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Abstract 
This work proposes a new approach to signature veri- 

fication. It is inspired by the human learning and the 
approach adopted by the expert examiner of signatures, 
in which an a priori knowledge of the class of forgeries 
is not required in order to pevorm the verification task. 
Based on this approach, we present a Fuzzy ARTMAP 
based system for the elimination of random forgeries. 
Compared to the conventional systems proposed thus 
far, the presented system is trained with genuine signa- 
tures only. Six experiments have been pevormed on a 
data base of 200 signatures taken from five writers (40 
signaturedwriter). Evaluation of the system was meas- 
ured using different numbers of training signatures (3, 
6, 9, 12, 15 and 18). 

1. Introduction 
In the field of signature verification, be it on-line or off- 

line, the objective is to decide upon the claimed identity of 
some writer i by making a one-to-one comparison be- 
tween the unknown signature SJ and a reference set of 
this writer [6]. This paper is related to Off-line Hand- 
written Signature Verification (OHSV) system in the 
context of random forgeries. Sabourin et a1 [7], Mighell et 
al [4], Cardot et al [l], McCormack et a1 [3] and oth- 
ers 2, have approached signature verification from pattern 
recognition perspectives and considered it as being a two- 
class problem: the class of genuine signatures, col, and 
the class of forgeries, 02, for some writer i. Based on this 
approach, the OHSV system is trained, for each writer i, 
with genuine signatures of this writer as well as with 
forgeries. As a result, the OHSV system acquires a 
knowledge of the genuine signatures as well as of the for- 
geries. Acquiring a knowledge of signature forgeries is 
irrelevant to the objective of the OHSVsystem. We argue 
that if the verification process is performed by comparing 

the unknown signature to the reference ones, then the 
OHSV system should be trained only with genuine sig- 
natures, for every writer i. 

Plamondon and Lorette [6] have pointed out some of 
the problems that must be solved before any OHSV sys- 
tem can be put into practice; and have suggested that 
these problems can be solved by increasing our knowledge 
of the writing process itself and of the forgery process [6]. 
These problems are: How to cope with the difficulty of 
obtaining signature forgeries? What is the best classi- 
fication protocol for a two-class problem with one class 
unknown? How to choose the optimum decision thre- 
shold to perform the training process? In our opinion, the 
cause of these problems lies in the approach itself. 

A fourth problem intrinsic to this approach, is that sys- 
tem performance with respect to the False Acceptance 
Rate (FAR) error is dependent on the type of forgeries 
used for training. This is demonstrated by the work of 
Cardot et al [l]. According to the authors, different types 
of random forgeries (signatures of other writers in the 
~ys t em)~  have produced different error rates. One, there- 
fore, is faced with the following question: Which forger- 
ies should be used for training? A fifth problem is that, 
the FAR error rates are artificially reduced when evaluat- 
ing the system in the context of random forgeries. As 
adopted by Sabourin et a1 [7] and by Mighell et a1 [4], the 
experimental data base is divided into two sets: one set for 
training and another set for evaluation ( t e ~ t ) ~ .  For each 
writer i, each set contains genuine signatures of this 
writer (ol) and random forgeries (a2) taken from all 
other writers in the system. With this division criteria, 
the OHSV system is trained and tested with random for- 
geries that belong to the same writers. In another words, 
the random forgeries presented during training are differ- 
ent, but similar, to the corresponding ones presented 
during test. As a consequence of this division criteria, sys- 

'Author to whom correspondence should be sent. 
*A complete bibliography can be found in [6] .  

To cope with the difficulty of obtaining true forgeries, authors have used random 

The data definition criteria, adopted by Cardot et al [l] and by McCormack et 
forgeries instead. 

[3], is not clearly stated in their papers. 
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tem performance, with respect to the FAR errors, is 
evaluated with respect to the writers enrolled in the sys- 
tem whose signatures the system has a priori knowledge 
of their characteristics. In our opinion, this is a mistake. 
In real situations, an unknown signature, if it is a random 
forgery, it will most probably be produced by a writer that 
is not enrolled in the system. Therefore, the FAR errors 
based on the division criteria mentioned above do not re- 
flect the actual performance of the OHSV system. We 
would like to suggest, in this regard, that a separate set of 
random forgeries, belonging to writers whose signatures 
are not learned during training, should be used for 
evaluation. 

1.1 A New Approach To Signature Verification 
To eliminate the above mentioned problems, we pro- 

pose to consider signature verification as a one-class 
problem: the class of genuine signatures, for some writer 
i, and train the OHSV system only with the genuine sig- 
natures of this writer. This is the process adopted by the 
expert examiner of signatures. According to Mr. Helio 
Franco, the chief of the Department of Forensic Sciences 
in the State of Parana, the expert examiner performs the 
verification process by comparing the questioned signa- 
ture to the reference ones and then gives hidher decision 
according to the comparison results. Another motivation 
for the one-class problem approach, is our ability to rec- 
ognize the shape of certain class of objects (e.g. apples) 
without the necessity of learning to recognize the shapes 
of other objects (e.g. grapes or plums). 

