt
� 2A�uij 2 D�1 �B 2 uij �Eij 2 �C 1 uij �Iij ; �2�

with an excitatory on-center

Eij �
X
p;q

1
2psE

exp 2
1

2sE
��p 2 i�2 1 �q 2 j�2�

� �
Fpq �3�

and an inhibitory off-surround

Iij �
X
p;q

1
2psI

exp 2
1

2sI
��p 2 i�2 1 �q 2 j�2�

� �
Gpq: �4�

At equilibrium, each node’s activity can be expressed as a
biased Difference-of-Gaussians (DOG) divided by a biased
Sum-of-Gaussians (SOG):

uij �
AD 1 BEij 2 CIij

A 1 Eij 1 Iij
: �5�

The outputUij � �uij �1; where [w]1 � max(w,0), half-
wave rectifies the activityui.
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Table 1
System parameters for BCS/FCS simulations

BCS/FCS Parameters
Name Description Value Equation(s)

Stage 1: ON and OFF
Center-Surround
Processing
A Activation decay rate 2000 6,7
D1 ON Baseline activity 0.5 6
D2 OFF Baseline activity 1.0 7
s c Center size 0.3 8
s s0 Small surround size 1.2 9
s s1 Medium surround size 3.6 9
s s2 Large surround size 10.8 9
Stage2: Simple/Complex
Boundary Detection
s v0 Small simple cell width 0.75 15
s v1 Medium simple cell width 1.5 15
s v2 Large simple cell width 3.0 15
shg Simple cell length 3s v2 14
Stage 3: Competition
A Activation decay rate 30 17
B Saturation level 10 17
C Hyperpolarization level 0.5 17
Gf Feedforward gain 0.25 18
Gb Feedback gain 1.0 18
s y0 Small spatial surround size 4.0 19
s y1 Medium spatial surround size 8.0 19
s y2 Large spatial surround size 16.0 19
s k Orientational surround size 458 19
Stage 4: Cooperation
A Activation decay rate 30 20
B Saturation level 10 20
a Nonlinearity constant 0.0000001 22
T Bipole rule threshold 2.0 22
Cl0 Bipole length 8.0 23,24
Cl1 Bipole length 16.0 23,24
Cl2 Bipole length 32.0 23,24
Cwg Bipole width 0.5Clg 23,24
b Distance blur 0.8 25
m Curvature blur 11 25
l Orientational blur 90 25
Stage 5: Surface Filling-In
D Activation decay rate 1 25
d Permeability numerator factor 1 29
e Permeability denominator factor 2000 29



4.1. Stage 1. Contrast enhancement

The first processing stage performs a local contrast
enhancement and normalization of image intensities. This
is achieved through two shunting center-surround networks.
An on-center off-surround network and an off-center on-
surround network correspond to the ON and OFF channels,
respectively, in the visual pathway. The two networks differ
in the sign of their responses such that the ON channel
shows enhanced response to image locations of high inten-
sity relative to their surrounding image locations and the
OFF channel shows enhanced response to image locations
of low intensity relative to their surrounding image loca-
tions. Thus at equilibrium, the shunting equations for the
ON and OFF networks achieve contrast-enhanced and
normalized responses to the input sensor imageS:

ON Cell Activation

Xg1
ij �

AD1 1 Sc
ij 2 Ssg

ij

A 1 Sc
ij 1 Ssg

ij

" #1

�6�

OFF Cell Activation

Xg2
ij �

AD2 1 Ss
ij 2 Ssg

ij

A 1 Ss
ij 1 Scg

ij

" #1

�7�

where

Sc
ij �

X
pq

Si1p;j1qGc
pq and Ssg

ij �
X
pq

Si1p;j1qGsg
pq; �8�

and the weighting functions are defined by normalized
Gaussians for the center (Gc) and surround (Gsg) connectiv-
ity, as in

Gd
pq � 1

sd

����
2p
p exp 2

p2 1 q2

2s2
d

 !
: �9�

The ON and OFF networks have a baseline level of acti-
vation determined byD1 in (6) andD2 in (7), respectively
(Grossberg and Wyse, 1991). ON and OFF networks are
applied at three spatial scales using the same center connec-
tivity kernel with standard deviations c for each, and three
surround connectivity kernels of increasing standard devia-
tionss sg, g� 0, 1, 2. (See Table 1.) For a discussion of the
merits of this contrast-enhancement and normalization
scheme relative to other related approaches, see Grossberg
et al. (1995).

