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A Fuzzy ARTMAP classifier for pattern recognition in chemical sensor array was developed based on Fuzzy
Set Theory and Adaptive Resonance Theory. In contrast to most current classifiers with difficulty in detect-
ing new analytes, the Fuzzy ARTMAP system can identify untrained analytes with comparatively high
probability. And to detect presence of new analyte, the Fuzzy ARTMAP classifier does not need retraining
process that is necessary for most traditional neural network classifiers. In this study, principal compo-
nent analysis (PCA) was first implemented for feature extraction purpose, followed by pattern recognition
OCs
lassification
uzzy ARTMAP
CA
ensor array
areto optimization

using Fuzzy ARTMAP classifiers. To construct the classifier with high recognition rate, parameter sensi-
tive analysis was applied to find critical factors and Pareto optimization was used to locate the optimum
parameter setting for the classifier. The test result shows that the proposed method can not only maintain
satisfactory correct classification rate for trained analytes, but also be able to detect untrained analytes
at a high recognition rate. Also the Pareto optimal values of the most important parameter have been
identified, which could help constructing Fuzzy ARTMAP classifiers with good classification performance

in future application.

. Introduction

There are different types of poisonous gases or vapors in the
nvironment, which have harmful effects on human health. One
lass of examples is volatile organic compounds (VOC). Their detec-
ion and identification are extremely important. Many types of
hemical sensors have been reported for identification of VOCs. One
xample is chemiresistive sensor array, which is usually employed
o acquire signals for different analytes such as VOCs and other toxic
ases [1–5]. A sensor array has different response profiles or pat-
erns to different VOCs. Its signals thus can be used to analyze and
lassify vapors with statistical or nonparametric intelligent meth-
ds.

To classify different VOCs, training for the classification model
s usually necessary. For certain VOCs, all the relevant information,
.g., sensor signal, along with its corresponding class, is needed for
btaining classification models during the training stage. Especially
hen new VOCs are added, retraining for original and new VOCs is

enerally needed with current reported approaches. In addition,

lthough various classification methods have been applied to clas-
ify VOCs, most of them only focus on identifying trained VOCs.
here are few reports on the detection of untrained VOCs.

∗ Corresponding author.
E-mail address: slu@binghamton.edu (S. Lu).
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© 2009 Elsevier B.V. All rights reserved.

Fuzzy ARTMAP [6] is a constructive neural network model devel-
oped upon Adaptive Resonance Theory (ART) and Fuzzy set theory
[6–10], which allows knowledge to be added during training if nec-
essary. It avoids discarding the previous knowledge or model and
spares repeating the whole training process. The Fuzzy ARTMAP
classifier’s continuous online learning capability greatly facilitates
the dynamic changing of the classifier’s knowledge base. The learn-
ing and forecasting mode of the Fuzzy ARTMAP system can function
alternatively. Thus, the Fuzzy ARTMAP classifier is competent for
working in a dynamic environment that is subjected to the presence
of new vapor. For example, the Fuzzy ARTMAP classifier can always
recognize new vapors, and learn to classify them by changing its
structure and parameters without retraining for the original trained
vapors. Because of Fuzzy ARTMAP system’s self-organizing scheme,
it does not need pre-determination of many parameters, e.g., some
structure parameters; that is not the case for most traditional ANNs.
For example, in multi-layer perceptrons (MLPs), the amount of its
hidden layer(s), and the number of nodes in hidden layer(s) must
be decided before training. Also, the training of the Fuzzy ARTMAP
classifier is very fast compared with Back Propagation (BP) neural
networks. In addition, a Fuzzy ARTMAP classification system based
on the knowledge of several known or trained vapors can detect

the presence of a new or untrained vapor. This function can alert to
the presence of a potential threat from a new vapor in a dynamic
environment.