Based on the one-class problem approach, we present 
an OHSV system, based on the Fuzzy ARTMAP neural 
network, capable of performing the verification task with- 
out a priori knowledge of the class of forgeries. The cog- 
nitive information learning processing of the Fuzzy 
ARTMAP makes it ideal for implementing the proposed 
approach. In section 2.0, a complete description of the 
Fuzzy ARTMAP based OHSV system is introduced. 
Section 3 .0 presents the numerical experiments and the 
obtained results. Description of the Fuzzy ARTMAP neu- 
ral networks can be found in Carpenter et a1 [2]. 

2.0 System Description 
The overall task of signature verification is divided into 

four stages: pre-processing, feature extraction and dimen- 
sionality reduction, comparison, and decision. A block 
diagram illustrating these stages is shown in figure 1. All 
stages are used during learning and evaluation, except the 
decision stage which is used during evaluation only. 

At the first stage, the signature is segmented from the 
background, using Ostu's algorithm [5], and then central- 
ized onto the image area (512x128) such that it becomes 

divided into m regions, through the use of an identity 
grid. The centralization is performed by translating the 
center of gravity of the binary image to the center of the 
image area. Thereafter, graphical segments of size 16x16 
pixels with 50% overlapping in the x and y directions are 
extracted from each region in the binary signature and 
applied to a Back-propagation network (BW) which re- 
duces the size of these segments by 1/3. The reduced 
graphical segments are then applied to the comparison 
stage for learningkerification. This stage is composed of 
m Fuzzy ARTMAP networks, each of which is responsi- 
ble for one region in the signature. This structure can be 
viewed as having different experts examining different 
regions of the signature. Finally, the decision stage ana- 
lyzes the results produced by each Fuzzy ARTMAP and 
gives the decision of the system with respect to authentic- 
ity of the unknown signature. 

2.1 Database Description [A 
All the signatures in the database are digitized with 

vidicon camera and a standard frame grabber. Each sig- 
nature is written on a white paper (3x12 cm), with a Pilot 
Fineliner pen with flexible felt tip and black ink. The out- 
put of the frame grabber is a 256 gray level image of size 
512x128 pixels. 

2.2 Definition of The Identity Grid 
In order to divide the input signature (during train- 

ing/evaluation) into regions, an identity grid was design- 
ed for each writer such that its shape reflects the average 
overall shape of the reference signatures of this writer, 
and its surface was divided into m regions, where m 
equals twice the number of words composing the refer- 
ence signature. Furthermore, each region was divided 
into 16-pixel squares. The geometrical structure of the 
identity grid was defined with respect to the center of the 
image area such that, when a given signature is central- 
ized on the image area, it becomes also centralized on the 
identity grid and, consequently, becomes divided into m 
regions. An example of an identity grid for a writer 
whose signature is composed of two words is shown in 
figure 2a. 

2.3 Signature Representation 
Each input signature is divided into a set of graphical 

segments of size 16x16 pixels with 50% overlapping in 
the x and y directions. An example a graphical segments 
extracted from one region of a signature is shown in 
figure 2. 

2.4 Dimensionality Reduction 
A Backpropagation network of size 4-3-4 was used for 

the purpose of dimensionality reduction. The network was 
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trained in its autoassociative mode to reconstruct the same 
input pattern at the output layer. To obtain good generali- 
zation for all signatures in the database, i.e., good image 
reconstruction quality for all signatures, the training pat- 
terns consisted of all the possible binary patterns, namely 
the binary equivalence of the decimal numbers (0, 1, 2, . . . , 
15). The network was trained using the Quickpro learning 
rule. Training was terminated when the network error 
reached 0.01. After training, the network was then tested 
to reconstruct each one of the 200 binary signatures in the 
database. The results of the reconstruction are shown in 
figure 3. During system traininglevaluation, each extract- 
ed graphical segment is scanned by a 2x2 window and 
then applied to the BKP network. The output of the 
middle layer is then formed into a vector of size 768. This 
vector forms the input to the Fuzzy ARTMAP network. 

2.5 The Decision Stage 
Based on the definition of the identity grid and on the 

structure of the comparison stage given above, the deci- 
sion of the system with respect to the authenticity of an 
unknown signature is made according to the following 
two majority decision rules: 
1. 

2. 

