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Abstract 
Much sensory-motor behavior develops through imitation, as during the learning of 
handwriting by children. Such complex sequential acts are broken down into distinct 
motor control synergies, or muscle groups, whose activities overlap in time to generate 
continuous, curved movements that obey an inverse relation between curvature and speed. 
The Adaptive Vector Integration to Endpoint Handwriting (AVITEWRITE) model of 
Grossberg and Paine (2000) addressed how such complex movements may be learned 
through attentive imitation. The model suggested how parietal and motor cortical 
mechanisms, such as difference vector encoding, interact with adaptively-timed, 
predictive cerebellar learning during movement imitation and predictive performance. 
Key psychophysical and neural data about learning to make curved movements were 
simulated, including a decrease in writing time as learning progresses; generation of 
unimodal, bell-shaped velocity profiles for each movement synergy; size scaling with 
isochrony, and speed scaling with preservation of the letter shape and the shapes of the 
velocity profiles; an inverse relation between curvature and tangential velocity; and a 
Two-Thirds Power Law relation between angular velocity and curvature. However, the 
model learned from letter trajectories of only one subject, and only qualitative kinematic 
comparisons were made with previously published human data. The present work 
describes a quantitative test of AVITEWRITE through direct comparison of a corpus of 
human handwriting data with the model’s performance when it learns by tracing the 
human trajectories. The results show that model performance was variable across the 
subjects, with an average correlation between the model and human data of 0.89 +/-0.10. 
The present data from simulations using the AVITEWRITE model highlight some of its 
strengths while focusing attention on areas, such as novel shape learning in children, 
where all models of handwriting and the learning of other complex sensory-motor skills 
would benefit from further research. 
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I. INTRODUCTION 
How do children learn curvilinear movements by imitating written letters? How 

do varying, error-prone movements during learning become correct, efficient movements 
after repeated trials? The Adaptive VITEWRITE (AVITEWRITE) model of Grossberg 
and Paine (2000) attempts to answer these questions by modeling the perception/action 
cycle of handwriting. Although Grossberg and Paine (2000) demonstrated good 
qualitative performance of AVITEWRITE, the model learned from letter trajectories of 
only one subject, and only qualitative kinematic comparisons were made with previously 
published human data. Since a model may yield good qualitative performance, yet still be 
unable to capture the details and variability of human performance, a quantitative test of 
AVITEWRITE is conducted here, clarifying its strengths and weaknesses through direct 
comparison with a corpus of human handwriting data.  

AVITEWRITE describes how the complex sequences of movements involved in 
handwriting can be learned through the imitation of previously drawn curves. The model 
shows how initially segmented movements with multimodal velocity profiles during the 
early stages of learning, corresponding to early childhood, can become the smooth, 
continuous movements with the unimodal, bell-shaped velocity profiles observed in adult 
humans (Abend et al., 1982; Edelman & Flash, 1987; Morasso, 1981; Morasso et al., 
1983) after multiple learning trials. Early, error-prone handwriting movements with many 
visually reactive, correctional components gradually improve over time and many 
learning trials, to become automatic, error-free movements. These movements can even 
be performed without visual feedback, as when a human signs his name with his eyes 
shut. 

The AVITEWRITE model architecture is schematized in Fig. 1. The model 
attempts to explain aspects of how visually reactive and planned movement commands 
can cooperate or compete to determine what movement will next occur. Because the 
planned commands are typically learned, the model proposes how new learning can occur 
even during reactive movements before becoming the basis for later planned movements 
that are read out of memory. At the start of movement, visual attention (1) focuses on the 
current hand position and moves to select a target position (2) on the curve being traced. 
A Difference Vector representation (3) of the distance and direction to the target is 
formed between an efference copy of the current hand position (PPV) and the new target 
position (TPV) (Andersen, 1995; Bullock, Cisek & Grossberg, 1998; Bullock & 
Grossberg, 1988; Georgopoulos et al., 1982; Mussa-Ivaldi, 1988). This Difference Vector 
activates the appropriate muscle synergy (4) to drive a reactive movement to that target. 
At the same time, a cerebellar adaptive timing system (5) learns the activation pattern of 
the muscle synergy involved in the movement.  

Adaptive timing of strokes may be achieved by spectral timing in the cerebellum. 
Fiala et al. (1996) and others (Ito, 1984; Perrett, Ruiz, & Mauk, 1993) suggest that the 
cerebellum may be involved in the opening of a timed gate to express a learned motor 
gain. A Conditioned Stimulus arrives via parallel fibers at a population of cerebellar 
Purkinje cells, triggering a spectrum of phase-delayed depolarizations of the Purkinje 
cells. When a teaching signal is triggered by an Unconditioned Stimulus in climbing 
fibers at some fixed Interstimulus Interval after the Conditioned Stimulus, then Long 
Term Depression of the Purkinje cells may occur at that time, leading to disinhibition of 
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Fig. 1.  Conceptual diagram of the AVITEWRITE architecture. Numbers in parentheses indicate the order 
of discussion in the text. PPV: Present Position Vector; TPV: Target Position Vector. 
 
the cerebellar nuclei at that time; hence the term "adaptive timing" (Fiala, Grossberg, & 
Bullock, 1996; Grossberg & Merrill, 1992, 1996). 