To date, there are many studies and successful applications of
Fuzzy ARTMAP in the pattern classification field [11–15]. However,

http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:slu@binghamton.edu
dx.doi.org/10.1016/j.snb.2009.06.046
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ased on the authors’ best knowledge, there are no reports using
uzzy ARTMAP to identify the untrained analytes from sensor array
esponses. Instead, most current classifiers applied in this area have
o capability to identify untrained new vapors. In addition, analysis
f the effect of some important parameter toward the classification
ystem was presented. Pareto optimization method was applied to
nalyze variation of classification performance corresponding to
he change of vigilance parameter’s value. The Pareto optimization
nalysis identified the general near optimal value of initial vigilance
arameter. That provides some hint for constructing parameter set
f Fuzzy ARTMAP classifier in similar application.

In this paper, the Fuzzy ARTMAP classifiers are applied to
nalysis of the responses of a chemiresistor sensor array with
ifferent nanostructured sensing materials [3–5] to a set of
OCs, namely vapors generated from organic solvents, ben-
ene (Bz), hexane (Hx), p-xylene (Pxy), and toluene (Tl). The
ensing array materials consist of (1) NDT-linked nanoparti-
les (NDT-Au2 nm), (2) PDT-linked nanoparticles (PDT-Au2 nm),
3) MUA-linked nanoparticles (MUA-Au2 nm), (4) MHA-linked
anoparticles (MHA-Au2 nm), (5) MPA-linked nanoparticles (MPA-
u2 nm) [1–4]. NDT: 1,9-nonanedithiol (HS–(CH2)9–SH), PDT:
,5-pentadithiol (HS–(CH2)5–SH), MUA: 11-mercaptoundecanoic
cid (HS–(CH2)10–CO2H), MHA: 16-Mercaptohexadecanoic acid
HS–(CH2)15–CO2H), and MPA: 3-mercaptopropanoic acid
HS–(CH2)2–CO2H), were used as received (Aldrich). From the
our vapors, three are alternatively selected as known vapors to
he classifier viz. the Fuzzy ARTMAP. This classifier will then be
rained to learn the above three selected vapors. The fourth vapor
s considered a new vapor to the classification model. Partial data
or the chosen known vapors are employed to build a PCA model,
nd the main PC variables are then served as input to train the
uzzy ARTMAP classifier. The remaining data for the trained vapors
nd complete set of data for untrained vapor together constitute
he testing data set. The new PC scores from testing data are then
alculated from the previously built PCA model. After transforma-
ion, the adjusted PCs are fed to Fuzzy ARTMAP classifier to test
he classification performance. Finally, the Pareto optimization

ethod is applied to analyze the relationship between parameter
etting and performance of Fuzzy ARTMAP system.

. Experiment

Sensor-response measurements were performed using a cus-
omized interdigitated microelectrode (IME) device, which has
00 pairs of platinum electrodes of 5 �m width and 5 �m spac-

ng on glass substrate (100-nm thick). The thickness of the
oating of molecularly linked nanoparticle thin film was below
r close to the finger thickness. Details about the prepara-
ion of molecularly linked nanoparticle thin film assembly were
escribed previously [2,4]. Briefly, the thin films were prepared
ia “exchanging–crosslinking–precipitation” route. The reaction
nvolved an exchange of linker molecule (NDT, PDT, MUA, MHA,

PA) with the gold-alkanethiolates, followed by crosslinking and
recipitation via either Au S bonding at both ends of NDT or PDT,
r hydrogen bonding at the carboxylic acid terminals of MUA, MHA
r MPA. The platinum-coated IME devices were immersed into the
olution of the mixed nanoparticles and thiols at room temperature,
nd solvent evaporation was prevented during the film formation.
he thickness of the thin films grown on the surface of the sub-
trates was controlled by immersion time [2,4].