4.2. Stage 2. Boundary detection

At the second stage, oriented contrast is detected by nodes
with connectivity analogous to that of cortical simple cells.
Both ON and OFF network activity is used to gauge oriented
contrast at each image location. An edge elicits a strong ON
response next to a strong OFF response, an optimal coin-
cidence for these boundary detectors. However, these
detectors are not merely edge detectors. They also show
weaker response to gradients of image texture or shading.

In particular, oriented arrays of spatially displaced ON and
OFF cell inputs compete at each location with oppositely
polarized OFF and ON arrays with the same orientation,
before the net activity is half-wave rectified to generate
output signals. As a result, simple cell receptive fields that
receive uniformly distributed inputs generate zero outputs.
Simple cell outputs at scaleg, position (i, j), and orientation
k (k � 0,1,…, 11) are thus modeled by the equations

sRg
ijk � Rg1

ijk 1 Lg2
ijk

� �
2 Rg2

ijk 1 Lg1
ijk

� �h i1
; �10�

sLg
ijk � 2 Rg1

ijk 1 Lg2
ijk

� �
1 Rg2

ijk 1 Lg1
ijk

� �h i1
; �11�

where

Rg1
ij �

X
pq

Xg1
pq Gg

p;q1svg=2;k
and

Rg2
ij �

X
pq

Xg2
pq Gg

p;q1svg=2;k
;

�12�

Lg1
ij �

X
pq

Xg1
pq Gg

p;q2svg=2;k
and

Lg2
ij �

X
pq

Xg2
pq Gg

p;q2svg=2;k
;

�13�

and

Gg
p;q;k �

1
2pshgsvg

exp 2
1
2

pcos�pk=12�2 qsin�pk=12�
shg

 !2 

2
1
2

pcos�pk=12�1 qsin�pk=12�
svg

 !2!
:

�14�
The use of ON and OFF cells to form boundaries overcomes
complementary deficiencies of each detector in responding
to changing contour curvatures and to dark or light noise
pixels (cf., Carpenter et al., 1989; Grossberg and Todorovic´,
1988). Simple cell outputs of the same orientation with
opposite contrast polarities then are pooled to yield a
contrast polarity-insensitive complex cell response:

cg
ijk � sLg

ijk 1 sRg
ijk : �15�

4.3. Stage 3. Boundary competition

Detected boundaries are passed into the cooperative–
competitive loop, which includes Stages 3 and 4 of Fig. 2.
This nonlinear feedback network groups, completes, and
sharpens globally consistent boundary positions and orien-
tations while suppressing weaker and redundant boundary
activations. Competition between boundary activations
occurs across both space and orientation, reflecting the
functionality of spatially localized inhibition across the
topography of visual cortex in which the variables of
space and orientation are interwoven in a single spatial
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map. Competition is driven by both bottom-up activation
from boundary detection cells and top-down activation
from boundary cooperation cells, allowing global groupings
to effect local decisions. This BCS implementation involves
fewer loop stages than previous versions of the BCS. Now a
closer interaction of cooperative and competitive processes
achieves better spatial context-sensitivity, contour strength
sensitivity, and decision-making speed. As a result, only two
iterations of this two-stage loop achieve performance which
compares favorably with previous implementations run for
several more iterations.

