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Abstract

Prenatal development of the primary visual cortex leads to simple cells with spatially distinct and oriented ON and OFF subregions. These
simple cells are organized into spatial maps of orientation and ocular dominance that exhibit singularities, fractures, and linear zones. On a
finer spatial scale, simple cells occur that are sensitive to similar orientations but opposite contrast polarities, and exhibit both even-
symmetric and odd-symmetric receptive fields. Pooling of outputs from oppositely polarized simple cells leads to complex cells that respond
to both contrast polarities. A neural network model is described which simulates how simple and complex cells self-organize starting from
unsegregated and unoriented geniculocortical inputs during prenatal development. Neighboring simple cells that are sensitive to opposite
contrast polarities develop from a combination of spatially short-range inhibition and high-gain recurrent habituative excitation between cells
that obey membrane equations. Habituation, or depression, of synapses controls reset of cell activations both through enhanced ON responses
and OFF antagonistic rebounds. Orientation and ocular dominance maps form when high-gain medium-range recurrent excitation and long-
range inhibition interact with the short-range mechanisms. The resulting structure clarifies how simple and complex cells contribute to
perceptual processes such as texture segregation and perceptual grouping. @ 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction: development of cortical orientation and
ocular dominance maps with oppositely polarized simple
cells

Development of the primary visual cortex prior to visual
experience produces orientationally tuned cortical neurons,
classifiable according to the criteria of Hubel and Wiesel
(1962) as either simple or complex; after several weeks of
visual experience these cortical cells evolve adult respon-
sivity (DeAngelis et al., 1993; Gbose et al., 1994; Hubel and
Wiesel, 1974). The prenatal segregation of geniculocortical
afferents into ocular dominance columns also occurs inde-
pendently of visual experience (Horton and Hocking, 1996).

Monocular, but not binocular, deprivation during the first
few weeks of visual experience can lead to drastic changes
in the arrangement of ocular dominance patches (Rubel et
al., 1977), but these changes may be blocked by the
elimination of neural activity (Stryker and Rarris, 1986),
suggesting that an activity-dependent process is responsible
for the development of ocular dominance.

Adult cortical cells are arranged into vertical columns
with similar orientation tuning and ocular dominance, and
these columns are arrimged into smoothly changing two-
dimensional maps of orientation and ocular dominance
(Rubel and Wiesel, 1962, 1963, 1968). The cortical map
of orientation is arranged in swirling patterns around orien-
tation centers in both cats (Bonhoeffer and Grinvald, 1991;
Grinvald et al., 1994) and monkeys (Blasdel, 1992b; Blasdel
and Salama, 1986), but the patchy pattern of ocular domi-
nance in cats (Anderson et al., 1988; LeVay et al., 1978;
Lowel and Singer, 1987; Lowel et al., 1988) differs some-
what from the stripe-like pattern in monkeys (Blasdel,
1992a, b; Rubel et al., 1977, 1978; LeVay et al., 1975,
1985; Obermayer and Blasdel, 1993). In both species
these patterns are evident at a spatial scale of about 1 mm.
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themselves; e.g. Miller (1992, 1994). The fact that all of
these models realize three computational principles
(Grossberg and Olson, 1994)-a source of noise, a band
pass filter, and normalization across all feature dimen-
sions-clarifies what all these different models have in
common from a computational viewpoint. These three
factors are sufficient to generate cortical maps which exhibit
the singularities, fractures, and linear zones that are found in
vivo (Blasdel, 1992a, b).

3. Self-organizing cortical maps and the triple-o map

At a much smaller spatial scale, nearby cortical simple
cells tend to exhibit opposite spatial phase (Pollen and
Ronner, 1981), and these cells may be connected by func-
tionally inhibitory connections (DeAngelis et al., 1991; Liu
et al., 1992; Palmer and Davis, 1981). The proposed
arrangement of simple cells with complementary ON and
OFF zones into mutually inhibitory pairs helps to explain
the source of local intracortical inhibition which provides
functional antagonism between ON and OFF zones in
simple cell receptive fields (Hube1 and Wiesel, 1962).
This complementary representation also helps to explain
the robust expression of orientation tuning following
blockade of ON retinal ganglion cells by the application
of APB (Schiller, 1982). These facts are summarized well
by models in which ON and OFF geniculate afferents
synapse onto pairs of mutually inhibitory simple cells
(e.g. Gove et al., 1995; Shulz et a1., 1993).

Complex cells also respond to oriented stimuli, but do not
have well-segregated ON and OFF receptive field sub-
regions. Complex cells are found in almost every layer of
VI (Gilbert, 1977), and are important components of
cortical models of visual perception (e.g. Grossberg and
Mingolla, 1985a, b). Several models of how individual
complex cells achieve their orientation tuning without seg-
regated ON and OFF regions have been described, each of
which pools simple cell responses with differing spatial
phases at a single complex cell (Emerson et al., 1992;
Gove et al., 1995; Grossberg and Mingolla, 1985a, b;
Jacobson et al.' 1993; Spitzer and Hochstein, 1985).

2. Some previous map development models

A number of theoretical models demonstrate how simple
cell response characteristics and global maps can be simul-
taneously self~organized by local processes. One of the
earliest models showed how a neural network with weights
modified by an associative learning rule can produce
orientation tuning when presented with oriented inputs
(Grossberg, 1976a, c; von der Malsburg, 1973). Linsker
(1986a, b, c) subsequently demonstrated the self-
organization of orientation tuning without oriented
inputs. Other modeling work has shown how ocular
dominance maps can arise from uncorrelated inputs
(Kohonen, 1982, 1989; Miller et al., 1989; Rojer and
Schwartz, 1989, 1990; Swindale, 1980), how maps of orien-
tation can form (Swindale, 1982), how maps of orientation
and ocular dominance may develop simultaneously (Durbin
and Mitchison, 1990; Obermayer et al., 1990, 1992; Sirosh
and Miikkulainen, 1994; Swindale, 1992), and how the
development of orientationally tuned simple cells and
their arrangement into cortical maps may progress synchro-
nously (Miller, 1992, 1994). Each of these models computes
its maps with somewhat different equations. Some models,
for example, focus on the learning that alters neural con-
nections without modeling the dynamics of the cells

A neural network model is described here that builds
upon these earlier developmental models. The model was
first presented in Olson and Grossberg (1996). This model
demonstrates the self-organization of cortical maps of
ocular dominance and orientation, while simultaneously
developing neighboring orientationally tuned simple cells
that are sensitive to opposite contrast polarities, and that
exhibit either even-symmetric or odd-symmetric receptive
fields. As shown below, these paired simple cells provide a
natural explanation for such facts as how subcortical appli-
cation of APB influences cortical orientation tuning and
how cortical complex cells come to pool signals from
oppositely polarized simple cells within a developing
cortical map.