The cerebellar adaptive timing system begins to cooperate or compete (6) with 
reactive visual attention for control of the motor cortical trajectory generator (7). A 
working memory (8) transiently stores learned motor commands to allow them to be  
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Fig. 2.  Example of AVITEWRITE’s writing and various psychophysical properties: (1) Letter L learned by 
tracing a human trajectory; (2a) Tangential velocity of the model’s letter L (solid) compared to that 
predicted by the 2/3 power law (dash); (2b) Velocity profiles after scaling the writing speed of the letter L 
with trajectory invariance; (3a) Size scaling of the letter L, halving and doubling the original (dash); (3b) 
Velocity profiles after size scaling, exhibiting isochrony. Reproduced with permission from Grossberg & 
Paine (2000). 
 
executed at decreased speeds as the speed and size of trajectory generation are 
volitionally controlled through the basal ganglia (9). Reactive visual control takes over 
when planned read-out from memory causes mistakes, defined as deviation beyond the 
attention radius around the curve. Both the movement trajectory and the memory are then 
corrected, allowing memory to take over control again. As successive, visually reactive 
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movements are made to a series of attentionally chosen targets on the curve, a memory is 
formed of the muscle synergy activations needed to draw that curve. After tracing the 
curve multiple times, planned read-out from memory alone can yield error-free 
movements. 

Several properties of human handwriting movements emerge when 
AVITEWRITE learns to write a letter (Fig. 2). Size and speed can be volitionally varied 
(Fig. 1, stage 9) after learning while preserving letter shape and the shapes of the velocity 
profiles (Plamondon et al. 1997; Schillings et al., 1996; van Galen & Weber, 1998; Wann 
& Nimmo-Smith, 1990; Wright, 1993). Isochrony, the tendency for humans to write 
letters of different sizes in the same amount of time, is also an emergent property of 
model interactions (Thomassen & Teulings, 1985; Wright, 1993; Van Gemmert, Adler, & 
Stelmach, 2003). Speed can be varied during learning, and learning at slower speeds 
facilitates future learning at faster speeds (Alston & Taylor, 1987, p. 115; Burns, 1962, 
pp. 45-46; Freeman, 1914, pp. 83-84). Unimodal, bell-shaped velocity profiles for each 
movement synergy emerge as a letter is learned, and they closely resemble the velocity 
profiles of adult humans writing those letters (Abend et al., 1982; Edelman & Flash, 1987; 
Morasso, 1981; Morasso et al., 1983). An inverse relation between curvature and 
tangential velocity is observed in the model’s performance (Lacquaniti et al., 1983). It 
also yields a Two-Thirds Power Law relation between angular velocity and curvature, as 
seen in human writing under certain conditions (Lacquaniti et al., 1983; Thomassen & 
Teulings, 1985; Wann et al., 1988). Finally, context effects become apparent when 
AVITEWRITE generates multiple connected letters, reminiscent of carryover 
coarticulation in speech (Hertrich & Ackermann, 1995; Ostry et al., 1996), and are 
similar to handwriting context effects reported by Greer and Green (1983) and 
Thomassen and Schomaker (1986). 
 
II. Methods 

Handwriting data were collected from seven adult subjects. The subjects were 
asked to write separate strings of the letters e, l, i, o, and t (eeee..., llll..., etc.) using 
cursive handwriting on ten separate trials. Data were collected using a Wacom 12x18 
Intuos digital writing tablet with an X and Y pen-tip position sampling frequency of 206 
Hz. The raw position and time data were collected and velocity, acceleration, and 
curvature were calculated. The raw data were low pass filtered at 7Hz with a dual pass 
Butterworth fourth order digital filter to eliminate phase shift.  The 7Hz cut-off frequency 
was selected to include all important writing frequency components, while reducing the 
effects of reflexes and other physiological tremor functions (Teulings & Maarse, 1984;  
Teulings & Stelmach, 1991; Van Gemmert, Adler, & Stelmach, 2003).  The first letter of 
the string was selected as the single letter prototype for that subject’s trial. Since the 
letters were connected, the vertical (y-direction) velocity zero crossings were used to 
determine strokes and separate adjacent letters. The rationale behind this is that cursive 
style letters are produced by a combination of up and down strokes and that letters are 
connected mainly by up strokes. Therefore, zero crossings in the vertical velocity do 
separate strokes and letters. The single-letter data from a subject’s ten trials were 
averaged to create a letter prototype for that subject. Given that human movements are 
affected by modulation due to manipulation, impairment, or the natural variation inherent 
in biological systems, averaging is assumed to emphasize the invariant aspects of the 
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neural motor control program. In other words, it is believed to enhance the signal-to-
noise ratio of the motor controller (Teulings & Stelmach, 1991). Nevertheless, one might 
argue that averaging distorts the letters to such a degree that individual letter styles are 
lost. To address this point, the averaged human data are compared to the unaveraged data 
for one subject. Specifically, the fifth trial of each letter was compared to the 
corresponding averaged letter for the subject.  In order to examine the model’s ability to 
capture any stylistic differences between the averaged and non-averaged data, 
AVITEWRITE was also trained using the same unaveraged human trials as input. 