The boundary competition process obeys the equations:

Yg
ij �

BE3g
ij 2 CI3g

ijk

A 1 E3g
ij 1 I3g

ij

24 351

; �16�

where

E3g
ijk � Gf c

g
ijk 1 GbZg

ijk : �17�
In (17),cg

ijk represents bottom-up complex cell activation
from (15), Zg

ijk is the feedback contribution from Stage 4
cooperative boundary signals, andGf and Gb are feedfor-
ward and feedback gain contrasts, respectively. In (16):

I3g
ijk �

X
mno

E3g
i1m;j1n;k1oGyg

mno: �18�

GaussiansGyg
mno in (18) obey (14) and exist at three scales,

g � 0, 1, 2. The spatial standard deviations or blurring
constants for each are given in the Stage 3 section of
Table 1 ass y0,s y1,s y2. The orientational standard deviation
for all of these scales is given bys k.

4.4. Stage 4. Boundary cooperation

The boundary cooperation, or bipole cells, are designated
to generate outputs if suitably oriented inputs from the Stage
3 competition are active on both sides of its cell body. Thus,
bipole cells generate the following steady-state outputs:

Zg
ij �

BE4g
ij

A 1 E4
ij

" #1

; �19�

where

E4g
ij � Yg

ijk 1 H4g
ijk ; �20�

and

H4g
ijk � f hrg

ijk

� �
1 f hlg

ijk

� �
1 hrg

ijk 1 hlg
ijk 2 T

h i1
: �21�

In (21),hrg andhlg are the convolutions ofZ with the right
and left halves of a bipole kernelz (defined later), and
f �w� � �w�=�a 1 w� wherea is very small. Eq. (21) works
by having the first two terms rapidly saturate to a value close
to 1.0 whenever a nonzero input is processed in each half of
the bipole’s input field, as defined by Eqs. (22) and (23)
later. SettingT� 2.0 in (21) then guarantees that the bipole
cell will exceed threshold only if inputs arrive to both sides

because the values ofhrg
ijk andhlg

ijk are themselves bounded
between 0.0 and 1.0, owing to the choices of constants
defining minimum and maximum attainable values for
system variables through Stage 3; namely:

hrg
ijk �

X
mno

Zg
i1m;j1n;k1o z2m=Clg;2n=Cwg;o;k

h i1
; �22�

with m $ 0 andn $ 0, and

hlg
ijk �

X
mno

Zg
i1m;j1n;k1o 2z2m=Clg ;2n=Cwg;o;k

h i1
; �23�

with m # 0 andn # 0, where

zg
mnok� sgn{m}exp{ 2 b�m2 1 n2�}expf2 m�n=m2�2g

� cosl��k 2 o�p=K 2 sgn{m}arctan�2n=m;m��:
�24�

The bipole kernel in Eq. (24) is composed of three parts
which determine how the bipole filter values decrease as a
function of the: (1) distance from the center of the filter:
exp{ 2 b�m2 1 n2�} ; (2) spatial deviation from collinearity:
expf2 m�n=m2�2g; and (3) orientational deviation from
collinearity: cosl{ �k 2 o�p=K} 2 sgn{m}arctan�2n=m;m�} :
The cooperative–competitive loop is run independently at
three different scales, with bipole filters defined by Eq. (24)
at filter sizesClg andCwg (l � length,w� width), g� 0,1,2,
given in Table 1.

4.5. Stage 5. Surface filling-in

The BCS produces boundary signals that act as barriers to
diffusion within the FCS. BCS signals from Stage 3 are used
to gate diffusion within the filling-in domains of Stage 5 that
are activated by the normalized ON and OFF cell outputs
from Stage 1. For image pixels through which no boundary
signals pass, resulting intensity values become more homo-
geneous as the diffusion evolves. Where boundary signals
intervene, however, they inhibit diffusion, leaving a result-
ing activity difference on either side of the boundary signal.
Thus, the boundaries serve as a structure-sensitive mesh,
called a boundary web, which tracks the statistics of
edges, textures, and shading, while smoothing over statisti-
cally irrelevant noise.