A computer-interfaced multi-channel multimeter (Keithley,

odel 2700) was used to measure the lateral resistance of the

anostructured coating on IME. The resistance and frequency mea-
urements were performed simultaneously with computer control.
ll experiments were performed at room temperature, 22 ± 1 ◦C.
2 gas (99.99%, Progas) was used as reference gas and as diluent
rs B 141 (2009) 458–464 459

to change vapor concentration by controlling mixing ratio. The gas
flow was controlled by a calibrated Aalborg mass-flow controller
(AFC-2600). The flow rates of the vapor stream were varied between
5 and 50 mL/min, with N2 added to a total of 100 mL/min. The vapor
generating system followed the standard protocol [6b]. The vapor
stream was produced by bubbling dry N2 gas through a bubbler of
the vapor solvent using the controller to manipulate vapor concen-
tration [2,4].

The measured resistance (R) values were expressed as relative
differential resistance change �R/Ri for the evaluation of the vapor
sorption responses. �R is the difference between the maximum
and minimum values in the resistance response and Ri is the initial
resistance of the film [2,4].

3. Classification methodology

The following schematic diagram (Fig. 1) depicts the general
classification procedure in this study. The original responses from
sensor arrays are preprocessed and the principal component anal-
ysis method is applied to extract feature vectors. Through PCA, the
dimension of signal is reduced, and the noise in original signals
could be eliminated to some extent. The feature vectors are then
projected into range [0,1] and serve as the input to Fuzzy ARTMAP
classifier, which can identify the both trained and untrained vapors.
Normalization and complimentary coding are important steps to
get appropriate input for Fuzzy ARTMAP system. The performance
of classifier is tested by classifying the new data from both trained
and untrained vapors.

The classification results are also been analyzed by multiple
objective optimization method. In this study, Pareto optimization is
implemented to identify optimal parameter set for Fuzzy ARTMAP
classifiers. For different parameter settings of Fuzzy ARTMAP clas-
sifiers, there is a trade-off between successful classification rate
for trained and untrained vapors. When there is a change in the
value of a decision variable or parameter in certain direction, one
objective, e.g., one correct classification rate, will increase, while
the other objective will show some deterioration. Since the two
objectives could not reach their global optima simultaneously, a
multi-objective optimization technique is employed to identify a
Pareto optimal set.

3.1. Principal component analysis

Principal component analysis is a multivariate analysis method
which transforms a set of correlated variables into a set of uncor-
related variables. Assuming there are p variables in original data X,
i.e. X = (x1,. . .,xp), PCA forms p linear combinations [16]:

PC1 = w11x1 + w12x2 + · · · + w1pxp

PC2 = w21x1 + w22x2 + · · · + w2pxp

...
PCp = wp1x1 + wp2x2 + · · · + wppxp

w2
i1 + w2

i2 + · · · + w2
ip = 1 i = 1, . . . , p

wi1wj1 + wi2wj2 + · · · + wipwjp = 0 for all i /= j (1)

where new variables PC1,PC2,. . ., PCp are p principal components
(PCs). The first principal component, PC1, accounts for the maxi-
mum variance in the original data; and PC2, the second principal

component, accounts for maximum variance that has not been
accounted for, by the first PC, etc. [16]. The weight of the jth original
variable for the ith PC is wij .

The PCA method can reserve most information in the origi-
nal data while at the same time eliminate a certain amount of
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Fuzzy ARTMAP system can work in either learning or recall oper-
ation mode [18]. In learning mode, the system is trained by data
composed of input-target pairs, while in recall mode it produces
estimated class for corresponding input. The schematic flow dia-
gram for learning operation mode is depicted in Fig. 3.
Fig. 1. Schematic diagra

oise. It is a widely used tool for data reduction purpose, in which,
epending on the amount of variance accounted by the new vari-
bles, less than P impendent new variables can be selected to
epresent the original p-dimensional original variables. In this
tudy, PCA is employed as a data dimension reduction and fea-
ure extraction technique to generate input vector to Fuzzy ARTMAP
lassifier.