Each letter prototype was scaled in size (x and y range) for input to the 
AVITEWRITE model. A letter was matched in size to the corresponding letter learned in 
Grossberg and Paine (2000). Thus, the “L” of each subject was scaled to the same size for 
input into the model. Humans can immediately scale their writing size to a larger or 
smaller letter (Van Galen & Weber, 1998).  This ability implies the use of an automatic 
size normalization process not present in the current model. Although AVITEWRITE can 
change writing size after learning, while preserving key features of the movement 
kinematics, it initially learns at the same size as its input since it uses a tracing strategy. 
For a given set of model parameters, using too small or too large an input trajectory 
during learning adversely affects learning convergence time and/or the generation of bell-
shaped stroke velocity profiles. 

AVITEWRITE learned to draw the letters after multiple learning trials, as 
described in Appendix Table 4. The end of a letter was defined as the falling of both x 
and y velocities below a threshold (0.006) when within a threshold distance of the end of 
the letter being traced. The letters learned by AVITEWRITE were then compared to the 
original human templates from which AVITEWRITE learned. Model performance was 
evaluated by calculating the correlations between the model trajectory, velocity, and 
acceleration with the human data. Model velocity and acceleration were first scaled to fit 
the time range and the maximal and minimal velocity and acceleration present in the 
corresponding human subject’s data. Further, the correlation between the model’s 
tangential velocity and the tangential velocity predicted by the two-thirds power law was 
calculated. The correlation between the human tangential velocity and that predicted by 
the two-thirds power law was also calculated. Correlations were calculated using 
Equation 14 in the Appendix, based on Equation 8 from Edelman and Flash (1987). 

 
III. Results 

The results of the simulations are shown in Figs. 3-6 for the best and worst model 
results on individual letters. The correlations between the model and the human data, 
averaged over x and y position, velocity, and acceleration over all letters for all subjects, 
are shown in Table 1.  The correlations were calculated using Equation 14.  

Note that some correlations exceed 1.0, as in the “1.04” correlation of y position 
in letter i of subject 1. This is an artifact of the correlation index used by Edelman and 
Flash (1987), who also reported correlations greater than 1.0 in some instances (c.f., their 
Figs. 3 to 6). Their equation is used here to allow direct comparison between their results 
and the present model.  The results show that model performance was variable across the 
subjects, with a maximum total correlation of 1.0 and a minimum of 0.63. AVITEWRITE 
yields 0.89 +/-  0.10 mean correlation using a variable permissible time shift (r), and 0.80 
+/- 0.12 using the more stringent requirement of 0 time shift between model and human                 
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Fig. 3.  Good correlations for L subject 1. (1a) Human (dash) and model (solid) tr
(solid) and model (dash) velocity (x top); (2a) Human (solid) and model (dash) acc
Human (solid) and model (dash) tangential velocity; (3a) Model tangential velocity
(dash); (3b) Human tangential velocity (solid) and curvature (dash); (4a) Model 2/3
velocity prediction (dash) vs. actual model tangential velocity (solid); (4b) Human 2/3
velocity prediction (dash) vs. actual human tangential velocity (solid).  
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Condition Position Velocity Acceleration Total 
AVITEWRITE,    

r = variable, 
mean=5.2, 

range=[0:19] 

0.96 +/- 0.06 0.83 +/- 0.14 0.77 +/- 0.20 0.89 +/- 0.10 

AVITEWRITE,    
r = 0 

0.92+/- 0.09 0.70 +/- 0.25 0.70 +/- 0.20 0.80 +/- 0.12 

Minimum Snap,  
r = variable 

0.98 0.99 0.97 0.97 +/- 0.003 

Table 1.  Overall Average Cross-Correlation with Standard Deviation between model and human data. Top: 
AVITEWRITE using variable correlation shift (r). Middle: AVITEWRITE using constant shift (r=0). 
Bottom: Minimum Snap Model of Edelman and Flash(1987) using variable shift (r). 
 