This model is generically called a self-organizing cortical
map (SOCM). In order to distinguish this SOCM from
previous ones, it may be called a triple-o map model after
its ability to self-organize £rientation, £cular dominance,
and £Pponent contrast cells in a map. Previous models,
which develop one or two of the first properties, are thus
single-o or double-o map models.

In order to achieve these results, the dynamics of both
cortical cells and their intercellular interactions need to be
explicitly modeled. In particular, the model starts with
arrays of spatially contiguous opponent cortical cells for
which offset of activity in one cell (or cell population) of
a pair can lead to a transient antagonistic rebound of
activity in the opponent cell (or cell population) of the
pair. When embedded in a model whose dynamics
realize the three computational properties listed above,
these opponent cells develop into simple cells with simi-
lar orientation tuning but sensitivity to opposite contrast
polarities.

As sketched in Fig. I, the model also needs to simulate
the processing performed at earlier stages in the visual path-
way, most notably the relevant properties of the LGN
(Schiller, 1992). Retinal signals from the two eyes project
forward to ON and OFF cells in the LGN. ON and OFF
geniculate inputs from both eyes converge onto each
cortical simple cell via adaptive pathways. Driven by an
activity-dependent associative learning rule, segregation of
these geniculocortical connections is responsible for the
development of orientation tuning in the model.
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changes. Activity in each model OFF cell (N-) responds to
the complement of the input image

L-(j,k)=l-L+(j,k) (3)

according to

dN--= -.aN-
d!

+(l-N- )[8)G(U) * L-

-(1 +N- )[a2G(UV * L- (4)

At steady state, the activity of the LGN cells becomes

-[CXIG(O't)-CX2G(O'V]*L+
-.B+[CXIG(O't)+CX2G(O'V] *L+

N+ (5)RETINA LGN SIMPLE COMPLEX

Fig. 1. Model overview: inputs to the two eyes project forward to ON and
OFF cells in the LGN. ON and OFF cells from both eyes converge on
cortical simple cells, which are arranged into mutually inhibitory pairs.
The simple cells in turn project forward to complex cells. Model complex
cells thus derive their orientation from the underlying simple cells.

3.1. LGN preprocessing

and

The relevant section of the visual field is represented by a
two-dimensional array of intensity values, L +, ranging
between 0 and 1. Each of the values of this image
corresponds roughly to the net photoreceptor activity within
a small patch of foveal retina. Neural responses in the retina
and in the LGN may be divided into two main groups: ON
( + ) cells and OFF ( -) cells. Processing in the LGN is thus
broken into two complementary streams corresponding to
the representation by ON and OFF LGN cells of the pattern
of light on the retina. The activity in each of the model ON
cells (N+) obeys membrane, or shunting, equations
(Grossberg, 1973; Hodgkin and Huxley, 1952) with feed-
forward on-center, off-surround interactions (with
positional indices suppressed):

Eqs. (5) and (6) ensure that activity in the LGN field is
locally correlated: local correlations in the LGN drive the
development of local correlations in the receptive fields of
downstream cortical simple cells. Changing the size of the
two kernels by changing (11 and (12 alters the extents of the
on-center/off-surround processing realized by Eqs. (5) and
(6) and results in a corresponding change to the typical size
of simple cell subfields that the model will produce.

Cells in the LGN do not respond at a constant firing
frequency to constant patterns of light entering the retina.
Rather, in response to activating stimuli, LGN cells quickly
achieve a high firing rate which then decays over time
(Cleland et al., 1971). Neither the exact shape of the
response curve nor the precise timing of the habituation is
important for the purposes of these simulations, but time
dependence of model LGN cell responses enables the
model to respond robustly to new inputs (see below). This
habifuative property is implemented by multiplying the
maximal response of each geniculate cell, N+ or N-, by a
Gaussian function of time since the start of the last pattern
presentation, t 1 :

dN+

dt
= -.eN+ +(l-N+)[alG(Ul)*L+j

-(1 + N+ )[a2G(UV * L +]. (1)

Two-dimensional spatial convolution is indicated by the '*'
operator, and the array G(u) is a two-dimensional Gaussian
with its peak at the center of the array at (i oj 0) as defined by

( ' . )2+(; 0 )2 t -to -Jo

--
G(u, i,j) = e cf1. (2)

The convolution operator shifts the center of the Gaussian in
the usual way. Without the excitatory or inhibitory inputs,
the passive decay term, -{3N+, causes the activity of each
cell to exponentially decay towards O. Sensitivity to
excitatory inputs a ,G(uJ*L + decreases as the cell's activity

level approaches 1 according to the term (l-N+), just as
sensitivity to inhibitory inputs a2G(u2)*L + decreases as

the activity approaches -1 according to the term (1 +
N+). The behavior of this equation models neural hyper-
polarization and depolarization in response to conductance

2
(t -tl)

>..(t) = e --~ (8)

Utilizing such a function, rather than explicitly modeling
frequency-dependent habituative LGN dynamics, helps to
reduce the computational load which, as noted below, is
considerable. More realistic frequency-dependent habitua-
tive processes in the cortex are dynamically modeled using
differential equations.

N -[aIG(CJ1)-a2G(CJ2)]*L-
-(6)-.B + [al G(CJI) + a2G(CJ2)] * L -.

The amplitudes of the two Gaussian kernels, G(CJJ and
G(CJ2), in the above convolutions are scaled by al and a2
so that the volumes under the two surfaces are equal to 1.0.
In discrete fonn:
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3.2. Weighted geniculocortical connections

s s
Fig. 3. Local connectivity: a single dipole unit is composed of a pair of input
cells XiV, k), feedback cells YiV,k), and habituating gates ziV,k) made up of
two channels, corresponding to units with subscript 0 and to units with

subscript 1, respectively. Each simple cell xjV,k) receives LGN ON ( + )
and OFF ( -) signals along weighted pathways. Venical feedforward
excitation (solid arrows) within and reciprocal feedforward inhibition

(dashed arrows) between the channels produce an antagonistic relationship
between simple cells. Positioned indices V,k) have been dropped.

Each model simple cell (or cell population) xiV,k)
receives direct connections from only a subset of LGN
ON and OFF cells, as shown in Fig. 2. These signals,
s+(l,m) and s-(l,m), are copied from a circular region of
diameter n( of the LGN activity patterns, N+(u,v) or
N-(u,v), shifted downwards with increasing I and to the
right with increasing values of m.