Consider one of the m regions of the signature, situ- 
ated in one of the m regions in the identity grid of 
writer i as genuine, if the number of graphical seg- 
ments 1 extracted form this region, is within the ex- 
pected range [minP,maxP], that may exist in that re- 
gion and, if half or more than half of these segments 
are classified correctly by the respective Fuzzy ART- 
MAP, or as false otherwise. In mathematical form, this 
decision rule is written as follow: 

wherep = 1, 2, ..., m. 
Consider the signature 9 as genuine with respect to 
the writer i reference signatures, if half or more than 
half of the m regons of this signatures are considered 
genuines by the first rule, or as false otherwise. In 
mathematical form, the second rule is represented as 
follow: 

0, o t h e r w i s e  

where ‘1’ and ‘0’ indicate, respectively, genuine and for- 
gery and d’u i , (seg;) is the decision of one of the m 

Fuzzy ARTMAPs. D (s ) and D ( S  ) represent, respec- 
tively, the decision of the system with respect to the 
authenticity of one of the m regions and the decision of 
the system with respect to the authenticity of test signa- 
ture S:. For later discussion, the decision criteria half or 
more than half will be symbolized by the letter d. 

3.0 Simulation and Results 
The verification capability of the proposed OHSV sys- 

tem, in the context of random forgeries, was evaluated 
using a data base of 200 signatures taken from 4 writers 
(40 signaturedwriter). Six experiments were performed 
using different numbers of training signatures. All the 
experiments were performed with the Neural Works 
simulator and an IBM Compatible PC DX2/66MHZ. 

3.1 Definition of the Experimental Data 
The total genuine signatures RT = 40, for each writer 

i , was divided into two sets: a reference set R,ref and a 

test set Ry . Both sets are defined as follow: 

I I  

IpfI = 18 ( 3.0 1 
and, 

IRF(  = 22 

the reference set was further divided into six different 
subsets as follow: 

where each Jth reference subset { J = 1,2, ..., 6)consisted 
of a number of signatures equal to 3J. These reference 
subsets were used for training. The test set Ti, for each 
writer, is given by: 

( 6.0 ) 

ref rref rref ref r ~ e f 7 y ; : f }  ( 5.0 qref = {<I ’ I2 7 13 ’ < 4  3 15 

IT1 = IRI - JR:6) 
where R is the total number of signatures in the database. 

For a writer z ,  the training set consisted of genuine sig- 
natures of this writer only and the test set consisted of a 
set of genuine signatures CL); and a set of random forger- 

ies wl, as defined bellow: 

( 7.0 1 

3.2 Training and Evaluation 
The training and evaluation procedures are summarized 

in the following experimental protocol. The constants 1 
and n indicate, respectively, the number of graphical 
segments extracted from each region in the test signature 
and the number of the 16-pixel squares composing each 

193 



region of the identity grid of writer i. The parameters of 
each Fuzzy ARTMAP network were: 

in the table by the decision pair (dn, dn) where n = 1 or 2. 
The first decision applies to equation 1, whereas the sec- 

1. 
2. 
3. 
4. 

5. 
6. 

7. 
8. 
9. 

p = 0.75, a = 0.001, p = 1.0 

start; 
for i = 1 to 5; ( For each writer ) 
design the identity grid; 
save the number n and the xy coordinates 
the 16-pixel squares and the numbers 
miny,maxy; 
end for; 
for J = 1 to 6; ( For each training set ) 

ref. select a training set qJ , 
for i = 1 to 5; (For each writer) 

for K = 1 to Ir.:g I ; 

ond decision applies to equation 2. The digits 1 and 2 in- 
dicates, respectively, half or more than half and more 
than half. For example, the decision pair (d2,dl) indi- 
cates a decision criteria of more than half in equation 1 
and a decision criteria of half or more than half in equa- 
tion 2. The total error Et is calculated according to the 

Of following formula: 
Et = (FRR + FAR) I 2  ( 9.0 1 

3.3 Comments on the results 
As it can be observed from the table 1, the error rates 

are acceptably good, though are not as good as it should 
be. It can also be observed from table 2 that, the best per- 
formance is obtained with the training set of 18 signa- 
tures. The rather high rate of false rejection FRR , was 
mainly due to the natural local and global variations 

I Z J  I 
10. forp= 1 to m; 
11. for M = 1 to n; 
12. 
13. end for; 
14. end for; 
15. end for; 
16. forN= 1 to ; 

17. forp= 1 to m; 
18. for M = 1 to n; 

19. record the number 1; 
20. end for; 
21. 
22. end for; 
23. end for; 
24. calculate D(S'.) ; (according to eq. 2) 

25. if s, Ea; , AND D(Si . )  = 1; 

train the Fuzzy ARTMAP faJip; 

test the Fuzzy ARTMAP faAP ; 

calculate D(dpj);(according to eq. 1) 

J 

J 
then Good Classification; 

26. else Type I error; 
27. if s, E U ; ,  AND D(,"J.) = O ;  

then Good Classification; 
28. else Type I1 error; 
29. end for; 
30. compute FRR, FAR, and Et,. 
31. endfor; 
32. end. 