Letter/ 
Subject 

X 
Position 

Y 
Position 

Tangential 
Velocity 

X 
Acceleration

Y 
Acceleration 

Model 
2/3 

Power 
Law 

Human 
2/3 

Power 
Law 

E/1 0.89 1.03 0.86 0.95 1.03 0.85 0.77 
L/1 0.98 0.99 0.95 0.91 0.97 0.95 0.89 
I/1 0.98 1.04 0.90 0.90 1.02 0.56 0.85 
O/7 1.01 1.01 0.96 0.93 0.96 0.98 0.89 
T/4 1.00 1.00 0.87 0.82 0.84 0.81 0.89 
E/2 0.95 0.91 0.70 0.45 0.29 0.74 0.86 
L/2 0.98 0.93 0.59 0.67 0.30 0.79 0.85 
I/5 0.82 0.93 0.36 0.37 0.46 0.65 0.74 
O/3 0.73 0.82 0.86 0.37 0.43 0.86 0.91 
T/3 0.94 1.00 0.47 0.89 0.96 0.88 0.93 

Table 2.  Correlations for Simulations Shown in Figs. 3-6: Best (top five rows) and Worst (bottom five 
rows) Results. 
 
kinematic profiles (Table 1). Analysis of the worst-case simulation results (Figs. 4 and 6, 
Table 2), indicates that the main differences between the human data and model output 
are a variable stretching or compression of parts of the model velocity and acceleration 
profiles relative to the human profiles.  
One should note that the available human data were not from individual letters, but from 
connected letters (eeee, llll, etc.). The first letter of each subject’s sequence was selected 
for each of the ten trials per letter, after smoothing and averaging as described in the 
Methods. However, the human letter sequences did not generally have zero initial and 
final velocity and acceleration. In an attempt to collect handwriting samples in as natural 
a setting as possible, subjects were not specifically instructed to rest the pen at the 
starting position prior to beginning to write. As a result, their hands were already in 
motion when the pen contacted the writing surface. Hence, there is a problem with non-
zero starting and stopping velocities in the human data against which the model was 
compared, in contrast with the zero velocity and acceleration initial conditions and 
equifinality observed in the AVITEWRITE model output, as seen in Figs. 3 and 4 (1b,  
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IV. Discussion 

This work further quantifies the performance of the AVITEWRITE handwriting 
learning model by comparing model performance to that of a group of human subjects. 
The model learned by tracing the trajectories for 5 average letters from 7 human subjects, 
for a total of 35 letters. Each average letter was generated from 10 writing samples per 
subject. 

The only model parameter which was varied across letters and subjects was the 
attention radius, as seen in Appendix Table 4. AVITEWRITE makes essential use of 
visual spatial attention to determine where the hand will move to imitate a curve. 
Attention was modeled algorithmically since it was not the main focus of Grossberg and 
Paine (2000). The model assumes, for simplicity, that attention may be focused within a 
circular region around the present fixation point. In the model, visual spatial attention is 
initially focused around the current hand position on a template curve (Fig. 1, Box 1). If 
subsequent movement deviates from the attention radius around the curve due to memory 
inaccuracy, then a new target is chosen on the curve. Decreasing the attention radius 
increases the correlation between the model and the human subjects’ performance 
(position, velocity, acceleration) at the cost of more learning trials for convergence to 
error-free performance. An excessively small attention radius may prevent convergence 
in a reasonable period of time, just as an excessively large attention radius will yield a 
poor trajectory, which converges quickly. The attention radius parameter value was 
manually tuned, so as to allow accurate trajectory generation with speedy convergence. 
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Fig. 9.  Results of using a different spectral density ( t∆  = 0.055) and attention radius (ra  = 0.075) when 
AVITEWRITE learns the letter O from subject 3. (a) Trajectory of model (solid) and human (dash); (b) 
X(top) and Y (bottom) velocity of model (dash) and human (solid); (c) X (top) and Y (bottom) acceleration 
of model (dash) and human (solid). Compare with results when the same spectral density was used for all 
letters in Table 2 and Fig. 4. 
 

Experimental data suggest that superior frontal, inferior parietal, and superior 
temporal cortex are part of a network for voluntary attention control (Hopfinger et al., 
2000), which is critical for directing unpracticed movements (Richer et al., 1999, p. 1427). 
Jueptner et al. (1997a, 1997b) reported that the prefrontal cortex was activated in a finger 
movement-sequence learning task during new learning but not during automatic 
performance after learning. Further, the left dorsal prefrontal cortex was reactivated when 
subjects paid attention to the performance of a previously learned movement sequence 
(Jueptner et al., 1997b, p. 1313). Although no data are available that characterize a 
precise mechanism for modulating attention during movement learning, AVITEWRITE 
assumes that attention can be voluntarily controlled to achieve a desired level of accuracy, 
or else to complete learning in a limited time at the expense of accuracy. 