There are ON and OFF filling-in domains corresponding
to the Stage 1 ON and OFF cells:

ON Filling-In

dFg1
ij

dt
� 2DFg1

ij 1
X

p;q[Nij

Fg1
pq 2 Fg1

ij

� �
Pg

pqij 1 Xg1
ij ; �25�

whereXg1
ij is the Stage 1 ON cell output.

OFF Filling-In

dFg2
ij

dt
� 2DFg2

ij 1
X

p;q[Nij

Fg2
pq 2 Fg2

ij

� �
Pg

pqij 1 Xg2
ij ; �26�
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whereXg2
ij is the Stage 1 OFF cell output. At equilibrium,

Fg1
ij �

Xg1
ij 1

P
p;q[Nij

Fg1
pq Pg

pqij

D 1
P

p;q[Nij

Pg
pqij

; �27�

and

Fg2
ij �

Xg2
ij 1

P
p;q[Nij

Fg2
pq Pg

pqij

D 1
P

p;q[Nij

Pg
pqij

: �28�

The boundary-gated permeabilities in (27) and (28) obey

Pg
pqij �

d

1 1 1 yg
pq 1 yg

ij

� � ; �29�

where

yg
ij �

X
k

Yg
ijk : �30�

Eq. (29) shows how strong boundary signals decrease
permeability and thereby bound each filling-in domain. In
our simulations, the diffusion of image features was accom-
plished by iteratively solving for ‘‘new’’ values (left side of
Eqs. (27) and (28)) using current values (right sides of equa-
tions) for 800 iterations, to ensure a good approximation to
equilibrium.

4.6. Stage 6. Scale averaging

At this final stage, equilibrated filled-in surface activities
are combined between ON and OFF channels and across
scale. A simple linear combination rule yields favorable
results, based on informal observations:

Mij � 4 F01
ij 2 F02

ij

� �
1 2 F11

ij 2 F12
ij

� �
1 F21

ij 2 F22
ij

� �
:

�31�

5. Discussion

The major improvements of the present algorithm over
that of Grossberg et al. (1995) can best be appreciated by
considering Stage 3 of the earlier algorithm, which includes
complex cell output at 12 orientations, computed at three
scales. That stage of complex cells occurred in a feed-
forward ‘‘front-end’’ of the algorithm, that then sent signals
to a cooperative–competitive feedback loop, which
included five separate stages for boundary completion and
regularization. The present algorithm was inspired by our
recent model of the laminar circuitry for perceptual group-
ing in cortical areas V1 and V2 (Grossberg et al., 1997). It is
a faster system with fewer parameters and less corruption of
fine-scale boundary signals, achieved by employing closer
interaction between bottom-up activation, short-range
competition, and long-range cooperation than the earlier

algorithm. For example, in the current algorithm, bottom-
up and top-down on-center and off-surround impact the
same cells in Stage 3, instead of being computed separately.
This allows the signals generated by long-range cooperative
grouping for boundary completion to more robustly main-
tain analog sensitivity to the strength of the bottom-up
signals that support completion, and thus to generate more
appropriate groupings.

The boundary signals of the present system are not driven
to saturation because the input to the bipoles are under the
control of a negative feedback loop (short-range competi-
tion). Completed signals are, however, ‘‘lifted out’’ out of
the ‘‘noise’’ of boundary signals that do not form coherent
groupings. The improvement offered by this better integra-
tion of local and long-range contextual information is shown
in the enlarged image of fine-scale boundaries on and near
the bridge (Fig. 7).

More efficient processing has been achieved through a
reduction in the total number of stages from nine to six, a
reduction in the number of necessary iterations of the coop-
erative–competitive loop from five to two, and a computa-
tional speedup that is conservatively estimated to be by a
factor of three.
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