Each simple cell xiV,k) has a separate set of synaptic
weights wi~(l, m) and wift(l, m) through which it filters the
LGN ON and OFF cell input patterns s+(l,m) and s-(l,m).
The dot products of these weight images and the LGN
activity patterns are calculated to determine the bottom-up
inputs Ii to the simple cells, scaled by the time-dependent
decay function A:

IiV,k)=A(t)(wi~'Sjt +WiikOSjk)' (9)

3.3. Simple cell dynamics

dx.
J= -AxXi+(Bx-xJ{Cxli+Exf[T(yJ]Zj} (10)

dt

with

y if y > 0,

0 otherwise.
T(y)= (11)

Each simple cell (or cell population) YiV,k) receives feed-
forward excitation from the corresponding simple cell xiV,k)
and inhibition from the competing simple cell xhV,k). This
recurrent local circuitry is functionally similar to the (13)

The signal function fin Eq. (12) is defined by:

y2f(y) = .iT+f' (14)

Such sigmoidal signal functions enable the recurrent com-
petitive field in Eq. (12) to achieve the useful properties of
contrast enhancement and noise suppression (Grossberg,
1973), both of which are needed for pattern processing in
a noisy environment. In the present case, within-channel
excitatory connections and between-channel inhibitory con-
nections cause the y cells to compute the difference of the
cortical inputs, 10 and II, to the two opponent channels.
When weights w+ and w- are random, as they are before
learning, these differences are very small and need to be
amplified to enable cortical units to interact laterally with
other cortical cells in such a way as to learn a map of

Each simple cell (or cell population) xiV,k) obeys a mem-
brane, or shunting, equation and combines bottom-up LGN
input and recurrent positive feedback from the correspond-
ing simple cell y,V,k), as shown in Fig. 3. The recurrent
excitation is multiplied by a habituating transmitter gate
ziV,k). In all:

feedforward model of Shulz et al. (1993), and accounts
for ON and OFF subregion inhibition (Rubel and Wiesel,
1962), opponency between paired simple cells (Liu et al.,
1992; Palmer and Davis, 1981; Pollen and Ronner, 1981),
and the survival of orientation tuning following blockade of
activity in the ON afferents (Schiller, 1982). In addition,
non-adaptive lateral connections provide short-range
distance-dependent excitation and longer-range distance-
dependent inhibition:
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This sort of habituative synapse has been used to explain a
variety of perceptual data that involve visual cortex
(Francis, 1996a, b; Francis and Grossberg, 1996a, b; Francis
et al., 1994; Grossberg, 1976b, 1980, 1987, 1997;
Grunewald and Grossberg, 1996). Abbott et al. (1997)
have reported habituating cells in rat visual cortex and
modeled them using Eq. (15). Their model also represents
individual spikes. They call the habituation synaptic
depression. Chance et al. (1997) have used habituative
synapses to simulate a number of temporal non-linearities
in the experimentally reported responses of simple cells.

The medium-range excitatory connections and long-
range inhibitory connections, shown in Fig. 4, produce
medium-range correlations and long-range anti-correlations
in the developing maps of orientation and ocular domi-
nance. These patterns of correlation and anti-correlation
lead to the formation of coordinated maps of ocular domi-
nance and orientation (Durbin and Mitchison, 1990;
Grossberg and Olson, 1994; Obermayer et al., 1990, 1992;
Sirosh and Miikkulainen, 1994; Swindale, 1992).

orientation and ocular dominance through weight changes

(see below).
The x +-+ y feedback loop amplifies such small input dif-

ferences. This is accomplished through high-gain recurrent
connections [with large values of Cy and Ex relative to the
size of the input gain, C x, in Eqs. (10) and (12)]. Similar
feedback has been used in models of boundary segmentation
(e.g. Gove et al., 1995) and has been reported in neural
measurement of cortical neurons (Chung and Ferster,
1997; Douglas et al., 1995; Stratford et al., 1996). Once a
pattern of activation is instantiated in the network by high-
gain feedback, lower-gain subsequent inputs may be of
insufficient magnitude to force the selection of a new pat-
tern. To amplify input differences, the gain on the feedback
loop needs to be large relative to the bottom-up input gain,
but to respond efficiently to changing input patterns, the
input gain must be large relative to the feedback gain.

3.4. Habituative or depressing synapses

3.5. Complex cell receptive field
This apparent paradox is resolved by adapting or habitu-

ating the feedback gain using a habituative transmitter, Zi,
that gates the feedback signal as in Eq. (10). This transmitter
obeys the equation:

dz.
-df=Az(1 -Zi) -Bf[T(Yi)]Zi (15)

(Grossberg, 1969, 1972). When the cell signal.f[T(Yi)] is
zero, Zi gradually accumulates to a maximal value of 1 via
the term Az(1 -Zi) in Eq. (15). However, when Yi is active,
Zi is inactivated via the mass action term BJIT(Yi)]Zi and
reduces the effective gain on the x ...Y feedback loop. The
time-dependent decay >..(t) of input, as in Eq. (9), also
alleviates the problem by allowing the effective input gain
to be relatively large whenever a new input is presented.

The activities of the simple cells, Yh of both contrast
polarities, combine additively through non-adaptive
distance-dependent Gaussian connections to yield complex
cell responses:

K = <:¥k[T(yo) + T(y\)] * G(Uk)' (16)

The parameter <:¥k is chosen such that the volume under the
surface of the Gaussian is equal to 1.0.

Because simple cells with complementary receptive field
profiles are found at nearby positions in the final simple cell
map, complex cells which sum these responses exhibit
similar response profiles to light and dark stimuli. The

COMPLEX
CELLS

SIMPLE
CELLS

LGN
CELLS

Fig. 4. Lateral connectivity and complex cells: distance-dependent connection strengths between y units realize a band pass filter. Complex cells respond
according to the weighted sum of simple cell responses.
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smoothness of a complex cell's response to light and dark
stimuli in different positions in the receptive field may be
controlled by varying the size of the region of the simple cell
map that the complex cell samples. Small regions, corre-
sponding to values of Uk near 0, lead to segregated patches in
the complex cell receptive field corresponding to ON and
OFF subregions in the underlying simple cells. Large values
of Uk lead to a more uniform spatial response distribution
within the receptive field.

For small values of Uk, the orientation preference of com-
plex cells echoes the orientation preference of simple cells
directly below them. With larger values of Uk, each complex
cell samples a broader range of simple cells and hence a
broader range of orientations. The organization of the
simple cell orientation map, which ensures that nearby
simple cells have similar orientation preference, reduces
the loss of orientation tuning that such broad sampling
would otherwise dictate. Only when the sampling region
is on the same order as the periodicity of the orientation
map, with Uk > 2UI, would orientation tuning in the complex
cells be compromised.