Few published handwriting models attempt to measure their results through 
quantitative comparisons with a corpus of human data. One prior model, which is 
compared to a corpus of human data, is the Edelman and Flash (1987) minimum snap 
model.  For this reason, we compare AVITEWRITE to the minimum snap model. A more 
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Fig. 10.  Novel curve learning: (1) Template curve presented to human and model; (2a) Human trajectory 
on copying trial 1; (2b) AVITEWRITE model trajectory on tracing trial 1; (3a) Human x (top) and y 
(bottom) velocity profiles for the trajectory in 2a; (3b) AVITEWRITE x (top) and y (bottom) velocity 
profiles for the trajectory in 2b. 
 
extensive review of handwriting models and discussion with regard to AVITEWRITE 
can be found in Grossberg and Paine (2000). 

Edelman and Flash (1987) presented a bottom-up model of trajectory formation 
based on dynamic minimization of the square of the third (jerk) or fourth (snap) 
derivative of hand position. The version which minimizes snap yielded better correlation 
with human experimental data. The model assumes that all letters are formed by a 
concatenation of shape primitives, such as "cup", similar to a letter U, and "oval", like a 
letter O. Further, the model generates each stroke primitive by use of a via-point, an 
intermediate target prior to the end of the stroke. The model output is compared to human 
experimental data, and strong correlations are reported between model-generated position, 
velocity, and acceleration traces and the human counterparts. The inverse relation 

x x

Vx
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between movement velocity and curvature seen in human writing is demonstrated by the 
model. The use of numerical estimations of the degree of fit to the data is emphasized and 
contrasted with the purely subjective fit estimates in some models. 

One general problem with this hypothesis is that no known brain mechanisms can 
minimize a quantity across an entire movement trajectory before it occurs. Golgi tendon 
organs measure muscle tension (Gordon & Ghez, 1991). Further, Matthews (1972) 
showed that muscle receptors exist that are sensitive both to the length of the muscle and 
to the velocity of stretching. Thus, the first derivative of hand position is probably 
available to higher motor control centers. However, evidence supporting neural 
computation of higher derivatives of hand position is lacking. This raises the concern that 
jerk or snap minimization may be an epiphenomenon of human trajectory planning. 
Finally, the minimum snap model makes use of via-points, which are expressly chosen at 
the curvature maxima. In contrast, AVITEWRITE suggests an automatic, attention-based 
target selection algorithm. 

Edelman and Flash (1987) computed the correlations of the minimum snap model 
to four curves (hook, cup, gamma, and oval) generated by three subjects, with ten curve 
samples per subject. Quantitatively, the minimum snap model yields better fits to the 
kinematic data than AVITEWRITE, with a mean correlation of 0.970, +/- 0.003, using 
cross-correlation with a variable permissible time shift (r) between data sequences (Table 
1, Equation 14). However, it should be noted that the minimum snap model required the 
extraction of a different set of parameters from each curve in order to regenerate that 
curve. Such an approach tacitly assumes that a different subject generates each curve, 
which was not true in the experiments. The AVITEWRITE model also achieves higher 
correlations if parameters are varied in this way (e.g., an improvement from 0.63 to 0.76 
as seen in Table 3 and Fig. 9). In the AVITEWRITE simulations that are reported here, 
only the attention radius was varied since varying levels of attention are known to affect 
task performance (Hopfinger et al., 2000; Richer et al., 1999; Jueptner et al., 1997a, 
1997b). Other system parameters, such as those involved in the neuronal response 
dynamics and synaptic modification of Equations 1-3, were held constant based on the 
assumption that they would not vary significantly among different humans or different 
letters. The volitional speed command and the corresponding Purkinje cell spectral 
activation density ( ) (Equations 2, 8, and 9) were held constant for this analysis, 
although Grossberg and Paine (2000) did show that improved performance may be 
achieved if learning begins at a slow speed and gradually increases across trials via 
increases in the volitional speed command (GO signal) and the spectral density. The 
“spectrum” refers to the phase-delayed pattern of Purkinje cell activation hypothesized to 
occur in response to a Conditioned Stimulus that arrives via parallel fibers at the Purkinje 
cell population. This pattern of Purkinje cell activity plays an important role in the 
hypothesized mechanism of adaptive timing used for movement learning in the 
AVITEWRITE model (Fiala, Grossberg, & Bullock, 1996; Grossberg & Merrill, 1992, 
1996; Grossberg & Paine, 2000). The “spectral activation density” refers to the time 
delay between Purkinje cell activations. As seen in Fig. 4 (1a), the position correlation 
was relatively low (with a value of cx = 0.73 and cy = 0.82) for the letter “O” at the given 
GO signal and spectral density (Equations 2, 8, and 9) for the attention radius of 0.07, 
even though the same GO and spectral density yielded a much better result for the letter T 
for this same subject, with position cx = 0.94 and cy = 1.0 and an attention radius of 0.075. 