.2. Fuzzy ARTMAP

.2.1. Fuzzy ARTMAP structure
The general Fuzzy ARTMAP has two main components: Fuzzy

RT module and map field. For most problems in which the desired
lasses are directly provided to the classifier, a simplified Fuzzy
RTMAP with only one Fuzzy ART module can fulfill the classifica-

ion task. Further simple Fuzzy ARTMAP is more computationally
fficient than the full version without undermining classification
erformance in many cases. The structure of simple Fuzzy ARTMAP

s shown in Fig. 2.
An input layer consists of some neurons that each can accept

ontinuous value within the range of [0,1]. The category layer
irectly connected with the input layer includes some cells that
ach represents a possible category. Those two layers that belong
o a Fuzzy ART A module are connected by a weight matrix noted as
. For example, input neuron i and category neuron j are connected
y weight zij. The other category layer can accept target in training
tage, and yield estimated class as output in prediction mode, and
he map field includes same amount of neurons as that in the cat-
gory layer taking class vectors, i.e., targets. The nodes in category

ayer of Fuzzy ART A module and those in map field are connected
y a weigh matrix labeled as W. A match tracking system controls
he vigilance parameter �A, where �A ∈ [0,1]. That parameter deter-

ines the final amount of categories in the category layer of Fuzzy

Fig. 2. Structure of simple Fuzzy ARTMAP classifier.
lassification procedure.

ART A module, and significantly affects classification performance
of Fuzzy ARTMAP system.

3.2.2. Normalization of input
An input vector can be normalized through simply dividing its

components by the norm, i.e., the sum of absolute values of all com-
ponents of that input vector. That normalizing method requires less
system resources. But complement coding is preferred and applied
frequently, for it could avoid category proliferation problem [9].

Complement coding doubles the amount of components in orig-
inal input vector. For an input with N elements, X = (x1,x2,. . .,xN), the
coded input to a Fuzzy ARTMAP system will be a 2N-dimensional
vector [9,17]

(X, Xc) ≡ (x1, x2, . . . , xN, xc
1, xc

2 . . . , xc
N) (2)

where, for i = 1,2,. . .,N,

xc
i = 1 − xi (3)

3.2.3. Working theory
Fig. 3. Flow diagram for learning operation mode of Fuzzy ARTMAP.
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In training stage, first the weights of Fuzzy ART A, zij and map
eld, wjk are initialized, i.e., let zij = 1, and wjk = 1. Vigilance param-
ter �A is set to an initial value �A ∈ [0, 1]. Later, �A can only
ncrease from �A. Every time an input-target pair is fed into Fuzzy
RTMAP. Then, Fuzzy ART operation is conducted to determine
category J satisfying the current �A criterion. Each neuron of

ategory layer will receive an input Tj to measure the similarity
etween the input pattern X and the weight template of category j,

.e. Zj = (z1j, z2j, . . . , zNAj) where NA is the amount of nodes in input
ayer [18]. For category layer, the category J with template Zj which
s most similar to input, is selected, following the winner-take-all
ule. The winning category J must satisfy the vigilance criterion [9],
.e.

|X ∧ ZJ |
|X| ≥ �A (4)

Otherwise, TJ is set to 0, and current category J is abandoned,
nother category J with largest TJ will be selected. This process will
epeat till a winning category that satisfies the vigilance criterion
s found.

Then the match tracking system works. For the identified cat-
gory J and corresponding target class K, if wJK = 0, then match
racking systems will increase vigilance parameter by

A = |X ∧ ZJ |
|X| + ε (5)

here ε is a small positive value close to 0 [18]. With the increased
A, the Fuzzy ART operation and match tracking operation will be
epeated, till a wJK = 1 is found. Then the weights of Fuzzy ART

odule and map field will be updated accordingly. (The detailed
lgorithm can be seen in Ref. [18].).

After training, Fuzzy ARTMAP can estimate class for a new input
ector without corresponding target by recall operation. There is no
atch tracking, weight initialization or weight updating operation

n recall mode. The vigilance parameter will be equal to its initial
alue �A. The output class vector will take the value of identified wJ .
f there is only one element in output equal to ‘1’, the input pattern
s estimated as belonging to class K. Otherwise, it is considered as
elonging to a new class, because this unknown class’ pattern is too
ifferent from the stored knowledge.