Aw71xiV,k)-r] in Eqs. (17) and (18)}, it is possible to use the
following approximation scheme for each input cycle, c:

1. a new random LGN input image L + is selected;

2. the weights are assumed to remain constant, and solu-
tions for the remaining fast dynamical variables, Xijk( T m),
are numerically computed at several time intervals TO
through Tn using an adaptive stepsize Runge-Kutta
algorithm (Press et al., 1992)-the number of steps n
and the size of each step is determined by the numerical

integration algorithm;
3. the weights are updated, using discrete-time approxima-

tions to Eqs. (17) and (18) and the time-averaged
numerical solutions, Xijk(c), of each Xijk for the duration
of cycle c:

w;t(c+ 1)=w;t(c)+AwX~(c)[Sjt(c) -wu1(c)]

and

w;fr(c + I) = wit (c) +AwX~(C)[Sjk (c) -wit (c)]

where

3.6. Learned modification of geniculocortical path weights
Xijk(c) =

I n

-L Xijk(Tm)(Tm-Tm-I)'
Tnm=1

At the beginning of a learning simulation, each element in
each of the weight arrays Witt and Wilt in Eq. (9) is selected
from a uniform random distribution between 0 and 0.1
(Press et aI., 1992). Modification of receptive field proper-
ties over time is due to changes in the long-term weights on
the bottom-up connections. These weights are modified
according to the following associative learning rule
(Hebb, 1949), called the instar learning rule or gated
steepest descent learning rule (Grossberg, 1976a, b; see
also Kohonen, 1989; Obermayer et aI., 1992; Singer, 1983):

This singular perturbation procedure eliminates the need to
evaluate the evolution of the weights at the fast time scale of
the rest of the activation dynamics and greatly reduces the
number of computations required at each cycle.

4. Model simulations of a triple-o self-organizing cortical
map

(17)

To simulate map fonnation at the same cortical resolution
presented by Miller (1994) requires 32 X 32 dipoles in the
system, each with six elements (two XS, two ys, and two zs),
for a total of 6144 elements. Numerically integrating a sys-
tem of 6144 variables using an adaptive stepsize algorithm
such as the Runge-Kutta method would be possible, but
somewhat inconvenient, except for the fact that the system
is stiff (Press et al., 1992). Algorithms such as adaptive-
stepsize Runge-Kutta take tiny time steps in order to obtain
acceptably accurate solutions. In practice, the Runge-Kutta
algorithm takes on the order of 106 steps to compute a single
cycle of the integration phase.

By comparison, algorithms designed for stiff systems can
perfonn much better. However, available stiff algorithms
use more sophisticated techniques for estimating the
influence that changes in one dynamical variable have on
another and require multiple inversions of the Jacobian
matrix (a matrix of size n X n for a system with n variables).
Each matrix inversion (in general) requires on the order of
n3 operations (which translates to 2.3 X lOll operations in a
system of 6144 variables) and the storage of n2 matrix
elements (which translates to about 3 X 108 elements or

According to this learning rule, changes in the weights are
made only when the postsynaptic cortical unit xiV,k) is
active. Then the weights slowly change to track the input
signals impinging on the corresponding pathways. The
instar rule is thus the simplest rule that can incorporate
both Hebbian and anti-Hebbian learning properties. The
instar learning rule also normalizes the weights when
activity in the presynaptic and postsynaptic neural fields is
normalized by their shunting on-center off-surround
dynamics, and renders the sum of the elements of each
cortical unit's weight arrays approximately constant.

In order to observe map formation in the system
described by Eqs. (1)-(18), a large number of simple cell
dipoles must be simulated. Since the weights change
slowly compared to the rate of change of the other variables
of the system {guaranteed by a small value of the expression
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dominance and orientation maps with simple cell neighbors
sensitive to opposite contrast polarities.

4.1. One-dimensional simulations: development of opponent
simple cell orientation columns

c)

...

d) o.~ --~c'""~=---
0 100 150 200 250

TIME UNITS

Fig. 5. Network dynamics: sample of five pulses used in weight modifica-
tion procedure (see text). (a) Input pulses 10 (solid) and 1 ( (dashed) deter-
mined by Eqs. (1)-(9) with each element of L chosen randomly between 0
and I. Solution traces of the variables comprising one dipole: (b) Xo (solid)

andxl (dashed); (c) Yo (solid) andYI (dashed); (d) Zo (solid) andZI (dashed).
Parameters used were: Aw=0.OO2.Ax= I. Bx= I. Cx= I. Ex =6. Ay = 3.

By= I. Cy=6.Dy= 1.5. Ey=6. Fy= I. Gy=2.A, = 0.005. B, =0.0444.
n(=16, n2=32.fI=0.3333. 17,=IO.I7E = 2.5, 'I = 5,171 = 2.172 = 5.
<XE =0.2257. <XI = 0.1129, <XI = 0.0796. <X2 = 0.0134..B = 0.2. r = 0.2.
These same parameters were used for all one-dimensional simulations
shown. All simulations were run on an SGI Power Challenge using

programs written in C. C++ and MatLab.

1152 megabytes of storage). Readily available computers
cannot handle such large problems. Therefore, two approxi-
mations of the system are studied: a one-dimensional slice
of the complete dynamical system in order to demonstrate
how a map of orientation can develop, and a two-
dimensional operational approximation (see Appendix A)
to the complete dynamics that self-organizes ocular

50

Fig. 5 shows the responses through time of the variables
that make up one opponent pair, or dipole, of simple cells.
Every 50 time units, each element of the input image L + is
selected from a uniform random distribution, representing
spatially uncorrelated retinal activity. The presentation of a
new input, which occurs every 50 time units, causes a small
increase in the level of activity of the target simple cell x in
Eq. (10), at a rate proportional to the total input. As activity
in these x units increase, each y unit in Eq. (12) is excited by
its corresponding x unit, and inhibited by the opponent x
unit. Each y unit is thus sensitive to inputs to the correspond-
ing x unit that are larger than those to the complementary x
unit. As activity in the y units increases, a positive x +-+ y
feedback loop becomes active, driving the active x and y
units towards their maximal levels and the opponent x and y
units towards their minimal levels. The gradual decay of the
transmitter z term in Eq. (15) of the active channel results in
a decrease in the gain of the feedback loop and causes a
gradual decay of activity in the active units. The decrease in
feedback gain enables new inputs to drive the selection of
other cortical units, notably the opponent simple cells.

These network dynamics are capable of robustly driving
the learning of simple cell receptive field profiles. Since
each x unit receives nearly complementary input images
from the ON and OFF LGN cells according to Eqs. (5)
and (6):

N+=l-N-, (22)

the total input to each input cell in Eq. (10) is approximately

a)

b)

c)

d)

e)

f)

Fig. 6. Development of weight profiles: linearized weight images Wjk corresponding to each of 32 cortical locations. Weight profiles gradually develop from
initially disordered state and eventually converge to their final values. (a) Initial linearized weights; (b) after 250 training cycles; (c) after 500 presentations;
(d) after 750; (e) after 1000; and (f) after 6000 presentations.
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as well is an important result of this model. The mutual

inhibitory connections from each x unit to the comple-
mentary y unit ensure that only one of the two positive
x +-+ y feedback loops in each dipole can become active at

a time. Since the associative learning rule modifies the feed-
forward weights to make the response to subsequent
presentations of the same pattern stronger, and since com-
plementary x units respond in a statistically anti-correlated
fashion, the corresponding weight images sample comple-
mentary input images and develop opposite spatial phases.
Such complementary receptive field profiles have been
recorded in vivo (Liu et al., 1992; Pollen and Ronner,
1981) from nearby cortical cells.