The results of the experiments with respect to FRR, 
FAR errors, and total error Et, are shown in tables 1 and 
2, respectively, for various combinations of the decision 
pairs. Each combination of a decision criteria is denoted 

characterizing the handwritten signature images of a 
writer i, and to the sensitivity of neural networks to this 
variations. The cause of the FAR error rates could be re- 
lated to the recoding characteristic and to the matching 
criteria of the Fuzzy ARTMAP. It was not possible to 
verify this hypotheses, since the simulator is not provided 
with a visualizing module that would allow the user to 
study the internal representation of the network. 

The FRR and FAR errors can be reduced, respectively, 
by rendering the Fuzzy ARTMAP insensitive to variations 
in scale, rotation and translation and by increasing the 
decision criteria, as demonstrated in table 1. The effect of 
increasing the decision criteria will not have a great effect 
on increasing the FRR errors as it will have on decreasing 
the FAR errors. This can be observed from table 3. 
Another possible way of reducing the FAR error is by 
evaluating the system performance using an optimum de- 
cision pair that will minimize the FAR errors for each 
writer. Such performance is demonstrated in figure 4. 
This optimum decision pair was selected directly from the 
simulations results, with respect to the training set of 3 
signatures, as being the decision pair that produced the 
first lowest FAR value for an individual writer. The per- 
formance of the system was then measured for all the 
other training sets, based on this optimum decision pair. 
This is one method of selecting an optimum decision pair 
for each individual writer. Other methods could be inves- 
tigated. 

As it can be seen from the table 4, our results compare 
favorably to those of the other authors based on the two- 
class problem. A major difference, however, is that the 
FAR errors based on the one-class problem reflect the real 
performance of the system, Whereas those obtained based 
on the two-class problem do not, for the reasons 
mentioned previously. In general, it is difficult to judge 
which system performs best. This is due to the fact that 
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the experimental database, the division criteria and the 
experimental protocol are different from one system to 
another. 

4.0 Conclusions 
In this paper we have introduce a new approach to 

signature verification which is based on human learning 
and on the approach adopted by the expert examiner of 
signatures. We believe that this approach may provide an 
efficient solution to unresolved and very difficult problem 
in the field of signature verification in particular, and in 
pattern recognition in general. Our initial results are very 
promising. However, we are very well aware that we have 
evaluated the efficiency of this approach with a small 
database. Our next step is to evaluate the efficiency of the 
proposed approach on a large database and to overcome 
the problem of signature variations. 
We are also investigating the application of this approach 
to other similar areas of pattern recognition. One such 
area currently under investigation in our laboratory, is the 
classification of cancerous cells. 
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IG :Identity Grid for a 4-mod signature 

0 Comparison 

8 Decision of each 
Fup;y ARTMAP 
Dec'sion of the Preproces sing system 

Dimensionality 
Reduction 

Figure 1.0 Block diagram ofthe 
Fuzzy ARTMAF' Based OHSV sys- 
tem. An unknown signature is thre- 
sholded and then centralized on the 
image area which becomes also 
centralized on the identity grid. 
Therealler, fiom each region in the 
signature, graphical segments are 
extracted and applied to the BKP 
network for dimensionality reduc- 
tion. The reduced segments are then 
applied to the respective Fuzzy 
ARTMAP for comparison. The 
whole process is repeated for all the 
regions in the signature. The final 
decision of the system, with respect 
to the authenticity of the unknown 
signature, is given according to 
equations 1 and 2. 
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Figure 3. Test results of the BKP network. El indicates the highest 
number of misclassified pixels occurred in reconstmcting the 
signature of an individual writer. Et indicates the total number 
of misclassified pixels occurred in reconstructing all the signa- 
tures of an individual Writer. 

I Decision Pairs I 

Table 2. Performance of the system in terms of the total 
error. All values are in percentage. 

Figure 2. Signature 
Representation. a) 
Identity grid of 
witer b. b) 
Graphical segments 
extracted fi-om the 
first region of the 
identity grid. 

Table 1. Performance of the system 
in terms of FRR and FAR errors. All 
values are in percentage. 

Table 3. Effect of increasing the decision criteria on the 
FRR and FAR errors. 

I 

40 
* m  % $ E  

$ 2 3 2 0  
$ E t  
is33 0 
4 

3 6 9 12 15 

# of Training Signatures 

Figure 4. Performance of the system based on the optimum 
decision criteria. 

Authors 

13.8 10.6 12.2 

The Fuzzy ARTMAP 7.27 11.00 9.14 
0.2 

I OHSV I I I 
Table 4. Comparison between the results obtained with one-class 

problem approach and those obtained with the two-class prob- 
lem approach. 
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