t∆
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Higher correlations could have been achieved if different parameters had been used. For 
example, a modest improvement in simulating subject 3’s letter “O” can be achieved 
simply by increasing the spectral density and attention radius slightly, yielding a 0.13 
improvement in overall correlation from 0.63 to 0.76 (Table 3, Fig. 9), with position cx =  
0.85 and cy = 0.90.   Seeking to test the model’s applicability and generalizability to 
multiple letters and subjects, we focus on one parameter, attention, which turns out to 
have a strong, but not complete, influence on the intra- and inter-subject variability. 

 
Parameters X 

Position 
Y 

Position 
X 

Velocity 
Y 

Velocity 
X 

Acceler-
ation 

Y 
Acceler-

ation 

Average 
Correl-
ation 

06.0=∆t  
ra = 0.07 

0.73 0.82 0.68 0.76 0.37 0.43 0.63 

055.0=∆t  
ra=0.075 

0.85 0.90 0.80 0.86 0.55 0.62 0.76 

Table 3.  Correlations between model performance and human data for Subject 3’s letter O when spectral 
density ( ) is varied as well as the attention radius (rt∆ a). 

 
This result points to one weakness of the current AVITEWRITE model, that is, 

the current lack of teaching signal normalization. For the letter "i" shown in Fig. 5 (2a), 
distant targets are initially chosen, yielding large Difference Vectors, due to the low 
curvature of the initial portion of the letter. (See Grossberg & Paine, 2000 for details of 
the target selection algorithm.) The initial, shallow curve of the “i” upstroke is 
approximated by AVITEWRITE as a nearly straight line for the attention radius of 0.07 
used. As seen in Equations 3-7, the larger the Difference Vector, or DV, the larger the 
memory trace, and the resulting speed, other things being equal. Other things may not be 
equal, however, since the DV is gated by a volitional GO signal that releases the 
movement and controls overall movement speed (Bullock and Grossberg, 1988). Such a 
GO signal is controlled by the basal ganglia in the brain (Horak & Anderson, 1984a, 
1984b; Turner et al., 1998). The present model simulations focus more on trajectory 
learning and performance by cortical and cerebellar circuits. For accurate learning and 
performance of letters of multiple sizes, the present simulations make clear that 
interactions of these brain regions with the basal ganglia are also needed. Related 
modeling work (e.g., Brown, Bullock, and Grossberg, 2002) has begun to clarify how 
these interactions work.  

Further evaluation of the AVITEWRITE model would also be facilitated if there 
existed more studies of handwriting learning in children. Many handwriting studies have 
been done with children in order to improve the teaching of handwriting (Freeman, 1914; 
Burns, 1962; Hendricks, 1976; Furner, 1983). These studies reveal the progression of 
movement proficiency over years of practice. The fact that handwriting performance can 
improve over years of practice suggests that it is the result of cumulative learning from 
many individual writing trials. Unfortunately, few scientific studies of either adults or 
children address short-term changes in handwriting performance due to learning on 
individual movement trials. Preliminary attempts to learn a novel shape (Fig. 10) were 
begun as part of this work. However, only adult subjects were available for the 
experiments. These adults, with years of writing experience, were able to copy the novel 
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shape with smooth, continuous velocity profiles on the first trial, whereas AVITEWRITE 
begins learning each new shape in a naive state, and initially generates more segmented 
velocity profiles and straight line curve segments. These segmented velocity profiles 
reflect a more discrete, multiple-stroke-driven strategy on early movement trials in 
AVITEWRITE compared to adult humans (Fig. 10, see also Fig. 23 of Grossberg & 
Paine, 2000).  Edelman and Flash (1987), among others (Morasso, 1986; Wing, 1980), 
propose that this problem may be overcome by learning a discrete set of motor primitives, 
which are then concatenated to generate arbitrary shapes. Although the AVITEWRITE 
model does not explicitly describe motor primitives, concatenation of learned letters with 
coarticulatory context effects (Fig. 7) was demonstrated in Grossberg and Paine (2000). 
The problem remains open of what motor primitives, including whole letter shapes, may 
be learned to generate a complex motor repertoire and how they may be rapidly 
assembled to generate an arbitrary, novel shape. 