A second important result is that non-overlapping,
oriented ON and OFF subregions develop in the model
geniculocortical cell weights. Simple cells in the primary
visual cortex receive direct excitatory connections from dis-
tinct regions of the LON (Liu et al., 1992; Reid and Alonso,
1995). These distinct ON and OFF subregions provide direct
oriented input to cortical simple cells (Ferster et al., 1996;
Hawken and Parker, 1984; Reid and Alonso, 1995; Schiller,
1982). This model thus suggests how prenatal development
leads to the segregation of initially intermingled ON and
OFF inputs to cortical cells into oriented excitatory

subregions.

N+ [w~ + (1 -Wilk )], (23)

which is a linear approximation of the feedforward compo-
nent of the response of each simple cell x ijk or Y ijk' Since the
members of each pair compete subtractively with one
another, the response of units Yo is:

N+ {[WoYk + (1 -Walk)] -[W~k + (1 -WVk)]), (24)

which simplifies to

N+ [(WoYk -walk) -(W~k -WVk)]' (25)

The linearized weight image

Wjk(l, m) = [woJk(l, m) -wOlk(l, m)] -[w~k(l, m) -wVk(l, m)]

(26)
is thus a linear approximation of the feedforward component
of the receptive field of each unit.

The gradual evolution of the linearized weight images is
shown in Fig. 6. From their initially random state, the
weight images are slowly transformed by associative learn-
ing into oriented, stable patterns. These weight profiles are
similar to receptive field profiles of cortical simple cells.
Furthermore, as shown in Fig. 6(f), nearby model simple
cells tend to have similar orientation preferences, with
orientation preference changing smoothly as the simulated
cortex is traversed in a manner comparable to orientation
preference of cells in the visual cortex along tangential
electrode penetrations (Rubel and Wiesel, 1963).

A closer look at the weight images corresponding to a
single opponent pair of simple cells (Fig. 7) reveals that,
after development, model ON and OFF weight images
corresponding to a single simple cells are complementary.
This might be expected of any system capable of generating
segregated ON and OFF subregions, but the fact that the ON
weight images (as well as the OFF weight images) of oppo-
nent simple cells within a single dipole are complementary

4.2. Two-dimensional simulations: development of a
triple-o map

a) b)

c) d)

In the two-dimensional model, the one-dimensional
cortical slice simulated above is expanded to a two-
dimensional sheet and the complete activity dynamics are
simplified to obtain computational tractability (see
Appendix A). This simplification pennits a study of the
interaction of orientation and ocular dominance map
development. Each simple cell receives input from LGN
fields corresponding to the contralateral (NC+ and ~-)
and the ipsilateral (N1+ and N1-) eyes. These inputs con-
verge onto simple cells via weighted pathways labeled

C+ C- 1+ d 1- A . th d.. IWijk , Wijk , Wijk an Wijk. S m e one- Imenslona
case, linearized weights are calculated in order to examine
the response profiles of the cortical units. Linearized weight
images corresponding to each eye are calculated, as in Eq.
(26), by:
-C ( C+ C- ) ( C+ c- ) (27)Wjk = WOjk -WOjk -Wljk -Wljk

and

-I ( 1 + 1- ) ( 1 + 1- ) (28)Wjk = WOjk -WOjk -Wljk -Wljk .

Linearized contralateral and ipsilateral weight images are
shown in Figs. 8 and 9. Both possess regions with swirling
patterns of oriented ON and OFF subregions. Interspersed
with these are relatively neutral regions with little spatial
ON/OFF discrimination.. A comparison of the two figures
reveals that the high contrast regions of the ipsilateral
weights line up with the low contrast regions of the

Fig. 7. Opponency of final weight profiles: self-organization leads to the
development of opposite polarity ON and OFF weight profiles in opponent
simple cells. Weight images after 6000 training presentations: (a)
wo+ (1, 24); (b) wo- (1,24); (c) wt (1, 24); (d) wi (1, 24).
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Fig. 8. Contralateral linearized weights: 24 ><: 24 subset of weight images w~ after 10;000 learning iterations. Light areas represent regions with large ON
weights to units Xojk and dark areas represent regions with large OFF weights to these cortical units. Parameters used were: Aw = 15, n 1 = 16, n2 = 64, UE = 2,
UI =6, U, = 2, U2 = 5, Uk =6, lXE = 0.0796, '[XI = 0.0088, lXl = 0.0796, lX2 = 0.0134, lXE = 0.0088, fJ = 0.2. These same parameters were used for all two-

dimensional simulations shown.

binocular. In fact it is because each simple cell is close to
being monocular that ipsilateral and contralateral linearized
weights may be meaningfully combined as in Eq. (29).

Linearized binocular weight images are shown in Fig. 10.
As in the one-dimensional simulations, individual units
develop oriented weight images that are strongly suggestive
of the receptive field profiles of cortical simple cells. The
gradual swirling arrangement of physiological orientation
maps is also evident.

contralateral weights, and visa versa. Each high contrast
area in the contralateral weight image corresponds to a
region dominated by the contralateral eye. In order to
examine the global map of orientation independently of
ocular dominance, binocular linearized weights are defined
as:
-B -C + -I (29)Wjk = Wjk Wjko

This is not to imply that the simple cells in the model are
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Fig. 9. Ipsilateral linearized weights: 24 X 24 subset of weight images WJkO

(31)

and orientation selectivity

~ r~(j, k) Sin(28)] 2 + [ ~ r~(j, k) COS(28)] 2.

(32)

SB(j,k) = 1

To more closely examine these orientation preference
maps, a quantitative measure of binocular orientation
selectivity is computed directly from w~ by constructing a
collection of images B8iry of small (two pixel by eight pixel)
light (i = 1) and dark (i = 0) bars on a neutral background
(0.5) at 12 orientations 8, and every possible position (x,y) in
a 16 X 16 grid. Responses to these test stimuli are then:

r:U,k)= L B8ixy'WBU,k). (30)
i.x,y

Following Blasdel (1992a), the responses at each cortical
position to each orientation are vectorially summed to yield
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Fig. 10. Binocular linearized weights: 24 X 24 subset of weight images w~

Quantities pB and SB define a map of orientation that is
shown in Fig. 11. At each position (j,k), a small line segment
with orientation pB(j,k) and length proportional to SB(j,k) is
drawn to represent orientation preference and selectivity.
This map exhibits the swirling, gradually changing charac-
ter of biological orientation maps as well as the key features
of these maps: singularities-regions of low selectivity
around which all other orientations are grouped, linear
zones-regions in which orientation changes relatively
linearly with cortical distance, and fractures-regions in
which orientation changes rapidly along one spatial direc-
tion and slowly or not at all in the orthogonal direction. Each

of these key features is present in the simulated orientation
map shown in Fig. 11.