.3. Pareto optimization

The decision of initial vigilance parameter will depend on the
omparative importance of correct classification rate for trained
nd untrained vapors. The Pareto optimization method is widely
sed for multiple objective optimization problems. For a minimiza-
ion problem, if Z is defined as feasible objective region, an objective
function) vector z* is Pareto optimal if there is no other objective
ector z ∈ Z such that at least one component zi < z∗

i
, and zj ≤ z∗

j
for

ll the other components j /= i [19]. In this study, Pareto optimiza-
ion analysis is conducted to reveal the association between initial
igilance parameter, and the corresponding classification perfor-
ance of Fuzzy ARTMAP system.

. Results and discussion

The data set is composed of 120 measurements for four test
apors (Hx, Bz, Tl, Pxy) in which the test vapor concentrations range
rom 3% to 30%. One of the four vapors is considered as “unknown”
apor in every classification test. Each classifier training data set is

omposed of data belonging to only selected “known” vapors. For
he ‘known’ vapors’ data (total 90 samples), two thirds of them (60
amples), are selected as training data. The testing data set consists
f the rest of the data (60 samples) for both trained and untrained
apors.
Fig. 4. PCA score plot of the first principal component (PC1), the second (PC2), and
the third (PC3) for responses of Bz (black), Hx (red), Pxy (green), and Tl (blue). For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of the article.

4.1. PCA result

PCA is employed to extract features from the original response
for a Fuzzy ARTMAP classifier. The first three PCs are selected for the
analysis of the data since they account for nearly 100% of variation.
The three-dimensional PCA score plot is shown in Fig. 4.

The four classes, or vapors, could be observed from the
three-dimensional PC plot. However, some data points belonging
to different classes immingle with each other, especially those
responses having smaller absolute values in PC score for all the three
PCs. In view of those PCA scatter plots between two PCs, the trend of
PC scores presents nonlinear curve within a vapor class, for almost
all four vapors, and there are some overlapping among classes; thus
they are hard to distinguish by any two PCs.

4.2. Fuzzy ARTMAP

To served as the input of Fuzzy ARTMAP classifier, the first three
PC scores are projected into range [0,1], with equation

x′ = (x − a)
(b − a)

× (b′ − a′) + a′ (6)

Here, x is the original PC score value; while a and b are lower and
upper limit of x. To guarantee that the new data’s PCs will always
be within the range, in transformation, a is set to the value that is
smaller than real upper limit of x; and b is set to a value that is larger
than upper limit of x. x′ is the projected value within appropriate
range, a′ and b′ are lower and upper limit of new value x′. Thus, in
this study a′ = 0, b′ = 1; a = −0.3, and b = 0.8.

The most important parameter for simplified Fuzzy ARTMAP
is the initial value of vigilance parameter. Due to the working
theory of Fuzzy ARTMAP, that value will directly affect the per-
formance and final result of the classifier. Fuzzy ARTMAP with
smaller initial vigilance parameter will produce fewer categories
to summarize the input, while the precision of classification will
decrease accordingly. In other words, with a loose criterion of sim-
ilarity, an input will be easier to be attributed to an existing class
according to the stored knowledge. If the initial value of vigilance
parameter for a Fuzzy ARTMAP classifier is set high, i.e., near 1,

there will be more categories inside the model. And, the correct
classification rate will improve consequently. To test the relation
between initial vigilance parameter and classification performance,
for each classifier, different values of initial vigilance parameter
are chosen. In the experiment, the classification results for test-
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Table 1
Fuzzy ARTMAP classifiers and corresponding vapors: benzene (Bz), hexane (Hx),
p-xylene (Pxy), and toluene (Tl).

Combination

Classifier Known vapors Unknown vapor

A Bz, Hx, Pxy Tl
B
C
D

i
r

v
t
t
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o
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d
e
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c

d
c
v

Table 2
Classification rate (%) of four Fuzzy ARTMAP classifiers with different initial vigilance
parameter (IVP).