 
V. Conclusion 

The AVITEWRITE model describes aspects of how the cerebral cortex, 
cerebellum, and basal ganglia may interact during complex learned handwriting 
movements. There is both cooperation and competition between reactive vision-based 
imitation and planned memory read-out. The model suggests that there is an automatic 
shift in the balance of movement control between cortical and cerebellar processes during 
the course of learning. AVITEWRITE shows how challenging psychophysical properties 
of planar hand movements may emerge from this cortico-cerebellar-basal ganglia 
interaction. 

The present data from simulations using the AVITEWRITE model have 
highlighted some of its strengths while focusing attention on areas where all models of 
handwriting and the learning of other complex sensory-motor skills would benefit from 
further research. A key area concerns how to generalize prior sensory-motor learning to 
facilitate the learning of novel curves. Further evaluation of all handwriting models 
would also be facilitated by the availability of experiments that study novel curve 
learning in younger subjects, who may not yet have developed putative motor primitives 
or the skill for concatenating them for arbitrary novel curves. 

 
 

Appendix 
 
For a complete description of the model implementation, please see Grossberg and Paine 
(2000). 
 
Model Equations 
At the beginning of movement learning, a visual target position (TPV) is chosen in a 
predefined forward direction on the curve to be learned such that the line from the current 
hand position, PPV, to TPV never exceeds an attention threshold distance, or radius, from 
the curve being traced (the template curve). The difference vector to the target, DVvis, is 
integrated toward the value of TPV - PPV, as in Equation (1): 
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Visual Difference Vector 
 

))])((1)(()([ 21 εµµ −−−+−= tubeRHHPPVTPVDV
dt

dDV
vis

vis   (1) 

 
In (1), R is the learned cerebellar output. H(tube) equals 1 if the PPV is within the 
attention radius of the template curve being traced, and it equals zero otherwise. 

))(( ε−tubeRHH  equals one if PPV is within the attention radius of the template curve 
and the cerebellar output, R, is above some threshold value, ε . )))((1( ε−− tubeRHH  
equals zero and the visual difference vector, DVvis, decays to zero. In (1), µ 1= 1; µ 2= 
0.25; and ε = 0.001. Thus, if memory is available and movement is sufficiently accurate, 
then memory directs the movement. If the memory signal is too small or an error is made 
by deviating from the attention radius around the template curve, then vision controls the 
movement direction. 
 
Cerebellar learning is simulated as follows. A spectrum of Purkinje cell (PC) responses is 
created using Equation (2):  
 
Cerebellar Spectral Component 
 

)))1(()())1((( 9.22 titBtitgi ∆⋅−−−∆⋅−−= γ .    (2) 
 
In (2), = 0.06: The time between the start of adjacent Purkinje cell spectra. Term gt∆ i 
models activation of Purkinje cell i at time t. γ = 0.0136 and B= 25. 
 
The ith synaptic weight zi between the parallel fibers and the Purkinje cells is modified 
based on the climbing fiber inputs as described in Equation (3): 
 
Cerebellar Synaptic Weights 

)())(( PPVTPVHPPVTPVzg
dt
dz

iiz
i

−⋅−+−= αα .    (3) 

Each synaptic weight is modified only if its spectral component gi is active and visual 
target information is available. Visual target information is defined by TPV. Climbing 
fiber activity is assumed to be proportional to the size of the difference between the target 
position, TPV, and the present position, PPV, with synaptic weights increasing in 
proportion to the value of  TPV-PPV in Equation (3). )( PPVTPVH − equals 1 if 

, and it equals 0 otherwise. Parameters 0)( >− PPVTPV 3.0=zα   and α = 0.08 in (3). 
 
The gated spectral activity hi = gizi. Each term gizi provides a local view in time of the 
learned information. The sum of these terms provides a continuous sampling of the 
climbing fiber teaching signals. Thus, the population response of the Purkinje cells is 
summed to form the adaptively timed cerebellar output, R, as in Equation (4): 
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Adaptively Timed Cerebellar Output 
∑=

i

ihR .         (4) 

The cerebellar output, R, is generated at a fixed rate in response to a given density of PC 
spectral components gi through time.  The output rate of R can be altered by changing 
spectral density. Decreasing spectral density allows movement learning at variable speeds. 
 