An index of ocular dominance is computed by subtracting
the total weight contributed by the ipsilateral eye from the
total weight contributed by the contralateral eye at each
cortical position:

E(j,k)= L {[w~k+(l,m)+wJk- (I,m)]
i,l,m

-[w~t(l,m)+w~k(l,m)]}. (33)

Fig. 12 shows the complete orientation map superimposed
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Fig. 13. Scatter plot of orientation selectivity vs. ocular dominance: the
distribution reveals that large values of 58 tend to lie near cortical regions
dominated by neither eye (E near 0), and that regions of extreme ocular
dominance tend to have fairly low orientation selectivity.

-0.5

Fig. 11. Orientation map: subset of the simulated binocular orientation map.
Key features of the biological orientation maps are present here: (a)
singularities; (b) linear zones; (c) fractures.

on the map of ocular dominan<:e. Regions dominated by the
contralateral eye, with E(j,k) ~ 0, are colored white, and
regions dominated by the ipsilateral eye, with E(j,k) < 0, are
colored grey. As with physiological maps, this map of
ocular dominance is made up of interlaced dark and light
patches corresponding to regions dominated by each eye.
Ocular dominance and orientation preference are related in
much the same way as are physiological maps: regions

Fig. 12. Orientation preference and IJCuiar dominance maps: orientation
preference at each position is indicated by a line segment at the preferred
orientation with length proportional to orientation selectivity. Regions
dominated by the contralateral eye are colored white. regions dominated
by the ipsilateral eye are grey.

dominated by one eye or the other (corresponding here to
extreme values of E) tend to line up with regions of low
orientation selectivity, and regions of high selectivity tend
to be aligned with the borders of the ocular dominance
bands (Blasdel, 1992b), as shown in Fig. 13. Earlier model-
ing work has shown that using an anisotropic filter can
produce striped ocular dominance maps that even more
closely resemble the patterns observed experimentally in
monkeys (Grossberg and Olson, 1994; Rojer and Schwartz,
1989, 1990; Swindale, 1980). This could be accomplished
within the present modeling framework either through the
use of an anisotropic pattern of lateral connections among
simple cells or through an anisotropic pattern of geniculo-
cortical connectivity.

The response properties of the simple and complex cells
in the model are probed by constructing appropriate input
images L C and L I, and computing the cortical response to

each input using EqS. (A1)-(A17) in Appendix A. Measur-
ing the response of each cortical cell to oriented light (1.0)
and dark (0.0) bars on a neutral (0.5) background in L C and a
uniform neutral pattern in L I leads to the construction of

contralateral orientation tuning curves for simple and com-
plex cells. Figs. 14 and 15 show contralateral orientation
tuning curves for six representative simple and complex
cells, measured with oriented bars of length 12 and width
3. Similar response tuning curves result from presenting
bars to the network in L I, and uniform neutral stimuli in
L c. Both simple and complex cells tend to have a range of
orientations for which they are well-tuned, and response
falls off as the orientation is moved away from the preferred
orientation. The orientation tuning of simple cells is
approximately equal to that of complex cells.

In rhesus monkeys, most cells exhibit tuning curves



S.J. Olson, S. GrossberglNeuralNetworks 11 (1998) 189-208 201

0.015. 0.015. ..

0.01 0.01

0.005 0.005

50 100 150 50 100 150

0.015. ..u'"
I::
0~ 0.01
~
a 0.005
u
~

0.01

0.005

-~, /.; """"--- .
Vo 50 100 15000 50 100 150

Stimulus orientation (degrees)

Fig. 14. Simple cell orientation tuning: model cell response plotted against test bar orientation for six characteristic model simple cells.

between 20 and 100 degrees wide, with the median at about
40 degrees for simple cells and 50-150 degrees for complex
cells (Schiller et al., 1976) when orientation tuning was
measured as the width of the tunin~~ curve at a level equal
to 1/ J2 of the maximum response. In cats it is between 40
and 75 degrees (median 50 degrees) for simple and between
20 and 81 degrees (median 47 degrees) for complex cells

(Gilbert, 1977), when orientation tuning was measured as
the width of the tuning curve at 1/2 the maximum response.
Although direct comparison of these numbers is difficult
because of the different definitions of tuning width, the
measurements are in general agreement with one another
and with the width of the tuning curves produced by the
model.
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c
c.s 0.0051
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Fig. 15. Complex cell orientation tuning: model cell response plotted against test bar orientation for six characteristic model complex cells.
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and OFF subregions reflecting both even-symmetric and
odd-symmetric receptive field types. Some simple cells
exhibit only ON responses (or conversely, only OFF
responses), such as the cell shown in the center-right tuning
curve of Fig. 16. Complex cells have poorly segregated ON
and OFF subfields, often responding equally well to light
and dark bars at each position in their receptive fields.

One of the novel aspects of the model is the development
of spatially contiguous simple cells with opposite spatial
phases or contrast polarities. These adjacent cortical simple
cells provide input to a subsequent layer of complex cells,
which thus pool signals from both contrast polarities. The
fact that these opponent pairs of simple cells have receptive
profiles which are anti-correlated implies that the ON
weight profiles of paired simple cells become complemen-
tary (as do the OFF weight profiles of the paired cells). This
fact, along with the fact that ON and OFF weight profiles
corresponding to a single simple cell become complemen-
tary, implies that the ON weight profile of a simple cell
becomes complementary to the OFF weight profile of the
cell's antagonist. These tendencies are clearly evident in the
scatter plots in Fig. 18.

Model cells exhibit a range of orientation tuning, but most
tend to exhibit tuning curves approximately 50 degrees wide
(measured at a level equal to 1/2 the maximal response). A
subset of simple cells exhibit bi-lobed orientation tuning
curves with peaks in the orientation tuning curves at nearly
orthogonal orientations. An example of this is shown in the
lower right curve in Fig. 14 and is comparable to bi-lobed
cells found in macaque visual cortexes (De Valois et al.,
1982). Simple cell orientation tuning curves are also quite
sensitive to bar position and contrast, a fact which is not
surprising given the spatially distinct ON and OFF sub-
regions they exhibit (see below). Because they pool inputs
from many simple cells, the orientation tuning curves of
complex cells are much less sensitive to stimulus position
and contrast, and also tend to be broader and smoother than
simple cell tuning curves.