Classifier IVP Trained Untrained

A 0.994 Bz: 80 Hx: 100 Pxy: 100 Average: 93.3 Tl: 86.7
B 0.9955 Bz: 60 Hx: 100 Tl: 70 Average: 76.7 Pxy: 93.3

F
i
t

Bz, Hx, Tl Pxy
Bz, Pxy, Tl Hx
Hx, Pxy, Tl Bz

ng data sets are mainly represented by the successful classification
ate.

In experiments, for each combination of trained and untrained
apor, different values of initial vigilance parameter are tested. Par-
ial experimental results are shown in Table 1, using the value of
he choice parameter ˛ as 0.000001.

In all, 105 experiments with different initial vigilance parameter
alues were conducted. Here the classifiers A, B, C, and D are built
ccording to Table 1. For example, Fuzzy ARTMAP classifier A is built
n data from vapor: Bz, Hx, and Pxy. Its classification performance
as evaluated according to the successful classification rate on new
ata from both those three trained vapors and untrained vapor Tl. In
xperiment, all the simulations ended within one second, or even
n much shorter time when implemented in a common personal
omputer. That is quick enough for most industrial applications.
The experimental results are shown in Fig. 5 and Table 2 in
etail. The classification performance is evaluated mainly by suc-
essful classification rate. For all the classifiers, the value of initial
igilance parameter has effect on the successful classification rate.

ig. 5. Successful classification rate (SCR) of Fuzzy ARTMAP classifiers: A, B, C, and D wit
ts left graph, showing the SCR corresponding to IVP value between 0.99 and 1. (untraine
his figure legend, the reader is referred to the web version of the article.
C 0.9952 Bz: 80 Pxy: 90 Tl: 70 Average: 80.0 Hx: 100
D 0.9955 Hx: 100 Pxy: 90 Tl: 70 Average: 86.7 Bz: 86.7

Generally, when initial vigilance parameter is small (smaller than
0.8), there is no obvious change in successful classification rate for
trained and untrained vapors. And successful classification rate for
trained vapors is much higher than that for untrained. It can be seen
that for all classifiers, when initial value of vigilance parameter is
set to a high value (greater than 0.99 in this study), a high successful
classification rate for untrained vapor can be acquired. Generally,
when the initial vigilance parameter value is greater than a high
value, e.g., 0.995, the higher the value of �A is, the larger will be
the chance of getting a high correct classification rate for untrained
vapor. Thus, in this study, if initial vigilance parameter is set to a
large value, e.g., �A = 0.997, those Fuzzy ARTMAP classifiers can
identify untrained vapor with a high success rate, even 100%. How-
ever, the generalization performance for classification of trained
vapor deteriorates, after the initial vigilance parameter exceeds cer-
tain value. If �A is larger than 0.996, the successful classification rate

for trained vapor will decrease. Generally, Hx has better classifica-
tion results when it is chosen as trained vapor, which conforms to
the previous PCA analysis. The fact that classification rate for some
vapor cannot reach 100% is probably due to the input data. There

h different initial vigilance parameter (IVP). The right graph is a magnified view of
d vapor, pink; trained vapors, blue). For interpretation of the references to color in
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s overlapping between different classes, which is obvious in the
revious PCA score plot figures. For a specific classifier, there may
xist some optimal values of �A, when successful classification rate
or both trained and untrained vapor are taken into consideration.

The decision of initial vigilance parameter will depend on the
omparative importance of correct classification rate for trained
nd untrained vapors. For further analysis of the relationship
etween initial vigilance parameter and performance of Fuzzy
RTMAP system, multiple objective optimization analysis is con-
ucted.