A cortical Working Memory buffer is hypothesized to allow performance of learned 
movements at variable speeds while preserving movement and velocity profile shape. R 
is temporarily stored in a working memory buffer, simulated as a discretely sampled set 
of values from the continuous cerebellar output: 
 

)()( itRtWM =  for  .      (5) 1+<< ii ttt
 
In (5), ti is the ith time that DVgate, which is defined in (11) below, becomes zero from a 
positive value. At time t = 0, WM(0) = R(0). This working memory output, WM, is 
combined with the visual difference vector, DVvis, and scaled by a size-controlling GRO 
signal, S, to form the size-scaled, memory-enhanced difference vector, DVS: 
 

)( visS DVWMSDV +⋅= .       (6) 
 
In (6), S = 0.3 
 
Present Position Vector 
 

)()( tGODV
dt

tdPPV
S ⋅= .       (7) 

 
The speed-controlling GO signal is defined as follows: 
 
GO Signal 
 

)(1 JG
dt
dG

+−= γ         (8) 

 
)(tGGO = .          (9) 

 
J = 20.  Parameter 1γ = 8. 
 
Readout of the Working Memory buffer’s discrete movement commands is controlled as 
follows. A memory-modulated target (TPVm) is generated as follows: 
 
Memory-Modulated Target 
 

Smm DViTPViTPV +=+ )()1( .       (10) 

 19



 
It tracks the cumulative DVS through time. The PPV is subtracted from the TPVm to form a 
 
Gating Difference Vector 
 

PPVTPVDV mgate −= .       (11) 
 
DVgate controls readout from the WM buffer. The next cerebellar command that has been 
stored in Working Memory is read from the WM buffer when DVgate is less than or equal 
to zero; that is, when the current TPVm has been reached or surpassed. By altering the size 
of the GO signal, the rate at which TPVm is reached by the outflow PPV can be controlled. 
Thus, Working Memory readout is controlled by the speed of the movement, which is 
determined by PPV. This gating rule ensures that the shapes of the movement and its 
velocity profile are preserved as performance speed is changed by a different choice of 
the volitional GO signal. 

 
Letter Average Attention Radius 

(ra) +/- standard deviation 
Average Number of Trials 

for Model to Learn +/- 
standard deviation 

e 0.034 +/- 0.002 33 +/- 27 
l 0.044 +/- 0.005 104 +/- 158 (range: 14-447) 
i 0.054 +/- 0.010 20 +/- 24 (range: 4-74) 
o 0.069 +/- 0.005 21 +/- 12 
t 0.09 +/- 0.05 12 +/- 10 

Table 4.  Model parameters for five letters across seven subjects. Note: Attention radius ( ra ) held constant 
during learning for a given subject’s letter. 
 
The movement velocity profiles generated by the model represent outflow movement 
commands, not the actual performance of the arm/hand system. There is filtering of the 
movement signal downstream of the central command by the peripheral muscle apparatus 
(Contreras-Vidal et al., 1997). An assumption of low-pass filtering in the command 
pathway is commonly made in muscle models (Barto et al., 1999, p.567). Therefore, the  
acceleration profile (12) generated by the present model is filtered using a first order 
differential equation (13): 
 
Acceleration Profile 
 

D
dt

DtdPPV
dt

tdPPV

tA

)()(

)(

−
−

=       (12) 

 
Muscle-Filtered Acceleration Profile 
 

))()(( tAtA
dt

dA
f

f
+−= .       (13) 

The step size in (12) is D = 0.05. 
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Correlation Equation (Edelman & Flash, 1987) 
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Correlations were calculated for x and y position, velocity, acceleration, tangential 
velocity, and Two-Thirds Power Law tangential velocity predictions. Equation (14) 
defines the correlation for two sequences a(t) = {a0, a1, ..., an} and b(t) = {b0, b1, ..., bn}. 
a and b are the sequence means. R is the maximum permitted index shift between the 
two vectors and is equal to 0.1n.  Equation (14) is intended to yield correlations from -1 
to 1, although values slightly greater than 1 can occur, as in Figs. 3 to 6 of Edelman and 
Flash  (1987). Similar curves yield positive correlation values, although the curves are 
not necessarily identical. 
 
Curvature 
Observe the inverse relation between tangential velocity and curvature in Fig. 3 (3a, b). 
The peaks in curvature near the ends of the simulated trajectories (Fig. 3a) are the result 
of the x and y velocities (Vx, Vy) getting very small, with Vx and Vy << 1. As seen in 
Equation (15), 
 

5.122 )(
)()(

VyVx
AxVyAyVxC

+
⋅−⋅

=        (15) 

 
curvature C approaches infinity as the sum of Vx2 and Vy2 approaches zero. 
 
Two-Thirds Power Law 
The Two-Thirds Power Law states that the angular velocity is proportional to the 
curvature raised to the two-thirds power (Lacquaniti et al., 1983): 
 

3
2

kCA = ,         (16) 
 
where A = angular velocity, C = curvature, and k is a proportionality constant. 
Equivalently, 
 

3
1

tan krV = ,         (17) 
 
where Vtan = tangential velocity, r = radius of curvature (1/C), and k is a proportionality 
constant. 
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