ON and OFF regions of simple and complex cell recep-
tive fields were probed using oriented bars at that orientation
which produced the maximal response. Light and dark bars
at the best orientation are pre:,ented at varying positions in
each cell's receptive field in a path running orthogonal to the
preferred orientation. Figs. I (5 and 17 show the positional
tuning curves of six representative simple and complex
cells. Both model cell types show spatially localized recep-
tive field profiles which tend 1:0 be aligned with the centers
of the extent of their genicula1:e inputs. Like cortical simple
cells, simple cells in the model have well-segregated ON
and OFF subregions which ll~ad to strong response when
light and dark bars, respectively, are presented within the
regions. These receptive field profiles possess multiple ON

5. Discussion

The self-organizing cortical map (SOCM) model devel-
oped in this study extends earlier work on map formation
(Bienenstock et al., 1982; Grossberg, 1976a, c; Grossberg
and Olson, 1994; Kohonen, 1989; Miller, 1992, 1994;
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Fig. 16. Simple cell positional tuninB:: response elicited by bars at optimal orientation, averaged over position in receptive field (measured orthogonal to bar
orientation). Position 0 corresponds to a stimulus centered in the portion of the LGN providing direct feedforward input to the simple cell. Solid lines: responses
to light bars; dashed lines: responses to dark bars.
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Fig. 17. Complex cell positional tuning: resp<mse elicited by bars at optimal orientation, averaged over position in receptive field (measured orthogonal to bar
orientation). Solid lines: responses to light b:irs; dashed lines: responses to dark bars.

Miller et al., 1989; Rojer and Schw.lrtz, 1989, 1990; Sirosh connections without describing the dynamics of the cells
and Miikkulainen, 1994; von der M~llsburg, 1973; Willshaw between which these connections form. Using cell dynamics
and von der Malsburg, 1976) and orientation tuning de vel- enables us to model how short-range inhibitory connections
opment (Linsker, 1986a, b, c; Miller, 1994) to show how may lead to the generation of locally opponent simple cells
neighboring simple cells that are sensitive to opposite with segregated ON and OFF subregions. These simple cell
contrast polarities can self-organize as part of the develop- pairs interact via medium-range excitatory and long-range
mental process that generates corti,::al maps of orientation inhibitory connections that control the formation of cortical
and ocular dominance. In addition to the source of noise, maps of orientation and ocular dominance. These several
band pass filter, and response normalization that are present processes, acting together, enable the present SOCM
in other models, the current model makes use of cell model to show, for the first time, how triple-o map proper-
dynamics to control map developiment. In contrast, the ties (orientation, ocular dominance, opponency) self-
Miller (1994) model describes rules for learning neural organize during the map development process. The fact

that nearby simple cells develop opponent contrast polari-
ties in the model allows, in turn, a simple description of
complex cell self-organization to be proposed.

Orientation tuning in the model is an emergent property
of a network in which bottom-up random inputs to locally
opponent simple cells drive high-gain local feedback and
lateral on-center off-surround interactions between simple
cells. There is strong evidence that, after development,
cortical simple cells receive ON and OFF inputs via a
well-oriented geniculocortical projection pattern (Ferster,
1986; Liu et al., 1992; Reid and Alonso, 1995; Volgushev
et al., 1993). These inputs are arranged in alternating
patches corresponding to the ON and OFF subregions of
simple cell receptive fields (Ferster et al., 1996; Hawken
and Parker, 1984; Schiller, 1982). Like earlier models of
simple cell development (Linsker, 1986a, b, c; Miller,
1994), associative learning in model simple cell weights
leads to this pattern of segregated ON and OFF inputs.

Orientation tuning can also be altered under appropriate
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(a) (b)

Fig. 18. Simple cell opponency: (a) value 01: each weight w~: (I,m) from
the ON LON to units XOjk vs. weight w~i: (I, m) from the OFF LON. They
are clearly anti-correlated. (b) Value of each ""eightw~: (I, m) from the ON
LON to units XOjk vs. weight wti: (I, m) from the OFF LON to the
antagonistic units Xljk. Because of the opponency developed by the model
cells, each cell has an ON region that is correlated with the OFF region of its

opponents.
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of the receptive fields, but the spatially-opponent OFF sub-
regions in the two channels of each dipole would provide a
receptive field of nearly unchanged shape.

The development of spatially contiguous simple cells that
are sensitive to opposite contrast polarities clarifies how
complex cells could develop by pooling signals from
oppositely polarized simple cells. In fact, starting with
pairs of such oppositely polarized simple cells, Grunewald
and Grossberg (1996) have modeled how disparity-sensitive
complex cell receptive fields can develop, despite the fact
that the simple cells which activate them are anti-correlated.
This study also uses habituative, or depressing, synapses to
self-organize its receptive fields.

The pooling process whereby complex cells get their
inputs from simple cells plays an important role in cortical
models of visual perception. In these models, complex cells
pool half-wave rectified output signals from pairs of
oppositely polarized but similarly oriented simple cells.
The model complex cells hereby compute an oriented,
full-wave rectification of the image. Such an operation has
become standard in models that have succeeded in explain-
ing many data about human texture segregation (Chubb and
Sperling, 1989; Grossberg and Mingolla, 1985b; Grossberg
and Pessoa, 1997; Sutter et al., 1989). Because these model
complex' cells pool signals from opposite contrast polarities,
they can respond all along the perimeter of objects whose
relative contrast with respect to their backgrounds reverse
along the perimeter. This property plays a key role in
explaining many human psychophysical data about percep-
tual grouping, 3-D vision, and figure-ground separation
(e.g. Francis and Grossberg, 1996a, b; Francis et al., 1994;
Grossberg, 1994, 1997; Grossberg and Mingolla, 1985a, b).
Taken together, these psychophysical and neurobiological
data, and their explanation using complex cells that pool
opponent simple cell outputs, provide strong converging
evidence that simple cells provide an important input
pathway to complex cells.

An ongoing debate concerns whether only simple cells
project to complex cells (Rubel and Wiesel, 1968). The
present model supports the hypothesis first presented by
Hubel and Wiesel that orientation tuning in complex cells
is initially derived from pooling the response of multiple
simple cells. This hierarchical arrangement has been
attacked based on several observations. Cross-correlation
analysis of simple and complex cell action potentials
seems to suggest that there exist relatively few direct simple
to complex connections (Ghose et al., 1994; Hoffmann and
Stone, 1971). If it is the case, as suggested by this model,
that each complex cell pools the responses of many simple
cells, firing of each simple cell may be only weakly
correlated with firing in any complex cell. Although
model simple to complex cell connections help to instantiate
orientation tuning in model complex cells, the model is
silent on the issue of whether additional oriented inputs
reach complex cells. In vivo, complex cells may respond
with shorter latencies via monosynaptic connections to

conditions by the blockade of the cortical inhibitory neuro-
transmitter GABA (Sillito, 1975, 1979; Vidyasagar and
Mueller, 1994). These results suggest that intracortical con-
nectivity can influence orientation tuning. In the model, the
development of orientation tuning benefits from lateral
inhibition within the cortical map, which serves to contrast
enhance small differences in random activity before the

map develops, along with well-oriented geniculocortical
afferents. The apparently contradictory fact that application
of the excitatory neurotransmitter acetylcholine does not
lead to a decrease in orientation tuning, and may actually
serve to enhance tuning (Sillito et al., 1985), may also be
explained within the context of the model. General applica-
tion of an excitatory transmitter would have the effect of
increasing the level of activity in the x and y cells, tending to
produce a shift in the balance of lateral excitation and
inhibition. Compensating for the increased activity in y
units would be a general increase in inhibition, which
would tend to maintain a relatively constant level of mean
cortical activity (Grossberg, 1 976a, b). However, this
increased level of excitation could also turn up the gain in
the x .-.y feedback loop, resulting in substantially enhanced
responses to preferred stimuli.