.3. Results for multiple objective optimization

For further analysis of the relationship between initial vigilance
arameter and performance of Fuzzy ARTMAP system, multiple
bjective optimization analysis is conducted. As shown by the
xperimental results, initial vigilance parameter has obvious effect
n the performance of Fuzzy ARTMAP system, which is weighted
ainly by the successful classification rate (SCR) of both untrained

nd trained vapors. Those two are considered as two objectives to
aximize. The problem can be defined as a multiple objective opti-
ization. The decision vector is composed of only one component,

he initial vigilance parameter. The linear 2D (L2D) algorithm [20]
s employed to construct Pareto optimal Set. To identify some gen-
ral good value of initial vigilance parameter, the search operation
s implemented on all the classification results acquired from the
xperiment. The Pareto Set produced is shown in Fig. 6. The Pareto
ptimal points lie in the upper right corner of the figure. Those
oints denote solutions with high successful classification rates for
oth trained and untrained vapors. Some Pareto optimal solutions

ie much closely, or even overlap with one another. When initial
igilance parameter takes a value about 0.995, usually the solution
s Pareto optimal in this study, and the corresponding classification
erformance of Fuzzy ARTMAP classifier seems good in view of SCR
f both trained and untrained vapors.

The sensitivity analysis of choice parameter ˛ is also conducted
y varying its value during the experiment keeping the initial vig-
lance parameter same. In the experiment, ˛ has been set to large
alues which are near to 1. However, there is no change in classifi-
ation performance corresponding to variation of choice parameter
n this study.

ig. 6. Pareto optimal solutions in plane of successful classification rate (SCR) of
rained vapor vs. that of untrained vapor. (Pareto optimal, red diamond; otherwise,
lack round). For interpretation of the references to color in this figure legend, the
eader is referred to the web version of the article.
rs B 141 (2009) 458–464 463

5. Conclusion

In this study PCA and Fuzzy ARTMAP are jointly applied to
the classification of sensor array responses to four volatile organic
vapors: Bz, Hx, Pxy, and Tl; emphasizing detecting untrained
vapors. Unlike most current classifiers, e.g., multi-layer percep-
tron, and support vector machine (SVM) classifiers, etc., which
have difficulty in identifying new analytes, the Fuzzy ARTMAP
system can successfully recognize untrained VOCs based on their
sensor-response profiles. Further, the built Fuzzy ARTMAP clas-
sifiers could recognize new analytes without retraining process,
which is required by most traditional neural network classifiers,
e.g., radial-basis function (RBF) network, and multi-layer percep-
tron classifiers, etc. By carefully selecting the value of the most
important parameter, i.e., initial vigilance parameter, the exper-
iment results show that Fuzzy ARTMAP classifiers can identify
untrained vapors with a quite high correct recognition rate (up
to 100%), while maintaining a decent classification performance
on recognizing trained vapors. Taking the input processed by PCA,
Fuzzy ARTMAP classifiers can generally recognize certain vapor
without being trained by data containing information about that
vapor. Experiments show that the initial vigilance parameter is crit-
ical for the performance of Fuzzy ARTMAP classifier. Trading-off
both successful classification rates for trained and untrained vapors,
there are some near optimal values of initial vigilance parameter.
Pareto optimization method was applied to analyze variation of
classification performance corresponding to the change of vigilance
parameter’s value. Through analysis, the Pareto optimal values of
initial vigilance parameter were identified. Generally, when that
parameter is set to a high value, the performance of Fuzzy ARTMAP
classifier will be good for identifying untrained vapor. That obser-
vation generally conforms to the Fuzzy ARTMAP theory, and could
provide some hint for constructing good parameter set of Fuzzy
ARTMAP classifier in similar application. Thus, a Fuzzy ARTMAP
classifier combined with PCA seems to be promising in identifying
untrained vapors.

To test the general performance of both trained and untrained
vapor classification by Fuzzy ARTMAP classifier, more experiments
involving more vapors are needed in the future. By selecting dif-
ferent combinations of sensors, the successful classification rate
could be improved further. Optimization of sensor array combina-
tion beforehand might decrease the effects on classification results,
which is due to input signals acquired from specific combined sen-
sors. To improve the generalization performance of classification,
some strategy, e.g., voting strategy [10], or some improved algo-
rithm based on Fuzzy ARTMAP might be employed in further study
to improve the generalization performance of classification.
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