Intracellular blockade of inhibition has been found to
have little effect on the orientation selectivity of cortical
cells in vivo (Nelson et al., 1994). In the present model,
orientation tuning is an emergent property of feedforward
excitation and recurrent excitation and inhibition. Blocking
the ability of a cell to respond to inhibitory inputs will thus
not have a substantial impact on its orientation tuning. This
conclusion is in accord with the model of Somers et al.
(1995), which also suggests that orientation tuning arises
through the interaction of feedforward excitation coupled
with recurrent cortical excitation and 'iso-orientation'
inhibition. After self-organization takes place in the present
model (the Somers et al. model does not self-organize),
nearby cortical cells exhibit similar orientation preference,
and thus the medium-range connections provide tuned
recurrent cortical excitation. Similarly the long-range
inhibitory connections provide inputs from a broader
spatial, and hence a broader orientation, range to make up
the 'iso-orientation' inhibition described by Somers et al.

(1995).
The complementary structure of the antiphase cells and

the nature of local inhibition within each competitive pair
leads to robust orientation selectivity in the model. Even
when one population of geniculate inputs is deactivated,
orientation tuning will remain. In vivo, the selective
blockade of activity of ON ganglion cells (and hence the
ON LGN cells to which they project) by the application of
DL-2-amino-4-phosphonobutyric acid (APB) led to the
elimination of light-edge responses in cortical simple
cells, but had no effect on orientation selectivity (Schiller,
1982). In the model, removing the excitatory influence of
ON cells from the x units would eliminate the responsive-
ness of the cells to bright bars within the normal ON region
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activity in LGN cells (Palmer and Davis, 1981; Tanaka, 1+ [aEG(UE) -aIG(UI)] * LI+
1983, 1985), and two-dimensional visual noise displays, N =.8 + [a G(u ) + a G(u )] * LI+ '
which are sufficient to drive complex cells, fail to drive EEl I

simple cells (Hammond and MacKay, 1977). These obser-
vations suggest that complex cells receive a short-latency NI-
direct connection from LGN cells, but neither excludes the
possibility that simple cells provide a major input to the
complex cells.

Complex cells in layers 2 and 3 have been shown to have
long-range connections to other superficial cells with simi-
lar preferred orientations (Gilbert and Wiesel, 1989). These
connections spread evenly across large regions of the cortex
shortly after birth, gradually coalesce, and eventually form
the clustered patterns seen in the adult (Callaway and Katz,
1990). In accord with the need for correlated visual input to
drive the final development of long-range connections, it
has been shown that binocular deprivation leads to poor
segregation of these developing connections (Callaway
and Katz, 1991). In the model, as orientation tuning gets
initiated due to prenatal amplification and smoothing of
initial random biases in geniculocortical connections,
activity-dependent processes could lead to initial clustering
of long-range connections, and correlations present in the
visual environment could subsequently produce long-range
correlations in the map of complex cells, which could in turn
drive associative learning of the adult pattern of long-range
connections (Callaway and Katz, 1990). The model of
Grossberg and Williamson (1997) begins to explore how
such long-range connections develop both before eye open-
ing and after visual inputs become effective.

[aEG(UE) -aIG(uI)] * LI-
= fJ + [~EG(UE) + aIG(U.)] * L1":-

As 

shown in Fig. 2, each cortical cell xj(j,k) receives inputsignals 
sC+(j,k), sC-(j,k), sl+(j,k), and sl-(j,k) from cir-cular 

regions of the LaN images shifted down and to the
right with increasing values of j and k. The time-dependent
component of Eq. (9) is removed to giveI(j

k) C+ C+ C- C- 1+ 1+ 1- I-
.=W" k .S' k + W" k .S' k + W" k .S' k + W" k .S' k' , IJ J IJ J IJ J IJ J .

(AS)
The dynamical system is evaluated by first considering only
the action of the feedforward inputs. Eqs. (10)-(15) are
approximated by assuming a linear approximation to the
activity in the x units (see Fig. 19):

xj=elj+Yj, (A6)

which, when a new input is presented and is still negligible,

A

,.L

(0) YI

.t(~
(c)

Yo

Appendix A . Two-dimensional ~lpproximations
Xo (c~ (c)

.

CONTRA-
LATERAL

The number of dynamical variables in the system of
differential equations described in the methods section pre-
cludes a two-dimensional study of orientation selectivity.
Accordingly this dynamical system is approximated to
yield an algorithm that is computationally tractable. With
this approximation, it is also possible to include uncorre-
lated ON and OFF retinal inputs from the contralateral (C)
and ipsilateral (I) eyes (L C+, L c-, [,1+, and L I-) to investi-
gate the joint development of orientation and ocular
dominance maps.

The monocular Eqs. (5)-(9) are generalized in a straight-
fi d LON " c+ c- 1+orwar way to construct mput Images Sjk ,Sjk ,Sjk ,
and s}k- with segregated fields corresponding to contra-
lateral and ipsilateral layers of the LON:

~+ (AI)

Fig. 19. Two-dimensional model: in addition to two cortical dimensions,
inputs from both eyes are simulated. Contralateral (C) and ipsilateral (I) ON
and OFF cells project via weighted retinotopically arranged pathways to
each x unit. The two-dimensional model approximates the dynamical
system as a progression of open (0) and closed loop (c) estimates.

[CXEG(O'E) -CXIG(O'VJ * Lc-
,= (3 + [CXEG(O'E) + CXIG(O'VJ * LC-'

~- (A2)
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W~k- (t + 1) = W~k- (t) + Awx~l(t)[s~ -(t) -W~k- (t)],becomes:

x~O) == eli, (A 7)

where the superscript (0) denotes 'open loop'. Because of
the inhibitory connections from opponent x cells, only one x
+-+ y feedback loop at each position, the one receiving the

larger total input, can become active at any time. Activity in
the y units is driven by the thresholded difference between
opponent channel activity values scaled by the input gains.
The total lateral cortical feedback, A, also contributes to
each y unit that is part of an active feedback loop:

yo=eT(lo-li)+T(A)H(Io-lt), (A8)

(A19)

(A20)

wij;; (t + 1) = wij;; (t) + A wXij2 (t) [S]k- (t) -wij;; (t)] (A21)
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